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Abstract. Tensor algebras give rise to one of the most powerful measures of similarity for sequences of arbitrary
length called the signature kernel accompanied with attractive theoretical guarantees from stochastic
analysis. Previous algorithms to compute the signature kernel scale quadratically in terms of the length
and number of the sequences. To mitigate this severe computational bottleneck, we develop a random
Fourier feature-based acceleration of the signature kernel acting on the inherently non-Euclidean
domain of sequences. We show uniform approximation guarantees for the proposed unbiased estimator
of the signature kernel, while keeping its computation linear in the sequence length and number. In
addition, combined with recent advances on tensor projections, we derive two even more scalable time
series features with favourable concentration properties and computational complexity both in time
and memory. Our empirical results show that the reduction in computational cost comes at a negligible
price in terms of accuracy on moderate size datasets, and it enables one to scale to large datasets up
to a million time series. We release the code publicly available at https://github.com/tgcsaba/ksig.
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1. Introduction. Machine learning has successfully been applied to tasks that require
learning from complex and structured data types on non-Euclidean domains. Feature engineering
on such domains is often tackled by exploiting the geometric structure and symmetries existing
within the data [5]. Learning from sequential data (such as video, text, audio, time series,
health data, etc.) is a classic, but an ongoing challenge due to the following properties:

• Non-Euclidean data. The data domain is nonlinear since there is no obvious and natural
way of adding sequences of different length.

• Time-space patterns. Statistically significant patterns can be distributed over time and
space, that is, capturing the order structure in which “events” arise is crucial.

• Time-warping invariance. The meaning of many sequences is often invariant to
reparametrization also frequently called time-warping, at least to an extent; e.g. a
sentence spoken quicker or slower contains (essentially) the same information.

• Discretization and irregular sampling. Sequences often arise by sampling along an
irregularly spaced grid of an underlying continuous time process. A general methodology
should be robust as the sampling gets finer, sequences approximate paths (continuous-
time limit), or as the discretization grid varies between sequences.

• Scalability. Sequence datasets can quickly become massive, so the computational
complexity should grow subquadratically, in terms of all of the state-space dimension,
and the length and number of sequences.

The signature kernel kSig is the state-of-the-art kernel for sequential data [87, 71, 49] that
addresses the first 4 of the above questions and can rely on the modular and powerful framework
of kernel learning [74]. Its construction is motivated by classic ideas from stochastic analysis
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that give a structured description of a sequence by developing it into a series of tensors. We
refer to [48] for a recent overview of its various constructions and applications. In the real-world,
various phenomena are well-modelled by systems of differential equations. The path signature
arises naturally in the context of controlled differential equations. The role of the signature
here is to provide a basis for the effects of a driving signal on systems of controlled differential
equations. In essence, it captures the interactions of a controlling signal with a nonlinear
system. This explains the widespread applicability of signatures to various problems across the
sciences [55]. There is also geometric intuition behind signatures, see Section 1.2.4 in [10].

Features vs Kernel/Primal vs Dual. Kernel learning circumvents the costly evaluation of
a high- or infinite-dimensional feature map by replacing it with the computation of a Gram
matrix which contains as entries the inner products of features between all pairs of data points.
This can be very powerful since the inner product evaluation can often be done cheaply by
the celebrated "kernel trick", even for infinite-dimensional feature spaces, but the price is
that now the computational cost is quadratic in the number of samples, and downstream
algorithms further often incur a cubic cost usually in the form of a matrix inversion. On the
other hand, when finite-dimensional features can used for learning, the primal formulation of a
learning algorithm can perform training and inference in a cost that is linear with respect to
the sample size assuming that the feature dimension is fixed. This motivates the investigation
of finite-dimensional approximations to kernels that mimic their expressiveness at a lower
computational cost. It is an interesting question how the feature dimension should scale with
the dataset size to maintain a given (optimal) learning performance in downstream tasks, which
is investigated for instance by [68, 7, 80, 50, 78, 45].

Computational Cost of the Signature kernel. In the context of the signature kernel, one data
point is itself a whole sequence. Hence, given a data set X consisting of N ∈ Z+ sequences
where each sequence x = (x1, . . . ,xℓx) is of maximal length ℓx ≤ ℓ ∈ Z+ and has sequence
entries xi in a state-space of dimension d, then the existing algorithms to evaluate the Gram
matrix of the kSig scale quadratically, i.e. as O(N2ℓ2d), both in sequence length ℓ and number of
sequences N . So far this has only been addressed by subsampling (either directly the sequence
elements to reduce the length or by column subsampling via the Nyström approach [94]), which
can lead to crude approximations and performance degradation on large-scale datasets.

Contribution. Random Fourier Features (RFF) [61] is a classic technique to enjoy both the
benefits of the primal and dual approach. Here, a low-dimensional and random feature map is
constructed, which although does not approximate the feature map of a translation-invariant
kernel, its inner product is with high probability close to the kernel itself. The main contribution
of this article is to carry out such a construction for the signature kernel. Concretely, we
construct a random feature map on the domain of sequences called Random Fourier Signature
Features (RFSF), such that its inner product is a random kernel k̃Sig for sequences that is both
(i) an unbiased estimator for kSig, and (ii) has analogous probabilistic approximation guarantees
to the classic RFF kernel. The challenge is that a direct application of the classic RFF technique
is not feasible since this relies on Bochner’s theorem which does not apply since the sequence
domain is not even a linear space and the feature domain is non-Abelian, which makes the use
of (generalizations of [29]) Bochner’s theorem difficult due to the lack of sufficiently explicit
representations. We tackle this challenge by combining the algebraic structure of signatures
with probabilistic concentration arguments; a careful analysis of the error propagation yields
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uniform concentration guarantees similar to the RFF on Rd. Then, we introduce dimensionality
reduction techniques for random tensors further approximating k̃Sig to define the extremely
scalable variants k̃

DP
Sig and k̃

TRP
Sig called RFSF-DP and RFSF-TRP saving considerable amounts of

computation time and memory by low-dimensional projection of the feature set of the RFSF.
Hence, analogously to the classic RFF construction, the random kernels k̃Sig, k̃

DP
Sig, k̃

TRP
Sig

simultaneously enjoy the expressivity of an infinite-dimensional feature space as well as linear
complexity in sequence length. This overcomes the arguably biggest drawback of the signature
kernel, which is the quadratic complexity in sample size and sequence length; the price for
reducing the complexities by an order is that this approximation only holds with high probability.
As in the case of the classic RFF, our experiments show that this is in general a very attractive
tradeoff. Concretely, we demonstrate in the experiments that the proposed random features
(1) provide comparable performance on moderate sized datasets to full-rank (quadratic time)
signature kernels, (2) outperform other random feature approaches for time series on both
moderate- and large-scale datasets, (3) allow scaling to datasets of a million time series.

Related Work. The signature kernel has found many applications; for example, it is used
in ABC-Bayes [23], economic scenario validation [1], amortised likelihood estimation [24], the
analysis of RNNs [26], analysis of trajectories in Lie groups [47], metrics for generative modelling
[6, 38], or dynamic analysis of topological structures [30]. For a general overview see [48]. All of
these applications can benefit from a faster computation of the signature kernel with theoretical
guarantees. Previous approaches address the quadratic complexity of the signature kernel only
by subsampling in one form or another: [40] combine a structured Nyström type-low rank
approximation to reduce complexity in dimension of samples and sequence length, [87] combine
this with inducing point and variational methods, [71] uses sequence-subsampling, [49] use
diagonal approximations to Gram matrices in a variational setting. Related to this work is also
the random nonlinear projections in [54]; further, [56] combine linear dimension projection in a
general pipeline and [16] use signatures in reservoir computing. Directly relevant for this work
is recent progress on tensorized random projections [81, 64]. Random Fourier Features [61, 63]
are well-understood theoretically [82, 77, 78, 51, 2, 83, 9, 88, 9]. In particular, its generalization
properties are studied in e.g. [3, 50, 80, 45], where it is shown that the feature dimension need
only scale sublinearly in the dataset size for supervised learning, and a similar result also holds
for kernel principal component analysis [78]. Several variations have been proposed over the
years [46, 25, 14, 97, 13, 12, 15], even finding applications in deep learning [84]. Alternative
random feature approaches for polynomial and Gaussian kernels based on tensor sketching
have been proposed in e.g. [93, 92, 91]. Gaussian sketching has also been applied in the RKHS
for kernel approximation [42]. For a survey, the reader is referred to [9, 52].

Outline. Section 2 provides background on the prerequisites of our work: Random Fourier
Features, and Signature Features/Kernels. Section 3 contains our proposed methods with theo-
retical results; it introduces Random Fourier Signature Features (RFSF) φ̃Sig≤M

, RFSF kernels
k̃Sig≤M

(where M ∈ Z+ is the truncation level introduced later), and most importantly their
theoretical guarantees. Theorem 3.2 quantifies the approximation kSig≤M

(x,y) ≈ k̃Sig≤M
(x,y)

uniformly. Then, we discuss additional variants: the RFSF-DP kernel k̃DPSig≤M
and the RFSF-TRP

kernel k̃TRPSig≤M
, which build on the previous construction using dimensionality reduction with cor-
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responding concentration results in Theorems 3.5 and 3.8. Section 4 compares the performance
of the proposed scalable signature kernels against popular approaches on SVM multivariate
time series classification, which demonstrates that the proposed kernel not only significantly
improves the computational complexity of the signature kernel, it also provides comparable
performance, and in some cases even improvements in accuracy as well. Hence, we take the
best of both worlds: linear batch, sequence, and state-space dimension complexities, while
approximately enjoying the expressivity of an infinite-dimensional RKHS with high probability.

2. Prerequisites.
Notation. We denote the real numbers by R, natural numbers by N := {0, 1, 2, . . .}, positive

integers by Z+ := {1, 2, 3, . . .}, the range of positive integers from 1 to n ∈ Z+ by [n] :=
{1, 2, . . . , n}. Given a, b ∈ R, we denote their maximum by a ∨ b := max(a, b) and their
minimum by a ∧ b := min(a, b). We define the collection of all ordered m-tuples with non-
repeating entries starting from 1 up to n including the endpoints by

∆m(n) := {1 ≤ i1 < i2 < · · · < im ≤ n : i1, i2, . . . , in ∈ [n]} .(2.1)

In general, X refers to a subset of the input domain, where the various objects are defined,
generally taken to be a subset Rd unless otherwise stated. For a vector x ∈ Rd, we denote

its ℓp norm by ∥x∥p :=
(∑d

i=1 |xi|
p
)1/p

. For a matrix A ∈ Rd×e, we denote the spectral

and the Frobenius norm by ∥A∥2 := sup∥x∥2=1 ∥Ax∥2 and ∥A∥F :=
(∑e

i=1 ∥Aei∥22
)1/2

, where

{e1, . . . , ee} is the canonical basis of Re. The transpose of a matrix A is denoted by A⊤. For a
differentiable f : Rd → R, we denote its gradient at x ∈ Rd by ∇f(x) := (∂f(x)/∂xi)

d
i=1, and its

collection of partial derivatives with respect to s := (xi1 , . . . , xik) by ∂sf(x) :=
(
∂f(x)/∂xij

)k
j=1

.
Xseq refers to sequences of finite, but unbounded length with values in the set X:

Xseq := {x = (x1, . . . ,xL) : xi ∈ X, L ∈ Z+}.

We denote the length of a sequence x = (x1, . . . ,xL) ∈ Xseq by ℓx := L, and define the 1st-order
forward differencing operator as δxi := xi+1 − xi. We define the 1-variation functional of a
sequence x ∈ Xseq as ∥x∥1-var :=

∑ℓx−1
i=1 ∥δxi∥2 as a measure of sequence complexity.

Random Fourier Features. Kernel methods allow to implicitly use an infinite-dimensional
feature map φ : X → H by evaluation of the inner product k(x,y) = ⟨φ(x), φ(y)⟩H, when
H is a Hilbert space. This inner product can often be evaluated without direct computation
of φ(x) and φ(y) via the kernel trick. Although this makes them a powerful tool due to
the resulting flexibility, the price of this flexibility is a trade-off in complexity with respect
to the number of samples N ∈ Z+. Disregarding the price of evaluating the kernel k(x,y)
momentarily, kernel methods require the computation of a Gram matrix with O(N2) entries,
that further incurs an O(N3) computational cost by most downstream algorithms, such as KRR
[75], GP [66], and SVM [74]. Several techniques reduce this complexity, and the focal point of
this article is the Random Fourier Feature (RFF) technique of [61, 62, 63], which can be applied
to any continuous, bounded, translation-invariant kernel on Rd.1 Throughout, we write with
some abuse of notation k(x− y) ≡ k(x,y). Next, we outline the RFF construction.

1A kernel is called translation-invariant if k(x,y) = k(x+ z,y + z) for any x,y, z ∈ Rd.
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A corollary of Bochner’s theorem [70] is that any continuous, bounded, and translation-
invariant kernel k : Rd ×Rd → R can be represented as the Fourier transform of a non-negative
finite measure Λ called the spectral measure associated to k, i.e. for x,y ∈ X

k(x− y) =

∫
Rd

exp(iw⊤(x− y))dΛ(w).

We may, without loss of generality, assume that Λ is a probability measure such that Λ(Rd) = 0,
which amounts to working with the kernel k(x− y)/k(0). [61] proposed to draw d̃ ∈ Z+ i.i.d.
samples from Λ, w1, . . . ,wd̃

i.i.d.∼ Λ, to define the random feature map for x ∈ X by

φ̃ : X → H̃ := R2d̃, φ̃(x) :=
1√
d̃

(
cos
(
W⊤x

)
, sin

(
W⊤x

))
,(2.2)

where W = (wi)
d̃
i=1 ∈ Rd×d̃. Then, the corresponding random kernel is defined for x,y ∈ X as

k̃ : X× X → R, k̃(x,y) = ⟨φ̃(x), φ̃(y)⟩
H̃
=

1

d̃

d̃∑
i=1

cos
(
w⊤

i (x− y)
)

(2.3)

to provide a probabilistic approximation to k. Indeed, it is a straightforward exercise to check
that k(x,y) = E

[
k̃(x,y)

]
≈ k̃(x,y). This approximation converges exponentially fast in d̃

and uniformly over compact subsets of Rd as proven in [61, Claim 1]. This bound was later
tightened and extended to the derivatives of the kernel in the series of works [77, 83, 9], and
we provide an adapted version under Theorem B.1 in the supplement.

Tensors and the tensor product. First, we provide a brief overview of tensors and tensor
products of Hilbert spaces, which we will use to construct our feature space called the free
algebra over a Hilbert space. The construction we adapt was first proposed by [57].

Let H1, . . . ,Hm be Hilbert spaces. To each element (h1, . . . , hm) ∈ H1 × · · ·Hm, associate
the multi-linear operator h1 ⊗ · · · ⊗ hm defined for each (f1, . . . , fm) ∈ H1 × · · · ×Hm by

(h1 ⊗ · · · ⊗ hm)(f1, . . . , fm) := ⟨h1, f1⟩H1
· · · ⟨hm, fm⟩Hm

.

Take the linear span of all such multi-linear operators to build the space

H1 ⊗′ · · · ⊗′ Hm := span {h1 ⊗ · · · ⊗ hm : h1 ∈ H1, . . . , hm ∈ Hm} ,

and endow H1 ⊗′ · · · ⊗′ Hm with an inner product via

⟨h1 ⊗ · · ·hm, f1 ⊗ · · · ⊗ fm⟩H1⊗′···⊗′Hm
:= ⟨h1, f1⟩H1

· · · ⟨hm, fm⟩Hm
(2.4)

for all h1, f1 ∈ H1, . . . , hm, fm ∈ Hm, and extend by linearity to H1 ⊗′ · · · ⊗′ Hm. Taking the
topological completion of this space under this inner product gives a Hilbert space denoted by
H1 ⊗ · · · ⊗Hm called the tensor product of the Hilbert spaces H1, . . . ,Hm. For more details
about the tensor product from an algebraic point of view, see [44].
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Free algebras. Now we introduce our feature space HSig. That is, we show how to embed a
Hilbert space H into a bigger Hilbert space HSig which is also an associative algebra2 using
a so-called free construction. Since the tensor product is associative, we can unambiguously
take tensor powers of the vector space H. Denoting H⊗m := H ⊗ · · · ⊗H, we define the free
algebra over H as the set of sequences of tensors indexed by their degree m ∈ N,⊕

m≥0

H⊗m =
{
(t0, t1, t2, . . . ) : tm ∈ H⊗m for m ∈ N,∃n ∈ N s.t. N ≥ n, tN = 0

}
,(2.5)

where
⊕

is the direct sum operation, ⊗ is the tensor product. For example, if H = Rd, then
the degree-1 component is a d-dimensional vector, the degree-2 component is a d× d matrix,
the degree-3 component is an array of shape d× d× d. The space

⊕
m≥0H

⊗m is a vector space
with addition and scalar multiplication defined for λ ∈ R, s, t ∈

⊕
m≥0H

⊗m as

s+ t := (sm + tm)m≥0 , λs := (λsm)m≥0 ,

and H is a linear subspace of
⊕

m≥0H
⊗m by identifying v ∈ H as (0,v, 0, 0, . . . ) ∈

⊕
m≥0H

⊗m.
Further,

⊕
m≥0H

⊗m is also an associative algebra since it is endowed with a (noncommutative3)
product defined for tensors s, t ∈

⊕
m≥0H

⊗m as

st =

(
m∑
i=0

si ⊗ tm−i

)
m≥0

∈
⊕
m≥0

H⊗m.

This process of turning H into an algebra
⊕

m≥0H
⊗m is a free construction; informally this

means that (2.5) is the minimal structure that turns H into an algebra; for more details about
free algebras, see [96, 67]. We now define for s, t ∈

⊕
m≥0H

⊗m their inner product as

⟨s, t⟩⊕
m≥0 H

⊗m =
∑
m≥0

⟨sm, tm⟩H⊗m ,

where the inner product ⟨sm, tm⟩H⊗m on H⊗m is as in (2.4). Finally, the completion of⊕
m≥0H

⊗m in this inner product gives a Hilbert space HSig, which is equivalently defined as

HSig = {t = (t0, t1, t2, . . .) : tm ∈ H⊗m, ⟨t, t⟩HSig
< ∞}.(2.6)

Path Signatures. A classic way to obtain a structured and hierarchical description of a path
x : [0, T ] → Rd is by computing a sequence of iterated integrals called the path signature of x
given as tensors of increasing degrees m ∈ N such that the degree-m object is

Sm(x) :=

∫
· · ·
∫

0<t1<···<tm<T

dx(t1)⊗ · · · ⊗ dx(tm) =

∫
· · ·
∫

0<t1<···<tm<T

ẋ(t1)⊗ · · · ⊗ ẋ(tm)dt1 · · · dtm.

2An algebra A is a vector space A, where one can multiply elements together, i.e. ab ∈ A for a,b ∈ A.
3Noncommutative means that ab ̸= ba in general for elements a,b ∈ V of the algebra.
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Formally, we refer to the map that takes a path to its iterated integrals, S : Paths → HSig,
S(x) := (1, S1(x), S2(x), . . .) as the path signature map. The domain of S is a space of paths
that are regular enough such that the integrals are well-defined. Its feature space is given by
applying the above construction of HSig in (2.6) to H = Rd with the Euclidean inner product.

Among the attractive properties of S is that it linearizes nonlinear functions of paths, that
is for any continuous function f one can find a linear functional w of S such that

f(x) ≈ ⟨w, S(x)⟩ :=
∑
m≥0

∑
i1,...,im∈[d]

wi1,...,im

∫
ẋi1(t1) · · · ẋim(tm)dt1 · · · dtm,(2.7)

where (2.7) w1, . . . , wd, w1,1, . . . , wd,d, . . . , wd,...,d ∈ R denote the coordinates of w, and the
approximation holds uniformly on compacts [27, Theorem II.5] whenever the path x includes
time as a coordinate4. The same results generalize to paths without an increasing coordinate up
to reparametrization (i.e. time-warping) and backtracking, formally called “tree-like” equivalence,
see [32]. Moreover, these iterated integrals can be well-defined beyond the setting of smooth
paths; for example, the same results extend to Brownian motion, semimartingales, and even
rougher paths. Rough path theory provides a systematic study that comes with a rich toolbox,
that combines analytic and algebraic estimates, rich enough to cover the trajectories of large
classes of stochastic processes; see [53, 28] for an introduction. Informally, iterated integrals
of paths can be seen as a generalization of classical monomials and from this perspective,
the approximation (2.7) can be regarded as the extension of classic polynomial regression to
path-valued data. Thus at least informally it is not surprising, that vanilla signature features
suffer from similar drawbacks as classic monomial features; for example, if classic monomials are
replaced by other nonlinearities this often drastically improves the approximations; see e.g. [87,
71], where precomposing the signature with the RBF kernel increases learning performance.

Signature Features for Sequential Data. A challenge in machine learning when constructing
feature maps for datasets of sequences is that the sequence length can vary from instance
to instance; the space of sequences Xseq =

{
(xi)

ℓ
i=1 : x1, . . . ,xℓ ∈ X and ℓ ∈ Z+

}
includes

sequences of various lengths, and they should all get mapped to the same feature space, while
preserving the information about the elements themselves and their ordering. A concatenation
property of path signatures called Chen’s identity [55, Thm. 2.9] turns concatentation into
multiplication provides a principled approach to construct features for sequences. Below we
recall the construction of discrete-time signatures based on [85].

The key idea is to define the discrete-time signature of 1-step increments, and then glue
features together by algebra multiplication to guarantee that the Chen identity holds by
construction. Now assume we are given a static feature map φ : X → H into some Hilbert
space H. Our task is to construct from this feature map for elements of X, a feature map
for sequences of arbitrary length in X. A natural first step is to apply the feature map φ
elementwise to a sequence x ∈ Xseq to lift it to a sequence into the feature space H of φ,
φ(x) := (φ(xi))

ℓx
i=1 ∈ Hseq. The challenge is now to construct a feature map for sequences in H.

Simple aggregation of the individual features fails; e.g. summation of the individual features
φ(xi) would lose the order information, vectorization (φ(x1), . . . , φ(xℓx)) ∈ Hℓx would make

4This means that xi(t) = t for some i∈ [d]; more generally, a strictly increasing coordinate is sufficient.
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sequences of different length not comparable. It turns out that multiplication is well-suited for
this task in a suitable algebra.

Fortunately, there is a natural way to embed any Hilbert space H into a larger Hilbert
space HSig that is also a non-commutative algebra. First, we take the 1st-order differences,

x 7→ δφ(x) := (φ(xi+1)− φ(xi))
ℓx−1
i=1 ∈ Hℓx−1, where x ∈ Xseq(2.8)

since it is more natural to keep track of changes rather than absolute values. Then we identify
H as a subset of HSig. The simplest choice given the above construction of HSig is

ι : h 7→ (1,h,0,0, . . .) ∈ HSig where h ∈ H.(2.9)

A direct calculation shows that composing the maps (2.8), (2.9), and multiplying the
individual entries in HSig results in a sequence summary using all non-contiguous subsequences,
since in each multiplication step a sequence entry is either selected once or not at all. This
gives rise to the discretized signatures φSig : Xseq → HSig for x ∈ Xseq with ℓx ≥ 2:

φSig(x) :=

ℓx−1∏
i=1

ι(δφ(xi)) =

 ∑
i∈∆m(ℓx−1)

δφ(xi1)⊗ · · · ⊗ δφ(xim)


m≥0

,(2.10)

where ∆m : Z+ → Zm
+ is as defined in (2.1) and i = (i1, . . . , im). Thus, the sequence feature

is itself a sequence, however, now a sequence of tensors indexed by their degree m ∈ N in
contrast to being indexed by the time index i ∈ [ℓx]. These sequence features are invariant to
a natural transformation of time series called time-warping, but can also be made sensitive
to it by including time as an extra coordinate with the mapping x = (xi)

ℓx
i=1 7→ (ti,xi)

ℓx
i=1.

It also possesses similar approximation properties to path signatures in (2.7), i.e. uniform
approximation of functions of sequences on compact sets; see Appendices A and B in [85].

Despite the abstract derivation, the resulting feature map φSig is—in principle—explicitly
computable when H = Rd; see [39] for details. However, when the static feature map φ is high-
or infinite-dimensional, this is not feasible and we discuss a kernel trick further below.

Remark 2.1. We used the map ι, as defined in (2.9), to embed H into HSig. Other choices
are possible, for example one could use the embedding ι̂ : H → HSig for h ∈ H

ι̂(h) :=

(
1,h,

h⊗2

2!
,
h⊗3

3!
, . . .

)
∈ HSig.(2.11)

This embedding is actually the classical choice in mathematics, but different choices of the em-
bedding lead to, besides potential improvements in benchmarks, mildly different computational
complexities and interesting algebraic questions [21, 85, 86].

Finally, it can be useful to only consider the first M ∈ Z+ tensors in the series φSig(x)
analogously to using the first M moments in classic polynomial regression to avoid overfitting.
Hence, we define the M -truncated signature features for M ∈ Z+ as

φSig≤M
(x) :=

(
1, φSig1(x), . . . , φSigM (x),0,0, . . .

)
for x ∈ Xseq,

where φSigm(x) is the projection of φSig(x) onto H⊗m. In practice, we regard M ∈ Z+, and
the choice of the embedding as hyperparameters to optimize.
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Signature Kernels. The signature is a powerful feature set for nonlinear regression on paths
and sequences. A computational bottleneck associated with it is the dimensionality of the
feature space HSig. As we are dealing with tensors, for H finite-dimensional φSigm(x) is a tensor
of degree-m which has (dimH)m coordinates that need to be computed. This can quickly
become computationally expensive. For infinite-dimensional H, e.g. when H is a reproducing
kernel Hilbert space (RKHS), which is one of the most interesting settings due to the modelling
flexibility, it is infeasible to directly compute φSig. In [40], the signature kernel was introduced,
and it was shown that a kernel trick allows to compute the inner product of signature features
up to a given degree M ∈ Z+ using dynamic programming, even when H is infinite-dimensional.
Subsequently, [71] proposed a PDE-based algorithm to approximate the untruncated signature
kernel, which was further extended in [8], and we refer to [48] for a recent overview of signature
kernels. Here, we focus on discrete-time, and our starting point is the approach of [40] combined
with the non-geometric approximation [21] resulting in the features (2.10).

Above we described a generic way to turn a static feature map φ : X → H into a feature
map φSig≤M

(x) for sequences, see (2.10). The signature kernel is a powerful formalism that
allows to transform any static kernel on X into a kernel for sequences that evolve in X. Let
k : X× X → R be a continuous and bounded kernel, and from now on, let H denote its RKHS,
and φ(x) := kx ≡ k(x, ·) the associated reproducing kernel lift for x ∈ X. We define the
M -truncated (discretized) signature kernel kSig≤M

: Xseq×Xseq → R for M ∈ Z+ as

kSig≤M
(x,y) :=

〈
φSig≤M

(x), φSig≤M
(y)
〉
HSig

=

M∑
m=0

〈
φSigm(x), φSigm(y)

〉
H⊗m

=

M∑
m=0

kSigm(x,y) =
M∑

m=0

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

δ2i1,j1k(xi1 ,yj1) · · · δ2im,jmk(xim ,yjm),(2.12)

where we defined the level-m (discretized) signature kernel kSigm : Xseq×Xseq → R for m ∈
[M ] as kSigm(x,y) :=

〈
φSigm(x), φSigm(y)

〉
H⊗m , and δ2 denotes a 2nd-order cross-differencing

operator such that δ2i,jk(xi,yj) := k(xi+1,yj+1) − k(xi+1,yj) − k(xi,yj+1) + k(xi,yj) for
i ∈ [ℓx − 1] and j ∈ [ℓy − 1]. The key insight by [40] is equation (2.12), i.e. that kSig≤M

can be
computed5 without computing φSig≤M

itself by a kernel trick that only uses kernel evaluations.
The kernel hyperparameters are the choice of the static kernel k, for which there is a wide

range of options, e.g. for X = Rd the Gaussian, exponential or Matérn family of kernels; any
hyperparameters that k comes with, such as the bandwidth; the truncation level M ∈ Z+; the
choice of the algebra embedding, e.g. (2.9) or (2.11); and the choice of kernel normalization
[11] that scales each level kSigm appropriately. It also comes with nice theoretical guarantees
such as analytic estimates when sequences converge to paths, its maximum mean discrepancy
(MMD) metrizes classic topologies for stochastic processes, and can lead to robust statistics in
the classic statistical sense (B-robustness); see [11] for details.

Although (2.12) looks expensive to compute, [40] applies dynamic programming to efficiently
compute kSig≤M

using a recursive algorithm; an alternative algorithm is the above mentioned

5The computation can be carried out exactly for finite M and approximately for M =∞.
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approach of approximating the (untruncated) signature kernel kSig using PDE-discretization.
Importantly, (2.12) avoids computing tensors, and only depends on the entry-wise evaluations of
the static kernel k(xi,yj). Indeed, this leads to a computational cost of O((M + d)ℓxℓy), which
is feasible for sequences evolving in high-dimensional state-spaces, but only with moderate
sequence length. Note that the same bottleneck applies to PDE-based approaches. In part, the
aim of this article is to alleviate this quadratic cost in sequence length, while approximately
enjoying the modelling capability of working within an infinite-dimensional RKHS.

3. Random Fourier Signature Features. The goal of this section is to build random
features for sequences, that enjoy the benefit of linear sequence length and low-dimensional
feature complexity with theoretical guarantees that the corresponding inner product is close to
the M -truncated (discretized) signature kernel kSig≤M

with high probability. We construct these
random features in a two step process: firstly, we reduce the feature space from infinite to finite
(but high) dimensionality through a careful construction using random Fourier features (RFFs),
and in the second step we apply further dimensionality reduction to reduce the complexity
to an even lower dimensional space in order to aid in scalability. Although we present this
construction as conceptually distinct steps, the steps are coupled during the computation, and
the features can be computed directly without going through the initial step.

From infinite to finite dimensions. In Section 2, we recalled the RFF construction, which
associates to a continuous, bounded, translation-invariant kernel k : X×X → R on X a spectral
measure Λ, and approximates k by drawing samples from Λ to define the random features
φ̃ : X → H̃ (2.2), and the random kernel k̃ : X × X → R (2.3). Afterwards, we presented a
generic way to turn any such static features φ̃ : X → H̃ for elements of X into sequence features
for sequences that evolve in X via φSig≤M

: Xseq → HSig. Applying this construction with the
RFF as feature map on X would already result in a random feature map for sequences, i.e. a
map from Xseq into H̃Sig. Taking the inner product in H̃Sig of this new random feature map
for sequences would, however, only yield a biased estimator for the truncated signature kernel
kSig≤M

. We correct for this bias by revisiting our previous construction, and build an unbiased
approximation to kSig≤M

using independent RFF copies in each tensor multiplication step. Then,
we show in Theorem 3.2 that this random estimator comes with good probabilistic guarantees.

The probabilistic construction procedure is outlined in the following definition.

Definition 3.1. Let W(1), . . . ,W(M) i.i.d.∼ Λd̃ be i.i.d. random matrices sampled from Λd̃

for RFF dimension d̃ ∈ Z+, and define the independent RFF maps φ̃m : X → H̃ as in (2.2),
i.e. φ̃m(x) = 1√

d̃

(
cos(W(m)⊤x), sin(W(m)⊤x)

)
for m ∈ [M ] and x ∈ X. The M -truncated

Random Fourier Signature Feature ( RFSF) map φ̃Sig≤M
: Xseq → H̃Sig from sequences in X into

the free algebra over H̃ is defined for truncation level M ∈ Z+ and x ∈ Xseq as

φ̃Sig≤M
(x) :=

 ∑
i∈∆m(ℓx−1)

δφ̃1(xi1)⊗ · · · ⊗ δφ̃m(xim)

M

m=0

.(3.1)
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Further, the RFSF kernel k̃Sig≤M
: Xseq×Xseq → R can be computed for x,y ∈ Xseq as

k̃Sig≤M
(x,y) :=

〈
φ̃Sig≤M

(x), φ̃Sig≤M
(y)
〉
H̃Sig

=

M∑
m=0

〈
φ̃Sigm(x), φ̃Sigm(y)

〉
H̃⊗m

=

M∑
m=0

k̃Sigm(x,y) =
M∑

m=0

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

δ2i1,j1 k̃1(xi1 ,yj1) · · · δ2im,jm k̃m(xim ,yjm),(3.2)

where we defined the level-m RFSF kernel k̃Sigm : Xseq×Xseq → R for m ∈ N as k̃Sigm(x,y) :=〈
φ̃Sigm(x), φ̃Sigm(y)

〉
H̃⊗m with the convention that k̃Sig0 ≡ 1, and k̃1, . . . , k̃M : X× X → R are

independent RFF kernels defined as in (2.3) with the random weights W(1), . . . ,W(M) ∈ Rd×d̃.

Since the feature map φ̃Sig≤M
can be directly evaluated in the feature space recursively,

k̃Sig≤M
has linear complexity in the sequence length. However, it requires computing high-

dimensional tensors, where the degree-m component φ̃Sigm(x) ∈ H̃⊗m has (dim H̃)m = (2d̃)m

coordinates, making it infeasible for large m, d̃ ∈ Z+. Remark 3.3 discusses the computational
complexity in detail. Further, note that the kernel can be evaluated by means of a kernel trick
exactly analogously to the evaluation of (2.12), but in this case there are no computational
gains compared to the infinite-dimensional signature kernel kSig≤M

(x,y).
Next, we provide a theoretical analysis to show that the random kernel k̃Sig≤M

(x,y)
converges to the ground truth signature kernel kSig≤M

(x,y) exponentially fast and uniformly
over compact state-spaces X ⊆ Rd, generalizing the result [61, Claim 2] to this non-Euclidean
domain of sequences. Throughout the analysis, we need certain regularity properties of Λ in order
to invoke quantitative versions of the law of large numbers, i.e. properties such as boundedness,
existence of the moment-generating function, moment-boundedness, or belonging to certain
Orlicz spaces of random variables. Boundedness of the spectral measure is too restrictive
an assumption, since a continuous, bounded, translation-invariant kernel k : X × X → R is
characteristic if and only if the support of its spectral measure is Rd, see [76, Prop. 8]. Hence,
we instead work with the assumption that its moments are well-controllable, i.e. the tails of the
distribution are not “too heavy”. Specifically, we assume the Bernstein moment condition that

Ew∼Λ

[
w2m
i

]
≤ m!S2Rm−2

2
for all i ∈ [d](3.3)

for some S,R > 0. We show in the Supplementary Material under Lemmas A.11 and A.12,
in a more general context, that this is equivalent to Λ being a sub-Gaussian probability
measure; see e.g. [4, Sec 2.3] and [90, Sec. 2.5] about sub-Gaussianity. This of course includes
the spectral measure of the Gaussian kernel defined for bandwidth σ > 0 and x,y ∈ X

k(x,y) = exp
(
−∥x−y∥22/2σ2

)
, which has a Gaussian spectral distribution w ∼ N (0, 1/σ2Id),

and therefore calculation gives Ew∼N(0,1/σ2)

[
w2m

]
=

2mΓ(m+ 1
2))

σ2m
√
π

< m!
2

(
2
√
2

σ2 4√π

)2 (
2
σ2

)m−2, since
Γ (m+ 1/2) < Γ(m + 1) = m!. Hence Λ satisfies condition (3.3) with S,R as given here.
Now we state our approximation theorem regarding k̃Sigm , which quantifies that it is a (sub-
)exponentially good estimator of kSigm with high probability and uniformly.
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Theorem 3.2. Let k : Rd × Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (3.3). Let X ⊂ Rd be compact and convex with diameter
|X|, X∆ := {x− y : x,y ∈ X}. Then, the following quantities are finite: σ2

Λ := Ew∼Λ

[
∥w∥22

]
,

L :=
∥∥Ew∼Λ

[
ww⊤]∥∥1/2

2
, Ei,j := Ew∼Λ [|wiwj | ∥w∥2] and Di,j := supz∈X∆

∥∥∥∇ [ ∂2k(z)
∂zi∂zj

]∥∥∥
2

for
i, j ∈ [d]. Further, for any max. sequence 1-var V > 0, and signature level m ∈ Z+, for ϵ > 0

P

 sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣kSigm(x,y)− k̃Sigm(x,y)
∣∣ ≥ ϵ

 ≤

≤ m


(
Cd,X

(
βd,m,V

ϵ

) d
d+1

+ d

)
exp

(
− d̃

2(d+1)(S2+R)

(
ϵ

βd,m,V

)2)
for ϵ < βd,m,V(

Cd,X

(
βd,m,V

ϵ

) d
(d+1)m

+ d

)
exp

(
− d̃

2(d+1)(S2+R)

(
ϵ

βd,m,v

) 1
m

)
for ϵ ≥ βd,m,V ,

(3.4)

where Cd,X := 2
1

d+1 16 |X|
d

d+1
∑d

i,j=1(Di,j +Ei,j)
d

d+1 and βd,m,V := m
(
2V 2

(
L2 ∨ 1

) (
σ2
Λ ∨ d

))m.

The proof is provided in the supplement under Theorem C.10. The result shows that the
random kernel k̃Sigm approximates the signature kernel kSigm uniformly over subsets of Xseq of
sequences x ∈ Xseq with maximal 1-variation V , ∥x∥1-var ≤ V , assuming that the state-space
X ⊂ Rd is a convex and compact domain. The error bound is analogous to the classic RFF
bounds, in the sense that the tail probability decreases exponentially fast as a function of the
RFF dimension d̃. The functional form of the bound is inherited from Theorem B.1, which
provides an analogous result for the derivatives of RFF. This link follows from Lemma C.9,
which connects the concentration of the RFSF kernel to the second derivatives of RFF.

The main difference from the classic case, i.e. [61, Claim 1] and Theorem B.1, is the
appearance of βd,m,V which controls a regime change in the tail behaviour. Concretely, for
ϵ < βd,m,V (3.4) has a polynomial plus a sub-Gaussian tail, while for ϵ > βd,m,V has a
(1/m)-subexponential tail. This is not surprising as the inner summand in (3.2) is the m-fold
tensor product of m independent RFF kernels, which makes the tail heavier exactly by an
exponent of 1/m. The constant itself, βd,m,V , depends on (i) the maximal sequence 1-variation
V , which measures a notion of time-warping invariant sequence complexity; (ii) the Lipschitz
constant of the kernel L (see Examples C.2 and C.3); (iii) the trace of the second moment of Λ,
σ2
Λ = Ew∼Λ

[
∥w∥22

]
; (iv) the state-space dimension d; (v) and the signature level m itself.

Remark 3.3. Algorithm D.1 demonstrates the computation of the RFSF map φ̃Sig≤M
given

a dataset of sequences X = (xi)
N
i=1 ⊂ Xseq. Upon inspection, we can deduce that the algorithm

has a computational complexity of O
(
Nℓ(Mdd̃+ 1 + d̃+ . . .+ d̃M )

)
. Importantly, it is linear

in ℓ, the sequence length, although scales polynomially in the RFF sample size d̃M .

Dimensionality Reduction: Diagonal Projection. Previously, we introduced a featurized
approximation k̃Sig≤M

to the signature kernel kSig≤M
, called the RFSF kernel, which reduces

the computation from the infinite-dimensional RKHS to a finite-dimensional feature space using
random tensors. Although this makes the computation in the feature space viable of the RFSF
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map φ̃Sig≤M
, it is still tensor-valued, which incurs a computational cost of O(d̃+ d̃2 + · · ·+ d̃m)

in the RFF dimension d̃ ∈ Z+. Now, we take another step towards scalability and apply
further dimensionality reduction. By examining the structure of these tensors, we introduce a
diagonally projected variant called RFSF-DP that considerably reduces their sizes. We emphasize
that the above RFSF construction is the crucial step: it approximates the inner product in an
infinite-dimensional space, and now we further approximate it in an even lower dimensional
space. The benefit is that one does not have to go through the computation of the initial RFSF
map, but only the selected degrees of freedom have to be computed from the beginning.

As a first observation, we notice that the computation of (3.2) can be reformulated, due to
(2.3) and linearity of the differencing operator, in the following way:

k̃Sigm(x,y) =
1

d̃m

d̃∑
q1,...,qm=1

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

m∏
p=1

δ2ip,jp cos
(
w(p)

qp

⊤
(xip − yjp)

)
(3.5)

by spelling out the definition of the RFF kernel, where w
(1)
1 , . . . ,w

(m)

d̃

i.i.d.∼ Λ, such that

W(p) =
(
w

(p)
1 , . . . ,w

(p)

d̃

)
∈ Rd×d̃ as defined in Def. 3.1. Now, we may observe that there

is a dependency structure among the samples being averaged in (3.5), since the outer sum-
mation is over the Cartesian product (q1, . . . , qm) ∈ [d̃]×m, which suggests that we might be
able to drastically reduce the degrees of freedom by restricting this summation to only go
over an independent set of samples. One way to do this is to restrict to multi-indices of the
form I :=

{
(q, . . . , q) ∈ [d̃]×m : q ∈ [d̃]

}
, i.e. we diagonally project the index set, motivating

the name of the approach stated in the following definition.

Definition 3.4. Let w(1)
1 , . . . ,w

(M)

d̃

i.i.d.∼ Λ for d̃ ∈ Z+, and define φ̂m,q : X → Ĥ := R2 with

sample size d̂ = 1 for q ∈ [d̃] and m ∈ [M ], such that φ̂m,q(x) =

(
cos(w

(m)
q

⊤
x), sin(w

(m)
q

⊤
x)

)
for x ∈ X. The M -truncated Diagonally Projected Random Fourier Signature Feature ( RFSF-DP)

map φ̃DP
Sig≤M

: Xseq → H̃DP
Sig :=

⊕M
m=0

(
Ĥ⊗m

)d̃
is defined for truncation M ∈ Z+ and x ∈ Xseq

as

φ̃DP
Sig≤M

(x) :=
1√
d̃


 ∑

i∈∆m(ℓx−1)

δφ̂1,q(xi1)⊗ · · · ⊗ δφ̂m,q(xim)

d̃

q=1


M

m=0

.

Then, the RFSF-DP kernel can be directly computed for x,y ∈ Xseq via

k̃
DP
Sig≤M

(x,y) :=
〈
φ̃DP
Sig≤M

(x), φ̃DP
Sig≤M

(y)
〉
H̃DP

Sig

=
M∑

m=0

〈
φ̃DP
Sigm

(x), φ̃DP
Sigm

(y)
〉
(Ĥ⊗m)

d̃

=

M∑
m=0

k̃
DP
Sigm

(x,y) =
1

d̃

M∑
m=0

d̃∑
q=1

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

δ2i1,j1 k̂1,q(xi1 ,yj1) · · · δ2im,jm k̂m,q(xim ,yjm),(3.6)
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where we defined the level-m RFSF-DP kernel k̃DPSigm : Xseq×Xseq → R for m ∈ N and x,y ∈
Xseq as k̃Sig(x,y) :=

〈
φ̃DP
Sigm

(x), φ̃DP
Sigm

(y)
〉
(Ĥ⊗m)

d̃ with the convention that k̃
DP
Sig0

≡ 1, and

k̂m,q : X× X → R are independent RFF kernels with sample size d̂ = 1 defined for x,y ∈ X as
k̂m,q(x,y) := ⟨φ̂m,q(x), φ̂m,q(y)⟩Ĥ with the random weights w

(m)
q ∈ Rd for q ∈ [d̃],m ∈ [M ].

Note that by the definition of the RFF kernels in (3.6), we may substitute that k̂p,q(x,y) =

cos(w
(p)
q

⊤
(x− y)) for x,y ∈ X, so (3.6) is equivalently written for x,y ∈ Xseq as

k̃
DP
Sigm

(x,y) =
1

d̃

d̃∑
q=1

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

δ2i1,j1 cos(w
(1)
q

⊤
(xi1 − yj1)) · · · δ2im,jm cos(w(m)

q

⊤
(xim − yjm)),

which is what we set out to do in the above paragraph; that is, restrict the outer summation
onto the diagonal projection of the index set. Another way to look at Definition 3.4 is that the
RFSF-DP kernel in (3.6) is constructed by defining d̃ independent RFSF kernels, each with internal
RFF sample size d̂ = 1, and then taking their average; the concatenation of their corresponding
features are then the features of the RFSF-DP map. Note that for RFF sample size 1, each RFF
map has dimension 2, i.e. Ĥ = R2, and hence, the corresponding RFSF kernels have dimension
1+2+ · · ·+2M = (2M+1−1), which by concatenation results in the overall dimensionality of the
RFSF-DP kernel being dim H̃TRP

Sig = d̃
(
2M+1 − 1

)
. This relates to the computational complexity

of the RFSF-DP map; for details see Remark 3.6.
Next, we state our concentration result regarding the level-m RFSF-DP kernel k̃DPSigm(x,y).

Theorem 3.5. Let k : Rd × Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (3.3). Then, for level m ∈ Z+, x,y ∈ Xseq, and ϵ > 0

P
[∣∣∣k̃DPSigm(x,y)− kSigm(x,y)

∣∣∣ ≥ ϵ
]
≤ 2 exp

−1

4
min


( √

d̃ϵ

2Cd,m,x,y

)2

,

(
d̃ϵ√

8Cd,m,x,y

) 1
m


 ,

where L :=
∥∥Ew∼Λ

[
ww⊤]∥∥ is the Lipschitz constant of k, and Cd,m,x,y > 0 is bounded by

Cd,m,x,y ≤
√
8e4(2π)1/4e1/24(4e3 ∥x∥1-var ∥y∥1-var /m)m

(
(2dmax(S,R))m +

(
L2/ ln 2

)m)
.

The proof is provided in the supplement under Theorem C.11. The result shows that the RFSF-DP
kernel converges for any two sequences x,y ∈ Xseq with a (1/m)-subexponential convergence
rate with respect to the sample size d̃ ∈ Z+. Similarly to Theorem 3.2, the bound has a phase
transition, where for small values of ϵ, it has a sub-Gaussian tail, while for larger values, it has
a (1/m)-subexponential tail. A crucial difference from the previous bound is that now the phase

transition happens at ϵ⋆ = Cd,m,x,y2
2m−3/2
2m−1 d̃

1−m
2m−1 , which depends on the sample size d̃. This

means that for fixed value of ϵ > 0, the phase transition always happens eventually as d̃ gets



RANDOM FOURIER SIGNATURE FEATURES 15

large enough, hence the convergence rate with respect to d̃ is (1/m)-subexponential regardless of
the value of ϵ. The slightly reduced rate of convergence compared to the RFSF kernel in Theorem
3.2 is to be expected, since the sample size of the RFSF-DP kernel is analogously reduced by an
exponent of (1/m) with respect to d̃ in comparison. The constant Cd,m,x,y, similarly to (3.4),
depends on (i) the 1-variation of sequences ∥x∥1-var , ∥y∥1-var that measure the complexity of the
sequences; (ii) L > 0, the Lipschitz constant of the kernel k (see Examples C.2, C.3); (iii) the
moment bound parameters S,R > 0 from condition (3.3); (iv) the state-space dimension d;
and (v) the signature level m.

Remark 3.6. Algorithm D.2 demonstrates the computation of the RFSF-DP map φ̃DP
Sig≤M

given a dataset of sequences X = (xi)
N
i=1 ⊂ Xseq. Upon counting the operations, we deduce

that the algorithm has a computational complexity O
(
Nℓd̃(Md+ 2M )

)
. Crucially, it is linear

in both ℓ, the maximal sequence length, and d̃, the sample size of the random kernel.

Dimensionality Reduction: Tensor Random Projection. Previously, we built the RFSF-DP map
by subsampling an independent set from the samples that constitute RFSF kernel. Here, we
propose an alternative dimensionality reduction technique that starts again from the RFSF
map, and uses random projections to project this generally high-dimensional tensor onto a
lower dimension. Random projections are a classic technique in data science for reducing the
data dimension, while preserving its important structural properties. They are built upon
the celebrated Johnson-Lindenstrauss lemma [37], which states that a set of points in a high-
dimensional space can be embedded into a space of much lower dimension, while approximately
preserving their geometry. Exploiting this property, we construct a tensor random projected
(TRP) variant of our random kernel called RFSF-TRP, such that the computation is coupled
between the RFSF and TRP maps, similarly to a kernel trick.

Tensorized random projections [81, 64] construct random projections for tensors with
concise parametrization that respects their tensorial nature. Given tensors s, t ∈

(
Rd
)⊗m for

m ∈ Z+, the TRP map with CP (CANDECOMP/PARAFAC [41]) rank-1 is built via a random functional
Pr :

(
Rd
)⊗m → R such that Pr(s) = ⟨p1 ⊗ · · · ⊗ pm, s⟩

(Rd)
⊗m , where p1, . . . ,pm

i.i.d.∼ N(0, Id)

are d-dimensional component vectors sampled from a standard normal distribution. Then,
the inner product can be estimated as Pr(s)Pr(t) ≈ E [Pr(s)Pr(t)] = ⟨s, t⟩

(Rd)
⊗m . Variance

reduction is achieved by stacking n ∈ Z+ such random projections, each with i.i.d. component
vectors p

(1)
1 , . . . ,p

(n)
m

i.i.d.∼ N(0, Id). Hence, the TRP operator is defined as

TRP :
(
Rd
)⊗m

→ Rn, TRP(s) :=
1√
n

(〈
p
(i)
1 ⊗ · · · ⊗ p(i)

m , s
〉)n

i=1
.(3.7)

On the one hand, this allows to represent the random projection map onto Rn using only
O(nmd) parameters as opposed to the O(ndm) parameters in a densely parametrized random
projection; and on the other, it allows for downstream computations to exploit the low-rank
structure of the operator, as we shall do so in the definition stated below.

Definition 3.7. Let W(1), . . . ,W(M) i.i.d.∼ Λd̃ be i.i.d. random matrices sampled from Λd̃ for
RFF dimension d̃ ∈ Z+, define the independent RFF maps φ̃m : X → H̃ as in (2.2), i.e. φ̃m(x) =

1/
√

d̃

(
cos(W(m)⊤x), sin(W(m)⊤x)

)
for m ∈ [M ] and x ∈ X, and let P(1), . . . ,P(M) i.i.d.∼
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Nd̃
(
0, I2d̃

)
be random matrices with i.i.d. standard normal entries. The M -truncated Tensor

Random Projected Random Fourier Signature Feature ( RFSF-TRP) map φ̃TRP
Sig≤M

Xseq → H̃TRP
Sig =

RMd̃ is defined for truncation level M ∈ Z+ and x ∈ Xseq as

φ̃TRP
Sig≤M

(x) :=
1√
d̃


 ∑

i∈∆m(ℓx−1)

〈
p(1)
q , δφ̃1(xi1)

〉
· · ·
〈
p(m)
q , δφ̃m(xim)

〉d̃

q=1


M

m=0

=
1√
d̃

 ∑
i∈∆m(ℓx−1)

(
P(1)⊤δφ̃1(xi1)

)
⊙ · · · ⊙

(
P(m)⊤δφ̃m(xim)

)M

m=0

,(3.8)

where P(m) =
(
p
(m)
q

)d̃
q=1

∈ R2d̃×d̃, and ⊙ denotes the Hadamard product6. The RFSF-TRP

kernel k̃TRPSig≤M
: Xseq×Xseq → R can then be directly computed for sequences x,y ∈ Xseq by

k̃
TRP
Sig≤M

(x,y) :=
〈
φ̃TRP
Sig≤M

(x), φ̃TRP
Sig≤M

(y)
〉
H̃Sig

=
M∑

m=0

〈
φ̃TRP
Sigm

(x), φ̃TRP
Sigm

(y)
〉
H̃⊗m

=
M∑

m=0

k̃
TRP
Sigm

(x,y) =
1

d̃

M∑
m=0

d̃∑
q=1

∑
i∈∆m(ℓx−1)
j∈∆m(ℓy−1)

m∏
p=1

〈
p(p)
q , δφ̃p(xip)

〉〈
p(p)
q , δφ̃p(yjp)

〉
,(3.9)

where we defined the level-m RFSF-TRP kernel k̃
TRP
Sigm

: Xseq×Xseq → R for m ≤ M as

k̃
TRP
Sigm

(x,y) :=
〈
φ̃TRP
Sigm

(x), φ̃TRP
Sigm

(y)
〉
H̃⊗m

with the convention that k̃TRPSig0
≡ 1.

We remark that (3.8) is equivalent to the TRP operator (3.7) applied to the RFSF map (3.1)
by exploiting bilinearity of the inner product, and using that it factorizes over the tensor
components, as described in (2.4). Then, the unbiasedness of (3.9) follows from the fact that
the TRP operator is an isometry under expectation, which is applied to the RFSF tensor φ̃Sigm ,
therefore k̃

TRP
Sigm

kernel is conditionally an unbiased estimator of k̃Sigm given the RFSF weights
W(1), . . . ,W(m) ∈ Rd×d̃. By the tower rule for expectations, k̃TRPSigm

is an unbiased estimator
of kSigm . The approximation quality is then governed by two factors: (i) how well the TRP

projected kernel k̃TRPSigm
approximates k̃Sigm ; (ii) the quality of the approximation of k̃Sigm with

respect to kSigm . Note that (ii) has already been discussed in Theorem 3.2. Here, we state
the following theoretical result which quantifies (i). Combining these two results by means of
triangle inequality and union bounding quantifies that k̃

TRP
Sigm

is a good estimator of kSigm .

Theorem 3.8. Let k : Rd × Rd → R be a continuous, bounded, translation-invariant kernel
with spectral measure Λ, which satisfies (3.3). Then, the following bound holds for RFSF-TRP

6The Hadamard product stands for component-wise multiplication of the vectors x,y ∈ Rn, x⊙y = (xiyi)
n
i=1.
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kernel for signature level m ∈ Z+ sequences x,y ∈ Xseq and ϵ > 0

P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

]
≤ Cd,Λ exp

−

(
m2d̃

1
2m ϵ

1
m

2
√
2e3R ∥x∥1-var ∥y∥1-var

) 1
2

 ,(3.10)

where the absolute constant is defined as Cd,Λ := 2
(
1 + S

2R + S2

4R2

)d
.

The proof is given in the supplement under Theorem C.12 utilizing the hypercontractivity
of Gaussian polynomials [36] that is used to quantify the concentration of the TRP estimator.
The concentration of the RFSF-TRP kernel is then governed by Theorems 3.2 and 3.8 combined.
Together, they show that for smaller values of ϵ (i.e. the regime change as discussed below
Theorem 3.2), the probability has a polynomial plus a sub-Gaussian tail, while for large ϵ, it
has a

(
1
2m

)
-subexponential tail due to (3.10), and the dominant convergence rate with respect

to d̃ is
(

1
4m

)
-subexponential. This means that in terms of convergence, RFSF-TRP is the slowest

among the 3 variations introduced so far. However, it is also the most efficient in terms of
overall dimension, hence downstream computational complexity as well, since H̃TRP

Sig = RMd̃.
Remark 3.9 discusses the computational complexity in detail.

Remark 3.9. Algorithm D.3 demonstrates the computation of the RFSF-TRP map φ̃TRP
Sig≤M

given a dataset of sequences X = (xi)
N
i=1 ⊂ Xseq. Counting the operations, here we can deduce

that the algorithm has an O
(
MNℓd̃(d+ d̃)

)
computational complexity. This variation is also

linear in ℓ, the maximal sequence length, although it is quadratic in d̃.
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Figure 1: Approximation error of random ker-
nels against RFF sample size on log-log plot.

Numerical evaluation. Here, we numeri-
cally evaluate the approximation error of the
proposed scalable kernels, that is, RFSF-DP
and RFSF-TRP. We do not include RFSF since
its dimensionality shows polynomial explosion
in the base sample size d̃ due to its tensor-
based representation, which makes its compu-
tation infeasible for reasonable values of d̃. We
generate d-dimensional synthetic time series
of length-ℓ using a VAR(1) process x̃ ∈ Xseq,
such that x̃0 = 0 and x̃t+1 = 1/

√
dAx̃t + ϵt,

where A ∼ Nd×d(0, 1) and ϵt ∼ N(0, σ2Id).
Then, we compute the normalized version
x ∈ Xseq of x̃, which is rescaled to have 1-
variation V > 0, i.e. xt = V x̃t/ ∥x̃∥1-var. We
set d = 10, ℓ = 100, σ = 0.1 and V = 100. We compute the squared deviation between the
groundtruth signature kernel and the randomized approximations for two randomly sampled
time series in this way. This process is repeated for 100 randomly sampled time series and 100
times resampled random kernel evaluations, giving rise to overall 10000 evaluations for each
value of d̃. Figure 1 shows the average approximation error plotted against values of d̃ on a
log-log plot. We can observe that both RFSF-DP and RFSF-TRP have approximately the same
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Table 1: Computational complexities of kernels in our experiments; N ∈ Z+ is the number
of time series, ℓ ∈ Z+ is their length, d ∈ Z+ is their state-space dimension, M ∈ Z+ is the
signature truncation level, d̃ ∈ Z+ is the RF dimension, W ∈ Z+ is the warping length in RWS.

RFSF-DP RFSF-TRP KSig KSigPDE RWS GAK RBF RFF

O
(
Nℓd̃

(
Md+ 2M

))
O
(
NℓMd̃

(
d+ d̃

))
O
(
N2ℓ2 (M + d)

)
O
(
N2ℓ2d

)
O (NℓWd) O

(
N2ℓ2d

)
O
(
N2ℓd

)
O
(
Nℓdd̃

)

error curves for a given value of truncation level M , and the steepness appears to be the same
across different levels of M . This means that RFSF-TRP is slightly more efficient in terms of
dimensionality, since its dimension is Md̃ as opposed to 2M+1d̃ in RFSF-DP. We also observe
that both curves are close to being linear, which indicates that the approximation error scales
approximately as O(d̃−α) for some value of α > 0.

4. Experiments.
Time series classification. We perform multivariate time series classification to investigate

the performance of the scalable RFSF variants compared to the full-rank signature kernel and
other quadratic time baseline kernels, and further, to demonstrate the scalability to large-scale
datasets, where the quadratic sample complexity becomes prohibitive. We use support vector
machine (SVM) [79] classification for classifying multivariate time series on datasets of various
sizes. For quadratic time kernels, the dual SVM formulation is used, while for kernels with
feature representations, we use the primal formulation that has linear complexity in the size
of the dataset n ∈ Z+ aiding in scalability to truly large-scale datasets. For each considered
kernel/feature, we use a GPU-based implementation provided in the KSig library7. For large-scale
experiments with the featurized kernels, linear SVM implementation is used from the cuML library
[65], while the dual SVM on moderate-scale datasets uses the sklearn library [59]. For multi-class
problems, we use the one-vs-one classification strategy. This study is also the largest scale
comparison of signature kernels to date which extends the datasets considered in [71]. The
hardware used was 2 computer clusters equipped with overall 8 NVIDIA 3080 Ti GPUs.

Methods. We compare the proposed variants RFSF-DP and RFSF-TRP to the baselines de-
scribed here: (1) the M -truncated Signature Kernel [40] KSig formulated via the kernel trick,
and is a quadratic time baseline; (2) the Signature-PDE Kernel [71] KSigPDE, which uses the
2nd-order PDE solver and also has quadratic complexity; (3) the Global Alignment Kernel [18]
GAK, one of the most popular sequence kernels to day and can can be related to the signature
kernel, see [40, Sec. 5]; (4) Random Warping Series [95] RWS, which produces features by DTW
alignments between the input and randomly sampled time series; (5) the RBF kernel, which
treats the whole time series as a vector of length Rℓd, (6) Random Fourier Reatures [61] RFF,
which also treats the time series as a long vector. We excluded RFSF from the comparison, as it
is unfeasible to compute it with reasonable sample sizes d̃ due to the polynomial explosion of
dimensions in its tensor-based representation. The complexities are compared in Table 1.

Hyperparameter selection. For each dataset-kernel, we perform cross-validation to select
the optimal hyperparameters that are optimized over the Cartesian product of the following

7https://github.com/tgcsaba/KSig

https://github.com/tgcsaba/KSig
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options. For each method that requires a static kernel, we use the RBF kernel with bandwidth
hyperparameter σ > 0. This is specified in terms of a rescaled median heuristic, i.e.

σ = αmed
{∥∥xi − x′

j

∥∥
2
/2 : i ∈ [ℓx], j ∈ [ℓx′ ],x,x′ ∈ X

}
, for α > 0,(4.1)

where α is chosen from α ∈ {10−3, . . . , 103} on a logarithmic grid with 19 steps. For each
kernel that is not normalized by default (i.e. the GAK and RBF kernels are normalized, the
former is because without normalization it blows up) , we select whether to normalize to
unit norm in feature space via k(x,y) 7→ k(x,y)/

√
k(x,x)k(y,y). The SVM hyperparameter

C > 0 is selected from C ∈ {100, 101, 102, 103, 104}. Further, motivated by previous work that
investigates the effect of path augmentations in the context of signature methods [56], we chose
3 augmentations to cross-validate over. First is parametrization encoding, which gives the
classifier the ability to remove the warping invariance of a given sequence kernel, adding the time
index as an additional coordinate, i.e. for each time series in the dataset x ∈ X, we augment
it via x = (xi)

ℓx
i=1 7→ (βi/ℓx,xi)

ℓx
i=1, where β > 0 is the parametrization intensity chosen from

β ∈ {100, 101, 102, 103, 104}. The second augmentation is the basepoint encoding, the role of
which is to remove the translation invariance of signature features. Note that when the static base
kernel is chosen to be a nonlinear kernel other than the Euclidean inner product, the signature
kernel is not completely translation-invariant due to the state-space nonlinearities, but it is close
being that by the L-Lipschitz property in Lemma C.2 valid for of the static kernels considered
in this work. The basepoint encoding adds an initial 0 step at the beginning of each time series,
i.e. for x ∈ X, x = (x1, . . . ,xℓx) 7→ (0,x1, . . . ,xℓx). The third augmentation is the lead-lag map,
which is defined as x = (x1, . . . ,xℓx) 7→ ((x1,x1), (x2,x1), (x2,x2), . . . , (xℓx ,xℓx−1), (xℓx ,xℓx)).
For the truncation-based signature kernels, we select the truncation level M ∈ Z+ from
M ∈ {2, 3, 4, 5}. For RWS, we select the warping length from W ∈ {10, 20, . . . , 100} as suggested
by the authors. This makes RWS the most expensive feature-based kernel, and so as to fit within
the same resource limitations, we omit cross-validating over the path augmentations. We select
the standard deviation σ > 0 of the warping series from the same grid as α in (4.1). For all RF
approaches, we set the RF dimension d̃ ∈ Z+, so the overall dimension is 1000. Note that for
RFSF-DP and RFSF-TRP this is respectively 2M+1d̃ and Md̃, where d̃ is the base RFF sample size;
for RWS it is the number of warping series d̃; while for RFF it is twice the number of samples 2d̃.

Datasets: UEA Archive. The UEA archive [19] is a collection of overall 30 datasets for
benchmarking classifiers on multivariate time series classification problems containing both
binary and multi-class tasks. The data modality ranges from various sources e.g. human activity
recognition, motion classification, ECG classification, EEG/MEG classification, audio spectra
recognition, and others. The sizes of the datasets in terms of number of time series range from
moderate (≤ 1000 examples) to large (≤ 30000), and includes various lengths between 8 and
18000. A summary of the dataset characteristics can be found in Table 2 in [19]. Pre-specified
train-test splits are provided for each dataset, which we follow. We evaluate all considered
kernels on the moderate datasets (≤ 1000 time series), but because the non-feature-based
become very expensive computationally beyond these sizes, we only evaluate feature-based
approaches on medium and large datasets (≥ 1000 time series). Each featurized approach is
trained and evaluated 5 times on each dataset in order to account for the randomness in the
hyperparameter selection procedure and evaluation.
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Table 2: Comparison of SVM test accuracies on moderate multivariate time series classification
datasets. For each row, the best result is highlighted in bold, and the second best in italic.

RFSF-DP RFSF-TRP KSig KSigPDE RWS GAK RBF RFF

ArticularyWordRecognition 0.984 0.981 0.990 0.983 0 .987 0.977 0.977 0.978
AtrialFibrillation 0.373 0.320 0 .400 0.333 0.427 0.333 0.267 0.373
BasicMotions 1.000 1.000 1.000 1.000 0 .995 1.000 0.975 0.860
Cricket 0.964 0.964 0.958 0 .972 0.978 0.944 0.917 0.886
DuckDuckGeese 0.636 0 .664 0.700 0.480 0.492 0.500 0.420 0.372
ERing 0.921 0.936 0.841 0 .941 0.945 0.926 0.937 0.915
EigenWorms 0 .817 0.837 0.809 0.794 0.623 0.511 0.496 0.443
Epilepsy 0.949 0 .942 0.949 0.891 0.925 0.870 0.891 0.777
EthanolConcentration 0.457 0.439 0.479 0 .460 0.284 0.361 0.346 0.325
FingerMovements 0.608 0.624 0.640 0 .630 0.612 0.500 0.620 0.570
HandMovementDirection 0 .573 0.568 0.595 0.527 0.403 0.595 0.541 0.454
Handwriting 0.434 0.400 0.479 0.409 0.591 0 .481 0.307 0.249
Heartbeat 0.717 0.712 0.712 0.722 0.714 0.717 0.717 0 .721
JapaneseVowels 0.978 0.978 0.986 0.986 0.955 0 .981 0 .981 0.979
Libras 0.898 0.928 0 .922 0.894 0.837 0.767 0.800 0.800
MotorImagery 0 .516 0.526 0.500 0.500 0.508 0.470 0.500 0.482
NATOPS 0.906 0.908 0.922 0.928 0 .924 0.922 0.917 0.900
PEMS-SF 0.800 0.808 0.827 0 .838 0.701 0.855 0.855 0.770
RacketSports 0.874 0.861 0.921 0 .908 0.878 0.849 0.809 0.755
SelfRegulationSCP1 0.868 0.856 0 .904 0 .904 0.829 0.915 0.898 0.885
SelfRegulationSCP2 0.489 0.510 0 .539 0.544 0.481 0.511 0.439 0.492
StandWalkJump 0.387 0.333 0 .400 0 .400 0.347 0.267 0.533 0.267
UWaveGestureLibrary 0.882 0.881 0.912 0.866 0 .897 0.887 0.766 0.846

Avg. acc. 0 .740 0.738 0.756 0.735 0.710 0.702 0.692 0.656
Avg. rank 3.609 3.739 2.348 2 .957 3.957 4.174 4.913 5.913

12345678

RFF
RBF
GAK
RWS RFSF-TRP

RFSF-DP
KSigPDE
KSig

CD

Figure 2: Critical difference diagram comparison
on moderate datasets of considered approaches
using two-tailed Nemenyi test [20].

Table 3: Comparison of accuracies on large-
scale datasets of random features.

RFSF-DP RFSF-TRP RWS RFF

CharacterTrajectories 0 .990 0 .990 0.991 0.989
FaceDetection 0 .653 0.656 0.642 0.572
InsectWingbeat 0 .436 0.459 0.227 0.341
LSST 0.589 0 .624 0.631 0.423
PenDigits 0 .983 0.982 0.989 0.980
PhonemeSpectra 0 .204 0 .204 0.205 0.083
SITS1M 0.745 0 .740 0.610 0.718
SpokenArabicDigits 0.981 0 .980 0.981 0.964
fNIRS2MW 0.659 0 .658 0.621 0.642

Avg. acc. 0 .693 0.699 0.655 0.635
Avg. rank 1.778 1 .889 2.222 3.333
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Datasets: Mental Workload Intensity Classification. We evaluate featurized approaches on
a large-scale brain-activity recording data set called fNIRS2MW.8 This dataset contains brain
activity recordings collected from overall 68 participants during a 30-60 minute experimental
session, where they were asked to carry out tasks of varying intensity. The collected time series
are sliced into 30 second segments using a sliding window, and each segment is labelled with
an intensity level (0-3), giving rise to overall ∼ 100000 segments, which we split in a ratio of
80− 20 for training and testing. We convert the task into a binary classification problem by
assigning a label whether the task is low (0 or 1) or high (2 or 3) intensity.

Datasets: Satellite Image Classification. As a massive scale task, we use a satellite imagery
dataset9 of N = 106 time series. Each length ℓ = 46 time series corresponds to a vegetation
index calculated from remote sensing data, and the task is to classify land cover types [60] by
mapping vegetation profiles to various types of crops and forested areas corresponding to 24
classes. We split the dataset in a ratio of 90-10 for training and testing.

4.1. Results. Table 2 compares test accuracies on moderate size multivariate time series
classification datasets with N ≤ 1000 from the UEA archive. KSig provides state-of-the-art
performance among all sequence kernels with taking the highest aggregate score in terms of all
of average accuracy, average rank, and number of first places. Our proposed random feature
variants RFSF-DP and RFSF-TRP provide comparable performance on most of the datasets in
terms of accuracy, and they are only outperformed by KSig and KSigPDE with respect to average
accuracy and rank. Interestingly, RFSF-TRP has more first place rankings, but RFSF-DP performs
slightly better on average. This shows that on datasets of these sizes, using either of RFSF-DP
and RFSF-TRP does not sacrifice model performance - even leading to improvements in some
cases, potentially due to the implicit regularization effect of restricting to a finite-dimensional
feature space - and it can already provide speedups. We visualize the critical difference diagram
comparison of all considered approaches in Figure 2.

Table 3 demonstrates the performance of scalable approaches, i.e. RFSF-DP, RFSF-TRP, RWS
and RFF on the remaining UEA datasets (N ≥ 1000), the dataset fNIRS2MW (N = 105), and
the satellite dataset SITS1M (N = 106). We find it infeasible to perform full cross-validation for
quadratic time kernels on these datasets due to expensive kernel computations and downstream
cost of dual SVM. The results show that both variants RFSF-DP and RFSF-TRP perform significantly
better on average with respect to accuracy and rank then both RWS and RFF. Note when RWS
takes first place, it only improves over our approach marginally, however, when it underperforms,
it often does so severely. This is not surprising as both RFSF-DP and RFSF-TRP approximate
the signature kernel, which is a universal kernel on time series; it is theoretically capable of
learning from any kind of time series data as supported by its best overall performance above.

5. Conclusion. We constructed a random kernel k̃Sig≤M
for sequences that benefits from

(i) lifting the original sequence to an infinite-dimensional RKHS H, (ii) linear complexity in
sequence length, (iii) being with high probability close to the signature kernel kSig. Thereby
it combines the strength of the signature kernel kSig which is to implicitly use the iterated
integrals of a sequence that has an infinite-dimensional RKHS H as state-space with the strength

8https://github.com/tufts-ml/fNIRS-mental-workload-classifiers
9https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM

https://github.com/tufts-ml/fNIRS-mental-workload-classifiers
https://cloudstor.aarnet.edu.au/plus/index.php/s/pRLVtQyNhxDdCoM


22 CS. TÓTH, H. OBERHAUSER, AND Z. SZABÓ

of (unkernelized) signature features φSig that only require linear time complexity. Our main
theoretical result extends the theoretical guarantees for translation-invariant kernels on linear
spaces to the signature kernel defined on the nonlinear domain Xseq; however, the proofs
differ from the classic case and require to analyse the error propagation in tensor space. A
second step is more straightforward, and combines this approach with random projections in
finite-dimensions for tensors to reduce the complexity in memory further. The advantages
and disadvantages of the resulting approach are analogous to the classic RFF technique on Rd,
namely a reduction of computational complexity by an order for the price of an approximation
that only holds with high probability. As in the classic RFF case, our experiments indicate that
this is in general a favourable tradeoff.

In the future, it would be interesting both theoretically and empirically to replace the vanilla
Monte Carlo integration in the RFF construction by block-orthogonal random matrices as done
in [97]. Further, our random features can also be used to define an unbiased appoximation to the
inner product of expected signatures, which has found usecases, among many, in nonparametric
hypothesis testing and market regime detection [11, 33], training of generative models [58, 34],
and graph representation learning [86].
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Appendix A. Concentration of measure.
Classic inequalities. The following inequalities are classic, and their proofs are in analysis

textbooks, e.g. [22, 69]. Firstly, Jensen’s inequality is useful for convex (concave) expectations.

Lemma A.1 (Jensen’s inequality). Let X be an integrable random variable, and f : R → R
a convex function, such that f (X) is also integrable. Then, the following inequality holds:

f (E [X]) ≤ E [f (X)] .

Hölder’s inequality is a generalization of the Cauchy-Schwarz inequality to Lp spaces.

Lemma A.2 (Hölder’s inequality). Let p, q ≥ 1 such that 1
p+

1
q = 1. Let X and Y respectively

be Lp and Lq integrable random variables, i.e. E [|X|p] < ∞ and E [|Y |q] < ∞. Then, XY is
integrable, and it holds that

E [|XY |] ≤ E1/p [|X|p]E1/q [|Y |q] .

Although not inherently a probabilistic inequality, Young’s inequality can be used to
decouple products of random variables.

Lemma A.3 (Young’s inequality). Let p, q > 0 with 1
p + 1

q = 1. Then, for every a, b ≥ 0

ab ≤ ap

p
+

bq

q
.

Lemma A.4 (Reverse Young’s inequality). Let p, q > 0 such that 1
p −

1
q = 1. Then, for every

a ≥ 0 and b > 0, it holds that

ab ≥ ap

p
− b−q

q
.

Proof. Apply Young’s inequality with p′ = 1
p and q′ = q

p to a′ = (ab)p and b′ = b−p.

Subexponential concentration. Next, we state a variation on the well-known Bernstein
inequality, which holds for random variables in the subexponential class. The condition (A.3)
on a random variable X, in this case, is formulated as a moment-growth bound, called a
Bernstein moment condition. We show in Lemmas A.11 and A.12 (in a more general setting)
that (A.3) is equivalent to the random variable being subexponential. Further, note that the
condition itself is given in terms of non-centered random variables, while the statement of the
theorem is about their centered counterparts. For similar results, see [89, Sec. 2.2.2].

Theorem A.5 (Bernstein inequality - one-tailed). Let X1, . . . , Xn be independent random
variables satisfying the following moment-growth condition for some S,R > 0,

E
[
Xk

i

]
≤ k!S2Rk−2

2
for all k ≥ 2.(A.1)

Then, it holds for X̃i := Xi − E [Xi] that

P
[∑n

i=1
X̃i ≥ t

]
≤ exp

(
−t2

2(nS2 +Rt)

)
.
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Proof. We have for λ > 0

P
[∑n

i=1
X̃i ≥ t

] (a)

≤ exp(−λt)E
[
exp

(
λ
∑n

i=1
X̃i

)]
(b)
= exp

(
−λt− λ

∑n

i=1
E [Xi]

) n∏
i=1

E [exp(λXi)] ,(A.2)

where (a) holds for any λ > 0 by the Chernoff bound applied to
∑n

i=1 X̃i, and in (b) we used
the independence of Xi-s. Bounding the moment-generating function of Xi, one gets

E [exp(λXi)]
(d)
= 1 + λE [Xi] +

∞∑
k=2

λk

k!
E
[
Xk

i

] (e)
≤ 1 + λE [Xi] +

S2λ2

2

∞∑
k=0

λkRk

(f)
= 1 + λE [Xi] +

S2λ2

2(1− λR)

(g)
≤ exp

(
λE [Xi] +

S2λ2

2(1− λR)

)
,

where (d) is due to the Taylor expansion of the exponential function, (e) implied by (A.1),
(f) holds by the sum of geometric series for any λ < 1/R, (g) follows from the inequality
1 + x ≤ exp(x) for all x ∈ R. Using this to bound (A.2),

P
[∑n

i=1
X̃i ≥ t

]
≤ exp

(
−λt− λ

∑n

i=1
E [Xi]

) n∏
i=1

exp

(
λE [Xi] +

S2λ2

2(1− λR)

)
= exp

(
−λt+

nS2λ2

2(1− λR)

)
.

Finally, choosing λ = t/(nS2 +Rt) gives the statement.

Corollary A.6 (Bernstein inequality - two-tailed). Let X1, . . . , Xn be independent random
variables satisfying the the following moment-growth condition for some S,R > 0,

E
[
|Xi|k

]
≤ k!S2Rk−2

2
for all k ≥ 2.(A.3)

Then, it holds for X̃i := Xi − E [Xi] that

P
[∣∣∣∑n

i=1
X̃i

∣∣∣ ≥ t
]
≤ 2 exp

(
−t2

2(nS2 +Rt)

)
.

Proof. Applying Theorem A.5 to
∑n

i=1 X̃i and −
∑n

i=1 X̃i, and combining the two bounds
gives the two-tailed result.

α-exponential concentration. In this section, we introduce a specific class of Orlicz norms
for heavy-tailed random variables, which generalizes subexponential distributions.

Definition A.7 (α-exponential Orlicz norm). Let α > 0 and define the function

Ψα : R → R, Ψα(x) := exp (xα)− 1 for all x ∈ R.
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The α-exponential Orlicz (quasi-)norm of a random variable X is defined as

∥X∥Ψα
:= inf

{
t > 0 : E

[
Ψα

(
|X|
t

)]
≤ 1

}
,

adhering to the standard convention that inf ∅ = ∞.

If a random variable X satisfies ∥X∥Ψα
< ∞, it is either called an α-(sub)exponential random

variable (if α < 1) [72, 31, 9], or sub-Weibull of order-α [43, 98].
An alternative characterization of the α-exponential norm is the following tail-bound.

Remark A.8 (Tail bound). Let α > 0 and X be a random variable such that ∥X∥Ψα
< ∞.

Then,

P [|X| ≥ ϵ] ≤ 2 exp

(
− ϵα

∥X∥αΨα

)
.

Proof. Due to Definition A.7, E
[
exp

(
|X|α

∥X∥αΨα

)]
≤ 2, hence by Markov’s inequality

P [|X| ≥ ϵ] = P
[

|X|α

∥X∥αΨα

≥ ϵα

∥X∥αΨα

]
≤ e

− ϵα

∥X∥α
Ψα E

[
exp

(
|X|α

∥X∥αΨα
)

)]
≤ 2e

− ϵα

∥X∥α
Ψα .

Note that although ∥·∥Ψα
is often referred to as a norm, it does not satisfy the triangle

inequality for α < 1, although we can still relate the norm of the sum to the sum of the norms.

Lemma A.9 (Generalized triangle inequality for Orlicz norm). It holds for any random
variables X,Y and α > 0 that

∥X + Y ∥Ψα
≤ Cα

(
∥X∥Ψα

+ ∥Y ∥Ψα

)
,

where Cα = 21/α if α < 1 and 1 otherwise.

Proof. See Lemma A.3. in [31].

A useful property of α-exponential norms is that they satisfy a Hölder-type inequality.

Lemma A.10 (Hölder inequality for Orlicz norm). It holds for any random variables X1, . . . , Xk

and α1, . . . , αk > 0 that ∥∥∥∥∏k

i=1
Xi

∥∥∥∥
Ψα

≤
∏k

i=1
∥Xi∥Ψαi

,

where α :=
(∑k

i=1 α
−1
i

)−1
.

Proof. See Lemma A.1. in [31].

Next, we show in the following two lemmas that a random variable X is α-exponential if
and only if |X|α satisfies a Bernstein moment-growth condition.
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Lemma A.11 (Bernstein condition implies Orlicz norm bound). Let α > 0 and X be a random
variable that satisfies for S,R > 0 that

E
[
|X|kα

]
≤ k!S2Rk−2

2
for all k ≥ 2.(A.4)

Then, it holds that

∥X∥Ψα
≤ (S ∨R)1/α .

Proof. Firstly, due to Jensen’s inequality (Lemma A.1) and (A.4), we have

E [|X|α] ≤ E1/2
[
|X|2α

]
≤ S.(A.5)

We proceed similarly to the proof of Theorem A.5. For t > 0, we have

E
[
exp

|X|α

tα

]
(a)
= 1 +

E [|X|α]
tα

+
∞∑

m=2

E [|X|mα]

tmαm!

(b)
≤ 1 +

S

tα
+

S2

2t2α

∞∑
m=0

(
R

tα

)m

(c)
= 1 +

S

tα
+

S2

2t�2α
��tα

tα −R︸ ︷︷ ︸
f(t)

,

where (a) is due to the Taylor expansion of the exponential function, (b) is due to (A.4) and
(A.5), (c) is the sum of a geometric series for R < tα. Defining f(t) := 1 + S

tα

(
1 + S

2(tα−R)

)
and solving for f(t) ≤ 2 leads to the quadratic inequality

0 ≤ t2α − (S +R)tα + SR− S2

2
,

which has roots tα1,2 = 1
2

(
S +R±

√
(S −R)2 + 2S2

)
. We discard the left branch, which

violates the condition R < tα since

tα2 =
1

2

(
S +R−

√
(S −R)2 + 2S2

)
≤ 1

2
(S +R− |S −R|) = S ∧R ≤ R.

Now, as the inequality
√

x2 + y2 ≤ |x|+ |y| holds for all x, y ∈ R, we get

tα1 ≤ 1

2

(
S +R+

√
(S −R)2 + 2S2

)
≤ 1

2

(
S +R+ |S −R|+

√
2S
)

= S ∨R+

√
2

2
S ≤ 2(S ∨R)

and hence choosing t ≥ (2(S ∨R))1/α ≥ t1 implies f(t) ≤ 2, and we are done.

The other direction is proven in the following lemma.
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Lemma A.12 (Finite Orlicz norm implies Bernstein condition). Let α > 0 and X be a random
variable such that ∥X∥Ψα

< ∞. Then,

E
[
|X|kα

]
≤ k!S2Rk−2

2
for all k ≥ 2,

where S :=
√
2 ∥X∥αΨα

and R := ∥X∥αΨα
.

Proof. We have that

E
[
|X|kα

] (a)
= k! ∥X∥kαΨα

E

[
1

k!

(
|X|

∥X∥Ψα

)kα
]

(b)
≤ k! ∥X∥kαΨα

E
[
exp

(
|X|α

∥X∥αΨα

)
− 1

]
(c)
≤ k! ∥X∥kαΨα

(d)
=

k!
(√

2 ∥X∥αΨα

)2 (∥X∥αΨα

)k−2

2
,

where (a) is simply multiplying and dividing by the same values, (b) is the inequality 1+xk/k! ≤
ex for x > 0, (c) follows from Definition A.7, (d) is reorganizing terms to the required form.

We adapt the following concentration inequality from [43] for α-exponential summation.

Theorem A.13 (Concentration inequality for α-subexponential summation). Let α ∈ (0, 1)
and X1, . . . , Xn be independent, centered random variables with ∥Xi∥Ψα

≤ Mα for all i ∈ [n].
Then, it holds for t > 0 that

P
[∣∣∣∑n

i=1
Xi

∣∣∣ ≥ Cα

(
2
√
nt+

√
241/αt1/α

)]
≤ 2e−t,(A.6)

where Cα :=
√
8e4(2π)1/4e1/24(2e/α)1/αMα. Alternatively, it holds for ϵ > 0 that

P
[∣∣∣∑n

i=1
Xi

∣∣∣ ≥ ϵ
]
≤ 2 exp

(
−1

4
min

{(
ϵ

2
√
nCα

)2

,

(
ϵ√
8Cα

)α
})

.(A.7)

Proof. The inequality (A.6) follows directly from [43, Theorem 3.1].
To show (A.7), let g1(t) := 2Cα

√
nt and g2(t) :=

√
2Cα4

1/αt1/α. Now, for t > 0

P
[∣∣∣∑n

i=1
Xi

∣∣∣ ≥ 2 (g1(t) ∨ g2(t))
]
≤ P

[∣∣∣∑n

i=1
Xi

∣∣∣ ≥ g1(t) + g2(t)
]
≤ 2e−t,

which is equivalently written as

P
[∣∣∣∑n

i=1
X
∣∣∣ ≥ ϵ

]
≤ 2 exp

(
−
(
g−1
1 (ϵ/2) ∧ g−1

2 (ϵ/2)
))

.

Hypercontractivity. Here we provide an alternative approach for the concentration of heavy-
tailed random variables, specifically for polynomials of Gaussian random variables. The
following lemma states a moment bound for such Gaussian chaoses, considered in e.g. [36, 4].

Lemma A.14 (Moment bound for Gaussian polynomial). Consider a degree-p polynomial
f(X) = f(X1, . . . , Xn) of independent centered Gaussian random variables, X1, . . . Xn

i.i.d.∼
N(0, 1). Then, for all k ≥ 2

E1/k
[
|f(X)|k

]
≤ (k − 1)p/2E1/2

[
|f(X)|2

]
.
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Theorem A.15 (Concentration inequality for Gaussian polynomial). Consider a degree-
p polynomial f(X) = f(X1, . . . , Xn) of independent centered Gaussian random variables,
X1, . . . , Xn

i.i.d.∼ N(0, 1). Then, for p ≥ 2 and ϵ > 0

P [|f(X)− E [f(X)]| ≥ ϵ] ≤ 2 exp

(
− ϵ2/p

2
√
2eV1/p [f(X)]

)
,

where V [·] denotes the variance of a random variable.

Proof. Without loss of generality, we may assume that E [f(X)] = 0 and V [f(X)] = 1.
Since Lemma A.14 holds, we have for p, k ≥ 2

E
[
|f(X)|2k/p

] (a)
≤ E2/p

[
|f(X)|k

] (b)
≤ (k − 1)k ≤ kk

(c)
≤ k!ek ≤ k!(

√
2e)2ek−2

2
,

where (a) holds due to Jensen inequality since (·)2/p is concave, (b) is Lemma A.14, and (c) is
due to Stirling’s approximation. Hence, |f(X)|2/p satisfies a Bernstein condition with S =

√
2e

and R = e. Therefore, by Lemma A.11, we have ∥f(X)∥Ψ2/p
≤ (2

√
2e)p/2.

Then, by Remark A.8, it holds that

P [|f(X)| ≥ ϵ] ≤ 2 exp

− ϵ2/p

∥f(X)∥2/pΨ2/p

 ≤ 2 exp

(
− ϵ2/p

2
√
2e

)
.

Appendix B. Random Fourier Features.
[61] provides a uniform bound for the RFF error over a compact and convex domain X ⊂ Rd

with diameter |X| for some absolute constant C > 0,

P

[
sup
x,y∈X

∣∣k̃(x,y)− k(x,y)
∣∣ ≥ ϵ

]
≤ C

(
σΛ |X|

ϵ

)2

exp

(
− −d̃ϵ2

4(d+ 2)

)
,(B.1)

where σ2
Λ = Ew∼Λ

[
∥w∥2

]
, and [82] shows that C ≤ 66. Equation (B.1) implies [77, Sec. 2]

sup
x,y∈X

∣∣k̃(x,y)− k(x,y)
∣∣ = Op

(
|X|
√
d̃−1 log d̃

)
,

where the Xn = Op(an) notation for an > 0 refers to limC→0 lim supn→∞ P
[
|Xn|
an

> C
]
= 0.

The converse result10 for RFF derivatives was shown in [77, Thm. 5]. The idea of the proof
is to cover the input domain by an ϵ-net, and control the approximation error on the centers,
while simultaneously controlling the Lipschitz constant of the error to get the bound to hold
uniformly. We provide an adapted version with two main differences: (1) using the Bernstein
inequality from Corollary A.6, where the Bernstein condition is given in terms of non-centered

10These error guarantees can also be improved exponentially both for the approximation of kernel values [77]
and kernel derivatives [83, 9] in terms of the size of the domain where it holds, i.e. |X|.
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random variables, and (2) using the covering numbers of [17]. We will use this theorem in
proving Theorem 3.2 for controlling the approximation error of the derivatives of RFFs.

Given p ∈ Nd, we denote |p| := p1 + . . .+ pd, for a function f : Rd → R the p-th partial
derivative by ∂pf(z) := ∂|p|f(z)

∂p1z1...∂
pdzd

, for a vector w ∈ Rd the p-th power by wp := wp1
1 · · ·wpd

d .

Theorem B.1 (Concentration inequality for RFF kernel derivatives). Let p,q ∈ Nd and k :
Rd ×Rd → R be a continuous, bounded, translation-invariant kernel such that z 7→ ∇ [∂p,qk(z)]
is continuous. Let X ⊂ Rd be a compact and convex domain with diameter |X|, and denote
by Dp,q,X := supz∈X∆

∥∇ [∂p,qk(z)]∥2, where X∆ := {x− y : x,y ∈ X}. Let Λ be the spectral
measure of k satisfying that Ep,q := Ew∼Λ [|wp+q| ∥w∥2] < ∞, and the Bernstein moment
condition for some S,R > 0,

Ew∼Λ

[∣∣wp+q
∣∣k] ≤ k!S2Rk−2

2
for all k ≥ 2.

Then, for Cp,q,X := |X| (Dp,q,X + Ep,q) and ϵ > 0,

P

[
sup
x,y∈X

∣∣∂p,qk̃(x,y)− ∂p,qk(x,y)
∣∣ ≥ ϵ

]
≤ 16

(
Cp,q,X

ϵ

) d
d+1

exp

(
−d̃ϵ2

4(d+ 1)(2S2 +Rϵ)

)
.

Proof. We adapt the proof of [61, 77]. Note that as X is compact, so is X∆, and it can be
covered by an ϵ-net of at most T := (4 |X| /r)d balls of radius r > 0 [17, Prop. 5] with centers
z1, . . . , zT ∈ X∆. Since for all z ∈ X∆ there exists i ∈ {1, . . . , T} such that ∥z− zi∥2 ≤ r, it
holds for f(z) := ∂p,qk̃(z)− ∂p,qk(z) and Lf := sups∈X∆

∥∇f(s)∥2 that

|f(z)− f(zi)|
(a)
≤ sup

s∈X∆

∥∇f(s)∥2 ∥z− zi∥2
(b)
≤ sup

s∈X∆

∥∇f(s)∥2 r = Lfr,(B.2)

where (a) is due to the mean-value theorem followed by Cauchy-Schwarz inequality, and (b) is
since ∥z− zi∥ ≤ r. Now, by triangle inequality, it holds for any z ∈ X∆ that

∥∇f(z)∥2 ≤
∥∥∇ [∂p,qk̃(z)

]∥∥
2
+ ∥∇ [∂p,qk(z)]∥2 ≤

∥∥∇ [∂p,qk̃(z)
]∥∥

2
+Dp,q,X.(B.3)

Differentiating k̃(z) as defined in (2.3), we get by the chain rule and triangle inequality that

∥∥∇ [∂p,qk̃(z)
]∥∥

2
=

1

d̃

∥∥∥∥∥∥
d̃∑

j=1

wjw
p+q
j cos(|p+q|)(w⊤

j z)

∥∥∥∥∥∥
2

≤ 1

d̃

d̃∑
j=1

∣∣∣wp+q
j

∣∣∣ ∥wj∥2 ,(B.4)

where cos(n) denotes the n-th derivative of cos for n ∈ N. The main idea of the proof is then

T⋂
i=1

{|f(zi)| < ϵ/2}
⋂

{Lf < ϵ/2r} ⊆ {|f(z)| < ϵ : ∀z ∈ X∆},
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since |f(z)| ≤ |f(z)− f(zi)|+ |f(zi)| and (B.2) holds. Therefore, taking the complement and
bounding the union, we get our governing inequality for the uniform error over X∆:

P

[
sup
z∈X∆

|f(z)| ≥ ϵ

]
≤

T∑
i=1

P [|f(zi)| ≥ ϵ/2] + P [Lf ≥ ϵ/2r] .(B.5)

Now, we need to bound all probabilities on the RHS. First, we deal with Lf ,

P [Lf ≥ ϵ/2r]
(c)
≤ E [Lf ]

2r

ϵ

(d)
≤
(
Dp,q,X +

1

d̃

∑d̃

j=1
Ewj∼Λ

[∣∣∣wp+q
j

∣∣∣ ∥wj∥2
]) 2r

ϵ

≤
(
Dp,q,X + Ep,q

) 2r
ϵ
,(B.6)

where (c) is Markov’s inequality, (d) is (B.3) and (B.4). To deal with the centers in (B.5), note
∂p,qk̃(z) can be written as a sample average of d̃ i.i.d. terms as per (2.3) since

∂p,qk̃(z) = ∂p,q

1

d̃

d̃∑
i=1

cos(w⊤
j z)

 =
1

d̃

d̃∑
i=1

∂p,q cos(w⊤
j z)

so that the Bernstein inequality (Cor. A.6) is applicable. For j = 1, . . . , d̃, we have

Ewj∼Λ

∣∣∣∂p,q cos
(
w⊤

j z
)∣∣∣m = Ewj∼Λ

∣∣∣wp+q
j cos(|p+q|)(w⊤

j z)
∣∣∣m ≤ Ewj∼Λ

∣∣∣wp+q
j

∣∣∣m ≤ k!S2Rk−2

2
,

and that f(z) = ∂p,qk̃(z)− ∂p,qk(z) = ∂p,qk̃(z)− E
[
∂p,qk̃(z)

]
by the dominated convergence

theorem. Hence, we may call the Bernstein inequality (Cor. A.6) to control f(zi) so that

P [|f(zi)| ≥ ϵ/2] = P
[∣∣∂p,qk̃(z)− ∂p,qk(z)

∣∣ ≥ ϵ/2
]
≤ 2 exp

(
−d̃ϵ2

4(2S2 +Rϵ)

)
.(B.7)

Combining the bounds for |f(zi)| (B.7), and for Lf (B.6), into (B.5) yields

P

[
sup
z∈M∆

|f(z)| ≥ ϵ

]
≤ 2

(
4 |X|
r

)d

exp

(
−d̃ϵ2

4(2S2 +Rϵ)

)
+
(
Dp,q,X + Ep,q

) 2r
ϵ
,

which has the form g(r) = τ1r
−d + τ2r, that is minimized by choosing r⋆ = (dτ1/τ2)

1
d+1 . This

choice sets it to the form g(r⋆) = τ
1

d+1

1 τ
d

d+1

2

(
d

1
d+1 + d

−d
d+1

)
, so that by substituting back in

P

[
sup
z∈M∆

|f(z)| ≥ ϵ

]
≤ Fd2

3d+1
d+1

(
|X| (Dp,q,X + Ep,q)

ϵ

) d
d+1

exp

(
−d̃ϵ2

4(d+ 1)(2S2 +Rϵ)

)
.

Finally, we note that for d ≥ 1, Fd := d
1

d+1 + d
−d
d+1 ≤ 2 and 2

3d+1
d+1 ≤ 8.
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Appendix C. Bounds on Signature Kernels. We first set the ground for proving our main
theorems by introducing the notion of L-Lipschitz kernels to help control distance distortions
in the feature space. This subclass of kernels will be useful for us in relating the 1-variation
of sequences in feature space to that in the input space. After this, we will prove various
smaller lemmas and supplementary results for signature kernels, which will lead up to Lemma
C.9, which is our main tool for proving Theorem 3.2, and it relates the concentration of our
RFSF kernel k̃Sig to the second derivatives of the RFF kernel k̃. Then, the proof of Theorem 3.2
quantifying the concentration of the RFSF kernel, k̃Sig, will follow from putting together Lemma
C.9 with Theorem B.1, and we will also make use of the Bernstein inequality from Theorem
A.5. The proof of Theorem 3.5 for the RFSF-DP kernel, k̃DPSig, will follow by combining the
results of this section with α-exponential concentration, in particular, Theorem A.13. Finally,
Theorem 3.8 for the RFSF-TRP kernel, k̃TRPSig, will be proven using lemmas from this section,
and the hypercontractivity concentration result from Theorem A.15.

Distance bounds in the RKHS.

Definition C.1 (Lipschitz kernel). Let (X, d) be a metric space. We call a kernel k : X×X → R
with RKHS H an L-Lipschitz kernel over X for some L > 0 if it holds for all x,y ∈ X that

∥kx − ky∥H =
√
k(x,x) + k(y,y)− 2k(x,y) ≤ Ld(x,y),

where kx := k(x, ·), ky := k(y, ·) ∈ H.

Example C.2 (Finite 2nd spectral moment implies Lipschitz). Let k : Rd × Rd → R be a
continuous, bounded and translation-invariant kernel with RKHS H and spectral measure Λ,
such that σ2

Λ := Ew∼Λ

[
∥w∥22

]
< ∞. Then, it holds that k is

∥∥Ew∼Λ

[
ww⊤]∥∥1/2

2
-Lipschitz, so

for any x,y ∈ Rd one has

∥kx − ky∥H ≤
∥∥∥Ew∼Λ

[
ww⊤

]∥∥∥1/2
2

∥x− y∥2 .

Proof. We have for x,y ∈ Rd that

∥kx − ky∥2H
(a)
= k(x,x) + k(y,y)− 2k(x,y)

(b)
=

∫
Rd

2− 2 exp
(
iw⊤(x− y)

)
dΛ(w)

(c)
=

∫
Rd

2− 2 cos
(
w⊤(x− y)

)
dΛ(w)

(d)
≤
∫
Rd

(
w⊤(x− y)

)2
dΛ(w)

(e)
= (x− y)⊤Ew∼Λ

[
ww⊤

]
(x− y)

(f)
≤
∥∥∥Ew∼Λ

[
ww⊤

]∥∥∥
2
∥x− y∥22 ,

where (a) holds due to the reproducing property, (b) is Bochner’s theorem, (c) is because the
imaginary part of the integral evaluates to 0 as the kernel is real-valued, (d) is due to the
inequality 1− t2/2 ≤ cos(t) for all t ∈ R, (e) is because

(
w⊤(x− y)

)2
= (x− y)⊤ww⊤(x− y),

and (f) is Cauchy-Schwarz inequality combined with the definition of the spectral norm.

Example C.3 (Random Lipschitz bound for RFF). Let k̃ : Rd × Rd → R be an RFF kernel
defined as in (2.2) corresponding to some spectral measure Λ, and let H̃ denote its feature space
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corresponding to the RFF map φ̃ : Rd → H̃ defined as in (2.2), so that given w1, . . . ,wd̃
i.i.d.∼ Λ,

we have for x,y ∈ Rd that

k̃(x,y) =
1

d̃

d̃∑
j=1

cos
(
w⊤

j (x− y)
)
.

Let W = (w1, . . . ,wd̃) ∈ Rd×d̃ be the random matrix with column vectors w1, . . . ,wd̃
i.i.d.∼ Λ.

Then, k̃ is
(

∥W∥2√
d̃

)
-Lipschitz, so that for any x,y ∈ Rd, we have the inequality

∥φ̃(x)− φ̃(y)∥
H̃
≤

∥W∥2√
d̃

∥x− y∥2 .

Proof. The proof follows analogously to that of Example C.2. Let x,y ∈ Rd, then

∥φ̃(x)− φ̃(y)∥2
H̃

(a)
= 2− 2

d̃

d̃∑
i=1

cos(w⊤
i (x− y))

(b)
≤ 1

d̃

d̃∑
i=1

(
w⊤

i (x− y)
)2

(c)
=

1

d̃
(x− y)⊤WW⊤(x− y)

(d)
≤ 1

d̃
∥W∥22 ∥x− y∥22 ,

where (a) is due to the cosine identity cos(a− b) = cos(a) cos(b) + sin(a) sin(b) for all a, b ∈ R,
(b) is due to the inequality 1 − t2/2 ≤ cos(t) for all t ∈ R, (c) is because

(
w⊤

i (x− y)
)2

=

(x− y)⊤wiw
⊤
i (x− y) and WW⊤ =

∑d̃
i=1wiw

⊤
i , (d) is due to the Cauchy-Schwarz inequality

combined with the definition of the spectral norm.

Bounds for the Signature Kernel. A well-known property of signature features that they
decay factorially fast with respect to the tensor level m ∈ N.

Lemma C.4 (Norm bound for signature features). Let L > 0 and k : X × X → R be an
L-Lipschitz kernel with RKHS H. Then, we have for the level-m signature features φSigm(x)
of the sequence x ∈ Xseq that

∥∥φSigm(x)
∥∥
H⊗m ≤

(L ∥x∥1-var)
m

m!
.

Proof. We have

∥∥φSigm(x)
∥∥
H⊗m =

∥∥∥∥∥∥
∑

i∈∆m(ℓx−1)

δkxi1
⊗ · · · ⊗ δkxim

∥∥∥∥∥∥
H⊗m

(a)
≤

∑
i∈∆m(ℓx−1)

∥∥∥δkxi1

∥∥∥
H
· · ·
∥∥δkxim

∥∥
H

(b)
≤ Lm

∑
i∈∆m(|x−1|)

∥δxi1∥2 · · · ∥δxim∥2
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(c)
≤

(
L
∑ℓx−1

i=1 ∥δxi∥2
)m

m!

(d)
=

(L ∥x∥1-var)
m

m!
,

where (a) follows from triangle inequality followed by factorizing the tensor norm, (b) is the
L-Lipschitzness property, (c) from completing the multinomial expansion and normalizing by
the number of permutations (note that ∆m(ℓx − 1) contains a single permutation of all such
multi-indices that have nonrepeating entries), and (d) is the definition of sequence 1-variation.

The following bound for the signature kernel is a direct consequence of the previous lemma.

Corollary C.5 (Upper bound for signature kernel). Let k : X × X → R be an L-Lipschitz
kernel, and kSigm : Xseq×Xseq → R the level-m signature kernel built from k. Then, we have
the following bound for x,y ∈ Xseq∣∣kSigm(x,y)∣∣ ≤

(
L2 ∥x∥1-var ∥y∥1-var

)m
(m!)2

.

Proof. Note that without a kernel trick, kSigm is written for x,y ∈ Xseq as the inner product

∣∣kSigm(x,y)∣∣ =
∣∣∣∣∣∣
〈 ∑

i∈∆m(ℓx−1)

δkxi1
⊗ · · · ⊗ δkxim

,
∑

j∈∆m(ℓy−1)

δkyj1
⊗ · · · ⊗ δkyjm

〉
H⊗m

∣∣∣∣∣∣
(a)
≤

∥∥∥∥∥∥
∑

i∈∆m(ℓx−1)

δkxi1
⊗ · · · ⊗ δkxim

∥∥∥∥∥∥
H⊗m

∥∥∥∥∥∥
∑

j∈∆m(ℓy−1)

δkyj1
⊗ · · · ⊗ δkyjm

∥∥∥∥∥∥
H⊗m

(b)
≤
(
L2 ∥x∥1-var ∥y∥1-var

)m
(m!)2

,

where (a) follows from the Cauchy-Schwarz inequality, and (b) is implied by Lemma C.4.

A similar upper bound to Lemma C.4 also holds for the RFSF kernel k̃Sigm , that now depends
on the norms of the random matrices W(1), . . . ,W(m), hence is itself random.

Lemma C.6 (Random norm bound for RFSF). Let φ̃Sigm : Xseq → H̃Sig be the level-m RFSF
map defined as in (3.1) built from some spectral measure Λ. Then, we have for x ∈ Xseq that

∥∥φ̃Sigm(x)
∥∥
H̃⊗m ≤

∥∥W(1)
∥∥
2
· · ·
∥∥W(m)

∥∥
2

m!

(
∥x∥1-var√

d̃

)m

,

where W(1), . . . ,W(m) i.i.d.∼ Λd̃ are random matrices sampled from Λd̃.

Proof. The proof follows analogously to Lemma C.4. We have for x ∈ Xseq that

∥∥φ̃Sigm(x)
∥∥
H̃⊗m =

∥∥∥∥∥∥
∑

i∈∆m(ℓx−1)

δφ̃1(xi1)⊗ · · · ⊗ δφ̃m(xim)

∥∥∥∥∥∥
H̃⊗m

(a)
≤

∑
i∈∆m(ℓx−1)

∥δφ̃1(xi1)∥H̃ · · · ∥δφ̃m(xim)∥H̃



40 CS. TÓTH, H. OBERHAUSER, AND Z. SZABÓ

(b)
≤
∥∥W(1)

∥∥
2
· · ·
∥∥W(m)

∥∥
2

d̃m/2

∑
i∈∆m(ℓx−1)

∥δxi1∥2 · · · ∥δxim∥2

(c)
≤
∥∥W(1)

∥∥
2
· · ·
∥∥W(m)

∥∥
2

d̃m/2

∥x∥m1-var
m!

,

where (a) is the triangle inequality and factorization of tensor norm, (b) is using the Lipschitzness
of RFFs from Example C.3, (c) is the same as steps (c)-(d) in Lemma C.4.

Then, the following is again an application of the Cauchy-Schwarz inequality.

Corollary C.7 (Random upper bound for RFSF kernel). Let k̃Sigm : Xseq×Xseq → R be the
level-m RFSF kernel defined as in (3.2) built from some spectral measure Λ. Then, for all
x,y ∈ Xseq

∣∣k̃Sigm(x,y)∣∣ ≤
∥∥W(1)

∥∥2
2
· · ·
∥∥W(m)

∥∥2
2

(m!)2

(
∥x∥1-var ∥y∥1-var

d̃

)m

where W(1), . . . ,W(m) i.i.d.∼ Λd̃ are random matrices sampled from Λd̃.

The following lemma does not concern signatures, but will be useful to us later in the proof
of Lemma C.9 by providing a mean-value theorem for the cross-differencing operator δ2i,j .

Lemma C.8 (2nd order mean-value theorem). Let f : Rd × Rd → R be a twice differentiable
function, and X ⊂ Rd be a convex and compact set. Then, we have for any u,v,x,y ∈ X that

f(x,y)− f(x,v)− f(u,y) + f(u,v) ≤ sup
s,t∈X

∥∥∂2
s,tf(s, t)

∥∥
2
∥x− u∥2 ∥y − v∥2 ,

where ∂2
s,tf(s, t) :=

(
∂2f(s,t)
∂si∂tj

)d
i,j=1

refers to the submatrix of the Hessian of cross-derivatives.

Proof. Keeping v,y ∈ X as fixed, we may define g : Rd → R as g(·) := f(·,y)− f(·,v), so
that the expression above can be written as g(x)− g(u), and by the convexity of X, we may
apply the mean-value theorem to find that ∃s ∈ (0, 1) such that

g(x)− g(u) = ⟨∇g(sx+ (1− s)u),x− u⟩ ≤ sup
s∈X

∥∇g(s)∥2 ∥x− u∥2 ,(C.1)

where ∇g(s) :=
(
∂g(s)
∂si

)d
i=1

denotes the gradient of g, while the second inequality follows from
the Cauchy-Schwarz inequality and the compactness of X (so that the sup exists). Also note
that ∇g(s) = ∂sf(s,y)− ∂sf(s,v), so defining h : Rd → Rd as h(·) := ∂sf(s, ·) and applying
the vector-valued mean-value inequality [69, Thm. 9.19] to h gives that ∃t ∈ (0, 1) such that

∥h(y)− h(v)∥2 ≤ ∥Jh(ty + (1− t)v)∥2 ∥y − v∥2 ≤ sup
t∈X

∥Jh(t)∥2 ∥y − v∥2 ,(C.2)

where Jh(t) :=
(
∂hi(t)
∂tj

)d
i,j=1

refers to the Jacobian of h. Putting the inequalities (C.1) and

(C.2) together and substituting back the function f gives the desired result.
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This is our final lemma in our exposition of supplementary results about the (random)
signature kernels, and it will be our main tool for proving Theorem 3.2.

Lemma C.9 (Uniform upper bound for deviation of RFSF kernel). Let X ⊂ Rd be a convex
and compact set, k : Rd × Rd → R a continuous, bounded, translation-invariant L-Lipschitz
kernel and k̃ : Rd×Rd → R the corresponding RFF kernel. Then, the level-m (m ∈ N) signature
and RFSF kernels are uniformly close for V > 0 by

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSigm(x,y)
∣∣

≤ V 2m
m∑
k=1

L2(m−k)

d̃k−1((k − 1)!)2

∥∥∥W(1)
∥∥∥2
2
· · ·
∥∥∥W(k−1)

∥∥∥2
2
sup
s,t∈X

∥∥∂2
s,tk̃k(s, t)− ∂2

s,tk(s, t)
∥∥
2
,

where k̃1, . . . , k̃m are independent RFF kernels with weights W(1), . . . ,W(m) i.i.d.∼ Λd̃, and

∂2
s,tf(s, t) :=

(
∂2f(s,t)
∂si∂tj

)d
i,j=1

for a twice-differentiable function f : Rd × Rd → R.

Proof. First of all, by Lemma C.5 and Lemma C.7, the supremum exists. In the following,
given a sequence x ∈ Xseq, we denote its 1 : l slice for some l ∈ [ℓx] x1:l := (x1, . . . ,xl). Then,
it holds for any m ≥ 1 recursively for the signature kernel that

kSigm(x,y) =
ℓx−1∑
k=1

ℓy−1∑
l=1

kSigm−1
(x1:k,y1:l)δ

2
k,lk(xk,yl),

and analogously for the RFSF kernel that

k̃Sigm(x,y) =
ℓx−1∑
k=1

ℓy−1∑
l=1

k̃Sigm−1
(x1:k,y1:l)δ

2
k,lk̃m(xk,yl).

Combining these recursions together, we have for the uniform error that

ϵm = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSigm(x,y)
∣∣

= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣∣∣∣∣
ℓx−1∑
k=1

ℓy−1∑
l=1

k̃Sigm−1
(x1:k,y1:l)δ

2
k,lk̃m(xk,yl)− kSigm−1

(x1:k,y1:l)δ
2
k,lk(xk,yl)

∣∣∣∣∣∣
(a)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣∣∣∣∣
ℓx−1∑
k=1

ℓy−1∑
l=1

k̃Sigm−1
(x1:k,y1:l)(δ

2
k,lk̃m(xk,yl)− δ2k,lk(xk,yl))

∣∣∣∣∣∣
+ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣∣∣∣∣
ℓx−1∑
k=1

ℓy−1∑
l=1

(k̃Sigm−1
(x1:k,y1:l)− k̃Sigm−1

(x1:k,y1:l))δ
2
k,lk(xk,yl)

∣∣∣∣∣∣
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(b)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣k̃Sigm−1
(x1:k,y1:l)

∣∣ ∣∣δ2k,lk̃m(xk,yl)− δ2k,lk(xk,yl)
∣∣

+ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣k̃Sigm−1
(x1:k,y1:l)− kSigm−1

(x1:k,y1:l)
∣∣ ∣∣δ2k,lk(xk,yl)

∣∣
(c)
≤ sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm−1
(x,y)

∣∣
︸ ︷︷ ︸

(i)

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣δ2k,lk̃m(xk,yl)− δ2k,lk(xk,yl)
∣∣

︸ ︷︷ ︸
(ii)

+ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm−1
(x,y)− kSigm−1

(x,y)
∣∣

︸ ︷︷ ︸
(iii)

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣δ2k,lk(xk,yl)
∣∣

︸ ︷︷ ︸
(iv)

,

(C.3)

where (a) follows from adding and subtracting the cross-terms and applying triangle inequality,
(b) follows from applying triangle inequality over the summations, (c) follows from noting that
if ∥x∥1-var , ∥y∥1-var ≤ V then so is ∥x1:k∥1-var , ∥y1:l∥1-var ≤ V for k ∈ [ℓx] and l ∈ [ℓy], and
thus justifiably pulling out the supremums.

Now, we deal with terms (i)–(iv) individually. For (i), we have Corollary C.7, so

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm−1
(x,y)

∣∣ ≤ ∥∥W(1)
∥∥2
2
· · ·
∥∥W(m−1)

∥∥2
2

((m− 1)!)2

(
V 2

d̃

)m−1

.(C.4)

To deal with (ii), we can apply Lemma C.8 with f = k̃m − k to get

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣δ2k,lk̃m(xk,yl)− δ2k,lk(xk,yl)
∣∣

≤ sup
s,t∈X

∥∥∂2
s,tk̃m(s, t)− ∂2

s,tk(s, t)
∥∥
2

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∥δxk∥2 ∥δyl∥2

≤ V 2 sup
s,t∈X

∥∥∂2
s,tk̃m(s, t)− ∂2

s,tk(s, t)
∥∥
2
.(C.5)

For (iii), we note that it is simply ϵm−1. Finally, we can write (iv) as an inner product and
apply Cauchy-Schwarz and L-Lipschitzness of k so that

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∣∣δ2k,lk(xk,yl)
∣∣ = sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

|⟨δkxk
, δkyl

⟩|
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≤ sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=1

∥δkxk
∥H ∥δkyl

∥H ≤ L2V 2.(C.6)

Putting equations (C.4), (C.5), (C.6) together in (C.3), we get that

ϵm = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSigm(x,y)
∣∣

≤ V 2m

d̃m−1((m− 1)!)2
sup
s,t∈X

∥∥∂2
s,tk̃m(s, t)− ∂2

s,tk(s, t)
∥∥
2

m−1∏
p=1

∥∥∥W(p)
∥∥∥2
2
+ L2V 2ϵm−1,(C.7)

which gives us a recursion for estimating ϵm. The initial step, m = 1, can be estimated by

ϵ1 = sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sig1(x,y)− kSig1(x,y)
∣∣

= sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣∣∣∣∣
ℓx−1∑
k=1

ℓy−1∑
l=1

δ2k,lk̃1(xk,yl)− δ2k,lk(xk,yl)

∣∣∣∣∣∣
= sup

x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

ℓx−1∑
k=1

ℓy−1∑
l=0

∣∣δ2k,lk̃1(xk,yl)− δ2k,lk(xk,yl)
∣∣

≤ V 2 sup
s,t∈X

∥∥∂2
s,tk̃1(s, t)− ∂2

s,tk(s, t)
∥∥
2
,(C.8)

which is actually analogous to (C.7) since ϵ0 = 0. Now, we may unroll the recursion (C.7) with
the initial condition (C.8), and we get

ϵm ≤ V 2m
m∑
k=1

L2(m−k)

d̃k−1((k − 1)!)2
sup
s,t∈X

∥∥∂2
s,tk̃k(s, t)− ∂2

s,tk(s, t)
∥∥
2

k−1∏
p=1

∥∥∥W(p)
∥∥∥2
2
.

Proofs of main concentration results. Here, we provide proofs of the main concentration
results, i.e. Theorems 3.2, 3.5, 3.8, respectively under Theorems C.10, C.11, C.12.

Theorem C.10 (Concentration inequality for RFSF kernel). Let X ⊂ Rd be a compact and
convex set with diameter |X|, and X∆ := {x − y : x,y ∈ X}. Let k : Rd × Rd → R be a
continuous, bounded, translation-invariant kernel with spectral measure Λ, which satisfies for
some S,R > 0 that

Ew∼Λ

[
|wi|2k

]
≤ k!S2Rk−2

2
for all i ∈ [d] and k ≥ 2.(C.9)

Then, the following quantities are finite: σ2
Λ := Ew∼Λ

[
∥w∥22

]
, L :=

∥∥Ew∼Λ

[
ww⊤]∥∥1/2

2
,

Ei,j := Ew∼Λ [|wiwj | ∥w∥2] and Di,j := supz∈X∆

∥∥∥∇ [ ∂2k(z)
∂zi∂zj

]∥∥∥
2

for i, j ∈ [d]. Further, for
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any maximal sequence 1-variation V > 0, and signature level m ∈ Z+, it holds for the
level-m RFSF kernel k̃Sigm : Xseq×Xseq → R defined as in (3.2) and the signature kernel
kSigm : Xseq×Xseq → R defined as in (2.12) for ϵ > 0 that

P

 sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣kSigm(x,y)− k̃Sigm(x,y)
∣∣ ≥ ϵ

 ≤

≤ m


(
Cd,X

(
βd,m,V

ϵ

) d
d+1

+ d

)
exp

(
− d̃

2(d+1)(S2+R)

(
ϵ

βd,m,V

)2)
for ϵ < βd,m,V(

Cd,X

(
βd,m,V

ϵ

) d
(d+1)m

+ d

)
exp

(
− d̃

2(d+1)(S2+R)

(
ϵ

βd,m,V

) 1
m

)
for ϵ ≥ βd,m,V ,

where Cd,X := 2
1

d+1 16 |X|
d

d+1
∑d

i,j=1 (Di,j + Ei,j)
d

d+1 and βd,m,V := m
(
2V 2

(
L2 ∨ 1

) (
σ2
Λ ∨ d

))m.

Proof. Finite quantities. To start off with, due to (C.9) with m = 2 and Jensen’s inequality
(Lemma A.1), we get

E
[
|wi|2

]
≤ E1/2

[
|wi|4

]
< ∞ for all i ∈ [d] .

Hence, by linearity of the expectation σ2
Λ = E

[
∥w∥2

]
=
∑d

i=1 E
[
w2
i

]
< ∞. Next, due to

Hölder’s inequality (Lemma A.2), it holds that

E [wiwj ] ≤ E [|wiwj |] ≤ E1/2
[
|wi|2

]
E1/2

[
|wj |2

]
< ∞ for all i, j ∈ [d] ,

therefore L < ∞. Further, applying Hölder’s inequality twice followed by Jensen’s inequality,

E [|wiwjwk|] ≤ E2/3
[
|wiwj |3/2

]
E1/3

[
|wk|3

]
≤ E1/3

[
|wi|3

]
E1/3

[
|wj |3

]
E1/3

[
|wk|3

]
≤ E1/6

[
|wi|6

]
E1/6

[
|wj |6

]
E1/6

[
|wk|6

]
< ∞ for all i, j, k ∈ [d] ,(C.10)

which is finite due to (C.9) with m = 3. Now, because of the ℓ1-ℓ2 norm inequality,

E [|wiwj | ∥w∥2] ≤ E [|wiwj | ∥w∥1] =
d∑

k=1

E [|wiwjwk|] < ∞,

hence Ē < ∞. Next, as per [73, Thm. 1.2.1.(iii)], as (C.10) holds for all i, j, k ∈ [d], k is 3-times
continuously differentiable, which combined with the compactness of X, hence that of X∆, gives
supz∈X∆

∣∣∣ ∂3k(z)
∂zi∂zj∂zk

∣∣∣ < ∞. Finally, from the ℓ1-ℓ2 inequality again, we get that

sup
z∈X∆

∥∥∥∥∇ [∂2k(z)

∂zi∂zj

]∥∥∥∥
2

≤ sup
z∈X∆

∥∥∥∥∇ [∂2k(z)

∂zi∂zj

]∥∥∥∥
1

≤
d∑

k=1

sup
z∈X∆

∣∣∣∣ ∂3k(z)

∂zi∂zj∂zk

∣∣∣∣ < ∞,
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which shows the finiteness of D̄. This finishes showing that the stated quantities are finite.
Splitting the bound. To start proving our main inequality, first note that as per Example

C.2, k is L-Lipschitz (see Def. C.1). Hence, Lemma C.9 yields that

sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− k̃Sigm(x,y)
∣∣

≤ V 2m
m∑
k=1

L2(m−k)

d̃k−1((k − 1)!)2
sup
s,t∈X

∥∥∂2
s,tk̃k(s, t)− ∂2

s,tk(s, t)
∥∥
2

k−1∏
p=1

∥∥∥W(p)
∥∥∥2
2
.(C.11)

We bound the summand in the previous line in probability for each k ∈ [m]. For brevity, denote
αm,k := V 2mL2(m−k)

((k−1)!)2
, and first consider the case k ≥ 2, so that we have

Pk(ϵ) := P

[
αm,k

d̃k−1

∥∥∥W(1)
∥∥∥2
2
· · ·
∥∥∥W(k−1)

∥∥∥2
2
sup
s,t∈X

∥∥∂s,tk̃k(s, t)− ∂s,tk(s, t)
∥∥
2
≥ ϵ

]
(a)
≤ P

αm,k

(∥∥W(1)
∥∥2
2
+ . . .+

∥∥W(k−1)
∥∥2
2

d̃(k − 1)

)k−1

sup
s,t∈X

∥∥∂s,tk̃k(s, t)− ∂s,tk(s, t)
∥∥
2
≥ ϵ



(b)
= P


∥∥W(1)

∥∥2
2
+ . . .+

∥∥W(k−1)
∥∥2
2

d̃(k − 1)︸ ︷︷ ︸
(Ak)

sup
s,t∈X

∥∥∂s,tk̃k(s, t)− ∂s,tk(s, t)
∥∥ 1

k−1

2︸ ︷︷ ︸
(Bk)

≥
(

ϵ

αm,k

) 1
k−1

 ,

where in (a) we used the arithmetic-geometric mean inequality, and in (b) we divided both

sides by αm,k and took the (k − 1)th root. Further, setting t :=
(

ϵ
αm,k

) 1
k−1 , we have for γ > 0

Pk(ϵ) ≤ P [Ak ·Bk ≥ t]
(c)
≤ P

[
(Ak − γ)Bk ≥ t

2

]
+ P

[
Bk ≥ t

2γ

]
(d)
≤ inf

τ>0

{
P
[
Ak − γ ≥ τ

2

]
+ P

[
Bk ≥ t

τ

]}
+ P

[
Bk ≥ t

2γ

]
,(C.12)

where in (c) we added and subtracted γBk and applied a union bound, while in (d) we combined
a union bound with the relation {XY ≥ ϵ} ⊆ {X ≥ τ}

⋃
{Y ≥ ϵ/τ} which holds for any τ > 0.

Our aim is now to obtain good probabilistic bounds on Ak and Bk to use in (C.12) with
the specific choice of γ = E [Ak] = σ2

Λ.
Bounding Ak. By the inequality between the spectral and Frobenius norms, we have

k−1∑
p=1

∥∥∥W(p)
∥∥∥2
2
≤

k−1∑
p=1

∥∥∥W(p)
∥∥∥2
F
=

d∑
i=1

k−1∑
p=1

d̃∑
j=1

(
w

(p)
i,j

)2
.
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Now note that w
(p)
i,j are i.i.d. copies of the ith marginal of Λ for all j ∈

[
d̃
]

and p ∈ [k − 1], so

that via (C.9)
(
w

(p)
i,j

)2
satisfies the Bernstein moment condition

E
[(

w
(p)
i,j

)2k]
≤ k!S2Rk−2

2
for all i ∈ [d], j ∈ [d̃], p ∈ [m], k ≥ 2.

Hence, we may apply the Bernstein inequality from Theorem A.5 so that for i ∈ [d]

P
[

1

d̃(k − 1)

∑k−1

p=1

∑d̃

j=1

(
w

(p)
i,j

)2
− σ2

i ≥ ϵ

]
≤ exp

(
−d̃(k − 1)ϵ2

2(S2 +Rϵ)

)
,

where σ2
i = Ew∼Λ

[
w2
i

]
. Combining these bounds for all i ∈ [d] and denoting σ2

Λ =
∑d

i=1 σ
2
i ,

P
[
Ak − σ2

Λ ≥ ϵ
]
= P

 1

d̃(k − 1)

d∑
i=1

k−1∑
p=1

d̃∑
j=1

(
w

(p)
i,j

)2
− σ2

Λ ≥ ϵ


≤

d∑
i=1

P
[

1

d̃(k − 1)

∑k−1

p=1

∑d̃

j=1

(
w

(p)
i,j

)2
− σ2

i ≥ ϵ

d

]

≤ d exp

(
−d̃(k − 1)

(
ϵ
d

)2
2
(
S2 +R ϵ

d

) ) .(C.13)

Hence, we have the required probabilistic bound for the term in (C.12) containing Ak.
Bounding Bk. One can bound the spectral norm by the max norm so that

Bk−1
k = sup

s,t∈X

∥∥∂s,tk̃k(s, t)− ∂s,tk(s, t)
∥∥
2
≤ sup

s,t∈X

∥∥∂s,tk̃k(s, t)− ∂s,tk(s, t)
∥∥
max

= max
i,j=1,...,d

sup
s,t∈X

∣∣∣∣∂2k̃k(s, t)

∂si∂tj
− ∂2k(s, t)

∂si∂tj

∣∣∣∣ .(C.14)

Let i, j ∈ [d] and denote Ei,j := Ew∼Λ [|wiwj | ∥w∥2] and Di,j := supz∈X∆
∥∇ [∂ei,ejk(z)]∥2,

which are finite as previously shown. Due to Hölder’s inequality (Lemma A.2) and (C.9),

E [|wiwj |m] ≤ E1/2
[
w2m
i

]
E1/2

[
w2m
j

]
< ∞.

Recall that k is 3-times continuously differentiable, so that the conditions required by Theorem
B.1 are satisfied, that we now call to our aid in controlling the RFF kernel derivatives,

P

[
sup
s,t∈X

∣∣∣∣∂2k̃k(s, t)

∂si∂tj
− ∂2k(s, t)

∂si∂tj

∣∣∣∣ ≥ ϵ

]
≤ 16C ′

d,X,i,jϵ
− d

d+1 exp

(
−d̃ϵ2

4(d+ 1)(2S2 +Rϵ)

)
,

where we defined C ′
d,X,i,j := (|X| (Di,j + Ei,j))

d
d+1 . Hence, noting that the max satisfies the

relation {maxi ξi ≥ ϵ} =
⋃

i{ξi ≥ ϵ} and union bounding (C.14) in probability, we get that

P
[
Bk−1

k ≥ ϵ
]
≤

d∑
i,j=1

P

[
sup
s,t∈X

∣∣∣∣∂2k̃k(s, t)

∂si∂tj
− ∂2k(s, t)

∂si∂tj

∣∣∣∣ ≥ ϵ

]
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≤ 16C ′
d,Xϵ

− d
d+1 exp

(
−d̃ϵ2

4(d+ 1)(2S2 +Rϵ)

)
,(C.15)

where we denote C ′
d,X :=

∑d
i,j=1C

′
d,X,i,j = |X|

d
d+1
∑d

i,j=1 (Di,j + Ei,j)
d

d+1 .
Putting it together. Now that we have our bounds for Ak and Bk, we put everything

together, that is, plug the bounds (C.13) and (C.15) into (C.12), so that we get

Pk(ϵ) ≤ inf
τ>0

d exp

(
−d̃(k − 1)

(
τ
2d

)2
2
(
S2 +R τ

2d

) )+ 16C ′
d,X

(τ
t

) d(k−1)
d+1

exp

 −d̃
(
t
τ

)2(k−1)

4(d+ 1)
(
2S2 +R

(
t
τ

)k−1
)


+ 16C ′
d,X

(
2σ2

Λ

t

) d(k−1)
d+1

exp

 −d̃
(

t
2σ2

Λ

)2(k−1)

4(d+ 1)

(
2S2 +R

(
t

2σ2
Λ

)k−1
)


(e)
≤d exp


−d̃(k − 1)

(
t
k−1
k

2d

)2

2

(
S2 +R t

k−1
k

2d

)
+ 16C ′

d,X

(
1

t

) d(k−1)
(d+1)k

exp

 −d̃t
2(k−1)

k

4(d+ 1)
(
2S2 +Rt

k−1
k

)


+ 16C ′
d,X

(
2σ2

Λ

t

) d(k−1)
d+1

exp

 −d̃
(

t
2σ2

Λ

)2(k−1)

4(d+ 1)

(
2S2 +R

(
t

2σ2
Λ

)k−1
)


(f)
=d exp


−d̃(k − 1)

(
(ϵ/αm,k)

1
k

2d

)2

2

(
S2 +R

(ϵ/αm,k)
1
k

2d

)
+ 16C ′

d,X

(αm,k

ϵ

) d
(d+1)k

exp

 −d̃
(

ϵ
αm,k

) 2
k

4(d+ 1)

(
2S2 +R

(
ϵ

αm,k

) 1
k

)


+ 16C ′
d,X

(
αm,k

(
2σ2

Λ

)k−1

ϵ

) d
d+1

exp


−d̃

(
ϵ

αm,k(2σ2
Λ)

k−1

)2

4(d+ 1)

(
2S2 +R ϵ

αm,k(2σ2
Λ)

k−1

)
 ,

where (a) follows from substituting (C.15) and (C.13) into (C.12) with the choice of γ = σ2
Λ,

(b) from choosing τ = t
k−1
k , and (c) from putting back t = (ϵ/αm,k)

1
k−1 .

Note that the previous applies for all k ≥ 2. For k = 1, we have by (C.15) that

P1(ϵ) = P

[
sup
s,t∈X

∥∥∂s,tk̃1(s, t)− ∂s,tk(s, t)
∥∥
2
≥ ϵ

αm,1

]

≤ 16C ′
d,X

(αm,1

ϵ

) d
d+1

exp

 −d̃
(

ϵ
αm,1

)2
4(d+ 1)

(
2S2 +R ϵ

αm,1

)
 .
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Combining and simplifying. We can now combine the bounds for P1, . . . , Pm into (C.11),

P

 sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSigm(x,y)
∣∣ ≥ ϵ

 ≤
m∑
k=1

Pk

( ϵ

m

)

(g)
≤2

1
d+1 8C ′

d,X

m∑
k=1

(
2kσ2

Λ
k−1

mαm,k

ϵ

) d
d+1

exp

− d̃

2(d+ 1)
·

(
ϵ

2kσ
2(k−1)
Λ mαm,k

)2

S2 +R ϵ

2kσ
2(k−1)
Λ mαm,k



+ 2
1

d+1 8C ′
d,X

m∑
k=2

(
2kmαm,k

ϵ

) d
(d+1)k

exp

− d̃

2(d+ 1)
·

(
ϵ

2kmαm,k

) 2
k

S2 +R
(

ϵ
2kmαm,k

) 1
k



+ d
M∑
k=2

exp

− d̃(k − 1)

2

(
ϵ

2kdkmαm,k

) 2
k

S2 +R
(

ϵ
2kdkmαm,k

) 1
k


(h)
≤2

1
d+1 8C ′

d,X

m∑
k=1

(
2k
(
σ2
Λ ∨ d

)k
mαm,k

ϵ

) d
d+1

exp

− d̃

2(d+ 1)
·

(
ϵ

2k(σ2
Λ∨d)

k
mαm,k

)2

S2 +R ϵ

2k(σ2
Λ∨d)

k
mαm,k



+ 2
1

d+1 8C ′
d,X

m∑
k=1

(
2k
(
σ2
Λ ∨ d

)k
mαm,k

ϵ

) d
(d+1)k

exp

− d̃

2(d+ 1)
·

(
ϵ

2k(σ2
Λ∨d)

k
mαm,k

) 2
k

S2 +R

(
ϵ

2k(σ2
Λ∨d)

k
mαm,k

) 1
k



+ d

m∑
k=1

exp

− d̃

2(d+ 1)

(
ϵ

2k(σ2
Λ∨d)

k
mαm,k

) 2
k

S2 +R

(
ϵ

2k(σ2
Λ∨d)

k
mαm,k

) 1
k


(f)
≤2

1
d+1 8C ′

d,X

m∑
k=1

(
βd,m,V

ϵ

) d
d+1

exp

− d̃

2(d+ 1)

(
ϵ

βd,m,V

)2
S2 +R ϵ

βd,m,V



+ 2
1

d+1 8C ′
d,X

m∑
k=1

(
βd,m,V

ϵ

) d
(d+1)k

exp

− d̃

2(d+ 1)

(
ϵ

βd,m,V

) 2
k

S2 +R
(

ϵ
βd,m,V

) 1
k


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+ d
m∑
k=1

exp

− d̃

2(d+ 1)

(
ϵ

βd,m,V

) 2
k

S2 +R
(

ϵ
βd,m,V

) 1
k

 ,

where (g) follows from rearranging the expressions from (f), while (h) from unifying the
coefficients and that 1 ≤ d ≤ max(σ2

Λ, d) and f(x) = x2/(a+ bx) is monotonically increasing in
x on the positive half-line for a, b > 0, while (f) from αm,k = V 2mL2(m−k)/((k−1)!)2 ≤ (V L)2m,
using that f(x) is increasing, and defining βd,m,V := m

(
2V 2(L2 ∨ 1)(σ2

Λ ∨ d)
)m.

Conclusion. Finally, we split the bound into two cases: the first case is if the error is big,
i.e. ϵ ≥ βd,m,V = m

(
2V 2(L2 ∨ 1)(σ2

Λ ∨ d)
)m, when we decrease all the exponents to 1

m ,

P

 sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSigm(x,y)
∣∣ ≥ ϵ



≤m ·

(
2

1
d+1 16C ′

d,X

(
βd,m,V

ϵ

) d
(d+1)m

+ d

)
exp

− d̃

2(d+ 1)

(
ϵ

βd,m,V

) 2
m

S2 +R
(

ϵ
βd,m,V

) 1
m


The other when the error is small, i.e. ϵ < βd,m,V , when we increase all the exponents to 1

P

 sup
x,y∈Xseq

∥x∥1-var,∥y∥1-var≤V

∣∣k̃Sigm(x,y)− kSig(x,y)
∣∣ ≥ ϵ



≤m ·

(
2

1
d+1 16C ′

d,X

(
βd,m,V

ϵ

) d
d+1

+ d

)
exp

− d̃

2(d+ 1)

(
ϵ

βd,m,V

)2
S2 +R

(
ϵ

βd,m,V

)
 .

The claimed estimate follows by denoting Cd,X := 2
1

d+1 16C ′
d,X and simplifying.

Next, we prove Theorem 3.5 to show an approximation bound for the RFSF-DP kernel.

Theorem C.11 (Concentration inequality for RFSF-DP kernel). Let k : Rd × Rd → R be a
continuous, bounded, translation-invariant kernel with spectral measure Λ, which satisfies for
some S,R > 0 that

Ew∼Λ

[
|wi|2k

]
≤ k!S2Rk−2

2
for all i ∈ [d] and k ≥ 2.(C.16)

Then, for signature level m ∈ Z+ and x,y ∈ Xseq, it holds for ϵ > 0 that:

P
[∣∣∣k̃DPSigm(x,y)− kSigm(x,y)

∣∣∣ ≥ ϵ
]
≤ 2 exp

−1

4
min


( √

d̃ϵ
2Cd,m∥x∥m1-var∥y∥

m
1-var

)2

,(
d̃ϵ√

8Cd,m∥x∥m1-var∥y∥
m
1-var

) 1
m


 ,
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where the absolute constant Cd,m > 0 satisfies that

Cd,m ≤
√
8e4(2π)1/4e1/24(4e3/m)m

(
(2dmax(S,R))m +

(
L2/ ln 2

)m)
.

Proof. Let k̂
(1)
Sigm

, . . . , k̂
(d̃)
Sigm

be independent copies of the RFSF kernel, each with internal

RFF sample size d̂ = 1, such that k̃
DP
Sigm

= 1
d̃

∑d̃
k=1 k̂

(k)
Sigm

. Our goal is to call Theorem A.13 with

α = 1
m , and therefore, we compute an upper bound on the Ψ1/m-norm of k̃(k)Sigm

(x,y)−kSigm(x,y)

for all k ∈ [d̃]; for a definition of the α-exponential norm, see Definition A.7.
By Lemma C.6, it holds for any x,y ∈ Xseq and k ∈ [m] that∣∣∣k̂(k)Sigm

(x,y)
∣∣∣ ≤ (∥x∥1-var ∥y∥1-var)

m

(m!)2

∥∥∥w(1)
k

∥∥∥2
2
· · ·
∥∥∥w(m)

k

∥∥∥2
2
,

where w
(1)
k , . . . ,w

(m)
k

i.i.d.∼ Λ are the random weights that parametrize k̂
(k)
Sigm

for all k ∈ [d̃]. Now,
calling Lemma A.11 with α = 1 yields that, due to (C.16), the following holds:∥∥∥∥w(p)

k,i

2
∥∥∥∥
Ψ1

≤ 2max(S,R) for all i ∈ [d], k ∈ [d̃], p ∈ [m].

Note that for α = 1, ∥·∥Ψα
satisfies the triangle inequality (see Lemma A.9), and hence∥∥∥∥∥∥∥w(p)

k

∥∥∥2
2

∥∥∥∥
Ψ1

≤
d∑

i=1

∥∥∥∥w(p)
k,i

2
∥∥∥∥
Ψ1

≤ 2dmax(S,R) for all k ∈ [d̃], p ∈ [m].

As ∥·∥Ψα
is positive homogenous and satisfies a Hölder-type inequality (see Lemma A.10):∥∥∥k̂(k)Sigm

(x,y)
∥∥∥
Ψ1/m

(a)
≤

(∥x∥1-var ∥y∥1-var)
m

(m!)2

∥∥∥∥∥∥∥w(1)
k

∥∥∥2
2

∥∥∥∥
Ψ1

· · ·
∥∥∥∥∥∥∥w(m)

k

∥∥∥2
2

∥∥∥∥
Ψ1

(b)
≤

(2d ∥x∥1-var ∥y∥1-varmax(S,R))m

(m!)2
for all k ∈ [d̃],(C.17)

where in (a) we used Corollary C.7, in (b) we used (C.17). We are almost ready to use Theorem
A.13, but it requires the ∥·∥Ψ1/m

bound in terms of centered random variables. Although ∥·∥Ψα

does not satisfy the triangle inequality for α ∈ (0, 1), it obeys that (see [31, Lemma A.3.])
∥X + Y ∥Ψα

≤ 21/α
(
∥X∥Ψα

+ ∥Y ∥Ψα

)
for any random variables X and Y . For a constant

c ∈ R, we have ∥c∥Ψ1/m
= |c|

lnm 2 , and hence by Lemma C.5 we have that

∥∥kSigm(x,y)∥∥Ψ1/m
≤
(
L2 ∥x∥1-var ∥y∥1-var / ln 2

)m
(m!)2

,

where L =
∥∥Ew∼Λ

[
ww⊤]∥∥

2
is the Lipschitz constant of the kernel k : X× X → R. This gives∥∥∥k̂(k)Sigm

(x,y)− kSigm(x,y)
∥∥∥
Ψ1/m

≤ 2m
(∥∥∥k̂(k)Sigm

(x,y)
∥∥∥
Ψ1/m

+
∥∥kSigm(x,y)∥∥Ψ1/m

)
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≤
(2 ∥x∥1-var ∥y∥1-var)

m

(m!)2
(
(2dmax(S,R))m +

(
L2/ ln 2

)m)
.

Finally, we have the required Orlicz norm bound for invoking Theorem A.13, so that we get

P
[∣∣∣k̃DPSigm(x,y)− kSigm(x,y)

∣∣∣ ≥ ϵ
]

≤ 2 exp

−1

4
min


( √

d̃ϵ

2Cd,m

)2

,

(
d̃ϵ√
8Cd,m

) 1
m


 ,

where the constant Cd,m > 0 is defined as

Cd,m :=
√
8e4(2π)1/4e1/24

(4em ∥x∥1-var ∥y∥1-var)m

(m!)2
(
(2dmax(S,R))m +

(
L2/ ln 2

)m)
,

and invoking Stirling’s approximation 1
m! ≤

(
e
m

)m gives the stated result.

Now, we prove the analogous result for k̃
TRP
Sigm

.

Theorem C.12 (Concentration inequality for RFSF-TRP kernel). Let k : Rd × Rd → R be a
continuous, bounded, translation-invariant kernel with spectral measure Λ, which satisfies for
some S,R > 0 that

Ew∼Λ

[
|wi|2k

]
≤ k!S2Rk−2

2
for all i ∈ [d] and k ≥ 2.(C.18)

Then, for the level-m RFSF-TRP kernel as defined in (3.9), we have for x,y ∈ Xseq and ϵ > 0

P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

]
≤ Cd,Λ exp

−

 m2d̃
1

2m
TRPϵ

1
m

2
√
2e3R ∥x∥1-var ∥y∥1-var

 1
2

 ,

where Cd,Λ := 2
(
1 + S

2R + S2

4R2

)d
.

Proof. First, we consider the conditional probability P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

∣∣∣W]
by conditioning on the RFSF weights W := (W(1), . . . ,W(m)), so that the only source of
randomness comes from the TRP weights P := (P(1), . . . ,P(m)). The idea is to call Theorem
A.15 to estimate the conditional probability, and then take expectation over W. Since Theorem
A.15 quantifies the concentration of a Gaussian polynomial around its mean in terms of its
variance, we first compute the conditional statistics of k̃TRPSigm

(x,y).

Conditional expectation. Recall the definition of φ̃TRP
Sigm

(x) (3.8), where p
(1)
1 , . . . ,p

(m)

d̃TRP

i.i.d.∼
N(0, I2d̃), and x ∈ Xseq, so that

φ̃TRP
Sigm

(x) =
1√
d̃TRP

 ∑
i∈∆m(ℓx)

m∏
p=1

〈
p
(p)
i , δφ̃p(xip)

〉d̃TRP

i=1

.
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Hence, k̃TRPSigm
(x,y) is written for x,y ∈ Xseq as

k̃
TRP
Sigm

(x,y) =
1

d̃TRP

d̃TRP∑
i=1

∑
i∈∆m(ℓx)
j∈∆m(ℓy)

m∏
p=1

〈
p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(yip)

〉
︸ ︷︷ ︸

Ai

,

which is a sample average of d̃TRP i.i.d. terms, i.e. k̃TRPSigm
(x,y) = 1

d̃TRP

∑d̃TRP
i=1 Ai. We only have to

verify that Ai is conditionally an unbiased approximator of k̃Sigm given W.

E [Ai |W]
(a)
=

∑
i∈∆m(ℓx)
j∈∆m(ℓy)

m∏
p=1

E
[〈

p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(yjp)

〉 ∣∣∣W]

(b)
=

∑
i∈∆m(ℓx)
j∈∆m(ℓy)

m∏
p=1

〈
E
[
p
(p)
i ⊗ p

(p)
i

]
, δφ̃p(xip)⊗ δφ̃p(yjp)

〉

(c)
=

∑
i∈∆m(ℓx)
j∈∆m(ℓy)

m∏
p=1

〈
Id̃, δφ̃p(xip)⊗ δφ̃p(yjp)

〉
(d)
=

∑
i∈∆m(ℓx)
j∈∆m(ℓy)

m∏
p=1

〈
δφ̃p(xip), δφ̃p(yjp)

〉
,

where (a) follows from linearity of expectation and independence of the p
(p)
i ’s for p ∈ [m], (b)

from bilinearity of inner product, and independence of P and W, (c) from substituting the
covariance, (d) is since the outer product is projected onto the diagonal.

Conditional variance. We compute the conditional variance of Ai given W:

E
[
A2

m,i

∣∣W]
(e)
=

∑
i,k∈∆m(|x|)
j,l∈∆m(|y|)

m∏
p=1

E
[〈

p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(yjp)

〉〈
p
(p)
i , δφ̃p(xkp)

〉〈
p
(p)
i , δφ̃p(ylp)

〉 ∣∣∣W]

(f)
=

∑
i,k∈∆m(|x|)
j,l∈∆m(|y|)

m∏
p=1

(
E
[〈

p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(yjp)

〉 ∣∣∣W]
E
[〈

p
(p)
i , δφ̃p(xkp)

〉〈
p
(p)
i , δφ̃p(ylp)

〉 ∣∣∣W]

+ E
[〈

p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(xkp)

〉 ∣∣∣W]
E
[〈

p
(p)
i , δφ̃p(yjp)

〉〈
p
(p)
i , δφ̃p(ylp)

〉 ∣∣∣W]
+ E

[〈
p
(p)
i , δφ̃p(xip)

〉〈
p
(p)
i , δφ̃p(ylp)

〉 ∣∣∣W]
E
[〈

p
(p)
i , δφ̃p(xkp)

〉〈
p
(p)
i , δφ̃p(yjp)

〉 ∣∣∣W])
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(g)
=

∑
i,k∈∆m(|x|)
j,l∈∆m(|y|)

m∏
p=1

(〈
δφ̃p(xip), δφ̃p(yjp)

〉 〈
δφ̃p(xkp), δφ̃p(ylp)

〉
+
〈
δφ̃p(xip), δφ̃p(xkp)

〉 〈
δφ̃p(yjp), δφ̃p(ylp)

〉
+
〈
δφ̃p(xip), δφ̃p(ylp)

〉 〈
δφ̃p(xkp), δφ̃p(yjp)

〉)
(h)
≤

∑
i,k∈∆m(|x|)
j,l∈∆m(|y|)

3m
m∏
p=1

∥∥δφ̃p(xip)
∥∥∥∥δφ̃p(yjp)

∥∥∥∥δφ̃p(xkp)
∥∥∥∥δφ̃p(ylp)

∥∥
(i)
= 3m

 ∑
i∈∆m(|x|)

m∏
p=1

∥∥δφ̃p(xip)
∥∥2 ∑

j∈∆m(|y|)

m∏
p=1

∥∥δφ̃p(yjp)
∥∥2

(j)
≤ 1

(m!)4

(
3 ∥x∥21-var ∥y∥

2
1-var

d̃2

)m m∏
p=1

∥∥∥W(p)
∥∥∥4
2
,

where (e) follows from linearity of expectation and independence of the p
(p)
i ’s for p ∈ [m], (f)

from Isserlis’ theorem [35], (g) is the same as (a)-(d), (h) is the Cauchy-Schwarz inequality, (i)
from factorizing the summation, (j) is the same as Lemma C.6.

Therefore, we have due to Lemma C.7 for the variance that

V [Am,i |W] = E
[
A2

m,i |W
]
− E2 [Am,i |W] ≤ 3m + 1

(m!)4

(
∥x∥21-var ∥y∥

2
1-var

d̃2

)m m∏
p=1

∥∥∥W(p)
∥∥∥4
2
.

Let βm(x,y) := 3m+1
(m!)4

∥x∥2m1-var ∥y∥
2m
1-var. Then, as k̃

TRP
Sigm

(x,y) |W is a sample average,

V
[
k̃
TRP
Sigm

(x,y)
∣∣∣W]

≤ βm(x,y)

d̃TRPd̃2m

m∏
p=1

∥∥∥W(p)
∥∥∥4
2
.(C.19)

Conditional bound. Since k̃
TRP
Sigm

(x,y) |W is a Gaussian polynomial of degree-2m, with
expectation k̃Sigm(x,y), and variance (C.19), we have by Theorem A.15 for ϵ > 0 that

P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

∣∣∣W]
≤ 2 exp

− ϵ
1
m

2
√
2eV

1
2m

[
k̃
TRP
Sigm

(x,y)
∣∣∣W]


≤ 2 exp

− d̃
1

2m
TRP d̃ϵ

1
m

2
√
2eβ

1
2m
m (x,y)

∏m
p=1

∥∥W(p)
∥∥ 2

m
2

 .(C.20)
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Undoing the conditioning. We take the expectation in (C.20) so that

P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

]
= E

[
P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

∣∣∣W]]
≤ 2E

exp
− d̃

1
2m
TRP d̃ϵ

1
m

2
√
2eβm(x,y)

1
2m
∏m

p=1

∥∥W(p)
∥∥ 2

m
2


(k)
≤ 2E

exp
− λd̃

1
2m
TRPϵ

1
m

2
√
2eβm(x,y)

1
2m

d̃

λ
∏m

p=1

∥∥W(p)
∥∥ 2

m
2


(l)
≤ 2E

exp
−2

 λd̃
1

2m
TRPϵ

1
m

2
√
2eβm(x,y)

1
2m

 1
2

+
λ
∏m

p=1

∥∥W(p)
∥∥ 2

m

2

d̃




(m)
≤ 2E

exp
−

 √
2λd̃

1
2m
TRPϵ

1
m

eβm(x,y)
1

2m

 1
2

+
λ
∑m

p=1

∥∥W(p)
∥∥2
2

md̃


 ,(C.21)

where (k) follows form multiplying and dividing with a λ > 0, (l) from applying Lemma A.4
with p = 1

2 and q = 1, and (m) from the arithmetic-geometric mean inequality.

Bounding the MGF of w(p)
i,j

2
for p ∈ [m], i ∈ [d], j ∈ [d̃], we have that

E
[
exp

(
λw

(p)
i,j

2
)]

(n)
≤
∑
k≥0

E
[
w

(p)
i,j

k
]
λk

k!

(o)
≤ 1 + λS +

λ2S2

2

∑
k≥0

(λR)k

(p)
= 1 + λS +

λ2S2

2

1

1− λR

(q)
= 1 +

S

2R
+

S2

4R2
,

where (n) is the Taylor expansion, (o) is the condition (C.18) and applying Jensen inequality
to the degree-1 term, (p) is the geometric series for λ < 1

R , and (q) is choosing λ = 1
2R . Hence,

E

exp
λ

∑m
p=1

∥∥W(p)
∥∥2
2

md̃

 = E

exp
λ

∑m
p=1

∑d
i=1

∑d̃
j=1w

(p)
i,j

2

md̃


(r)
≤ E1/(md̃)

exp
λ

m∑
p=1

d∑
i=1

d̃∑
j=1

w
(p)
i,j

2


(s)
≤
(
1 +

S

2R
+

S2

4R2

)d

,

where (r) is due to the Jensen inequality (Lemma A.1), and (s) follows from the independence
of the w

(p)
i,j ’s for p ∈ [m], i ∈ [d], j ∈ [d̃]. Finally, plugging this into (C.21), we get that

P
[∣∣∣k̃TRPSigm

(x,y)− k̃Sigm(x,y)
∣∣∣ ≥ ϵ

]
≤ 2

(
1 +

S

2R
+

S2

4R2

)d

exp

−

 d̃
1

2m
TRPϵ

1
m

√
2eRβm(x,y)

1
2m

 1
2

 .
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Finally, note that βm(x,y)
1

2m =
(
3m+1
(m!)4

) 1
2m ∥x∥1-var ∥y∥1-var ≤

2e2

m2 ∥x∥1-var ∥y∥1-var, since

3m + 1 ≤ 4m for m ≥ 1, and 1
m! ≤

(
e
m

)m due to Stirling’s approximation.

Appendix D. Algorithms. We adopt the following notation for describing vectorized
algorithms from [40, 85]. For arrays, 1-based indexing is used. Let A and B be k-fold arrays
with shape (n1×· · ·×nk), and let ij ∈ [nj ] for j ∈ [k]. We define the following array operations:

(i) The cumulative sum along axis j:

A[. . . , :,⊞, :, . . . ][. . . , ij−1, ij , , ij+1 . . . ] :=

ij∑
κ=1

A[. . . , ij−1, κ, ij+1, . . . ].

(ii) The slice-wise sum along axis j:

A[. . . , :,Σ, :, . . . ][. . . , ij−1, ij+1, . . . ] :=

nj∑
κ=1

A[. . . , ij−1, κ, ij+1, . . . ].

(iii) The shift along axis j by +m for m ∈ Z+:

A[. . . , :,+m, :, . . . ][. . . , ij−1, ij , ij+1, . . . ]

:=

{
A[. . . , ij−1, ij −m, ij+1, . . . ], if ij > m
0 if ij ≤ m.

(iv) The Hadamard product of arrays A and B:

(A⊙B)[i1, . . . , ik] := A[i1, . . . , ik]B[i1, . . . , ik].

(v) Now, if A has shape (n1×· · ·×nj ×· · ·×nk) and B has shape (n1×· · ·×n′
j ×· · ·×nk),

then their (batch) outer product along axis j is defined for ij ∈ [njn
′
j ] as

(A⊠j B)[i1, . . . , ij , . . . , ik] := A[i1, · · · , ⌈ij/n′
j⌉, · · · ik]B[i1, . . . , ij mod nj . . . , ik],

where ⌈·⌉ : R → Z refers to the ceiling operation, and (· mod n) : Z → [n] to the modulo
n operation that maps onto [n] for n ∈ Z.

Algorithm D.1 Computing the RFSF map φ̃Sig≤M
.

1: Input: Sequences X = (xi)
N
i=1 ⊂ Xseq, measure Λ, truncation M ∈ Z+, RFF sample size d̃ ∈ Z+

2: Optional: Add time-parametrization xi ← (xi,t, t/ℓxi)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ := maxj∈[N ] ℓxj by xi ← (xi,1, . . . ,xi,ℓxi
, . . . ,xi,ℓxi

) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . ,W(M) i.i.d.∼ Λd̃

5: Initialize an array U with shape [M,N, ℓ− 1, 2d̃]
6: Compute increments U [m, i, t, :]← φ̃m(xi,t+1)− φ̃m(xi,t) for m ∈ [M ], i ∈ [N ], t ∈ [ℓ− 1]
7: Initialize array V ← U [1, :, :, :]
8: Collapse into level-1 features P1 ← V [:,Σ, :]
9: for m = 2 to M do

10: Update with next increment V ← V [:,⊞+ 1, :]⊠3 U [m, :, :, :]
11: Collapse into level-m features Pm ← V [:,Σ, :]
12: end for
13: Output: Arrays of RFSF features per signature level P1, . . . , PM .
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Algorithm D.2 Computing the RFSF-DP map φ̃DP
Sig≤M

.

1: Input: Sequences X = (xi)
N
i=1 ⊂ Xseq, measure Λ, truncation M ∈ Z+, RFSF-DP sample size d̃ ∈ Z+

2: Optional: Add time-parametrization xi ← (xi,t, t/ℓxi)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ := maxj∈[N ] ℓxj by xi ← (xi,1, . . . ,xi,ℓxi
, . . . ,xi,ℓxi

) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . ,W(M) i.i.d.∼ Λd̃

5: Initialize an array U with shape [M,N, ℓ− 1, d̃, 2]
6: Compute increments U [m, i, t, k, :]← φ̂m,k(xi,t+1)− φ̂m,k(xi,t) for m ∈ [M ], i ∈ [N ], t ∈ [ℓ− 1], k ∈ [d̃]
7: Initialize array V ← 1√

d̃
U [1, :, :, :, :]

8: Collapse into level-1 features P1 ← V [:,Σ, :, :]
9: for m = 2 to M do

10: Update with next increment V ← V [:,⊞+ 1, :, :]⊠4 U [m, :, :, :, :]
11: Collapse into level-m features Pm ← V [:,Σ, :, :]
12: end for
13: Output: Arrays of RFSF-DP features per signature level P1, . . . , PM .

Algorithm D.3 Computing the RFSF-TRP map φ̃TRP
Sig≤M

.

1: Input: Sequences X = (xi)
N
i=1 ⊂ Xseq, measure Λ, truncation M ∈ Z+, RFSF and TRP sample size d̃ ∈ Z+

2: Optional: Add time-parametrization xi ← (xi,t, t/ℓxi)
ℓxi
t=1 for all i ∈ [N ]

3: Tabulate to uniform length ℓ := maxj∈[N ] ℓxj by xi ← (xi,1, . . . ,xi,ℓxi
, . . . ,xi,ℓxi

) for all i ∈ [N ]

4: Sample independent RFF weights W(1), . . . ,W(M) i.i.d.∼ Λd̃

5: Sample standard normal matrices P(1), . . . ,P(M) i.i.d.∼ Nd̃(0, I2d̃)
6: Initialize an array U with shape [M,N, ℓ− 1, d̃]

7: Compute projected increments U [m, i, t, :]← P(m)⊤ (φ̃m(xi,t+1)− φ̃m(xi,t)) for m ∈ [M ], i ∈ [N ], t ∈ [ℓ−1]

8: Initialize array V ← 1√
d̃
U [1, :, :, :]

9: Collapse into level-1 features P1 ← V [:,Σ, :]
10: for m = 2 to M do
11: Update with next increment V ← V [:,⊞+ 1, :]⊙ U [m, :, :, :]
12: Collapse into level-m features Pm ← V [:,Σ, :]
13: end for
14: Output: Arrays of RFSF-TRP features per signature level P1, . . . , PM .
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