
ar
X

iv
:2

31
2.

15
35

8v
2 

 [
m

at
h.

C
O

] 
 2

2 
N

ov
 2

02
4

SEAT NUMBER CONFIGURATION OF THE BOX-BALL

SYSTEM, AND ITS RELATION TO THE 10-ELIMINATION AND

INVARIANT MEASURES

HAYATE SUDA

Abstract. The box-ball system (BBS) is a soliton cellular automaton introduced
by [TS], and it is known that the dynamics of the BBS can be linearized by
several methods. Recently, a new linearization method, called the seat number
configuration, is introduced by [MSSS]. The aim of this paper is fourfold. First,
we introduce the k-skip map Ψk ∶ Ω → Ω, where Ω is the state space of the
BBS, and show that the k-skip map induces a shift operator of the seat number
configuration. Second, we show that the k-skip map is a natural generalization of
the 10-elimination, which was originally introduced by [MIT] to solve the initial
value problem of the periodic BBS. Third, we generalize the notions and results of
the seat number configuration and the k-skip map for the BBS on the whole-line.
Finally, we investigate the distribution of Ψk (η) , η ∈ Ω when the distribution of
η belongs to a certain class of invariant measures of the BBS introduced by [FG].
As an application of the above results, we obtain the long-time behavior of the
integrated current of Ψk (η) with Markov stationary initial distributions.

1. Introduction

The box-ball system (BBS) is a soliton cellular automaton introduced by [TS]. In
this paper, we consider the BBS(ℓ), ℓ ∈ N ∪ {∞}, which is a class of generalizations

of the BBS introduced by [TM]. The configuration space Ω is either {0,1}N or a

certain subset of {0,1}Z, and depending on the configuration space, we refer to the
BBS as the BBS on the half-line or the BBS on the whole-line, respectively. Here,
for η ∈ Ω, η(x) = 0 (resp. η(x) = 1) means that the site x is vacant (resp. occupied).
The dynamics of the BBS(ℓ) on the half-line is given via the carrier with capacity ℓ,
Wℓ (η, ⋅) ∶ Z≥0 → Z≥0, which is recursively constructed as follows :

● An empty carrier starts from x = 0, i.e., Wℓ (η,0) = 0.
● If there is a ball at x and the carrier is not full, then the carrier picks it up,
i.e., if η(x) = 1 and Wℓ (η, x − 1) < ℓ, then Wℓ (η, x) =Wℓ (η, x − 1) + 1.
● If x is vacant and the carrier is not empty, i.e., then the carrier puts down a
ball, i.e., if η(x) = 0 and Wℓ (η, x − 1) > 0 then Wℓ (η, x) =Wℓ (η, x − 1) − 1.
● Otherwise, the carrier just goes through.

Then, by using Wℓ (η, ⋅), the one-step time evolution of the BBS is described by the
operator Tℓ ∶ Ω → Ω defined as

Tℓη(x) ∶= η(x) +Wℓ (η, x − 1) −Wℓ (η, x) . (1.1)

Note that for the case Ω ⊂ {0,1}Z, the domain of Wℓ(η, ⋅) can be extended to Z,
and the one-step time evolution of the BBS(ℓ) on the whole-line is also described by
Tℓ ∶ Ω → Ω, which is defined via the same equation (1.1), see Section 4 for details.
Despite the simple description of the dynamics, it is known that the BBS exhibits

solitonic behavior. In addition, the relationships between the BBS and classical /
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quantum integrable systems have been well-studied, see [IKT] and references therein
for details. As in the cases of some integrable systems, such as the Korteweg-de
Vries equation, the initial value problem of the BBS can be solved via the explicit
linearization methods [T, KOSTY, MIT, FNRW]. Recently, a new linearization
of the BBS(ℓ) on the half-line, called the seat number configuration, is introduced
by [MSSS], and by using the seat number configuration, the explicit relationships
between the rigged configuration and the slot decomposition are investigated.
The aim of this paper is fourfold. The first is to define a natural shift operator

for the seat number configuration, and this is done via the k-skip map, Ψk ∶ Ω → Ω,
introduced in Section 2. The second is to describe the relationships between the
seat number configuration and the 10-elimination, and this will be done in Section
3. The 10-elimination was originally introduced in [MIT] to solve the initial value
problem of the periodic BBS, and in this paper, the 10-elimination will be defined
as a map Φ1 ∶ Ω<∞ → Ω<∞, where Ω<∞ is the set of all finite ball configuration on
the half-line :

Ω<∞ ∶= {η ∈ {0,1}N ; ∑
x∈N

η(x) <∞} .
We will show that the 1-skip map is a natural generalization of the 10-elimination
on Ω, i.e.,

Ψ1(η) = Φ1(η) for any η ∈ Ω<∞,
see Theorem 3.2 for the precise statement. This result reveals the explicit relation-
ship between the seat number configuration and the 10-elimination. Note that, as
mentioned later, Theorem 3.2 can be proved indirectly by using the results from
[KS] and [MSSS]. However, in this paper we directly prove Theorem 3.2 and no
such result is used in the proof. The third is to generalize the notions and results
of the seat number configuration and the k-skip map for the BBS on the whole-line,
and this is done in Section 4. Finally, we investigate several statistical properties
of the BBS on the whole-line in Section 5. First we investigate the distribution of
Ψk (η) on Ω when the distribution of η belongs to a certain class of invariant mea-
sures of the BBS introduced by [FG]. In particular, we will show that if (η(x))x∈Z
is the sequence of i.i.d. Bernoulli(ρ) with 0 ≤ ρ < 1

2
or two-sided stationary Markov

chain with transition matrix Q = (Q(i, j))i,j=0,1 satisfying Q(0,1)+Q(1,1) < 1, then(Ψk (η(x)))x∈Z is also a two-sided stationary Markov chain. Combining this and
the results in [CKST], we will obtain the long-time behavior of integrated ball cur-
rent Cn (Ψk (η(x))), where Cn(η) is the total number of balls crossing the origin
x = 0 up to n-step time evolution. Note that since the seat number configuration is
closely relates to the local energy [MSSS, Remark 4.1], Cn can be considered as the
integrated energy current of the BBS configuration.
The contents of Section 2,3 and 4 are closely relate to [MSSS] and can be consid-

ered as a continuation of it. On the other hand, the contents of Section 5 are related
to the field of the randomized BBS, which has been actively studied in recent years
[CKST, CS, CS2, FG, KL, KLO, KMP, KMP2, KMP3, LLP, LLPS]. We expect
that the statistical properties of the seat number configuration and the k-skip map
introduced in this paper will be useful in the analysis of the randomized BBS. In
fact, in the forthcoming paper [OSS], the space-time scaling limit of a tagged soliton
is considered, and k-skip map plays an essential role in the proof. We look forward
to seeing more studies utilizing the k-skip map in the future.
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2. Seat number configuration

In this section, first we briefly recall the definition of the carrier with seat numbers
and the corresponding seat number configuration introduced in [MSSS]. Then, in
the subsequent subsection, we introduce the notion of the k-skip map, and show
that the k-skip map induces a shift operator of the seat number configuration. Note
that throughout this section, Ω = {0,1}N.
2.1. Carrier with seat numbers. We consider a situation where the seats of the
carrier are numbered by N, and introduce functions Wk(η, ⋅) ∶ Z≥0 → {0,1} which
represents the number of ball sitting in No.k seat of the carrier, i.e., Wk(η, x) = 0
(resp. Wk(η, x) = 1) means that the No.k seat is vacant (resp. occupied) at site x.
Then, the refined construction of the carrier with seat numbers is given as follows :

● An empty carrier starts from x = 0, i.e., Wk(η,0) = 0 for any k ∈ N.
● If there is a ball at site x, then the carrier picks the ball and puts it
at the empty seat with the smallest seat number, i.e, if η(x) = 1 and
min {k ∈ N ; Wk(η, x − 1) = 0} = ℓ, then

Wk(η, x) = {1 k = ℓ,
Wk(η, x − 1) k ≠ ℓ.

● If the site x is empty, and if there is at least one occupied seat, then the carrier
puts down the ball at the occupied seat with the smallest seat number, i.e,
if η(x) = 0 and min {k ∈ N ; Wk(η, x − 1) = 1} = ℓ <∞, then

Wk(η, x) = {0 k = ℓ,
Wk(η, x − 1) k ≠ ℓ.

● Otherwise, the carrier just goes through, i.e., if η(x) = 0 and Wk(η, x−1) = 0
for any k ∈ N, then

Wk(η, x) =Wk(η, x − 1) = 0
for any k ∈ N.

In other words, we define Wk(η, ⋅) ∶ Z≥0 → {0,1} recursively as follows : Wk(η,0) ∶= 0
for any k ∈ N, and

Wk(η, x) =Wk(η, x − 1) + η(x)(1 −Wk(η, x − 1)) k−1∏
ℓ=1
Wℓ(η, x − 1)

− (1 − η(x))Wk(η, x − 1) k−1∏
ℓ=1
(1 −Wℓ(η, x − 1)).

From the above construction of Wk, we see that

Wℓ (η, x) = ℓ

∑
k=1
Wk (η, x) , (2.1)

for any ℓ ∈ N and x ∈ N, where Wℓ is the carrier with capacity ℓ defined in Intro-
duction. Then, the seat number configuration ησk ∈ Ω, k ∈ N, σ ∈ {↑, ↓} is defined
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as

η↑k(x) ∶= {1 if Wk(η, x) >Wk(η, x − 1),
0 otherwise

= η(x)(1 −Wk(η, x − 1)) k−1∏
ℓ=1
Wℓ(η, x − 1), (2.2)

and

η↓k(x) ∶= {1 if Wk(η, x) <Wk(η, x − 1),
0 otherwise

= (1 − η(x))Wk(η, x − 1) k−1∏
ℓ=1
(1 −Wℓ(η, x − 1)). (2.3)

Here, η↑k(x) = 1 (resp. η↓k(x) = 1) means that a ball gets into (resp. off) No.k seat
at site x. We also define r (η, ⋅) ∈ Ω as

r (η, x) ∶= 1 − ∑
k∈N
∑

σ∈{↑,↓}
ησk (x),

and r (η, x) = 1 means that the carrier goes through site x. We note that Wk can be
represented as

Wk (η, x) = x

∑
y=1
(η↑k (y) − η↓k (y)) , (2.4)

for any k ∈ N and x ∈ N. Also, we recall a useful lemma proved in [MSSS].

Lemma 2.1 (Lemma 3.1 in [MSSS]). Suppose that η ∈ Ω. Then, for any k ∈ N and
x ∈ N, we have the following.

(1) η↑k (x) = 1 implies ∑x
y=1 (η↑ℓ (y) − η↓ℓ (y)) = 1 for any 1 ≤ ℓ ≤ k.

(2) η↓k (x) = 1 implies ∑x
y=1 (η↑ℓ (y) − η↓ℓ (y)) = 0 for any 1 ≤ ℓ ≤ k.

(3) r (η, x) = 1 implies ∑x
y=1 (η↑ℓ (y)− η↓ℓ (y)) = 0 for any ℓ ∈ N.

For later use, we introduce some functions. For any k ∈ N and x ∈ Z≥0, we define
ξk (η, x) as

ξk (η, x) ∶= x − x

∑
y=1

k

∑
ℓ=1
∑

σ∈{↑,↓}
ησℓ (y)

= x

∑
y=1

⎛
⎝r(y) + ∑ℓ≥k+1 ∑σ∈{↑,↓}η

σ
ℓ (y)⎞⎠ .

Note that ξk (η, ⋅) is non-decreasing, and
∣ξk (η, x + 1) − ξk (η, x)∣ ≤ 1,

for any k ∈ N and x ∈ Z≥0. Then, for any k ∈ N and i ∈ Z≥0, we define sk (η, i) as
sk (η, i) ∶=min {x ∈ Z≥0 ; ξk (η, x) = i} ,

where min∅ ∶=∞. Note that sk (η,0) = 0 for any k ∈ N. Finally, for any k ∈ N and
i ∈ Z≥0, we define ζk (η, i) as

ζk (η, i) ∶= sk(η,i+1)
∑

y=sk(η,i)+1
(η↑k (y) − η↑k+1 (y)) . (2.5)
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We note that thanks to Lemma 2.1, ζk (η, i) can be represented as

ζk (η, i) = sk(η,i+1)
∑

y=sk(η,i)+1
(η↓k (y) − η↓k+1 (y)) . (2.6)

Remark 2.1. Note that ζ can be considered as a map ζ ∶ Ωr → Z
N×Z≥0
≥0 , and it is

shown in [CS, MSSS] that ζ is a bijection between Ωr ⊂ Ω and Ω̄ ⊂ ZN×Z≥0
≥0 , where Ωr

and Ω̄ are defined as

Ωr ∶= {η ∈ Ω ; ∑
x∈N

r(η, x) =∞} ,
Ω̄ ∶= {ζ ∈ ZN×Z≥0

≥0 ; max{k ∈ N ; ζk(i) > 0} for any i} .
We conclude this subsection by quoting a main result in [MSSS]. In [MSSS,

Proposition 2.3 and Theorem 2.3], it is shown that the dynamics of the BBS(ℓ) is
linearized in terms of ζ :

Theorem 2.1 (Proposition 2.3 and Theorem 2.3 in [MSSS]). Suppose that η ∈ Ω
and sk (η, i + 1) <∞ for some k ∈ N and i ∈ Z≥0. Then, we have

ζ (Tℓη, i) = ζ (η, i −min {k, ℓ}) ,
with convention ζ (η, i) = 0 for any i < 0.
Remark 2.2. Note that if η ∈ Ωr, then sk (η, i) < ∞ for any k ∈ N and i ∈ Z≥0.
Therefore, by combining the bijectivity of ζ and Theorem 2.1, the initial value prob-
lem of the BBS(ℓ) can be solved when the initial configuration is an element of Ωr.

2.2. The k-skip map. To study the relationship between the 10-elimination and
the seat number configuration, we introduce the k-skip map, Ψk ∶ Ω → Ω, k ∈ N,
defined as

Ψk (η) (x) ∶= η (sk (η, x)) .
We may call Ψk (η) the k-skipped configuration (of η). In this subsection, we in-
vestigate some basic properties of (Ψk)k∈N from the viewpoint of the seat number
configuration. A key observation is that Ψk shifts the seat numbers as follows :

Proposition 2.1. Suppose that η ∈ Ω. For any k, ℓ ∈ N, σ ∈ {↑, ↓} and x ∈ N, we
have

Ψk (η)σℓ (x) = ησk+ℓ (sk (x)) . (2.7)

In particular,

r (Ψk (η) , x) = r (η, sk (x)) .
As a consequence of Proposition 2.1, we obtain the following semigroup property

of (Ψk)k∈Z≥0 :

Proposition 2.2. Suppose that η ∈ Ω. For any k, ℓ ∈ N and x ∈ Z≥0, we have

Ψk (Ψℓ (η)) (x) = Ψk+ℓ (η) (x) .
In addition, we will also show that Ψk induces a shift operator of (ζk)k∈N :

Proposition 2.3. Suppose that η ∈ Ω. For any k ∈ N, ℓ ∈ Z≥0 and i ∈ Z≥0, we have

ζk (Ψℓ (η) , i) = ζk+ℓ (η, i) .
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From Theorem 2.1 and Proposition 2.2, we see that Ψk and Tℓ are both shift
operator of different variables, but in general, they do not commute. We can obtain
the following formulas only in the special cases Tℓ, ℓ = 1,∞.

Proposition 2.4. For any η ∈ Ωr and k ∈ N, we have

Ψk (T1η) = T1Ψk (η)
Ψk (T∞η) = T∞Ψk (Tkη) . (2.8)

Proof of Proposition 2.4. For any k, ℓ,m ∈ N and i ∈ Z≥0, we have

ζm (Ψk (Tℓη) , i) = ζm+k (η, i − (m + k) ∧ ℓ) ,
ζm (TℓΨk (η) , i) = ζm+k (η, i −m ∧ ℓ) .

Then, we see that

ζm (Ψk (Tℓη) , i) = ζm+k (η, i − (m + k) ∧ ℓ)
= ζm+k (T(m+k)∧ℓ−m∧ℓη, i −m ∧ ℓ)
= ζm (TℓΨk (T(m+k)∧ℓ−m∧ℓη) , i) ,

and that when ℓ = 1,∞, the quantity (m + k)∧ ℓ −m ∧ ℓ does not depend on m ∈ N.
For such cases, from the bijectivity of ζ , we have (2.8). �

In the rest of this subsection we will prove Propositions 2.1, 2.2 and 2.3. First,
we prepare some lemmas. Then we will give the proofs of the propositions.

Lemma 2.2. For any k, ℓ ∈ N, z,w ∈ Z≥0, z ≤ w and σ ∈ {↑, ↓}, we have

w

∑
y=z

ησk+ℓ (sk (η, y)) =
sk(η,w)
∑

y=sk(η,z)
ησk+ℓ (y) . (2.9)

In particular, we have

sk(η,z+1)−1
∑

y=sk(η,z)+1
ησk+ℓ (y) = 0.

Proof of Lemma 2.2. Since all (k + ℓ, σ)-seats in [sk (η, z) , sk (η,w)] are included in(sk (η, y) ; z ≤ y ≤ w), we have (2.9). �

Lemma 2.3. For any k ∈ N and x ∈ N, we have

{Wℓ (η, sk (η, x)) = ℓ for any 1 ≤ ℓ ≤ k + 1 if η (sk (η, x)) = 1,
Wℓ (η, sk (η, x)) = 0 for any 1 ≤ ℓ ≤ k + 1 if η (sk (η, x)) = 0. (2.10)

In particular, if Wℓ (η, sk (η, x)) > 0 for some 1 ≤ ℓ ≤ k + 1, then Wℓ (η, sk (η, x)) = ℓ
for any 1 ≤ ℓ ≤ k + 1. Also, if Wℓ (η, sk (η, x)) < ℓ for some 1 ≤ ℓ ≤ k + 1, then
Wℓ (η, sk (η, x)) = 0 for any 1 ≤ ℓ ≤ k + 1.
Proof of Lemma 2.3. Observe that

r (η, sk (η, x)) +∑
ℓ∈N
∑

σ∈{↑,↓}
ησk+ℓ (sk (η, x)) = 1.

Then, (2.10) is a direct consequences of (2.1), (2.4) and Lemma 2.1. �
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Lemma 2.4. For any k ∈ N, ℓ ≥ 2 and x ∈ Z≥0,

η↑k+ℓ (sk (η, x + 1)) = 1 if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wk+ℓ−1 (η, sk (η, x)) = k + ℓ − 1,
Wk+ℓ (η, sk (η, x)) = 0,
η (sk (η, x + 1)) = 1,

(2.11)

and

η↓
k+ℓ (sk (η, x + 1)) = 1 if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wk+ℓ−1 (η, sk (η, x)) = 0,
Wk+ℓ (η, sk (η, x)) = 1,
η (sk (η, x + 1)) = 0.

(2.12)

For the case ℓ = 1,
η↑k+1 (sk (η, x + 1)) = 1 if and only if {Wk+1 (η, sk (η, x)) = 0,

η (sk (η, x + 1)) = 1, (2.13)

and

η↓k+1 (sk (η, x + 1)) = 1 if and only if {Wk+ℓ (η, sk (η, x)) = 1,
η (sk (η, x + 1)) = 0. (2.14)

Proof of Lemma 2.4. We only prove (2.11) and then (2.13). (2.12) and (2.14) can
be proved in the similar way. Since the necessity (⇐) of (2.11) is clear from Lemma
2.2, we will show the sufficiency (⇒) of (2.11).
We observe that from Lemma 2.2, for any m,n ∈ N, z ∈ Z≥0 and sm (η, z) ≤ y ≤

sm (η, z + 1) − 1 we have

Wm+n (η, sm (η, z)) =Wm+n (η, y) . (2.15)

If η↑k+ℓ (sk (x + 1)) = 1, then we have η (sk (x + 1)) = 1, Wk+ℓ (η, sk (η, x + 1) − 1) = 0,
and

Wm (η, sk (η, x + 1) − 1) = 1, (2.16)

for any 1 ≤ m ≤ k + ℓ − 1. For the case ℓ ≥ 2, from (2.15) and (2.16) we see that
Wk+1 (sk (η, x)) > 0, and thus from Lemma 2.3, we have

η↑k+ℓ (sk (η, x + 1)) = 1 implies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wk+ℓ−1 (η, sk (η, x + 1) − 1) = k + ℓ − 1,
Wk+ℓ (η, sk (η, x + 1) − 1) = 0,
η (sk (η, x + 1)) = 1,

and

{Wk+ℓ−1 (η, sk (η, x + 1) − 1) = k + ℓ − 1,
Wk+ℓ (η, sk (η, x + 1) − 1) = 0, if and only if {Wk+ℓ−1 (η, sk (η, x)) = k + ℓ − 1,

Wk+ℓ (η, sk (η, x)) = 0.
Hence (2.11) is proved.
Next we will show (2.13). Since the sufficiency is clear from (2.15), we check

the necessity. From the assumption Wk+1 (η, sk (η, x)) = 0 and Lemma 2.3, we see
that Wk+1 (η, sk (η, x)) = 0. Then, from η (sk (η, x + 1)) = 1, Lemmas 2.2 and 2.3,
we get Wk+1 (η, sk (η, x + 1) − 1) = 0 and Wk (η, sk (η, x + 1) − 1) = k. Hence we have
η↑k+1 (sk (η, x + 1)) = 1 and (2.13) is proved. �
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Proof of Proposition 2.1. We use induction on the space variable x ∈ N. First we
consider the case x = 1. Observe that in this case either η↑k+1 (sk (η,1)) = 1 or
r (η, sk (η,1)) = 1 holds. On the other hand, we have

W1 (Ψk (η) ,1) = Ψk (η) (1) = η (sk (1)) .
Hence, (2.7) holds for x = 1.
From now on we assume that up to x, (2.7) holds for any k, ℓ ∈ N. Then, from

(2.4) and Lemma 2.2, for any k, ℓ ∈ N and 0 ≤ y ≤ x we obtain

Wℓ (Ψk (η) , y) = y

∑
z=1
(Ψk (η)↑ℓ (z) −Ψk (η)↓ℓ (z))

= y

∑
z=1
(η↑k+ℓ (sk (z)) − η↓k+ℓ (sk (z)))

= sk(y)
∑
z=1
(η↑

k+ℓ (z) − η↓k+ℓ (z)) ,
and thus from (2.1) we get

Wℓ (Ψk (η) , y) = ℓ

∑
m=1

y

∑
z=1
(Ψm (η)↑ℓ (z) −Ψm (η)↓ℓ (z))

= ℓ

∑
m=1

sk(y)
∑
z=1
(η↑k+m (z) − η↓k+m (z))

=Wk+ℓ (η, sk (y)) −Wk (η, sk (y)) .
Therefore, from Lemmas 2.3 and 2.4, for σ =↑ and ℓ ≥ 2 we have

Ψk (η)↑ℓ (x + 1) = 1 if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wℓ−1 (Ψk (η) , x) = ℓ − 1,
Wℓ (Ψk (η) , x) = ℓ − 1,
Ψk (η) (x + 1) = 1,

if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wk+ℓ−1 (η, sk (x)) −Wk (η, sk (x)) = ℓ − 1,
Wk+ℓ (η, sk (x)) −Wk (η, sk (x)) = ℓ − 1,
η (sk (x + 1)) = 1,

if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Wk+ℓ−1 (η, sk (x)) = k + ℓ − 1,
Wk+ℓ (η, sk (x)) = k + ℓ − 1,
η (sk (x + 1)) = 1,

if and only if η↑k+ℓ (sk (x + 1)) = 1.
For the case ℓ = 1, we obtain

Ψk (η)↑1 (x + 1) = 1 if and only if {W1 (Ψk (η) , x) = 0,
Ψk (η) (x + 1) = 1,

if and only if {Wk+1 (η, sk (x)) = 0,
η (sk (x + 1)) = 1,

if and only if η↑k+1 (sk (x + 1)) = 1.
The case σ =↓ can be proved in the similar way. �
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Proof of Proposition 2.2. We observe that from Proposition 2.1, if y = sk(Ψℓ(η), x),
for some k ∈ N ∪ {∞}, ℓ ∈ N and x ∈ N, then sℓ(η, y) = sk+ℓ(η, x). Hence, for any
k ∈ N ∪ {∞}, ℓ ∈ N and x ∈ Z, we have

sk (Ψℓ (η) , x) = sk(Ψℓ(η),x)
∑
y=1

r (Ψℓ (η) , y) + ⎛⎝∑h∈N ∑σ∈{↑,↓}Ψℓ (η)σh (y)⎞⎠
= sk(Ψℓ(η),x)

∑
y=1

r (η, sℓ (η, y)) + ⎛⎝∑h∈N ∑σ∈{↑,↓}ησℓ+h (sℓ (η, y))
⎞⎠

= sk+ℓ(η,x)
∑
y=1

r (η, y) + ⎛⎝∑h∈N ∑σ∈{↑,↓}ησℓ+h (y)
⎞⎠

= ξℓ (η, sk+ℓ (η, x)) , (2.17)

where at the third equality we use Lemma 2.2. From the above, we obtain

Ψk (Ψℓ (η)) (x) = Ψℓ (η) (sk (Ψℓ (η) , x))
= η (sℓ (η, sk (Ψℓ (η) , x)))
= η (sℓ (η, ξℓ (η, sk+ℓ (η, x))))
= η (sk+ℓ (η, x))
= Ψk+ℓ (η) (x).

�

Proof of Proposition 2.3. From Proposition 2.1, Lemma 2.2 and (2.17), for any k, ℓ ∈
N and i ∈ Z≥0 we have

ζk (Ψℓ (η) , i) = sk(Ψℓ(η),i+1)
∑

y=sk(Ψℓ(η),i)+1
(Ψℓ (η)↑k (y) −Ψℓ (η)↑k+1 (y))

= ⎛⎝
sk(Ψℓ(η),i+1)
∑

y=sk(Ψℓ(η),i)
Ψℓ (η)↑k (y)⎞⎠ −Ψℓ (η)↑k+1 (sk (Ψℓ (η) , i + 1))

= ⎛⎝
sk(Ψℓ(η),i+1)
∑

y=sk(Ψℓ(η),i)
η↑
k+ℓ (sℓ (η, y))⎞⎠ − η↑k+ℓ+1 (sℓ (η, ξℓ (η, sk+ℓ (η, i + 1))))

= ⎛⎝
sk+ℓ(η,i+1)
∑

y=sk+ℓ(η,i)
η↑k+ℓ (y)⎞⎠ − η↑k+ℓ+1 (sk+ℓ (η, i + 1))

= ζk+ℓ (η, i) .
�

3. 10-elimination

In this section, we will first briefly recall 10-elimination. Throughout this section,
Ω = {0,1}N, but we often regard η ∈ Ω as an element in {0,1}Z by setting η(x) = 0
for x < 0.
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

η(x) 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 . . .

0 1 ✁❆1 ✁❆0 0 1 1 ✁❆1 ✁❆0 ✁❆1 ✁❆0 1 ✁❆1 ✁❆0 0 0 ✁❆1 ✁❆0 . . .

Φ1(η) 0 1(0) 0 1 1(2) 1(1) 0 0 0(1) 0 0 0 0 0 0 0 0 0 . . .

0 ✁❆1 ✁❆0 1 1 ✁❆1 ✁❆0 0 0 0 0 0 0 0 0 0 0 0 . . .

Φ2(η) 0(1) 1 1(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 1 ✁❆1 ✁❆0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Φ3(η) 0 1(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 ✁❆1 ✁❆0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Φ4(η) 0(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Figure 1. Recursive construction of Φk(η) for k = 1,2,3,4.
3.1. Definition of the 10-elimination. For a given ball configuration η ∈ Ω<∞, we
will recursively construct a sequence (Φk (η) ; k ∈ N) ⊂ Ω<∞ and corresponding 10-
rigging (J10

k (η) ; k ∈ N) ⊂ ZN

≥0. First, we regard η as a sequence of 1 and 0, i.e., η =
η(0)η(1)η(2) . . . η(x) . . . , and we say that η(x)η(x+1) is a 10-pair in η if η(x) = 1 and
η(x+1) = 0. Then, we denote by Φ1(η) the ball configuration obtained by removing
all 10-pair in η and renumbering the remaining 1s and 0s from left to right. In Figure
1 we give an example of Φ1(η) constructed from η = 011001110101100011000 . . . .
Next, we explain how to construct J10

1
(η) from η. We will denote by (10)m,m ∈ N

the m consecutive 10s, i.e., (10)1 = 10, (10)2 = 1010, (10)3 = 101010, and so on.
Observe that all (10)ms are sandwiched by some X = η(x), Y = η(x + 2m + 1) such
that η(x−1)η(x) ≠ 10 and η(x+2m+1)η(x+2m+2) ≠ 10 where we use the convention
η(−1) = η(0) = 0, and after one step time evolution, all such (10)ms are removed,
i.e.,

η = . . .X(10)mY . . .
10-elimination

↦ Φ1(η) = . . .XY . . . .

Now, according to the values ofX,Y andm, we write a number on the right shoulder
of X as follows :

● if XY = 11,01,00, then we write X(m),
● if XY = 10, then we write X(m−1).

Then, the 10-rigging J10

1
(η) = (J10

1
(η, i))

i∈Z≥0 , J
10

1
(η, i) ⊂ N is defined as

J10

1 (η, i) ∶= {{1, . . . ,m} if Tη(i) = X(m) and m ∈ N,
∅ otherwise.

Finally, we suppose that we have constructed Φk (η). Then, Φk+1(η) and J10

k+1 (η)
are defined as

Φk+1(η) ∶= Φ1 (Φk(η)) , J10

k+1 (η) ∶= J10

1 (Φk(η)) .
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For example, for the ball configuration used in Figure 1, J10

k (η) is given by

J10

k (η, i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{1} (k, i) = (1,5), (2,0), (4,0),{1,2} (k, i) = (1,4),
∅ otherwise.

Note that since η ∈ Ω<∞, Φk (η) = 000 . . . for sufficiently large k.
It is known that BBS(ℓ) can be linearized via the 10-elimination as follows :

Theorem 3.1 (Theorem 2 in [MIT], Theorem 22 in [KNTW]). Suppose that η ∈
Ω<∞. Then for any k ∈ N, ℓ ∈ N ∪ {∞} and i ∈ Z≥0, we have

J10

k (Tℓη, i) = J10

k (η, i − k ∧ ℓ)
with convention J10

k (η, i) = ∅ for i < 0.
3.2. On the relation to the seat number configuration. In this subsection,
we will show the following.

Theorem 3.2. Suppose that η ∈ Ω<∞. Then, for any k ∈ N and i ∈ Z≥0, we have

Φk (η) = Ψk (η) , ∣J10

k (η, i)∣ = ζk (η, i) . (3.1)

From Theorem 3.2 and Proposition 2.3, we see that the 10-elimination can be
considered as a shift operator on Ω̄.

Proof of Theorem 3.2. First we observe that it is sufficient to show (3.1) for k = 1.
Actually, if (3.1) holds for k = 1, then from Propositions 2.2 and 2.3, we have

Φ2 (η) = Φ1 (Φ1 (η)) = Φ1 (Ψ1 (η)) = Ψ1 (Ψ1 (η)) = Ψ2 (η) ,
and

∣J10

2 (η, i)∣ = ∣J10

1 (Φ1 (η) , i)∣ = ∣J10

1 (Ψ1 (η) , i)∣ = ζ1 (Ψ1 (η) , i) = ζ2 (η, i) .
Hence, by repeating the above argument, (3.1) can be proved for any k ∈ N.
From now on we will show (3.1). Fix Ω ∈ Ω<∞. Observe that η can be decomposed

as follows:

η = 0⊗m01⊗n1 ...0⊗ml1⊗nl0⊗ml , ml =∞, (3.2)

where z⊗r , z = 0,1, r ∈ Z≥0 ∪ {∞} is the r successive z’s and n1, ..., nl ∈ N satisfy

l

∑
i=1

ni = ∑
x∈Z≥0

η(x).
Note that z⊗0 = ∅. By using the above decomposition, we can see that the 10-
elimination removes the rightmost “1” (resp. the leftmost “0”) of all consecutive 1’s
(resp. 0’s) except for the origin, and thus Φ1(η) is expressed as

Φ1(η) = 0⊗m01⊗n1−10⊗m1−1...0⊗ml−11⊗nl−10⊗∞.

On the other hand, Ψ1(η) skips the leftmost “1”(resp. “0”) of all consecutive 1’s
(resp. 0’s) except for the origin. Therefore we obtain

Ψ1(η) = 0⊗m01⊗n1−10⊗m1−1...0⊗ml−11⊗nl−10⊗∞

= Φ1(η).
Finally we will show ∣J10

1
(η, i)∣ = ζ1 (η, i). Assume that ∣J10

1
(η, i)∣ = m,m ∈ Z≥0.

Then, by considering the meanings of Φ1(η) and Ψ1(η) via the decomposition (3.2)
again, we have the following.
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● For the case η (sk (i)) = η (sk (i + 1)) = 1. Then, we obtain

η (sk (i) − 1) η (sk (i)) . . . η (sk (i + 1) − 1)η (sk (i + 1)) = 1(10)m1,
where we use the convention X(10)0Y =XY for X,Y ∈ {0,1}. Since all “0”s
in η (sk (i) + 1) . . . η (sk (i + 1)) are (1, ↓)-seats, from (2.6) we have

ζ1 (η, i) = si(i+1)
∑

y=s1(i)+1
η↓
1
(y) − η↓

2
(y) =m.

● For the case η (sk (i)) = 0, η (sk (i + 1)) = 1. Then, we obtain

η (sk (i)) . . . η (sk (i + 1) − 1)η (sk (i + 1)) = 0(10)m1.
Since all “0”s in η (sk (i) + 1) . . . η (sk (i + 1)) are (1, ↓)-seats, from (2.6) we
have

ζ1 (η, i) = si(i+1)
∑

y=s1(i)+1
η↓
1
(y) − η↓

2
(y) =m.

● For the case η (sk (i)) = 0, η (sk (i + 1)) = 0. Then, we obtain

η (sk (i)) . . . η (sk (i + 1) − 1)η (sk (i + 1)) = 0(10)m0.
Since all “1”s in η (sk (i) + 1) . . . η (sk (i + 1)) are (1, ↑)-seats, we have

ζ1 (η, i) = si(i+1)
∑

y=s1(i)+1
η↑
1
(y) − η↑

2
(y) =m.

● For the case η (sk (i)) = 1, η (sk (i + 1)) = 0. Then, we obtain

η (sk (i)) . . . η (sk (i + 1) − 1) η (sk (i + 1)) = 1(10)m+10.
Since all “0”s in η (sk (i) + 1) . . . η (sk (i + 1) − 1) are (1, ↓)-seats and sk (i + 1)
is a (2, ↓)-seat, from (2.6) we have

ζ1 (η, i) = si(i+1)
∑

y=s1(i)+1
η↓
1
(y) − η↓

2
(y) =m.

From the above, we have (3.1) for k = 1. �

Remark 3.1. We note that both the 1-skip map and the 10-elimination remove the
same 0’s, but they may remove different 1’s, see Figure 2. In other words, the 10-
elimination may remove 1 located at x such that η↑ℓ (x) = 1 for some ℓ ≥ 2. We also
note that the 1-skip map is a more natural elimination than the 10-elimination in
terms of solitons, see [MSSS, Section 2.1] for the relation between the seat number
configuration and solitons identified via the Takahashi-Satsuma algorithm.

4. BBS on the whole-line

Throughout this section, Ω is given by

Ω = {η ∈ {0,1}Z ; lim
x→−∞

1∣x∣
0

∑
y=−x

η(y) < 1
2
} .

First, we recall the definition of the BBS(ℓ) on the whole-line, and then we introduce
the seat number configuration and the k-skip map on Ω. Since in the rest of this
paper, we mainly consider the BBS(∞), and thus we write T ∶= T∞ for simplicity
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

η(x) 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 . . .

0 1 ✁❆1 ✁❆0 0 1 1 ✁❆1 ✁❆0 ✁❆1 ✁❆0 1 ✁❆1 ✁❆0 0 0 ✁❆1 ✁❆0 0 . . .

Φ1(η) 0 1(0) 0 1 1(2) 1(1) 0 0 0(1) 0 0 0 0 0 0 0 0 0 0 . . .

η(x) 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 0 . . .

0 ✁❆1 1 ✁❆0 0 ✁❆1 1 1 ✁❆0 ✁❆1 ✁❆0 ✁❆1 1 ✁❆0 0 0 ✁❆1 ✁❆0 0 . . .

Ψ1(η) 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Figure 2. Difference between the 1-skip map and the
10-elimination.

of notation. Next, we introduce the seat number configuration and the k-skip map
for the whole-line case. We note that many notions are natural extensions of those
introduced in Section 2, the same symbols will be used.
We also note that {0,1}N can be considered as a subset of Ω in the following sense.

{0,1}N ≅ {η ∈ Ω ; η(x) = 0 for any x ≤ 0} .
Thus, the half-line case is completely included in the whole-line case described below.

4.1. Seat number configuration on the whole-line. First, we introduce the
carrier with capacity ℓ to define the one-step time evolution of the BBS(ℓ) on the
whole-line. For any η ∈ Ω, we define s∞(η, x) recursively as follows :

s∞(η,0) ∶=max{x ≤ 0 ;
x

∑
y=z
(2η(x) − 1) < 0 for any z ≤ x} , (4.1)

and

s∞(η, i) ∶=min{x > s∞(η, i − 1) ; x

∑
y=z
(2η(x) − 1) < 0 for any z ≤ x} ,

s∞(η,−i) ∶=max{x < s∞(η,−i + 1) ; x

∑
y=z
(2η(x) − 1) < 0 for any z ≤ x} (4.2)

for any i ∈ N, with convention min∅ = ∞ and max∅ = −∞. Observe that if η ∈ Ω,
then s∞(η,−i) > −∞ for any i ∈ Z≥0. Then, it is not difficult to check that by changing
the starting point from 0 to s∞(η,−i), Wℓ (η(i), ⋅) can be defined on [s∞(η,−i),∞)∩Z
by using the same construction described in Introduction, where

η(i)(x) ∶= {η(x) x ≥ s∞(η,−i),
0 otherwise.

(4.3)

Then, for any i, j ∈ N, i ≤ j, we see that

s∞(η(j),−i) = s∞(η,−i). (4.4)
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As a result, for any i ∈ Z≥0, Wℓ (η(i), ⋅) and Wℓ (η(i+1), ⋅) are consistent, i.e., for any
x ≥ s∞(η,−i),

Wℓ (η(i), x) =Wℓ (η(i+1), x) . (4.5)

Hence, Wℓ (η, x) ∶= limi→∞Wℓ (η(i), x) is well-defined for any x ∈ Z. As a conse-
quence, the one-step time evolution of the BBS (ℓ) on the whole-line can also be
described by the operator Tℓ ∶ Ω → Ω defined via (1.1). Similarly, for any k ∈ N
and i ∈ Z≥0, Wk (η(i), ⋅) ∶ [s∞(η,−i),∞) ∩Z → {0,1} can be defined by changing the
starting point from 0 to s∞(η,−i), and one can check the consistency of Wk (η(i), x)
and Wk (η(i+1), x) for any x ≥ s∞(η,−i). Hence, Wk (η, x) ∶= limi→∞Wk (η(i), x) is
also well-defined for any k ∈ N and x ∈ Z. In particular, from (2.1), for any ℓ ∈ N
and x ∈ Z, we have

Wℓ (η, x) = ℓ

∑
k=1
Wℓ (η, x) .

For later use, we state the above procedure as a lemma.

Lemma 4.1. Suppose that η ∈ Ω. Then, for any k ∈ N, i ∈ Z≥0 and x ≥ s∞(η,−i),
we have

Wk (η(i), x) =Wk (η(i+1), x) .
In other words, the value of Wk (η, ⋅) on [s∞(η,−i),∞) is independent of η(x), x ≤
s∞(η,−i) − 1.
Now, we can define the seat number configuration ησk ∈ {0,1}Z, k ∈ N, σ ∈ {↑, ↓}

by the same equations (2.2) and (2.3). Also, we define r (η, ⋅) ∈ {0,1}Z as

r (η, x) ∶= 1 − ∑
k∈N
∑

σ∈{↑,↓}
ησk (x) .

Then, from (2.1), (2.4) and Lemma 4.1, we have

Wk (η, x) = x

∑
y=s∞(η,−i)+1

(η↑k (y) − η↓k (y)) , (4.6)

for any k ∈ N, i ∈ Z≥0 and x ≥ s∞ (η,−i). Also, thanks to Lemma 4.1, as in the half-
line case (Lemma 2.1), we obtain the following basic property of the seat number
configuration.

Lemma 4.2. Suppose that η ∈ Ω. Then, for any k ∈ N, i ≤ 0 and x ≥ s∞ (η, i), we
have the following.

(1) η↑k (x) = 1 implies ∑x
y=s∞(η,i)+1 (η↑ℓ (y) − η↓ℓ (y)) = 1 for any 1 ≤ ℓ ≤ k.

(2) η↓k (x) = 1 implies ∑x
y=s∞(η,i)+1 (η↑ℓ (y) − η↓ℓ (y)) = 0 for any 1 ≤ ℓ ≤ k.

(3) r (η, x) = 1 implies ∑x
y=s∞(η,i)+1 (η↑ℓ (y) − η↓ℓ (y)) = 0 for any ℓ ∈ N.

For later use, we note the relationship between the seat number configuration
and the notion of slots and corresponding slot configuration introduced by [FNRW].
Since we will not use the definition of slots in the subsequent sections, we do not
give it in this paper, see [FNRW, Section 1] for the precise definition of slots. As in
the half-line case, we can obtain the following.
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Proposition 4.1. Suppose that η ∈ Ω and ∣s∞ (η, i) ∣ < ∞ for any i ∈ Z. Then, for
any k ∈ N and x ∈ Z,

η↑k (x) + η↓k (x) = 1 if and only if x is a (k − 1)-slot but not a k-slot.

Proof of Proposition 4.1. This is a direct consequence of [MSSS, Proposition 2.3]
and Lemma 4.1. �

Then, for any k ∈ N∪{∞}, we define ξk (η, ⋅) ∶ Z→ Z and sk (η, ⋅) ∶ Z → Z∪{∞} as
ξk (η, x) − ξk (η, x − 1) ∶= r (η, x) +∑

ℓ∈N
∑

σ∈{↑,↓}
ησk+ℓ (x) ,

ξk (η, s∞ (η,0)) ∶= 0,
and

sk (η, x) ∶=min {y ∈ Z ; ξk (η, y) = x} . (4.7)

Note that s∞ defined via (4.7) coincides with s∞ defined via (4.1)-(4.2). For later
use, we note that thanks to Lemma 4.1, Lemma 2.2 also holds for the whole-line
case.

Lemma 4.3. Suppose that η ∈ Ω. Then, for any k, ℓ ∈ N, z,w ∈ Z, z ≤ w and
σ ∈ {0,1}, we have

w

∑
y=z

ησk+ℓ (sk (η, y)) = sk(η,w)
∑

y=sk(η,z)
ησk+ℓ (y) .

Finally, for any k ∈ N and i ∈ Z, we define ζk(η, ⋅) ∶ Z→ Z∪{∞} by (2.5). Thanks to
Proposition 4.1, we see that our ζ coincides with the slot decomposition introduced
by [FNRW], see also [MSSS, Proposition 2.3] for the half-line case.
The dynamics of the BBS (∞) can be linearized through ζ , but an offset is

required.

Theorem 4.1. Suppose that η ∈ Ω and sk (η, i + 1) < ∞ for some k ∈ N and i ∈ Z.
Then, we have

ζk (Tη, i + k + ok (η)) = ζk (η, i) ,
where the offset ok is given by

ok (η) ∶= s∞ (η,0) − s∞ (Tη,0) + 2 0

∑
y=s∞(η,0)+1

k

∑
ℓ=1

η↓ℓ (y)− 2 0

∑
y=s∞(Tη,0)+1

k

∑
ℓ=1

Tη↑ℓ (y) .
Remark 4.1. From Proposition 4.2 which will be described in the next subsection,
we see that the following quantity

x

∑
y=s∞(η,0)+1

k

∑
ℓ=1

η↓ℓ (y)− x

∑
y=s∞(Tη,0)+1

k

∑
ℓ=1

Tη↑ℓ (y)
does not depend on x ∈ Z. Hence, by setting x = s∞(Tη,0), s∞(η,0), we have

ok (η) = −ξk (η, s∞(Tη,0)) −Wk (η, s∞(Tη,0))
= ξk (Tη, s∞(η,0)) −Wk (Tη, s∞(η,0)) .
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Remark 4.2. Since we compute the offset with respect to the origin while [FNRW]
computes the offset with respect to the tagged k-slots, the values of the offsets are
different. The offset in [FNRW] is independent of (ζℓ)ℓ≤k, but the formula [FNRW,(3.1)] is not very easy to compute. On the other hand, our offset ok may depend on
ζℓ for some ℓ ≤ k, but a simple formula is obtained. Moreover, the proof of Theorem
4.1 is much simpler than that of [FNRW, Theorem 4.1].

The proof of Theorem 4.1 will be given in Section 4.2.

Remark 4.3. Note that ζ can be considered as a map ζ ∶ Ωr → ZN×Z
≥0 , and it is shown

in [FNRW] that ζ is a bijection between Ωr ⊂ Ω and Ω̄ ⊂ ZN×Z
≥0 , where Ωr and Ω̄ are

defined as

Ωr ∶= {η ∈ Ω ; ∣s∞ (η, i)∣ <∞ for any i, s∞ (η,0) = 0} ,
Ω̄ ∶= {ζ ∈ ZN×Z

≥0 ; ∑
k∈N

ζk (i) <∞ for any i} .
4.2. Proof of Theorem 4.1. To show Theorem 4.1, we need the following property
of the seat number configuration.

Proposition 4.2. For any η ∈ Ω, k ∈ N and x ∈ Z, we have

η↓k(x) = Tη↑k(x). (4.8)

In addition, η↑k(x) = 1 implies

r (Tη,x) +∑
ℓ≥k

Tη↓ℓ(x) = 1.
Proof of Proposition 4.2. First, we note that for the half-line case, the assertions of
this proposition have been proven in [MSSS, Proposition 3.1]. In the proof of [MSSS,

Proposition 3.1], the boundary condition of the function W̃k (η, x) ∶= 1−Wk (Tη,x) is
given by W̃k (η,0) = 1 for any k ∈ N, but one can check that the proof does not depend
on the boundary condition. Instead, the following condition ∑x

y=1 (1 − 2Tη (y)) ≤
0, x ∈ N is essential, and this condition trivially holds for the half-line case. For the
whole-line case, the following inequality

x

∑
y=s∞(η,i)+1

(1 − 2Tη (y)) ≤ 0,
holds for any i ∈ Z and x ≥ s∞ (η, i). Therefore, by following the strategy of [MSSS,
Proposition 3.1], we obtain (4.2) for η(i). Hence, from Lemma 4.1, by taking the
limit i→∞, we have (4.2) for any η ∈ Ω. �

Proof of Theorem 4.1. First we note that from Lemma 4.2, ζk (η, i) can be repre-
sented as

ζk (η, i) = ∣{x ∈ Z ; η↑k (x) = 1, ξk (η, x) = i}∣ − ∣{x ∈ Z ; η↑k+1 (x) = 1, ξk (η, x) = i + 1}∣
= ∣{x ∈ Z ; η↓k (x) = 1, ξk (η, x) = i}∣ − ∣{x ∈ Z ; η↓k+1 (x) = 1, ξk (η, x) = i + 1}∣ .

Hence, from Proposition 4.2, we have

ζk (Tη, i) = ∣{x ∈ Z ; η↓k (x) = 1, ξk (Tη,x) = i}∣
− ∣{x ∈ Z ; η↓k+1 (x) = 1, ξk (Tη,x) = i + 1}∣ .
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Now we show that for any k ∈ N, the following quantity

ξk (Tη,x) − ξk (η, x) −Wk (Tη,x) −Wk (η, x)
is independent of x ∈ Z and equal to ok (η). Actually, from (4.5), (4.6) and proposi-
tion 4.2, we have

ξk (Tη,x) − ξk (η, x) −Wk (Tη,x) −Wk (η, x) − (s∞ (η,0) − s∞ (Tη,0))

=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
k

∑
ℓ=1

⎛⎝
x

∑
y=s∞(η,0)+1

η↓ℓ (y) − x

∑
y=s∞(Tη,0)+1

Tη↑ℓ (y)⎞⎠ x ≥ s∞ (η,0) ,
2

k

∑
ℓ=1

⎛⎝
s∞(η,0)
∑

y=x+1
η↓ℓ (y) − s∞(Tη,0)

∑
y=x+1

Tη↑ℓ (y)⎞⎠ x ≤ s∞ (η,0) − 1,
= ok (η) − (s∞ (η,0) − s∞ (Tη,0)) .

In particular, from (4.5), (4.6), Lemma 4.2 and proposition 4.2, if x = sk−1 (η, i) for
some i ∈ Z and r (η, x) = 0, then we obtain

Wk (η, x) +Wk (Tη,x) = k,
and thus we get

ξk (Tη,x) − ξk (η, x) = k + ok (η) . (4.9)

From the above, we have

ζk (η, i)
= ∣{x ∈ Z ; η↓k (x) = 1, ξk (η, x) = i}∣ − ∣{x ∈ Z ; η↓k+1 (x) = 1, ξk (η, x) = i + 1}∣
= ∣{x ∈ Z ; Tη↑k (x) = 1, ξk (Tη,x) = i + k + ok (η)}∣
− ∣{x ∈ Z ; Tη↑

k
(x) = 1, ξk (Tη,x) = i + k + ok (η) + 1}∣

= ζk (Tη, i + k + ok (η)) ,
and thus Theorem 4.1 is proved. �

4.3. The k-skip map on the whole-line. In this subsection, we will show how
the propositions stated in section 2.2 can be generalized. For the whole-line case,
we define the k-skip map Ψk ∶ Ω → Ω as

Ψk (η) (x) ∶= η (sk (η, x + ξk (η,0))) .
Recall that η(i) is defined in (4.3). As we observed in Lemma 4.1, we also have the
following.

Lemma 4.4. Suppose that η ∈ Ω. Then, for any k ∈ N, i ∈ Z≥0 and
x ≥ ξk (η, s∞ (η,−i)) − ξk (η,0), we have

Ψk (η(i)) (x) = Ψk (η(i+1)) (x). (4.10)

In particular, for any x ∈ Z we have

Ψk (η) (x) = lim
i→∞

Ψk (η(i)) (x).
Proof. From (4.4), we see that ξk (η(i), x) = ξk (η(i+1), x) for any x ≥ s∞ (η,−i).
Hence, we get sk (η(i), x) = sk (η(i+1), x) for any x ≥ ξk (η, s∞ (η,−i)). Thus we
obtain (4.10). �
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Now, we generalize Propositions 2.1, 2.2 and 2.3 for the whole-line case as follows
:

Proposition 4.3. Suppose that η ∈ Ω. Then, for any k, ℓ ∈ N, σ ∈ {↑, ↓} and x ∈ Z,
we have

Ψk (η)σℓ (x) = ησk+ℓ (sk (η, x + ξk (η,0))) . (4.11)

In addition, we have

Ψk (Ψℓ (η)) (x) = Ψk+ℓ (η) (x), (4.12)

and

ζk (Ψℓ (η) , i) = ζk+ℓ (η, i) . (4.13)

Proof. First we show (4.11). Thanks to Lemma 4.4, it is sufficient to show that

Ψk (η(i))σℓ (x) = ησk+ℓ (sk (η, x + ξk (η,0))) (4.14)

for any i ∈ Z≥0, k, ℓ ∈ N, σ ∈ {↑, ↓} and x ∈ Z. We fix i ∈ Z≥0 and define η̃(i) ∈ Ω as

η̃(i) (x) ∶= η(i) (x + s∞ (η,−i)) .
Since r (η̃(i), x) = 1 for any x ≤ 0 and η̃(i) can be regarded as an element of {0,1}N,
from Proposition 2.1, we get

Ψk (η̃(i))σℓ (x) = (η̃(i))σk+ℓ (sk (η̃(i), x)) ,
for any k, ℓ ∈ N, σ ∈ {↑, ↓} and x ∈ Z. On the other hand, by direct computation, for
any x ∈ Z we obtain

ξk (η̃(i), x) = ξk (η(i), x + s∞ (η,−i)) − ξk (η(i), s∞ (η,−i)) ,
and thus we have

sk (η̃(i), x) = sk (η(i), x + ξk (η(i), s∞ (η,−i))) − s∞ (η,−i) .
From the above, we obtain

Ψk (η̃(i)) (x) = η̃(i) (sk (η̃(i), x))
= η(i) (sk (η̃(i), x) + s∞ (η,−i))
= η(i) (sk (η(i), x + ξk (η(i), s∞ (η,−i))))
= Ψk (η(i)) (x + ξk (η(i), s∞ (η,−i)) − ξk (η(i),0)) ,

for any k, ℓ ∈ N and x ∈ Z. In particular, we have

(η(i))σ
k+ℓ (sk (η(i), x + ξk (η(i), s∞ (η,−i))))

= (η̃(i))σ
k+ℓ (sk (η̃(i), x)) = Ψk (η̃(i))σℓ (x)

= Ψk (η(i))σℓ (x + ξk (η(i), s∞ (η,−i)) − ξk (η(i),0)) ,
for any k, ℓ ∈ N, σ ∈ {↑, ↓} and x ∈ Z. Therefore we have (4.14). For later use, we note
some equations derived from (4.11). We observe that from (4.11), if y = sk (Ψℓ (η) , x)
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for some k ∈ N∪{∞}, ℓ ∈ N and x ∈ Z, then sℓ(η, y + ξℓ(η,0)) = sk+ℓ(η, x). Hence, for
any k ∈ N ∪ {∞}, ℓ ∈ N and x ∈ Z, we have

sk (Ψℓ (η) , x) − sk (Ψℓ (η) , x − 1)
= sk(Ψℓ(η),x)

∑
y=sk(Ψℓ(η),x−1)+1

r (Ψℓ (η) , y) + ⎛⎝∑h∈N ∑σ∈{↑,↓}Ψℓ (η)σh (y)⎞⎠
= sk(Ψℓ(η),x)

∑
y=sk(Ψℓ(η),x−1)+1

r (η, sℓ (η, y + ξℓ (η,0))) + ⎛⎝∑h∈N ∑σ∈{↑,↓} ησℓ+h (sℓ (η, y + ξℓ (η,0)))
⎞⎠

= sk+ℓ(η,x)
∑

y=sk+ℓ(η,x−1)+1
r (η, y) + ⎛⎝∑h∈N ∑σ∈{↑,↓}ησℓ+h (y)

⎞⎠
= ξℓ (η, sk+ℓ (η, x)) − ξℓ (η, sk+ℓ (η, x − 1)) ,

where at the third equality we use the fact that (sk+h(η, x))x∈Z ⊂ (sk(η, x))x∈Z for
any k ∈ N and h ∈ N ∪ {∞}. By using the same computation, for any k ∈ N ∪ {∞}
and ℓ ∈ N, we obtain

sk (Ψℓ (η) ,0) = s∞ (Ψℓ (η) ,0)
= − 0

∑
y=s∞(Ψℓ(η),0)+1

∑
h∈N
∑

σ∈{↑,↓}
Ψℓ (η)σh (y)

= − 0

∑
y=s∞(η,0)+1

∑
h∈N
∑

σ∈{↑,↓}
ησℓ+h (y)

= −ξℓ (η,0) ,
and for any k, ℓ ∈ N, we also get

ξk (Ψℓ (η) ,0) = 0

∑
y=s∞(Ψℓ(η),0)+1

∑
h∈N
∑

σ∈{↑,↓}
Ψℓ (η)σk+h (y)

= 0

∑
y=s∞(η,0)+1

∑
h∈N
∑

σ∈{↑,↓}
ησk+ℓ+h (y)

= ξk+ℓ (η,0) . (4.15)

In particular, for any k ∈ N ∪ {∞}, ℓ ∈ N and x ∈ Z, we have

sk (Ψℓ (η) , x) = ξℓ (η, sk+ℓ (η, x)) − ξℓ (η,0) . (4.16)

Next we show (4.12). From (4.15) and (4.16), for any k, ℓ ∈ N and x ∈ Z we have

Ψk (Ψℓ (η)) (x) = Ψℓ (η) (sk (Ψℓ (η) , x + ξk (Ψℓ (η) ,0)))
= Ψℓ (η) (ξℓ (η, sk+ℓ (η, x + ξk+ℓ (η,0))) − ξℓ (η,0))
= η (sℓ (η, ξℓ (η, sk+ℓ (η, x + ξk+ℓ (η,0)))))
= η (sk+ℓ (η, x + ξk+ℓ (η,0)))
= Ψk+ℓ (η) (x),

and thus we obtain (4.12).

19



Finally we show (4.13). From (4.11) and (4.16), for any k, ℓ ∈ N and i ∈ Z, we
have

ζk (Ψℓ (η) , i)
= sk(Ψℓ(η),i+1)

∑
y=sk(Ψℓ(η),i)+1

(Ψℓ (η)↑k (y) −Ψℓ (η)↑k+1 (y))
= ⎛⎝

sk(Ψℓ(η),i+1)
∑

y=sk(Ψℓ(η),i)
Ψℓ (η)↑k (y)⎞⎠ −Ψℓ (η)↑k+1 (sk (Ψℓ (η) , i + 1))

= ⎛⎝
ξℓ(η,sk+ℓ(η,i+1))−ξℓ(η,0)

∑
y=ξℓ(η,sk+ℓ(η,i))−ξℓ(η,0)

η↑k+ℓ (sℓ (η, y + ξℓ (η,0)))⎞⎠ − η↑k+ℓ (sℓ (η, ξℓ (η, sk+ℓ (η, i + 1))))

= ⎛⎝
sk+ℓ(η,i+1)
∑

y=sk+ℓ(η,i)
η↑k+ℓ (y)⎞⎠ − η↑k+ℓ (sk+ℓ (η, i + 1))

= ζk+ℓ (η, i) ,
and thus we obtain (4.13).

�

We conclude this section by describing the relation between T and Ψk.

Proposition 4.4. Suppose that η ∈ Ω. Then, for any k ∈ N and x ∈ Z, we have

TΨk (η)(x + k

∑
ℓ=1

r (Ψℓ−1 (η) ,0)) = Ψk (Tη) (x)
Proof. Thanks to (4.12), it is sufficient to consider the case k = 1. Suppose that
TΨ1 (η) (x + r (η,0)) = 1. Then, there exists ℓ ∈ N such that

TΨ1 (η)↑ℓ (x + r (η,0)) = 1.
From (4.8) and (4.11), we have

η↓ℓ+1 (s1 (η, x + r (η,0) + ξ1 (η,0))) = Ψ1 (η)↓ℓ (x + r (η,0)) = 1.
Again by using (4.8), we obtain

Tη↑
ℓ+1 (s1 (η, x + r (η,0) + ξ1 (η,0))) = 1.

On the other hand, from (4.9) we get

ξ1 (Tη, s1 (η, x + r (η,0) + ξ1 (η,0)))
= x + r (η,0) + ξ1 (η,0) + 1 + o1 (η)
= x + r (η,0) + ξ1 (Tη,0) +W1 (η,0) +W1 (Tη,0)
= x + ξ1 (Tη,0) .

Since the site s1 (η, x + r (η,0) + ξ1 (η,0)) is a (ℓ + 1, ↑)-seat in Tη, we have

s1 (Tη,x + ξ1 (Tη,0)) = s1 (η, x + r (η,0) + ξ1 (η,0)) .
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Hence we have

Ψ1 (Tη)↑ℓ (x) = Tη↑ℓ+1 (s1 (Tη,x + ξ1 (Tη,0)))
= Tη↑ℓ+1 (s1 (η, x + r (η,0) + ξ1 (η,0)))= 1,

and thus we see that TΨ1 (η) (x + r (η,0)) = 1 implies Ψ1 (Tη) (x) = 1. By the same
computation, we can also show that Ψ1 (Tη) (x) = 1 implies TΨ1 (η) (x + r (η,0)) =
1.

�

5. Distribution of k-skipped configuration and long-time behavior

of integrated ball current

In this section we investigate the distribution of Ψk (η) when the distribution
of η belongs to a class of invariant measures introduced by [FG]. In addition, we
derive the long-time behavior of the integrated current of Ψk (η). Throughout this
subsection, we restrict the state space Ω∗ ⊂ Ω, defined as

Ω∗ ∶= {η ∈ Ω ; ∣s∞ (⋅, i) ∣ <∞ for any i ∈ Z} .
Also, we define Ω̂∗ ⊂ Ω∗ as

Ω̂∗ ∶= {η ∈ Ω∗ ; s∞ (η,0) = 0} .
In Section 5.1 we prepare some notions and then we describe our results in Section
5.2.

5.1. Excursion. First, we introduce the notion of excursion, which will be used
to define a class of invariant measures of the BBS. For any n ∈ Z≥0, we say that a
sequence (ej)2nj=0 , ej ∈ {0,1} is a excursion with length 2n + 1 if

e0 = 0, m

∑
j=1
(2ej − 1) > 0 for any 1 ≤m < 2n, 2n

∑
j=1
(2ej − 1) = 0.

We denote by En the set of all excursions with length 2n + 1, and denote by E ∶=
⋃n∈Z≥0 En the set of all excursions. There is a natural injection ι ∶ E → {0,1}Z given
by

ι (ε) (x) ∶= {εx 1 ≤ x ≤ ∣ε∣,
0 otherwise,

and Ω1 ∶= ι (E) is written as

Ω1 = {η ∈ {0,1}Z ; η (x) = 0 for any x < 0 or x ≥ s∞ (η,1)} .
Observe that for any ε ∈ E and k ∈ N, we have Ψk (ι (ε)) ∈ Ω1. Hence, the following
map

Ψ̃k (ε) ∶= ι−1 (Ψk (ι (ε))) , (5.1)

is well-defined for any E , and we call Ψ̃k ∶ E → E the k-skip map for excursions. Also,
we extend the notion of ζ for excursions. For any ε ∈ E and k ∈ N we define

ζk (ε) ∶=∑
i∈Z

ζk (ι (ε) , i) .
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Note that we can obtain the following formula of ∣ε∣.
∣ε∣ = s∞ (ι (ε) ,1) = 1 + 2∑

k∈N
kζk (ε) . (5.2)

In addition, from Proposition 2.3, we see that Ψ̃k is a shift operator of ζ :

Proposition 5.1. For any ε ∈ E and k, ℓ ∈ N, we have

ζk (Ψ̃ℓ (ε)) = ζk+ℓ (ε) .
Now we introduce a family of probability measures on E via ζk ∶ E → Z≥0. For any

α = (αk)k∈N, we define

A ∶= {α = (αk)k∈N ⊂ [0,1)N ; Zα ∶=∑
ε∈E
∏
k∈N

α
ζk(ε)
k <∞} .

Then, for any α ∈ A, we define a canonical probability measure να on E as

να (ε) ∶= 1

Zα
∏
k∈N

α
ζk(ε)
k

.

Observe that from (5.2), for any ε ∈ E , we get

ρ (α) ∶= Eνα [∣ε∣] = 1 + 2∑
ε∈E
∑
k∈N

kζk (ε) να (ε) .
We denote by A+ ⊂ A the set of all α ∈ A such that ρ(α) <∞, i.e.,

A+ ∶= {α = (αk)k∈N ∈ A ; ∑
ε∈E
∑
k∈N

kζk (ε)να (ε) <∞} .
We introduce a shift operator θ ∶ A→ A defined as

(θα)k ∶= αk+1(1 −α1)2k . (5.3)

It is known that if α ∈ A+, then θα ∈ A+, see [FG, (3.1), Theorem 3.1] for details.
Now we compute the distribution of Ψk (ε) when the distribution of ε is given by
να.

Lemma 5.1. Suppose that α ∈ A. Then, for any k ∈ N and ε′ ∈ E we have

να ({ε ∈ E ; Ψk (ε) = ε′}) = νθkα (ε′) . (5.4)

Proof of Lemma 5.1. From Proposition 5.1 and the uniformity of να, it is sufficient
to show that

να (ζk (Ψ1 (ε)) = nk for any k ∈ N) = νθα (ζk (ε) = nk for any k ∈ N)
for n = (nk)k∈Z≥0 ⊂ (Z≥0)N such that nk = 0 for sufficiently large k. For such n, we
define

E (n) ∶= {ε ∈ E ; ζk (ε) = nk for any k ∈ N} .
It is known that ∣E (n)∣ is given via the so-called Fermionic formula,

∣E (n)∣ = ∞∏
k=1
(2∑ℓ≥k+1(ℓ − k)nℓ + nk

nk
) ,
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see [KTT] for details. Then, from Proposition 5.1 we have

να (ζk (Ψ1 (ε)) = nk for any k ∈ N)
= ∞∑

n=0
να (ζk+1 (ε) = nk for any k ∈ N, ζ1 (ε) = n)

= 1

Zα
∏
k∈N

α
nk

k+1
∞
∏
m=2
(2∑ℓ≥m+1(ℓ −m)nℓ−1 + nm−1

nm−1
) ∞∑

n=0
(2∑ℓ≥2(ℓ − 1)nℓ−1 + n

n
)αn

1

= 1

Zα
∏
k∈N

α
nk

k+1
∞
∏
m=1
(2∑ℓ≥m+1(ℓ −m)nℓ + nm

nm
)( 1

1 − α1

)2∑ℓ≥2(ℓ−1)nℓ−1+1

= 1

Zα(1 − α)∏k∈N(θa)nk

k

∞
∏
m=1
(2∑ℓ≥m+1(ℓ −m)nℓ + nm

nm
)

= νθα (ζk (ε) = nk for any k ∈ N) ,
where we use the equation Zθα = Zα(1 − α1) [FG, (3.22), (3.29)], and

∞
∑
n=0
(x + n

n
)yn = ( 1

1 − y)
x+1

,

for any x ∈ Z≥0 and y ∈ (0,1). �

Next we observe that η ∈ Ω̂∗ can be constructed from excursions as follows. For
any (εi)i∈Z ∈ EZ, we define I ((εi)i∈Z) as

I ((εi)i∈Z) (x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ι (ε0) (x) if 0 ≤ x ≤ ∣ε0∣ − 1,
ι (ε−1) (x) if ∣ε−1∣ ≤ x ≤ −1,
ι (εi) (x) if i ≥ 1 and

i−1
∑
m=0
∣εm∣ ≤ x ≤ i

∑
m=0
∣εm∣ − 1,

ι (εi) (x) if i ≤ −2 and −
−1
∑
m=i
∣εm∣ ≤ x ≤ − −1

∑
m=i+1

∣εm∣ − 1,
then we can check that I is injective and I (EZ) = Ω̂∗. For later use, we prepare the
following formula.

Lemma 5.2. Suppose that (εi)i∈Z ∈ EZ. Then for any k ∈ N, we have

Ψk (I ((εi)i∈Z)) = I ((Ψ̃k (εi))i∈Z) . (5.5)

Proof of Lemma 5.2. This is a direct consequence of Lemma 4.1, (4.11), (5.1) and

s∞ (I ((εi)i∈Z) , i) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0,
i−1
∑
m=0
∣εm∣ if i ≥ 1,

−
−1
∑
m=i
∣εm∣ if i ≤ −1.

�

We then denote by µ̂α, α ∈ A+, the probability measure on Ω̂∗ induced by the
product probability measure ∏εi∈Z να (εi) , ei ∈ E on EZ via the map I. In addition,
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for any α ∈ A+, we define a probability measure µα on Ω∗ as

∫
Ω

dµα (η) f(η) ∶= 1

ρ (α) ∫Ω̂∗ dµ̂α (η) s∞(η,1)−1∑
y=0

τyf (η) ,
for any local function f ∶ {0,1}Z → R, where τy, y ∈ Z is a spatial shift operator
defined as τyf (η) ∶= f (η (⋅ + y)). Then, the following result is shown by [FG].

Theorem 5.1 (Theorem 4.5 in [FG]). Suppose that α ∈ A+. Then, µα is a shift-
stationary invariant measure of the BBS(∞), i.e., for any x ∈ Z and local function
f ∶ {0,1}Z → R,

∫
Ω

dµα (η) f (η (⋅ + x)) = ∫
Ω

dµα (η)f (η) , ∫
Ω

dµα (η) f (Tη) = ∫
Ω

dµα (η) f (η) .
In the rest of this subsection, we consider another family of invariant measures

introduced in [FG]. We define parameter sets Q,Q+ as

Q ∶= {q = (qk)k∈N ⊂ [0,1)N ; ∑
k∈N

kqk <∞} ,
Q+ ∶= {q = (qk)k∈N ∈ Q ; ∑

k∈N
kqk <∞} .

For any q ∈ Q, we define a probability measure ϕq on E as

ϕq (ε) ∶=∏
k∈N

q
ζk(ε)
k (1 − qk)2∑ℓ∈N ℓζk+ℓ(ε) .

Then, the one-to-one correspondence between να and ϕq has been shown by [FG].
To state their result, for any α ∈ A and q ∈ Q, we define q(α) and α(q) as

q (α)k ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1 k = 1,

αk

∏k−1
ℓ=1 (1 − qℓ(α))2(k−ℓ) k ≥ 2, (5.6)

α (q)k ∶= qk k−1
∏
ℓ=1
(1 − qℓ)2(k−ℓ) . (5.7)

Theorem (Theorem 3.1 in [FG]). The maps (5.6) and (5.7) are the inverse of each
other. Moreover, we have

q (A) = Q, α (Q) = A,
and

q (A+) = Q+, α (Q+) = A+.
In particular, for any q ∈ Q, we have

ϕq = να(q). (5.8)

Thanks to (5.4) and (5.8), we have the distribution of Ψk (ε) under ϕq. We define

a shift operator θ̃ ∶ Q → Q as q̃k ∶= qk+1.
Lemma 5.3. Suppose that q ∈ Q. Then, for any k ∈ N and ε′ ∈ E, we have

ϕq ({ε ∈ E ; Ψk (ε) = ε′}) = ϕθ̃kq (ε′) .
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Proof of Lemma 5.3. We observe that for any k ∈ N,
α (θ̃q)

k
= qk+1 k−1

∏
ℓ=1
(1 − qℓ+1)2(k−ℓ)

= α (q)k+1(1 − α (q)
1
)2k

= (θα (q))k .
Hence we have α (θ̃q) = θα (q). By using this relation k times, we have α (θ̃kq) =
θkα (q) for any k ∈ N. Thus from (5.4) and (5.8), we have

ϕq ({ε ∈ E ; Ψk (ε) = ε′}) = να(q) ({ε ∈ E ; Ψk (ε) = ε′})
= νθkα(q) (ε′)
= να(θ̃kq) (ε′)
= ϕθ̃kq (ε′) .

�

We note that ϕq can be extended over EZ and Ω∗ in the same way as we did for

να. We denote by φ̂q, q ∈ Q+, the probability measure on Ω̂∗ induced by the product
probability measure ∏εi∈Zϕq (εi) , ei ∈ E on EZ via the map I. In addition, for any
q ∈ Q+, we define a probability measure φq on Ω∗ as

∫
Ω

dφq (η) f(η) ∶= 1

ρ (α (q)) ∫Ω̂∗ dφ̂q (η) s∞(η,1)−1∑
y=0

τyf (η) ,
for any local function f ∶ {0,1}Z → R. We note that from (5.8), we have

φq = µα(q), (5.9)

for any q ∈ Q+.
5.2. Distribution of k-skipped configuration. If the distribution of η is µα,
then we can compute the distribution of Ψk (η). Recall that θ ∶ A→ A is defined by
(5.3).

Theorem 5.2. Suppose that α = (αℓ)ℓ∈N ∈ A+. Then, for any k ∈ N and local
function f ∶ {0,1}Z → R, we have

∫
Ω

dµα (η) f (Ψk (η)) = ∫
Ω

dµθkα (η) f (η) , (5.10)

and

∫
Ω

dµα (η∣s∞ (η,0) = 0) f (Ψk (η)) = ∫
Ω

dµθkα (η∣s∞ (η,0) = 0) f (η) . (5.11)

Proof of Theorem 5.2. First we show (5.10). From Proposition (4.12), it is sufficient

to consider the case k = 1. First we observe that for any η ∈ Ω̂∗ and 0 ≤ y ≤
s∞ (η,1) − 1, we have

Ψ1 (η (x + y)) = η (s1 (η (⋅ + y) , x + ξ1 (η (⋅ + y) ,0)) + y)
= η (s1 (η, x + ξ1 (η, y))) .
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In addition, for any i ∈ Z and local function g ∶ {0,1}Z → R, we have

∫
Ω̂

dµ̂α (η) τs∞(η,i)g (η) = ∫
Ω̂

dµ̂α (η) g (η) .
Since Ψ̃1 (η) does not depend on ζ1 (ι (ε) , ⋅), from the above observations and (5.5),
we obtain

∫
Ω

dµα (η) f (Ψ1 (η))
= 1

ρ (α) ∫Ω̂∗ dµ̂α (η) s∞(η,1)−1∑
y=0

f (η (s1 (η, ⋅ + ξ1 (η, y))))
= 1

ρ (α) ∫Ω̂∗ dµ̂α (η) ξ1(η,s∞(η,1))−1∑
j=0

s1(η,j+1)−1
∑

y=s1(η,j)
f (η (s1 (η, ⋅ + j)))

= 1

ρ (α) ∫Ω̂∗ dµ̂α (η) s∞(Ψ1(η),1)−1
∑
j=0

(s1 (η, j + 1) − s1 (η, j)) τjf (Ψ1 (η))
= 1

ρ (α) ∫EZ∏i∈Z dνα (εi)
∣Ψ̃1(ε0)∣−1
∑
j=0

(2ζ1 (ι (ε0) , j) + 1) τjf (I ((Ψ̃1 (εi))i∈Z))
= 1

ρ (α) ∫EZ∖{0} ∏i∈Z∖{0}
dνθα (εi)

×∫E dνα (ε0)
∣Ψ̃1(ε0)∣−1
∑
j=0

(2ζ1 (ι (ε0) , j) + 1) τjf (I ((εi)i∈Z∖{0} ∪ Ψ̃1 (ε0)))
= 1

ρ (α) ( 2α1

1 − α1

+ 1)∫EZ∏i∈Z dνθα (εi)
∣ε0∣−1
∑
j=0

τjf (I ((εi)i∈Z))
= ρ (θα)

ρ (α) ( 2α1

1 − α1

+ 1)∫
Ω

dµθα (η)f (η) ,
where at the fourth equality we use the relation

s1 (η, i + 1) − s1 (η, i) = 2ζ1 (η, i) + 1.
On the other hand, since

∣Ψ̃1(ε0)∣−1
∑
j=0

(s1 (ι (ε0) , j + 1) − s1 (ι (ε0) , j)) = ∣ε∣,
by integrating both sides with respect to να, we obtain

ρ (θα)( 2α1

1 −α1

+ 1) = ρ (α) .
Therefore (5.10) is proven.
Finally we show (5.11). Since

∫
Ω

dµα (η∣s∞ (η,0) = 0)f(η) = ∫
Ω̂∗

dµ̂α (η)f (η) ,
by using (5.4) and (5.5), we have (5.11). �

By combining (5.9) and Theorem 5.2, we have the distribution of Ψk (η) under
φq.
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Corollary 5.1. Suppose that q ∈ Q+. Then, for any k ∈ N and local function
f ∶ {0,1}Z → R, we have

∫
Ω

dφq (η) f (Ψk (η)) = ∫
Ω

dφθ̃kq (η) f (η) ,
and

∫
Ω

dφq (η∣s∞ (η,0) = 0) f (Ψk (η)) = ∫
Ω

dφθ̃kq (η∣s∞ (η,0) = 0)f (η) .
5.3. Two-sided Markov distribution case. If (η (x))x∈Z is a two-sided stationary
Markov chain, then we can show that (Ψk (η) (x))x∈Z is also a two-sided stationary
Markov chain. Before describing the precise statement, we prepare some notations
and recall some facts on Markov chains on {0,1}. In the following discussion, we
denote the transition matrix of a given two-sided stationary Markov chain (η(x))x∈Z
by P (η) = (p(η)(r, s))r,s=0,1, where

p(η)(r, s) ∶= P (η(1) = s∣η(0) = r) ,
and assume that p(η)(0,1) + p(η)(1,1) < 1. If we define a(η), b(η) as

a(η) ∶= p(η)(0,1)p(η)(1,0),
b(η) ∶= p(η)(0,0)p(η)(1,1),

then a(η), b(η) satisfies 0 < a(η) < 1, 0 ≤ b(η) < 1 and
√
a(η) +√b(η) < 1. In addition,

p(η) (0,0) and p(η) (1,0) are expressed in terms of a(η), b(η) as

p(η) (0,0) = 1 − a + b +
√(1 − (a + b))2 − 4ab

2
,

p(η) (1,0) = 1 + a − b +
√(1 − (a + b))2 − 4ab

2
.

Conversely, for a given a, b such that 0 < a < 1, 0 ≤ b < 1 and
√
a +√b < 1, one can

construct a transition matrix with condition p(0,1) + p(1,1) < 1. Actually, we can
show the following.

Lemma 5.4. We define

P ∶= {(p (i, j))i,j=0,1 ⊂ [0,1]4 ; ∑
j=0,1

p (i, j) = 1, i = 0,1, p (0,1) + p (1,1) < 1} ,
and

Q ∶= {(a, b) ⊂ [0,1]2 ; a > 0, √a +√b < 1} .
In addition, we define a map Q ∶ P → Q as

Q ((p (i, j))i,j=0,1) ∶= (p (0,1)p (1,0) , p (0,0)p (1,1)) .
Then, Q is a bijection between P and Q.
Proof of Lemma 5.4. From the definition, it is clear that Q is injective. To show
that Q is surjective, we define a map P ∶ Q → R4 as

P (a, b) = (p (a, b; i, j))i,j=0,1 ∶= ⎛⎜⎝
1−a+b+

√
(1−(a+b))2−4ab

2

1+a−b−
√
(1−(a+b))2−4ab

2

1+a−b+
√
(1−(a+b))2−4ab

2

1−a+b−
√
(1−(a+b))2−4ab

2

⎞⎟⎠ .
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By a direct computation, one can show that P (Q) ⊂ P, and Q ○ P (a, b) = (a, b) for
any (a, b) ∈ Q. Hence Q gives a bijection between P and Q. �

Remark 5.1. We note that P = Q−1. In addition, if we define F (a, b) as
F (a, b) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − (a + b) −√(1 − (a + b))2 − 4ab

2b
b > 0,

a b = 0,
then P (a, b) can be represented as

P (a, b) = ⎛⎝
1

1+F (a,b)
F (a,b)

1+F (a,b)
a(1+F (a,b))

F (a,b) b (1 +F (a, b))⎞⎠ .
We note that F (ab, b) coincides with the generating function of the Narayana num-
bers.

Now we describe the statement on the distribution of (Ψk (η) (x))x∈Z when (η (x))x∈Z
is a two-sided stationary Markov chain.

Theorem 5.3. Suppose that (η (x))x∈Z is a two-sided stationary Markov chain on{0,1}, and Q(η)(0,1) + Q(η)(1,1) < 1. Then, (Ψ1 (η) (x))x∈Z is also a two-sided
stationary Markov chain such that

a(Ψ1(η)) = a(η)b(η)

(1 − a(η))2 , b(Ψ1(η)) = b(η)

(1 − a(η))2 . (5.12)

Proof of Theorem 5.3. From [FG, Lemma 3.7, Corollary 4.8], it is known that the

distribution of (η (x))x∈Z can be expressed as µα, where α is given by αk ∶= a(η) (b(η))k−1
for any k ∈ N. On the other hand, from Theorem 5.2, we see that the distribution
of (Ψk (η) (x))x∈Z is µθα, and

(θα)k = a(η) (b(η))k
(1 − a(η))2k =

a(η)b(η)

(1 − a(η))2 (
b(η)

(1 − a(η))2)
k−1

,

for any k ∈ N. Hence, (Ψk (η) (x))x∈Z is a two-sided stationary Markov chain on{0,1}, and a(Ψ1(η)), b(Ψ1(η)) is given by (5.12). �

5.4. Integrated current of k-skipped configuration. First we recall the notion
of energy of the BBS configuration. For any η ∈ Ω with the condition ∑x∈Z η(x) <∞
and k ∈ N ∪ {∞}, we define Ek (η) as

Ek (η) ∶= k

∑
ℓ=1
∑
x∈Z

η↑ℓ (x) .
We note that E∞(η) is equal to the total number of 1s in η, and Ek(η) can be
represented as

Ek (η) = E∞ (η) −E∞ (Ψk (η)) .
In [MSSS], it is shown that Ek(η) coincides with the notion of the k-energy defined
via the crystal theory formulation [FOY]. When we consider the infinite ball con-
figuration, then Ek(η) may become infinite, but still we can consider the current of
the energy.
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In this subsection, we consider the long-time behavior of the integrated current
Cn (Ψk (η)), where Cn (η) is defined as

Cn (η) ∶= n−1
∑
m=0

W∞ (Tmη,0)
∶= n−1
∑
m=0

∞
∑
ℓ=1
Wℓ (Tmη,0) ,

for any η ∈ Ω. We note that the quantity Cn(η) can be considered as the integrated
current of E∞(η) at the origin. Hence, the asymptotic behavior of Cn (Ψk (η)) is
closely related to that of the integrated current of the k-energy Ek(η).
In [CKST], the law of large numbers (LLN), central limit theorem (CLT) and

large deviations principle(LDP) of Cn have been proved when (η (x))x∈Z is a two-
sided stationary Markov chain on {0,1}, and Q(η)(0,1) +Q(η)(1,1) < 1. Moreover,
under the same assumption on (η (x))x∈Z, they show that η ↦ Tη is ergodic. Before
presenting their results, we prepare some notations. For any p, q ∈ [0,1) such that
p + q < 1, we define mp,q and vp,q as

mp,q ∶= p (1 − p + q)(1 + p − q) (1 − p − q) , vp,q ∶= p ((1 − p) (1 + q)2 + 2q (1 + p)2)(1 + p)3 (1 − q)2 .

Theorem 5.4 (Theorem 3.34 in [CKST]). Suppose that (η (x))x∈Z is a two-sided
stationary Markov chain on {0,1}, and Q(η)(0,1) +Q(η)(1,1) < 1. Then, we have

lim
n→∞

Cn (η)
n

=mQ(η)(0,1),Q(η)(1,1) a.s.,

and

lim
n→∞

Cn (η) − nmQ(η)(0,1),Q(η)(1,1)
n

1

2 vQ(η)(0,1),Q(η)(1,1)
= N (0,1) in distribution,

where N (0, v) is the standard normal distribution. In addition, n−1Cn (η) satisfies
a large deviation principle with rate function given by [CKST, (3.39)].

By combining Theorem 5.3 and Theorem 5.4, we obtain the LLN, CLT and LDP
of Cn (Ψk (η)) as follows :
Corollary 5.2. Suppose that (η (x))x∈Z is a two-sided stationary Markov chain on{0,1}, and Q(η)(0,1) +Q(η)(1,1) < 1. Then, for any k ∈ N, we have

lim
n→∞

Cn (Ψk (η))
n

=mQ(Ψk(η))(0,1),Q(Ψk(η))(1,1) a.s.,

and

lim
n→∞

Cn (Ψk (η)) − nmQ(Ψk(η))(0,1),Q(Ψk(η))(1,1)
n

1

2vQ(Ψk(η))(0,1),Q(Ψk(η))(1,1)
= N (0,1) in distribution.

In addition, n−1Cn (Ψk (η)) satisfies a large deviations principle with certain rate
function.
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