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Abstract. Motivated by the question of how biological systems maintain homeostasis in
changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute con-
centration robustness (ACR). A biochemical system exhibits ACR in some species if the
steady-state value of that species does not depend on initial conditions. Thus, a system with
ACR can maintain a constant level of one species even as the initial condition changes. De-
spite a great deal of interest in ACR in recent years, the following basic question remains
open: How can we determine quickly whether a given biochemical system has ACR? Although
various approaches to this problem have been proposed, we show that they are incomplete.
Accordingly, we present new methods for deciding ACR, which harness computational alge-
bra. We illustrate our results on several biochemical signaling networks.
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1. Introduction

How do cells maintain function in fluctuating environments? In signaling transduction
pathways, such fluctuations might be in the abundances of signaling proteins or may arise
from crosstalk between proteins. Nevertheless, robustness of an output signal has been ob-
served experimentally. In E. coli, for instance, such robustness is found in the EnvZ-OmpR
osmoregularity signaling pathway [5, 67] and the glyoxylate bypass mechanism [46, 68], often
over several orders of magnitude in the abundances of individual signaling proteins.

Mathematically, this phenomenon was first rigorously studied by Shinar and Feinberg
who introduced the concept of absolute concentration robustness (ACR) [66]. A biochemical
system exhibits ACR in some species Xi if at every positive steady state, regardless of initial
conditions, the concentration of Xi is the same. Thus, a system with ACR maintains species
Xi at a constant level, even under changes to the initial condition.

Most prior results regarding ACR are sufficient conditions for ACR. The first such crite-
rion, due to Shinar and Feinberg, can be verified easily (as implemented in [45]) from the
structure of the network of biochemical interactions [66]. Notably, this sufficient condition
for ACR is also necessary for some classes of networks [51]. Other sufficient criteria for ACR
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have harnessed methods based on elementary modes [56, 57] and the theory of network trans-
lation [34, 73]. More recently, the concept of “local ACR” has been defined and analysed as
a necessary condition for ACR [61].

Other studies have focused on developing and applying results on ACR to understand
the biochemical mechanisms underlying robustness, for example, in mechanisms with dimer-
ization and bifunctional proteins [19, 20]. This topic of biological robustness has generated
interest in ACR from control theory [11, 42] and has also inspired a refined definition of ACR
which better captures the types of robustness relevant to applications [36, 37]. Additionally,
the property of ACR has been studied in randomly generated networks [38] and in models
that are stochastic, rather than deterministic [1, 2, 25].

ACR has also been analyzed using methods from computational algebra [40, 41, 61]. Our
work builds on those works to relate ACR to various algebraic objects (ideals and varieties)
associated to a (biochemical or mass-action) system. We also distinguish between ACR of a
given system and ACR for a family of systems arising from a given reaction network. More
generally, we explore the underlying algebraic and geometric structure of ACR.

We also consider the problem of deciding whether a network or system has ACR. We first
show by counterexample that various approaches (some in the literature) to this decision
problem are incomplete (§ 3.2) Accordingly, we develop new procedures, using computer
algebra, to tackle this problem for mass-action systems (nevertheless, many of our examples
illustrate these procedures without any dependence on the rate constants and so allow us to
draw conclusions about ACR at the network level). Specifically, we use a new ideal, which
we call the positive-restriction ideal (Section 3), specializations of Gröbner bases (Section 4)
and numerical algebraic geometry (Section 5).

We are not the first to harness numerical algebraic geometry [30, 55] and specializations
of Gröbner bases [22] to prove results about biochemical systems. Indeed, a great deal of
research has been conducted recently using algebraic techniques to analyze steady states
of mass-action systems. Many such investigations concern when steady states are defined
by binomial equations [17, 34, 52]. Other studies have focused on computing steady-state
invariants [41], constructing and harnessing steady-state parameterizations [12, 22, 28, 35, 60,
62], computing the maximum number of steady states [30, 59], and characterizing bistability
and oscillations [13, 14, 74].

The outline of our work is as follows. We introduce mass-action systems, and then examine
the relationship between ACR and multistationarity, steady-state parameterizations, and 1-
species networks in Section 2. In Section 3, we consider computational aspects of assessing
ACR, we present several examples which illustrate the limitations to sufficiency and necessity
of the presented conditions with respect to establishing ACR, and we introduce an ideal-
decomposition algorithm for establishing ACR. Section 4 investigates methods for detecting
“zero-divisor ACR.” In Section 5, we present numerical methods to detect or to preclude
ACR, and we end with a discussion in Section 6.

2. Mass-action systems and ACR

This section introduces chemical reaction networks (Section 2.1), mass-action systems (Sec-
tion 2.2), their steady states (Section 2.3), and ACR (Section 2.4). We also assess the problem
of deciding ACR for several classes of networks (Sections 2.4.3–2.4.5).
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2.1. Chemical reaction networks.

Definition 2.1. A chemical reaction network G = (S, C,R) consists of three finite sets:

(1) a set of chemical species S = {A1, A2, . . . , An},
(2) a set C = {y1, y2, . . . , yp} of complexes (finite nonnegative-integer combinations of the

species), and
(3) a set of reactions, ordered pairs of the complexes: R ⊆ (C × C)∖ {(y, y) | y ∈ C}.

A network can be viewed as a directed graph whose nodes are complexes and whose edges
correspond to the reactions (and so an edge (y, y′) can be denoted by y → y′).

Next, writing the i-th complex as yi1A1 + yi2A2 + · · · + yinAn (where yij ∈ Z≥0 for j =
1, 2, . . . , n), we introduce the following monomial:

xyi := xyi1
1 xyi2

2 · · ·xyin
n .

(By convention, the zero complex yields the monomial x(0,...,0) = 1.) The vectors yi define
the rows of a p× n-matrix of nonnegative integers, which we denote by Y = (yij). Next, the
unknowns x1, x2, . . . , xn represent the concentrations of the n species in the network, and we
regard them as functions xi(t) of time t.

For a reaction yi → yj from the i-th complex to the j-th complex, the reaction vector
yj−yi encodes the net change in each species that results when the reaction takes place. The
stoichiometric subspace is the vector subspace of Rn spanned by the reaction vectors yj − yi,
and we will denote this space by S:

(1) S := R{yj − yi | yi → yj is in R}.

Networks appearing in our examples have only a few species, and so we denote the species
by A,B,C, . . . instead of X1, X2, X3 . . . .

Example 2.2. Consider the network G = {A + B → 3A + C}, which consists of a single
reaction (with 3 species and 2 complexes). We have y2 − y1 = (2,−1, 1), which means that
with each occurrence of the reaction, two units of A and one of C are produced, while one
unit of B is consumed. This vector (2,−1, 1) spans the stoichiometric subspace S.

2.2. Mass-action systems. The dynamical systems considered in this work come from
assigning mass-action kinetics to a chemical reaction network. According to the law of mass-
action, the rate of each chemical reaction is directly proportional to the product of the
concentrations of the reactants. Therefore, we associate to each reaction yi → yj of a network,
a positive parameter κij, the rate constant of the reaction. By ordering the r reactions, a choice
of rate constants can be represented as a vector (κij) ∈ Rr

>0.

Definition 2.3. A mass-action system (G, κ) refers to the dynamical system arising from a
specific chemical reaction network G = (S, C,R) and a choice of rate parameters κ = (κij) ∈
Rr

>0 (here r denotes the number of reactions), as follows:

dx

dt
=

∑
yi→yj is in R

κijx
yi(yj − yi) =: fκ(x) = (fκ(x)1, fκ(x)2, . . . , fκ(x)n) .(2)
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In this article, we treat the rate constants κij as (positive) unknowns in order to analyze
the entire family of dynamical systems that arise from a given network, as the κij’s vary.

By construction, the vector dx
dt

in (2) lies in S for all time t. Additionally, the positive
orthant is forward-invariant [76]. Hence, a trajectory x(t) beginning at a nonnegative vector
x(0) = x0 ∈ Rn

≥0 remains in the stoichiometric compatibility class, which we denote by

P := (x0 + S) ∩ Rn
≥0 ,(3)

for all positive time. In other words, P is forward-invariant with respect to the dynamics (2).

Example 2.4. The following is a “generalized Shinar–Feinberg network” [51]:

{B → A, 2A+B → A+ 2B} .(4)

The mass-action ODEs (2) arising from this network are as follows:

dxA

dt
= κ1xB − κ2x

2
AxB(5)

dxB

dt
= −κ1xB + κ2x

2
AxB ,

where κ1 and κ2, respectively, are the rate constants for the first and second reactions in (4).
The stoichiometric subspace is spanned by the vector (1,−1), so the stoichiometric compat-
ibility classes are the line segments defined by c ∈ R>0, as follows:

Pc = {(xA, xB) ∈ R2
≥0 | xA + xB = c} .(6)

2.3. Steady states and related ideals. Here we define steady states and the polynomial
ideals that they generate.

Definition 2.5. Consider a mass-action system (G, κ) with n species.

(1) A steady state is a nonnegative concentration vector x∗ ∈ Rn
≥0 at which the ODEs (2)

vanish: fκ(x
∗) = 0. We distinguish between positive steady states x∗ ∈ Rn

>0 and
boundary steady states x∗ ∈

(
Rn

≥0 ∖Rn
>0

)
.

(2) The positive steady-state locus is the set of all positive steady states.
(3) The steady-state ideal is the ideal in the polynomial ring R[x1, x2, . . . , xn] generated

by the right-hand sides of the ODEs in (2):

I(G, κ) := ⟨fκ(x)1, fκ(x)2, . . . , fκ(x)n⟩ .

(4) The ideal of the positive steady-state locus is defined as follows:

>0
√
I(G, κ) := {h ∈ R[x1, x2, . . . , xn] | h(x) = 0 for all positive steady states x} .

We recall the definition of the radical of an ideal I of a ring R:

(7)
√
I := {h ∈ R | hm ∈ I for some m ∈ Z>0} .

Remark 2.6. By construction, we have I(G, κ) ⊆ >0
√
I(G, κ). This containment of ideals

can be refined, yielding three “levels” of “steady-state invariants” [21, equation (7)]:

I(G, κ) ⊆
√
I(G, κ) ⊆ >0

√
I(G, κ) .(8)
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The fact that the containments in (8) are, in general, strict, was noted by Dickenstein [21]1

and is the reason behind many of the “warning” examples shown later in Section 3.2.

Example 2.7. Consider the network G = {2A→ A, 3A→ 5A, 4A→ 3A}. When all three
rate constants are taken to be 1 (that is, κ∗ = (1, 1, 1)), the resulting mass-action ODE is
the following:

dxA

dt
= −x4

A + 2x3
A − x2

A = −x2
A(xA − 1)2 .

(Notably, x∗
A = 1 is the unique positive steady state.) The ideals in (8) are thus as follows:

I(G, κ∗) = ⟨x2
A(xA − 1)2⟩ ⊊

√
I(G, κ∗) = ⟨xA(xA − 1)⟩ ⊊ >0

√
I(G, κ∗) = ⟨xA − 1⟩ .

Next, we move from systems (G, κ) to networks G by viewing κ as unknown.

Definition 2.8. Let G be a chemical reaction network with n species and r reactions.

(1) G is multistationary if there exist positive rate constants κ ∈ Rr
>0 such that the

resulting mass-action system (2) admits two or more positive steady states in some
stoichiometric compatibility class (3).

(2) The positive steady-state/rate locus is the set of all pairs of positive steady states and
corresponding rate constants:

L := {(x, κ) ∈ Rn
>0 × Rr

>0 | x is a steady state of the mass-action system (G, κ)} .

(3) The ideal of the positive steady-state/rate locus is:

I(L) := {h ∈ R[x1, x2, . . . , xn;κij] | h(x, κ) = 0 for all (x, κ) ∈ L} .

Example 2.9 (Example 2.4, continued). For the network G = {B κ1→ A, 2A+B
κ2→ A+2B},

it is straightforward to compute the positive steady-state/rate locus:

L =
{
(x, κ) ∈ R2

>0 × R2
>0 | xA =

√
κ1/κ2

}
.(9)

It follows that the ideal of the positive steady-state/rate locus is the following:

I(L) = ⟨κ1 − κ2x
2
A⟩ .(10)

We observe that, for every choice of positive rate constants κ∗ = (κ∗
1, κ

∗
2) ∈ R2

>0, every positive
steady state (x∗

A, x
∗
B) of the mass-action system (G, κ∗) has the same value of x∗

A, namely,

x∗
A =

√
κ∗
1/κ

∗
2. In the following subsection, we give a name to this property.

Remark 2.10. Any positive part of a variety is equal to the positive steady-state locus of
some mass-action system, because we can just multiply all the equations by x1x2 . . . xn so
that the resulting equations are mass-action [21, §2]. Indeed, many of the examples in this
work were generated through such a trick.

2.4. Absolute concentration robustness. In this subsection, we recall the definition of
ACR for mass-action systems and networks (Definitions 2.11 and 2.17). We also relate ACR
to steady-state ideals (Propositions 2.15 and 2.20).

1We make a small clarification: Dickenstein considered polynomials vanishing on all steady states, whereas
we consider only positive steady states. As a result, the ideal Dickenstein called the “positive real radical of
the steady-state ideal” is closely related to, but not the same as, our ideal >0

√
I(G, κ).
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2.4.1. ACR for mass-action systems. The following definition was introduced by Shinar and
Feinberg [66].

Definition 2.11 (ACR for mass-action systems). A mass-action system (G, κ) has absolute
concentration robustness (ACR) in species Xi if, for every positive steady state x, the value
of xi is the same. This value of xi is the ACR-value.

For simplicity, we say that (G, κ) has ACR if it has ACR is some species.

Definition 2.12 (Vacuous ACR). A mass-action system (G, κ) has vacuous ACR if it has
no positive steady states (or, equivalently, the ideal of the positive steady-state locus is the
improper ideal ⟨1⟩).

An example of a system with vacuous ACR arises from the network G = {A → B}.
Vacuous ACR does not confer any “robustness” to the system, and hence our interest is in
non-vacuous ACR. Also, ACR is most relevant for systems having linear conservation laws
(that is, the stoichiometric subspace (1) is a proper subspace of Rn, where n is the number
of species), as this is the situation when there is more than one compatibility class and so
we can compare steady states in distinct classes. Nevertheless, for ease of presentation, we
include some examples without such linear conservation laws.

Example 2.13 (Example 2.7 continued). We saw earlier that the mass-action system given
by the network G = {2A→ A, 3A→ 5A, 4A→ 3A} and rate constants κ∗ = (1, 1, 1) has a
unique positive steady state (namely, x∗

A = 1). It follows that this system has ACR (in A).

Example 2.14 (Example 2.9 continued). We observed above that, for G = {B → A, 2A+
B → A + 2B}, the mass-action system (G, κ∗) arising from any choice of positive rate
constants κ has ACR in A.

The following result, which was observed in [41], relates ACR with the ideal of the positive
steady state locus (from Definition 2.5).

Proposition 2.15 (ACR and ideals). A mass-action system (G, κ) has ACR in species Xi if
and only if xi− α, for some α > 0, is in the ideal of the positive steady state locus of (G, κ).

Proof. If (G, κ) has no positive steady states (that is, >0
√

I(G, κ) = ⟨1⟩), then xi − 1 is in
>0
√

I(G, κ) and (G, κ) vacuously has ACR (recall Definition 2.12). Now assume that (G, κ)
has at least one positive steady state. Then (G, κ) has ACR in Xi with ACR-value α > 0 if
and only if x∗

i = α for every positive steady state x∗. The result now follows directly. □

Remark 2.16. A necessary condition for ACR, called “local ACR”, for mass-action systems
(i.e., with fixed rate constants) appears in [61, Theorem 4.11] and is an easy-to-check linear
algebra condition, with a refinement for the case where the rate constants are not fixed in
[26, Theorem 4.15].

2.4.2. ACR for networks. If (G, κ) has ACR, then does ACR persist when κ is replaced by
another choice of rate constants? This question motivates the following definition.

Definition 2.17 (ACR for networks). A network G with r reactions has:

(i) the capacity for ACR if there exist a species Xi and some κ ∈ Rr
>0 such that (G, κ) has

ACR in Xi;
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(ii) unconditional ACR (or, simply, ACR) if there exists a species Xi such that for all
κ ∈ Rr

>0, the mass-action system (G, κ) has ACR in Xi.

Notice that networks with (unconditional) ACR automatically have the capacity for ACR.
These ideas are related to “hybrid robustness” [19, pg. 889].

Example 2.18 (Example 2.14 continued). From our earlier observations, we see that the
network {B → A, 2A+B → A+ 2B} has (unconditional) ACR (in species A, but not B).

Example 2.19 (Example 2.13 continued). We saw that the network G = {2A→ A, 3A→
5A, 4A→ 3A} has the capacity for ACR. We now claim that G does not have (unconditional)
ACR. To see this, consider the rate constants κ∗ = (2, 1.5, 1). The resulting ODE is

dxA

dt
= −x4

A + 3x3
A − 2x2

A = −x2
A(xA − 1)(xA − 2) ,

and so there are two positive steady states, x∗
A = 1 and x∗

A = 2. Hence, (G, κ∗) does not have
ACR, which verifies the claim.

Recall that Proposition 2.15 pertains to ACR in mass-action systems (i.e., with specialized
rate constants). We next state a version of that result for networks (i.e., with symbolic
rate constants). Note that while Proposition 2.15 gives an equivalence between ACR and a
condition on a certain ideal, the following result asserts only one such implication.

Proposition 2.20 (ACR and I(L)). Let Xi be a species of a reaction network G. Let I(L)
denote the ideal of the positive steady-state/rate locus of G. If xi − α ∈ I(L), for some
α ∈ R[κij | i→ j is a reaction of G], then G has ACR in Xi.

Proof. Assume there exists α ∈ R[κij | i→ j is a reaction of G] such that xi−α ∈ I(L). Fix
κ∗ ∈ Rr

>0, where r is the number of reactions.

If the mass-action system (G, κ∗) has no positive steady states, then the system vacuously
has ACR. Now assume that (G, κ∗) has a positive steady state x∗. Then, xi − α ∈ I(L)
implies that x∗

i = α|κ=κ∗ . Thus, (G, κ∗) has ACR in Xi with ACR-value α|κ=κ∗ . □

The converse of Proposition 2.20 is false, as the following example shows.

Example 2.21 (Example 2.18 continued). We noted earlier that the network {B → A, 2A+
B → A + 2B} has ACR in A, but the ideal I(L), in (10), does not contain a polynomial of
the form xA − α with α ∈ R[κ1, κ2].

2.4.3. ACR and multistationarity. The relationship between ACR and multistationarity was
explored in prior works, in the context of randomly generated reaction networks [38] and
for the purpose of determining the minimum numbers of species, complexes, and reactions
needed for ACR and multistationarity to coexist [40]. Here, we record two facts. First, it is
immediate from definitions that if a reaction network G has ACR in every species, then G
is not multistationary. Second, it is also straightforward to check that, for a network G with
n species, if the stoichiometric subspace is Rn, then G has ACR in every species Xi if and
only if G is not multistationary.
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2.4.4. Steady-state parameterizations. For many networks arising in biology, the positive
steady-state locus can be parameterized [15, 27, 35, 62, 72]. More precisely, we say that
a mass-action system (G, κ) with n species admits a positive steady-state parameterization if
there exists a function:

ϕ : RT
>0 → Rn

>0(11)

(for some T > 0) such that the image equals the set of all positive steady states of (G, κ).
When a mass-action system (G, κ) admits a positive steady-state parameterization, assessing
ACR is easy: (G, κ) has ACR in species Xi if and only if ϕi is constant.

2.4.5. One-species networks and systems. For networks having only one species, ACR has
already been classified: Such a network has ACR if and only if it is non-multistationary, which
in turn is equivalent to a combinatorial criterion on its “arrow diagram” [51, Proposition 4.2].

If a one-species system has fixed rational-number rate constants, ACR means that the
(univariate polynomial) right-hand side of the (unique) ODE has at most one positive root.
This property can be checked using the classical theory of Sturm sequences.

3. Ideal theoretic approaches to detecting ACR

In this section we recall several facts about ideals in polynomial rings, which we use later
(Section 3.1). Section 3.2 serves as a warning, by showing that various sufficient conditions for
ACR are not necessary. We then turn our attention to the real radical ideal and discuss the
assumption of rational-number rate constants, as well as other computational considerations.
We end this section by focusing on a new ideal, which we call the positive-restriction ideal
(Section 3.3.2), and by computing decompositions of its radical (Section 3.3.3) to assess ACR.

3.1. Ideals in polynomial rings. We start this section by recalling several concepts related
to general ideals (in polynomial rings): saturations, zero-divisors, real varieties, and real
radicals. We use these ideas in later sections (for steady-state ideals and other ideals).

Definition 3.1. Let h ∈ F[x1, x2, . . . , xn], where F is a characteristic-zero field, and let J be
an ideal of F[x1, x2, . . . , xn]. The ideal quotient of J with respect to h is the ideal defined by

(J : h) := {g ∈ F[x1, x2, . . . , xn] | hg ∈ J},
and the saturation of J with respect to h is the ideal defined by

(J : h∞) := {g ∈ F[x1, x2, . . . , xn] | hkg ∈ J for some k ∈ Z≥0}.

Remark 3.2. For the saturations we consider in this work, the polynomial h is the monomial
m formed by the product of all the variables xi (that is, m = x1x2 · · ·xn). Roughly speaking,
(J : m∞) allows us to “divide” the polynomials in J by monomials in the variables. Hence,
the zeros of J with nonzero coordinates are the zeros of (J : m∞) with nonzero coordinates.
Moreover, computing saturation is a standard task accomplished via Gröbner bases, which
are implemented for instance in most computer algebra systems.

Next, we turn to zero-divisors.

Definition 3.3. Let I be an ideal in a ring R. If fg ∈ I, where f, g ∈ R ∖ I, then f and g
are zero-divisors of I.
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Remark 3.4. In Definition 3.3, we use the term “zero-divisor” because f is a zero-divisor
of I if and only if f + I is a zero-divisor of the quotient ring R/I.

Remark 3.5 (Checking zero-divisors). A polynomial f is a zero-divisor of an ideal I in a
polynomial ring, if and only if the ideal quotient (I : f) is strictly larger than I. Checking
this is easy using computer algebra software (as mentioned in Remark 3.2, Gröbner bases
can be used to compute saturations – and the same is true for testing equality of ideals).

Finally, we consider real varieties and real radicals.

Definition 3.6. Let J be an ideal in the polynomial ring Q[x1, x2, . . . , xn]. The real radical
of J is the following ideal:

R
√
J :=

{
g ∈ Q[x1, x2, . . . , xn] | ∃m, ℓ ∈ Z≥0, ∃h1, . . . , hℓ ∈ Q[x1, x2, . . . , xn], g

2m +
ℓ∑

i=1

h2
i ∈ J

}
.

The real variety of J is VR(J) := {z ∈ Rn | f(z) = 0 for all f ∈ J}.

The real radical and real variety are related by the next result, the Real Nullstellensatz
(specifically, the version in which the coefficient field is Q). This result is well known; for
instance, it follows from [49, Theorem 1.11]2. Neuhaus [58] credits the result to Dubois [23],
Krivine [43], and Risler [63].

Proposition 3.7 (Real Nullstellensatz). If J is an ideal in the polynomial ring Q[x1, x2, . . . , xn],
then the real radical of J equals the vanishing ideal of the real variety of J :

R
√
J := {f ∈ Q[x1, x2, . . . , xn] | f(z) = 0 for all z ∈ VR(J)} .

3.2. Problems with standard approaches to deciding ACR ideal theoretically. In
this subsection, we give several sufficient conditions for ACR in terms of the steady-state
ideal (Proposition 3.8). We show how this result can be useful (Example 3.9). However, we
also show through examples that none of the sufficient conditions is necessary for ACR, and
additionally that some other approaches to deciding ACR are also incomplete.

Proposition 3.8 (Sufficient conditions for ACR). Let I be the steady-state ideal of a mass-
action system (G, κ) with n species. Let i ∈ {1, 2, . . . , n}. Assume one of the following holds:

(1) there exists α ∈ R>0 such that xi − α is in I,
(2) there exists α ∈ R>0 such that xi − α is in the saturation I : (x1x2 . . . xn)

∞,
(3) there exists g ∈ I ∩ R[xi] such that g has a unique positive root.

Then (G, κ) has ACR in species Xi.

Proof. Condition (1) is a special case of (2) (and also (3)), so we begin with (2). Assume that
xi − α is in I : (x1x2 . . . xn), for some α > 0. This means that (x1x2 . . . xn)

m(xi − α) ∈ I for
some m ≥ 0. Now assume that x∗ is a positive steady state. Then (x∗

1x
∗
2 . . . x

∗
n)

m(x∗
i −α) = 0

and so (as x∗
j > 0 for all j) we have x∗

i = α. Hence, there is ACR in Xi with ACR-value α.

For (3), assume that g ∈ I ∩R[xi] has a unique positive root α. Let x∗ be a positive steady
state. Then g ∈ I implies that g(x∗

i ) = 0 and so x∗
i = α since α is the only positive root of g.

We conclude that (G, κ) has ACR in species Xi (with ACR-value α). □

2A proof of Proposition 3.7 is in Appendix A.
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The following example shows how to use condition (2) in Proposition 3.8 to detect ACR.

Example 3.9. Motivated by bifunctional enzymes in signal transduction networks, Joshi
and Nguyen introduced the network below and showed it has ACR in S3 [39, Table 1, line 6]:

S1 + E
κ1

⇄
κ2

C1
κ3→ S2 + E

κ4

⇄
κ5

C2
κ6→ S3 + E

S2 + C1

κ7

⇄
κ8

C3
κ9→ S3 + C1

κ10

⇄
κ11

C4
κ12→ S1 + C1

(12)

The unusual ordering of the species S2, S3, S1 in the second line of (12) is deliberate.

Joshi and Nguyen showed that the network (12) has ACR in S3, by appealing to a result
on bifunctional enzymes in futile cycles of a very specific form [39]. As for general-purpose
results on ACR in the literature, they do not apply. For instance, the results of [66] cannot
be used, because the network has deficiency 2. Similarly, the results of [73] cannot be used,
because the the network does not allow a ‘simple weakly reversible translation’.

We show next that Proposition 3.8 applies to this network. Let x1, x2, . . . , x8 denote the
concentrations of the species S1, S2, S3, E, C1, C2, C3, C4, respectively. In what follows, we
use symbolic rate constants, although Proposition 3.8 pertains to specialized values of rate
constants, because the output we show below does not depend on the specific choice of the
rate constants. The steady-state ideal I is generated by the following eight polynomials:

− κ1x1x4 + κ2x5 + κ12x8 , κ3x5 + κ5x6 − κ4x2x4 − κ7x2x5 + κ8x7 ,

κ6x6 + κ9x7 − κ10x3x5 + κ11x8 , −κ1x1x4 + (κ2 + κ3)x5 − κ4x2x4 + (κ5 + κ6)x6 ,

κ1x1x4 − (κ2 + κ3)x5 − κ7x2x5 + (κ8 + κ9)x7 − κ10x3x5 + (κ11 + κ12)x8 ,

κ4x2x4 − (κ5 + κ6)x6 , κ7x2x5 − (κ8 + κ9)x7 , κ10x3x5 − (κ11 + κ12)x8 .

For any choice of positive κ1, . . . , κ12, the saturation I : (x1x2 · · · x8)
∞ contains the polyno-

mial κ10κ12x3−κ3(κ11+κ12). Thus, by Proposition 3.8(2), there is ACR in S3 with ACR-value
κ3(κ11 + κ12)/κ10κ12.

The next example shows that the sufficient conditions for ACR in Proposition 3.8 are not
necessary. (We remark that the authors – and other researchers as well [56] – once mistakenly
believed condition (1) in the proposition to be necessary for ACR!)

Example 3.10 (Example 2.9, continued). Recall that the network G = {B κ1→ A, 2A+B
κ2→

A + 2B} has ACR in species A. We consider fixed values κi > 0 for the rate constants
(the subsequent analysis does not depend on their precise values). The ODEs are dxA/dt =
−dxB/dt = xB(κ1 − κ2x

2
A). We see immediately that conditions (1) and (3) do not hold,

as the steady-state ideal contains no nonzero univariate polynomials. After saturating the
steady-state ideal by xAxB, we obtain ⟨κ1 − κ2x

2
A⟩. However, this ideal does not contain

xA −
√

κ1/κ2, nor any other polynomial of the form xA − α where α > 0. In other words,
condition (2) of Proposition 3.8 is violated.

From Example 3.10, we might propose to factor κ1 − κ2x
2
A; indeed, xA −

√
κ1/κ2 is a

zero-divisor of the steady-state ideal. One might therefore ask whether having a unique such
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zero-divisor is necessary or sufficient for ACR. In other words, we consider the following
condition (where the notation is as in Proposition 3.8):

there exists a unique α ∈ R>0 such that xi − α is in I or xi − α is a zero-divisor of I.(13)

This will motivate the definition of zero-divisor ACR appearing in Section 4. However, the
next examples show that condition (13) is neither necessary nor sufficient for ACR.

Example 3.11. Consider the network G = {3A 1→ 4A, A + 2B
1→ 2A + 2B, 2A

2→
A, A+B

4→ B, A
5→ 2A, 2A+B

1→ 2A+2B, 3B
1→ 4B, A+B

2→ A, 2B
4→ B, B

5→ 2B}.
The resulting mass-action ODE system is as follows:

dxA

dt
= x3

A + xAx
2
B − 2x2

A − 4xAxB + 5xA =: fA

= xA[(xA − 1)2 + (xB − 2)2] ,

dxB

dt
= x2

AxB + x3
B − 2xAxB − 4x2

B + 5xB =: fB

= xB[(xA − 1)2 + (xB − 2)2].

It follows that the only positive root of fA = fB = 0 is (xA, xB) = (1, 2), so this system has
ACR in both species. However, xA − 1 is not a zero-divisor of the steady state ideal; this is
easily checked computationally (as explained in Remark 3.5) or alternatively a direct proof
can be given. We conclude that condition (13) is not necessary for ACR.

Example 3.12. Consider the following network:

{2A 1→ 3A+B, A+B
1

⇄
1
B, A

1→ 0
1/2←− 2B} .

The resulting mass-action ODEs admit the following factorization: dxA

dt
= (xA − 1)(xA − xB)

and dxB

dt
= (xA − xB)(xA + xB). It can be proved that the polynomial (xA − 1) is the unique

zero-divisor of the steady-state ideal I of the form xA − α. Nonetheless, there is no ACR.
Indeed, the set of steady states is given by a line, xA = xB, and so (1, 1) and (2, 2) are positive
steady states that differ in both coordinates. Hence, condition (13) is not sufficient for ACR.

The previous examples pertain to networks with complexes that are beyond bimolecular
(like 3A + B). Indeed, Example 3.11 involves degree-3 polynomials. On the other hand,
Example 3.12 features degree-2 polynomials only (the trimolecular complex, 3A + B, is not
a reactant). A natural question is whether there are examples with lower molecularity:

Question 3.13. For networks that are at-most-bimolecular, is condition (13) necessary for
ACR? Is it sufficient?

Biochemical networks arising in applications are typically at-most-bimolecular, so it would
be useful to have an answer to Question 3.13.

An alternative approach to deciding ACR, is to try sampling steady states from a few
compatibility classes, but this too might not suffice.

Example 3.14. Consider the following network:

(14) {2A+B
1→ 3A, A+B

3→ 2B, B
2→ A} .
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The ODEs factor as shown here:

dxA

dt
= xB(xA − 1)(xA − 2)

dxB

dt
= −xB(xA − 1)(xA − 2) .

Hence, the set of steady states has two components, arising from xA = 1 and xA = 2. These
are depicted by vertical, red lines below, and the stoichiometric compatibility classes are the
dashed, blue lines:

0 0.5 1 1.5 2 2.5 3
0

1

2

3

If we sampled a few stoichiometric compatibility classes, and checked whether the steady-
state value of xA is always the same, we could be unlucky – and conclude erroneously that
A has ACR with ACR-value 1.

As before, Example 3.14 involves a degree-3 polynomial. So, we again would like to know
whether there are similar examples involving lower-degree polynomials.

We end this section with an example of a network arising in biology that exhibits ACR.

Example 3.15 (Shinar and Feinberg network). The following network was analyzed (and
was shown to have ACR) by Shinar and Feinberg [66, Figure 2(B)] and has been studied by
many others [2, 20, 25, 41, 62]:

{X
κ1

⇄
κ2

XT
κ3→ Xp, Xp + Y

κ4

⇄
κ5

XpY
κ6→ X + Yp, XT + Yp

κ7

⇄
κ8

XTYp
κ9→ XT + Y } .(15)

We denote by x1, x2, . . . , x7 the concentrations of the species as follows:

xX = x1, xXT = x2, xXp = x3, xY = x4, xYp = x5, xXpY = x6, xXTYp = x7 .

The steady state ideal I is generated by −κ1x1 + κ2x2 + κ6x6, κ3x2− κ4x3x4 + κ5x6, κ6x6−
κ7x2x5 + κ8x7, κ4x3x4 − (κ5 + κ6)x6, κ7x2x5 − (κ8 + κ9)x7. For any choice of positive rate
constants κ1, κ2, . . . , κ9, the reduced Gröbner basis of I with respect to the lexicographic
order x1 > x2 > x3 > x4 > x6 > x7 > x5 is

G = {κ7κ9x5x7 − κ3(κ8 + κ9)x7, κ6x6 − κ9x7, κ4κ6x3x4 − (κ5 + κ6)κ9x7,

κ3x2 − κ9x7, κ1κ3x1 − (κ2 + κ3)κ9x7} .

Here, ACR in X5 can be seen from the first Gröbner basis element, g1 := κ7κ9x5x7−κ3(κ8+
κ9)x7. Indeed, g1/x7 = κ7κ9x5−κ3(κ8+κ9) is a linear polynomial in x5 and so, for all choices
of rate constants, this network exhibits ACR in the fifth species, namely, Yp.
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Remark 3.16. One message of this subsection is that, in general, ACR is not readily detected
from the steady-state ideal. If, however, we allow for a more general form of ACR (complex-
number ACR), then detection from the steady-state ideal is possible. See Appendix B.

3.3. The real radical. In this section, we consider the computational aspects of the problem
of deciding whether a system (G, κ) has non-vacuous ACR. We first explain why, in many
of our results, we assume that the rate constants are rational (Section 3.3.1). Next, we show
that, in some cases, we can use a new ideal, which we call the positive-restriction ideal
(Section 3.3.2), and also decompositions of its radical ideal (Section 3.3.3) to assess ACR.

3.3.1. On the assumption of rational-number rate constants. We have seen that it is some-
times convenient to assume that the rate constants are rational numbers (as in § 2.4.5). We
make this assumption again for some results in this section.

The reason for this assumption, in the previous section, was to avoid issues concerning
whether and how we can compute over the real numbers. Another reason comes from the
fact that, in real-life applications, we are interested in ACR (and other properties) that
persist when rate constants are perturbed. In such situations, approximating real-number
rate constants by rational numbers would suffice.

Nevertheless, in principle, the assumption of rational rate constants may be problematic.
There are two main difficulties. The first is the issue of approximating the (actual) real-
number coefficients by rational ones. The second arises when the ACR-value is irrational, and
then this value either is approximated (and so propagates numerical errors) or is described
symbolically (but possibly in an uninformative way). Such difficulties are shown in the next
example. Precisely, we face the problem of dealing numerically with irrational-number roots.

Example 3.17. Consider the network G = {0 2→ A, 2A
1→ 0, 2B

1→ 3B, A+B
1→ A, B

1.41→
2B}. The resulting ODEs are as follows:

dxA

dt
= 2− x2

A ,

dxB

dt
= x2

B − xAxB + 1.41xB = xB(xB − (xA − 1.41)) .

The elimination ideal I ∩ Q[xA], where I is the steady-state ideal, is generated by 2 − x2
A.

Hence, this system has ACR with ACR-value
√
2. However, numerical problems may arise

when checking whether ACR is vacuous or non-vacuous. Specifically, when we try to find the
possible steady-state values of xB, we have the following issue: if we approximate xA =

√
2

by any rational number less than or equal to 1.41, we do not obtain any positive steady
states and so we would conclude that the system has vacuous ACR. However, the system
has non-vacuous ACR in both species, because the only positive steady state is (x∗

A, x
∗
B) =

(
√
2,
√
2− 1.41).

3.3.2. Assessing ACR using the positive-restriction ideal. As explained in the prior subsec-
tion, the results in this subsection pertain to systems with rational rate constants. Specifically,
we show that, for such systems, ACR can be detected from the real radical of an ideal we
call the positive-restriction ideal (Proposition 3.22). This ideal expands the steady-state ideal
(and resides in a polynomial ring with additional variables zi) so that the resulting real va-
riety forms a “cover” of the original positive steady states (see Lemma 3.20). The purpose
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of this ideal, therefore, is to restrict our attention to the positive steady states (rather than
including boundary ones), hence the name “positive-restriction ideal”.

Definition 3.18. Consider a mass-action system (G, κ) with n species and r reactions, where
κ ∈ Qr

>0. The positive-restriction ideal of (G, κ) is the ideal in Q[x1, x2, . . . , xn, z1, z2, . . . , zn]
generated by the right-hand sides of the ODEs in (2), fκ(x)1, fκ(x)2, . . . , fκ(x)n (viewed here
as polynomials in Q[x1, x2, . . . , xn, z1, z2, . . . , zn]) and the polynomials of the form xiz

2
i − 1:

J(G, κ) := ⟨fκ(x)1, fκ(x)2, . . . , fκ(x)n, x1z
2
1 − 1, x2z

2
2 − 1, . . . , xnz

2
n − 1⟩ .(16)

Remark 3.19. In Definition 3.18, the use of the polynomials xiz
2
i − 1 is a version of the

‘Rabinowitsch trick’ that is used in the proof of Hilbert’s Nullstellensatz.

Lemma 3.20. For a reaction system (G, κ) with n species and κ ∈ Qr
>0 (where r is the num-

ber of reactions), the following projection (to the first n coordinates) is a 2n-to-1 surjection
from the real variety of the positive-restriction ideal to the positive steady-state locus:

VR(J(G, κ))
ϕ→ V>0(I(G, κ))

(x; z) 7→ x .

Proof. We first show that the image of ϕ is contained in V>0(I(G, κ)). Assume that (x; z) ∈
VR(J(G, κ)). Then xiz

2
i − 1 = 0 for all i, so zi ̸= 0 and xi > 0 for all i. The vector x is also

a root of the polynomials in I(G, κ), since the generators of I(G, κ) also belong to J(G, κ).
We conclude that x ∈ V>0(I(G, κ)).

Next, let x ∈ V>0(I(G, κ)). For all i, let zi := ±
√

1/xi. It follows that (x; z) ∈ VR(J(G, κ)).
It is straightfoward to see that no other choices of zi yield (x; z) ∈ VR(J(G, κ)). So, ϕ is
surjective and is 2n-to-1. □

Remark 3.21 (Viewing the positive-restriction ideal as a steady-state ideal). For a mass-
action system (G, κ) with n species, the positive-restriction ideal J(G, κ) can be viewed as
the steady-state ideal of the mass-action system obtained by adding 2n reactions to (G, κ),

namely, the reactions 0
1→ Zi and Xi + 2Zi

1→ Xi + Zi for all i = 1, 2, . . . , n.

Next, we use Lemma 3.20 and the Real Nullstellensatz (Proposition 3.7) to extend Propo-
sition 2.15, in the case when the rate constants – and also the ACR-value – are rational.

Proposition 3.22 (Rational-number ACR and ideals). Consider a mass-action system (G, κ)
with κ ∈ Qr

>0, and let α ∈ Q>0. The following are equivalent:

(1) (G, κ) has ACR in species Xi with ACR-value α,
(2) xi − α is in the ideal of the positive steady state locus of (G, κ),

(3) xi − α is in R
√

J(G, κ) (the real radical of the positive-restriction ideal).

Proof. The equivalence of (1) and (2) is Proposition 2.15. Now we prove that (1) and (3)
are equivalent. Let α > 0. By Lemma 3.20, every positive steady state x∗ satisfies x∗

i = α if
and only if every (x∗; z∗) in the real variety of the positive-restriction ideal satisfies x∗

i = α,

which in turn (by Proposition 3.7) is equivalent to the condition (xi − α) ∈ R
√
J(G, κ). This

final equivalence we just asserted uses the hypothesis that α ∈ Q>0; indeed, if instead the
ACR-value α were irrational, then its irreducible polynomial (over Q), rather than the linear

polynomial xi − α, would be in R
√

J(G, κ). □
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Remark 3.23. In Proposition 3.22, it is assumed that not only are the rate constants ra-
tional, but also the ACR-value itself. This is not always the case (for instance, we saw in

Example 2.9 a network in which the ACR-value has the form
√

κ1/κ2). Nevertheless, this
property of rational-number ACR-value is common in the literature, and can be explained in
part by the theory of “robust ratios” which, when applicable, gives a precise rational-number
expression of the ACR-value in terms of the rate constants [73].

Remark 3.24. When the ACR-value is irrational, Proposition 3.22 does not apply. Never-
theless, we can see from the proof of the proposition that sometimes ACR can be detected.
Indeed, as in the end of the proof, if a univariate (in xi), irreducible polynomial g appears
in the real radical of the positive-restriction ideal, and g has a unique positive root α, then
there is ACR with ACR-value α.

Proposition 3.22 reveals an advantage of considering rational-number rate constants: De-
tecting ACR reduces to being able to compute a real radical ideal – as long as the ACR-value
is also rational.

In fact, real radicals can be computed effectively to some extent [58, 70], although the
complexity of such algorithms is high. Moreover, new methods for computing real radicals
have been developed recently [3, 64]. We note, however, that when these algorithms encounter
irrational roots α of polynomials, either a numerical approximation of α is returned, or, for
symbolic algorithms, the irreducible polynomial of α. Similar drawbacks were shown earlier
in Example 3.17.

3.3.3. ACR via ideal decomposition. This subsection analyzes ACR by decomposing the
positive-restriction ideal J(G, κ) and then, using the notion of non-singular zeros, by restrict-
ing to certain components of J(G, κ) (see Theorem 3.28). We also discuss issues involved in
turning Theorem 3.28 into an algorithm for detecting ACR (when the ACR-value is rational).

We first introduce notation we use in this subsection. Given an ideal P of Q[x1, x2, . . . , xn],

we let P̃ denote the ideal of R[x1, x2, . . . , xn] generated by the elements of P :

(17) P̃ := PR[x1, x2, . . . , xn].

We now state a lemma that points in the direction we are pursuing.

Lemma 3.25. If J is an ideal of the ring R := Q[x1, x2, . . . , xn] that can be decomposed as
J = Q1 ∩Q2, where Q1 and Q2 are ideals in R such that VR(Q2) = ∅, then VR(J) = VR(Q1).

Proof. This result is immediate since VR(J) = VR(Q1) ∪ VR(Q2). □

Next, we recall a criterion that can help us isolate certain components of the positive-
restriction ideal. To state that result (Proposition 3.27 below), we must first recall several
definitions (see [4, 8]). An ideal I in a ring R is prime if xy ∈ I implies that x ∈ I or y ∈ I.
The dimension of an ideal I of R[x1, x2, . . . , xn] is the Krull dimension of the quotient ring
R[x1, x2, . . . , xn]/I. If I is generated by n − d algebraically independent polynomials, then
the dimension of I is d (see [44, Corollary 3.7]).

We now adapt to our context the definition of a non-singular zero, and subsequently recall
a result that appears in the book of Bochnak, Coste, and Roy [8, Proposition 3.3.16].
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Definition 3.26. Let P = ⟨g1, g2, . . . , gt⟩ be a prime ideal of R[x1, x2, . . . , xn] of dimension d.

A point x ∈ VR(P ) is a non-singular zero of P if rank

([
∂gi
∂xj

(x)
]
i,j

)
= n− d.

Proposition 3.27. Let P be a prime ideal of R[x1, x2, . . . , xn]. If P has a non-singular zero,

then P = R
√
P .

From this proposition, we deduce the following result.

Theorem 3.28. Consider a mass-action system (G, κ) with κ ∈ Qr
>0, and let J(G, κ) be the

positive-restriction ideal (16). Let α ∈ Q>0. Assume the following:

(1) J(G, κ) = Q1 ∩Q2 for some ideals Q1, Q2 of Q[x1, x2, . . . , xn, z1, z2, . . . , zn] such that
VR(Q2) = ∅, and

(2) Q1 =
ℓ⋂

i=1

Pi for some ideals Pi of Q[x1, x2, . . . , xn, z1, z2, . . . , zn] such that VR(Pi) ̸= ∅

(for all i = 1, 2, . . . , ℓ).

Let P̃i, for all i = 1, 2, . . . , ℓ, denote the corresponding ideals in R[x1, x2, . . . , xn, z1, z2, . . . , zn],
as in (17). Assume two additional main hypotheses:

(3) P̃i is a prime ideal of R[x1, x2, . . . , xn, z1, z2, . . . , zn] (for all i = 1, . . . ℓ), and

(4) P̃i has a non-singular zero (for all i = 1, 2, . . . , ℓ).

Then (G, κ) has ACR in some species Xj with ACR-value α if and only if xj − α ∈ Q1.

Proof. Let J := J(G, κ). By Proposition 3.22, it suffices to prove the equality Q1 =
R
√
J .

Hypothesis (1) and Lemma 3.25 together imply that VR(J) = VR(Q1). Hence, by the Real
Nullstellensatz (Proposition 3.7), we obtain the first equality here:

R
√
J = R

√
Q1 =

ℓ⋂
i=1

R
√

Pi ,(18)

and the second equality follows from hypothesis (2) and the fact that the real radical of an
intersection is the intersection of the real radicals [58, Lemma 2.2]. Next, equation (18) and

the containment Q1 ⊆ R
√
Q1, together imply that Q1 ⊆ R

√
J . Hence, using equation (18), it

remains only to show the containment

(
ℓ⋂

i=1

R
√
Pi

)
⊆ Q1.

To verify this containment, first note that R
√
Pi ⊆

R
√

P̃i ∩ Q[x1, x2, . . . , xn, z1, z2, . . . , zn]

(for all i = 1, 2, . . . , ℓ). Next, by hypotheses (3–4) and Proposition 3.27, we have
R
√

P̃i =

P̃i. Finally, P̃i ∩ Q[x1, x2, . . . , xn, z1, z2, . . . , zn] = Pi [50, Theorem 7.5]. We conclude that(
ℓ⋂

i=1

R
√
Pi

)
⊆

ℓ⋂
i=1

Pi = Q1 (the equality is by hypothesis (2)), so the desired containment

holds. □

The hypotheses of Theorem 3.28 are, unfortunately, not easily checked. Indeed, in general,
we cannot detect whether an ideal is prime over R or whether it has a non-singular zero.
Nevertheless, when such computations are possible, the theorem tells us that if certain ideals
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P̃i arising from a decomposition of Q1 are prime over R and admit non-singular zeros, ACR
with rational ACR-value is characterized by the presence of a linear polynomial xi−α in Q1.
(See Steps 1 and 2 in the procedure below.)

But perhaps the most interesting case arises precisely when some of the ideals P̃i lack

non-singular zeros. In this case, if P̃i = ⟨g1, g2, . . . , gt⟩ has dimension d and has no non-
singular zeros, then the (n− d)× (n− d) minors of the Jacobian matrix of g1, g2, . . . , gt are
polynomials in x1, x2, . . . , xn that vanish at all the real zeros of J . Accordingly, we can add
such polynomials to J – without affecting its real variety – and instead analyze this larger
ideal. This idea underlies the following procedure (in particular, Steps 3 and 4).

Procedure 3.29. Detecting ACR by ideal decomposition

Input. An ideal Q1 of Q[x1, x2, . . . , xn, z1, z2, . . . , zn], such that VR(Q1) = VR(J), where J :=
J(G, κ) is the positive-restriction ideal of a mass-action system (G, κ).

Output. “ACR” or “Inconclusive”.

Step 1. Decompose Q1 as Q1 =
ℓ⋂

i=1

Pi, where (for all i = 1, 2, . . . , ℓ) Pi is an ideal of the

ring Q[x1, x2, . . . , xn, z1, z2, . . . , zn] and P̃i, as in (17), is a prime ideal of the ring
R[x1, x2, . . . , xn, z1, z2, . . . , zn].

Step 2. If P̃i has a non-singular zero for all i = 1, 2, . . . , ℓ, then check whether Q1 contains a
polynomial of the form xi − α, where α ∈ Q>0. If so, then output, “ACR in Xi with
ACR-value α”.

Step 3. Otherwise, for every Pi = ⟨gi1, gi2, . . . , giti⟩ of dimension di with no non-singular zeros,
add all the size-(2n− di) minors of the Jacobian matrix of (gi1, g

i
2, . . . , g

i
ti
) to Q1. Call

this new ideal Q
(1)
1 .

Step 4. Repeat, if possible, Steps 1–3 for the ideal Q1 = Q
(1)
1 .

By repeating Steps 1–4, we can in theory generate an ascending chain of ideals Q1 ⊆
Q

(1)
1 ⊆ Q

(2)
1 ⊆ · · · ⊆ Q

(j)
1 ⊆ · · · that stabilizes, since the ring Q[x1, x2, . . . , xn, z1, z2, . . . , zn] is

Noetherian. The advantage of working with the ideal Q
(j)
1 instead of J is that its dimension

is smaller (and yet it has the same real variety).

For a better understanding of this theoretical procedure, and how to apply it to compute
and detect ACR (when all steps can be done effectively), consider the following example:

Example 3.30. Recall the system from Example 3.11, which generates the following ODEs:

dxA

dt
= xA[(xA − 1)2 + (xB − 2)2]

dxB

dt
= xB[(xA − 1)2 + (xB − 2)2].

It is easy to see in this example that the system shows ACR for both variables, since
the only positive solution is (xA, xB) = (1, 2). However, we will ignore this obvious fact and
instead apply the above procedure. Unless otherwise noted, all computations below can be
checked using a computer algebra system.
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The positive-restriction ideal, J = ⟨fA, fB, xAz
2
A − 1, xBz

2
B − 1⟩ in Q[xA, xB, zA, zB], can

be decomposed as follows:

J = Q1 ∩Q2 ∩Q3 ∩Q4 ,

where

Q1 = ⟨(xA − 1)2 + (xB − 2)2, xAz
2
A − 1, xBz

2
B − 1⟩,

Q2 = ⟨xA, (xA − 1)2 + (xB − 2)2, xAz
2
A − 1, xBz

2
B − 1⟩,

Q3 = ⟨xB, (xA − 1)2 + (xB − 2)2, xAz
2
A − 1, xBz

2
B − 1⟩, and

Q4 = ⟨xA, xB, xAz
2
A − 1, xBz

2
B − 1⟩ .

We easily see that VC(Q2) = VC(Q3) = VC(Q4) = ∅. So, Lemma 3.25 implies that VR(J) =
VR(Q1). This ideal Q1 does not contain a polynomial of the form xA − α or xB − α (where
α > 0), so we apply Procedure 3.29 to Q1.

It is straightforward to check that Q̃1 is a prime ideal in R[xA, xB, zA, zB] with dimension 1.
Hence, Step 1 is accomplished with ℓ = 1 and P1 = Q1.

Next, for Step 2, we must check whether Q̃1 has a nonsingular zero. Accordingly, we

consider the matrix of partial derivatives of the generators of Q̃1 (namely, g1 := x2
A − 2xA +

x2
B − 4xB + 5, g2 := xAz

2
A − 1, g3 := xBz

2
B − 1):

M =

 2xA − 2 2xB − 4 0 0
z2A 0 2xAzA 0
0 z2B 0 2xBzB

 .

A real zero of Q̃1 is non-singular if the matrix M – when specialized at that zero – has rank 3,
that is, one of the following 3× 3 minors of M is nonzero:

h1 := −4(xA − 1)xAzAz
2
B , h2 := −4(xB − 2)xBz

2
AzB ,

h3 := 8(xA − 1)xAxBzAzB , h4 := 8(xB − 2)xAxBzAzB .

It follows that Q̃1 has a nonsingular zero if and only if at least one of the following ideals has
nonempty real variety (for i = 1, 2, 3, 4):

Ii := ⟨g1, g2, g3, hiw − 1⟩ ⊆ R[xA, xB, zA, zB, w] ,

where w is a new variable (we refer the reader to [4, Chapter 13]). Indeed, we find that

VR(Ii) = ∅ for all i = 1, 2, 3, 4, and so Q̃1 has no nonsingular zero.

We proceed to Step 3. We define the idealQ
(1)
1 = ⟨g1, g2, g3, h1, h2, h3, h4⟩, whose real variety

then coincides with the real variety of J , and has dimension 0 (< 1). We again apply Steps 1

and 2, this time for Q
(1)
1 , as follows. This ideal can be decomposed as Q

(1)
1 = P

(1)
1 ∩ P

(1)
2 ,

where P
(1)
1 , P

(1)
2 are the following two prime ideals of R[xA, xB, zA, zB]:

P
(1)
1 = ⟨xA − 1, xB − 2, zA − 1, 2z2B − 1⟩, P

(1)
2 = ⟨xA − 1, xB − 2, zA + 1, 2z2B − 1⟩.

As zB ̸= 0 for any zero of P
(1)
i , it is straightforward to check that any zero of P

(1)
i is non-

singular, for i = 1, 2. As both xA− 1 and xB − 2 belong to Q
(1)
1 we conclude that the system

has ACR in both species, with ACR-values 1 and 2, respectively.
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4. Detecting zero-divisor ACR

In this section, we present a procedure for detecting ACR that works well for a type of ACR
we call “zero-divisor ACR”. We motivate and define this concept in Section 4.1, and then
present our procedure (Algorithm 1) – and examples of its usage – in Section 4.2. The ideas
behind this algorithm come from the theory of Gröbner bases for ideals involving parameters,
which we describe in Section 4.3.

4.1. Gröbner bases, elimination orders, and zero-divisor ACR. Fix i ∈ {1, 2, . . . , n},
and call x̂i = (x1, . . . , xi−1, xi+1, . . . , xn). An elimination order for x̂i on Q[x1, x2, . . . , xn] is a
monomial order such that every polynomial with leading monomial in Q[xi] belongs to Q[xi].
One instance of such an order is a lexicographic order with xi smaller than the rest of the
variables. Another example is a product order where

x̂α
i x

a
i ≻ x̂β

i x
b
i ⇐⇒ x̂α

i ≻ x̂β
i , or x̂α

i = x̂β
i and a > b.

Given an elimination order ≻ for x̂i on Q[x1, x2, . . . , xn], let ≻x̂i
denote the order on the

ring Q[xi][x̂i] obtained by restricting the order ≻ to the monomials in Q[x̂i]. We denote the
resulting leading coefficient of a polynomial f ∈ Q[xi][x̂i] as follows:

lcx̂i
(f) ∈ Q[xi] .

One fact that we use below is the well-known Elimination Theorem. This theorem states
that for any elimination order for x̂i on Q[x1, x2, . . . , xn], if we compute a Gröbner basis G
of an ideal I ⊆ Q[x1, x2, . . . , xn], then I ∩ Q[xi] ̸= {0} if and only if G ∩ Q[xi] ̸= ∅, and, in
this case, I ∩Q[xi] = ⟨G ∩Q[xi]⟩ (see, for instance, [31, Theorem 4.8]).

Our aim is to use Gröbner bases to propose candidates for ACR species and their corre-
sponding ACR-values. We motivate this approach through the following example.

Example 4.1. Consider the following network and specified rate constants: G = {2A+C
1→

2A + 2C, A + C
3→ A, C

2→ 2C, 2A + D
1→ 2A + 2D, A + D

4→ A, D
3→ 2D, C

1→
B, B

1→ 0, A + C + D
1→ C + D, C + D

1→ A + C + D}. The steady-state ideal I is
generated by fA = −xAxCxD + xCxD, fB = xC − xB, fC = x2

AxC − 3xAxC + 2xC , and
fD = x2

AxD − 4xAxD + 3xD.

Consider the lexicographic order xB > xC > xD > xA. The reduced Gröbner basis of I
with respect to this order is

(19) G = {x2
AxD − 4xAxD + 3xD, x2

AxC − 3xAxC + 2xC , xAxCxD − xCxD, xB − xC} .
As G ∩Q[xA] = ∅, the Elimination Theorem implies that that I ∩Q[xA] = {0}. The leading
coefficients with respect to x̂A = (xB, xC , xD) are, respectively:

x2
A − 4xA + 3, x2

A − 3xA + 2, xA − 1, 1 .

From the third element of the Gröbner basis G, namely, xAxCxD−xCxD = xCxD(xA− 1),
we see that neither xCxD nor xA − 1 is in I, and so xA − 1 is a zero-divisor of I (recall
Definition 3.3). Moreover, it is easy to deduce from this polynomial that, in every positive
steady state, the value of xA must be 1. That is, there is ACR in XA with ACR-value 1.

Example 4.1 inspires the next definition and the algorithm in the next subsection.
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Definition 4.2. Assume α > 0. A mass-action system (G, κ∗) has zero-divisor ACR in Xi

with ACR-value α if (G, κ∗) has ACR in Xi with ACR-value α and either (1) xi−α is in the
steady-state ideal or (2) xi − α is a zero-divisor of the steady-state ideal.

Example 4.3 (Example 3.15, continued). We return to the Shinar and Feinberg network (15).
From the Gröbner basis shown earlier, we see that the linear polynomial g1/x7 = κ7κ9x5 −
(κ3κ8+κ3κ9) is a zero-divisor of I, as g1/x7 /∈ I, x7 /∈ I, and g1 ∈ I. Therefore, for all choices
of rate constants, this network exhibits zero-divisor ACR (in the fifth species, namely, Yp).

Remark 4.4. The concept of zero-divisor ACR is closely related to condition (13), which we
saw earlier is neither necessary nor sufficient for ACR. In particular, we saw a mass-action
system with ACR, but not zero-divisor ACR (Example 3.11). We also saw a situation where
we have zero-divisor ACR, and saturating the steady-state ideal was not enough to make
xi − α, where α is the ACR-value, appear in the ideal (Example 3.10).

Remark 4.5 (Zero-divisor ACR detection through Gröbner bases). For many mass-action
systems (or even networks), zero-divisor ACR can be detected from a reduced Gröbner basis
G under a suitable elimination order for x̂i. More precisely, in many examples in the literature,
when there is zero-divisor ACR in some species Xi with ACR-value α, the following holds:

there exists α ∈ R>0 such that xi − α divides some element of G .(20)

Such a system was shown in Example 4.1. As for a network, recall, in Examples 3.15 and 4.3,
that κ7κ9x5−(κ3κ8+κ3κ9) divides the first element of the reduced Gröbner basis of the steady-
state ideal I with respect to the lexicographic order x1 > x2 > x3 > x4 > x6 > x7 > x5.
Thus, in this example, ACR in X5 is detected from (factors of) the Gröbner basis, as in (20).

In light of Remark 4.5, it is natural to ask whether condition (20) is necessary for zero-
divisor ACR. However, this is not true, as we see below in Example 4.6. This fact motivates
the need for Algorithm 1 in the next subsection.

Example 4.6 (Zero-divisor ACR is not detected through Gröbner bases). Consider the
following polynomials:

f1 = xBxC [(xA − 1)2(xB + 3) + (xC − 2)]

f2 = xBxC [(xA − 1)(xB + 3)2 − (xC − 2)] .

These equations lead to a mass-action system in three species A, B, and C with dxA/dt = f1,
dxB/dt = dxC/dt = f2 (recall Remark 2.10). The reduced Gröbner basis of the steady-state
ideal I = ⟨f1, f2⟩ with respect to the lexicographic order xB > xC > xA (which is an
elimination order for {xB, xC}, that is, for eliminating xA) is G = {g1, g2, g3, g4}, where

g1 = xBxC(xC − 2)(−xC + x3
A − 3x2

A + 3xA + 1) ,

g2 = xBxC(xBx
2
A − 2xBxA + xB + xC + 3x2

A − 6xA + 1) ,(21)

g3 = xBxC(−xBxC + 3xBx
2
A − 6xBxA + 5xB − xCxA + xC + 9x2

A − 16xA + 7) ,

g4 = xBxC(x
2
BxA − x2

B + 6xBxA − 6xB − xC + 9xA − 7) .

Observe that G ∩Q[xA] = ∅ (and so xA− 1 is not in I) and also that xA− 1 does not divide
any element of G.
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To confirm that this example shows that condition (20) is not necessary for zero-divisor
ACR, it suffices to show that there is zero-divisor ACR in A with ACR-value 1. To see that
xA − 1 is a zero-divisor of I, observe that the following polynomial belongs to I = ⟨f1, f2⟩:

h = f1 + f2 = (xA − 1)xBxC(xB + 3)[(xA − 1) + (xB + 3)] .

We saw earlier that xA − 1 is not in I, and it is straightforward to check that h/(xA − 1) =
xBxC(xB + 3)[(xA − 1) + (xB + 3)] also is not in I. Hence, xA − 1 is a zero-divisor of I.

Next, from examining the factors of h, we see that every positive steady state satisfies
xA = 1. We use this fact, together with the structure of the polynomials f1 and f2, to see
that the positive steady-state locus is {(1, xB, 2) | xB > 0}. This confirms that there is
zero-divisor ACR in species A with ACR-value 1 (and also ACR in species C).

4.2. Algorithm. The ideas in the prior subsection motivate Algorithm 1, which outputs
candidates for ACR species (and the corresponding ACR-values). Once we obtain a candidate
ACR-value α for speciesXi, we can compute the colon ideal I : (xi−α) to recover a polynomial
h such that the product (xi − α)h ∈ I (see Example 4.13).

Algorithm 1: Candidates for ACR

Input: A mass-action system (G, κ∗) with n species (and rate constants κ∗ in Q).
Output: A finite set S of pairs (Xj, β).
Initialize S = ∅;
Let I be the steady-state ideal of (G, κ∗);
for i ∈ {1, 2, . . . , n} do

Call x̂i = (x1, . . . , xi−1, xi+1, . . . , xn). Let G be a reduced Gröbner basis of I for an
elimination order for x̂i on Q[x1, x2, . . . , xn]. Let Gi := G ∩Q[xi];
if Gi ̸= ∅ then

Let h̃ denote the unique element of Gi;
for α a positive root of h̃ do

append (Xi, α) to S

else
for g ∈ G do

for α a positive root of the leading coefficient lcx̂i
(g) do

append (Xi, α) to S

We conjecture, as follows, that Algorithm 1 succeeds for all systems with zero-divisor ACR.

Conjecture 4.7. Consider a mass-action system (G, κ∗) with rational-number rate constants.
If (G, κ∗) has zero-divisor ACR in species Xi with ACR-value α, then (Xi, α) is one of the
outputs of Algorithm 1.

Remark 4.8. Recall from Definition 4.2 that zero-divisor ACR means that either (1) xi−α
is in the steady-state ideal or (2) xi−α is a zero-divisor of the steady-state ideal. In case (1),
it is straightforward to see that Conjecture 4.7 holds. Indeed, in that case, xi−α is the unique
element of G ∩Q[xi], and so (Xi, α) is an output of the algorithm.

Next, we present examples that show how to apply Algorithm 1 and interpret its output.
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Example 4.9 (Example 4.1, continued). Recall that the network in Example 4.1 has steady-
state ideal I = ⟨−xAxCxD + xCxD, xC − xB, x2

AxC − 3xAxC + 2xC , x2
AxD − 4xAxD + 3xD⟩.

• The reduced Gröbner basis G of I with respect to the lexicographic order xB > xC >
xD > xA was shown in (19), where we obtained G∩Q[xA] = ∅. Now Algorithm 1 asks
us to find the positive roots of the leading coefficients with respect to x = (xB, xC , xD);
these coefficients are x2

A − 4xA + 3, x2
A − 3xA + 2, xA − 1, 1. Therefore, the algorithm

outputs three pairs: (xA, 1), (xA, 3), and (xA, 2).
• The reduced Gröbner basis of I with respect to the lexicographic order xA > xC >
xD > xB is

G = {xC − xB, xAxBxD − xCxD, x2
AxB − 3xAxC + 2xC , x2

AxD − 4xAxD + 3xD}.
As G ∩ Q[xB] = ∅, the algorithm asks us to find the positive roots of the leading
coefficients with respect to x = (xA, xC , xD): 1 and xB. As there are no such positive
roots, the algorithm returns no candidates for ACR-values in xB.
• The situation for xC and xD is similar to xB: no candidate ACR-values are returned.

Thus, for this system, Algorithm 1 returns three possible ACR-values for species A, namely,
1, 2, and 3. Next, we show that, in fact, there is ACR in A, and the ACR-value is one of
the candidates, namely, 1. Indeed, it is straightforward to see that the positive steady-state
locus is {(1, α, α, β) | α > 0, β > 0}. As we saw in Example 4.1, xA− 1 is a zero-divisor of I
and hence the system has zero-divisor ACR in the species A.

In the prior example, as we perform Algorithm 1, we encounter the empty set for Gi :=
G ∩Q[xi]. In contrast, this set is nonempty in the next example.

Example 4.10. Consider the network G = {2A + C
1→ 2A + 2C, A + C

3→ A, C
2→

2C, C
1→ B, B

1→ 0, A
4→ 0, 0

3→ A, 2A
1→ 3A}. When we apply Algorithm 1, we obtain

that the reduced Gröbner basis with respect to the lexicographic order xB > xC > xA of the
steady-state ideal contains the polynomial x2

A− 4xA+3 ∈ Q[xA]. Thus, the pairs (xA, 1) and
(xA, 3) are given as outputs. With arguments similar to those in Example 4.1, we confirm
there is ACR in species A with ACR-value 1.

The next example features a network with vacuous ACR.

Example 4.11. Consider the network G = {A+C
1→ 2C, C

1→ A, C
1→ B+C, B

1→ 2B}.
The reduced Gröbner basis with respect to the lexicographic order xB > xC > xA of the
steady-state ideal is G = {xAxC − xC , xB + xC}. Algorithm 1 reveals xA = 1 as a candidate
for ACR-value, but this system has no positive steady states.

Example 4.12 (Example 4.3, continued). We return to the Shinar and Feinberg network (15).
Symbolic rate constants appear in what follows, even though the algorithm applies to special-
ized values of rate constants, because the steps of the algorithm (in this case) do not depend
on the specific choice of the rate constants. We apply the algorithm, as follows. Recall that
the reduced Gröbner basis G of the steady-state ideal I with respect to the lexicographic
order x1 > x2 > x4 > x6 > x7 > x5 satisfies G ∩ Q[x5] = ∅. We therefore consider the
positive roots of the leading coefficients with respect to x = (x1, x2, x3, x4, x6, x7), which are
κ7κ9x5− (κ3κ8 + κ3κ9), κ6, κ4, κ3, κ1. We obtain (X5,

κ3κ8+κ3κ9

κ7κ9
) as an output of Algorithm 1.

As we saw earlier, indeed X5 = Yp exhibits (zero-divisor) ACR.
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Next, we revisit Example 4.6 in which zero-divisor ACR was not detected by the Gröbner
basis of the steady-state ideal. Fortunately, however, ACR is detected through Algorithm 1.

Example 4.13 (Example 4.6, continued). We apply Algorithm 1 to the mass-action system
in Example 4.6. The leading coefficients of the Gröbner basis elements (21) with respect to
x = (xB, xC) are 1, (xA − 1)2, 1, and xA − 1, respectively. The algorithm therefore outputs
the pair (xA, 1). (Recall that, indeed, there is ACR in species A.)

Next, we consider species C. In the reduced Gröbner basis of I with respect to the lex-
icographic order xA > xB > xC , the leading coefficients with respect to x = (xA, xB) are
xC(xC − 2) and xC . Hence, the algorithm returns the pair (xC , 2), which is the actual ACR-
value for species C, as we saw in Example 4.6. In fact, xC−2 is also a zero-divisor of I, which
is straightforward to check from the first element of the Gröbner basis (21).

Note that once we know that, for example, the ACR value for xA could be α = 1, then we
can compute the colon ideal I : (xA−1) to recover h = (xA−1)xBxC(xB+3)[(xA−1)+(xB+3)].
From this, we see that there is zero-divisor ACR in species xA with ACR-value 1.

4.3. Connection to parametric ideals and Gröbner covers. In the future, we would
like to resolve Conjecture 4.7. One approach to doing so is through the theory of Gröbner
bases for ideals involving parameters, which in fact inspired Algorithm 1 in the first place.
We describe this theory, as it pertains to the algorithm, in this subsection.

In general, a parametric ideal is an ideal I ⊆ F(t1, t2, . . . , tm)[x1, x2, . . . , xn], where t1, t2, . . . , tm
are the parameters. Given a Gröbner basis G of I, a fundamental problem is to find a
proper variety W ⊆ Fm such that G remains a Gröbner basis under all specializations
(t1, t2, . . . , tm) 7−→ (a1, a2, . . . , am) ∈ Fm ∖ W . Much theory has been developed to tackle
this problem (see, for instance, the book [53]). A common approach involves turning the pa-
rameters into variables, that is, considering the ring F[x, t] = F[x1, x2, . . . , xn, t1, t2, . . . , tm].

In this setting, a result of Suzuki and Sato is fundamental [71] (see also [53, Lemma 3.11]
and [16, §6.3 Proposition 1]). We note that their result holds for an arbitrary (finite) number
of parameters t1, t2, . . . , tm. However, to simplify the exposition, we restrict this result to the
one-parameter case and rephrase it in our context which is when this parameter is in fact
one of the variables xi. The resulting Lemma 4.14 inspired our Algorithm 1.

Lemma 4.14 (Suzuki-Sato). Given an ideal I ⊆ Q[x1, x2, . . . , xn], fix i ∈ {1, 2, . . . , n} and
call x̂i = (x1, . . . , xi−1, xi+1, . . . , xn). Consider an elimination order ≻ for x̂i on Q[x1, x2, . . . , xn],
and let G = {g1, g2, . . . , gs} be a reduced Gröbner basis of I with respect to this order. If α ∈ Q
is such that lcx̂i

(gj)|xi=α ̸= 0 for any 1 ≤ j ≤ s with gj /∈ G ∩ Q[xi], then the specialized set

{g1|xi=α, g2|xi=α, . . . , gt|xi=α} is a reduced Gröbner basis of the specialized ideal I|xi=α ⊆ Q[x̂i]
with respect to the order ≻x̂i

.

Remark 4.15. Lemma 4.14 extends to any computable field F, in which case we consider α
in the algebraic closure of F [53].

As explained above, Lemma 4.14 is part of the theory of parametric Gröbner bases. There
are several algorithms for computing with parametric Gröbner bases, one of which is imple-
mented in Singular [18] and is based on the theory of Gröbner covers [53, 54]. We end this
section by illustrating this theory, as it pertains to ACR, through the following example.
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Example 4.16 (Example 4.13 continued; zero-divisor ACR detected via Gröbner covers). We
revisit the mass-action system from Example 4.6, in which the steady-state ideal is generated
by the polynomials f1 = xBxC [(xA − 1)2(xB + 3) + (xC − 2)] and f2 = xBxC [(xA − 1)(xB +
3)2 − (xC − 2)]. The following Singular code computes the Gröbner cover of I = ⟨f1, f2⟩:

LIB "grobcov.lib";

ring r = (0,xA),(xB,xC),dp;

ideal I = xB*xC*((xA-1)^2*(xB+3)+(xC-2)), xB*xC*((xA-1)*(xB+3)^2+(xC-2));

grobcov(I,("rep",1));

We suppress the lengthy output, but describe its structure and meaning, as follows. The
output of grobcov is a list of lists (in this example, the list has two elements). Each entry of
the main list is a triple of the form {initial, basis, segment}, where:

• “initial” is a monomial ideal which is the initial ideal of any specialization at any
point in “segment”, and
• “basis” is the corresponding reduced Gröbner basis.

The option (“rep”,1) returns the segments in canonical C-representation, that is, as pairs
of the form (J1, J2) representing the interval V (J1) ∖ V (J2), where the ideals J1 and J2 are
radical and J2 ⊇ J1.

In our case, the output shows that any specialization of the ideal I at any point in the
segment V (0) ∖ V (xA − 1) = Q ∖ {1} has the initial ideal ⟨x2

BxC , xBx
3
C⟩. However, when

xA = 1, the initial ideal is ⟨xBx
2
C⟩. Recall from Example 4.6 that xA = 1 is precisely the

ACR-value for the corresponding mass-action system. Thus, in this example, the presence of
ACR is detected via Gröbner covers.

Example 4.16 motivates the following question: If a mass-action system has zero-divisor
ACR, is this always detected via a Gröbner cover? We believe that an affirmative answer
would be a key step toward resolving Conjecture 4.7, and therefore validating Algorithm 1.

5. Numerical methods for detecting or precluding ACR

In Section 2.4, we gave necessary and sufficient conditions for ACR in a reaction system
(G, κ) in terms of the positive steady-state locus >0

√
I(G, κ) (recall Proposition 2.15). As

discussed throughout, the fundamental challenge to detecting ACR is that it requires an
understanding of the ideal >0

√
I(G, κ). While a few (restricted) techniques exist to fully

understand >0
√

I(G, κ), especially when working over R rather than Q, we can gain some
knowledge using techniques from numerical algebraic geometry.

Numerical algebraic geometry is concerned with computing solutions to a system of poly-
nomial equations, often using methods based on polynomial homotopy continuation (the
fundamentals of this theory can be found in [7]). Algorithms in numerical algebraic geometry
aim to find isolated solutions to systems, and also the positive-dimensional solution sets,
e.g. curves and surfaces. In essence, these algorithms give a geometric way to decompose a
complex variety, and with care, can yield insight into the decomposition of a real variety.

In this section, we start by providing background on real algebraic sets (Section 5.1) and
describing some tools and objects from numerical algebraic geometry, in particular, numer-
ical irreducible decompositions and witness sets (Section 5.2). We then use these tools to



ABSOLUTE CONCENTRATION ROBUSTNESS 25

give an algorithm for detecting ACR (Procedure 5.9) and an algorithm for precluding ACR
(Procedure 5.12). The first uses numerical irreducible decompositions and witness sets to
see whether any component of VC(I(G, κ)) lies in a hyperplane of the form {xi − α} (Sec-
tion 5.3). The second uses tools for numerically solving polynomial equations to find a dense
set of points on each component of VR(I(G, κ)) that intersects a specified region of the positive
orthant (Section 5.4). In this section, we only consider ACR for systems (G, κ) as opposed
to networks. In particular, we view κ as fixed.

Remark 5.1. In this section, we work with the steady-state ideal I(G, κ), rather than the
positive-restriction ideal J(G, κ) (from Definition 3.18). This choice allows us to keep the
number of equations and variables to half of those in the positive-restriction ideal. Neverthe-
less, both of the algorithms we propose in this section can be used with J(G, κ).

5.1. Real algebraic sets. We start this section by introducing real algebraic sets and re-
stating Proposition 2.15 from a geometric point-of-view (see Proposition 5.2).

A real algebraic set, or real algebraic variety, is the intersection of a complex variety with
Rn. For instance, consider the real variety

VR(
>0
√

I(G, κ)) = {x ∈ Rn | h(x) = 0 for all h ∈ >0
√
I(G, κ)} .

We can rewrite this variety as the following intersection:

VR(
>0
√

I(G, κ)) = Rn ∩ VC(
>0
√
I(G, κ)) ,

where
VC(

>0
√

I(G, κ)) = {x ∈ Cn | h(x) = 0 for all h ∈ >0
√
I(G, κ)} .

Proposition 5.2. A reaction system (G, κ) has ACR in Xi if and only if there exists α > 0

such that VR(
>0
√

I(G, κ)) lies in the hyperplane {xi − α = 0}.

Proof. This result follows immediately from Proposition 2.15. □

As we explain in the next subsection, every complex variety can be written as the union of
irreducible components. Real algebraic sets can also be decomposed. Indeed, a real algebraic
set VR can be decomposed into the union of finitely many path-connected sets C1, C2, . . . , Cℓ

where, for each i, both Ci and VR∖Ci are closed in the Euclidean topology. Each such set Ci

is a real connected component of VR (for more details, see [9]). The following result pertains

to connected components of VR(
>0
√

I(G, κ)), and it follows immediately from Proposition 5.2.

Corollary 5.3. A reaction system (G, κ) has ACR in Xi if and only if there exists α > 0 such

that every real connected component of VR(
>0
√

I(G, κ)) lies in the hyperplane {xi − α = 0}.

Recall from (8) the containments I(G, κ) ⊆
√
I(G, κ) ⊆ >0

√
I(G, κ). It follows that

VC(
>0
√
I(G, κ)) ∩ Rn ⊆ VC(

√
I(G, κ)) ∩ Rn ⊆ VC(I(G, κ)) ∩ Rn,

and so each real connected component of VR(
>0
√
I(G, κ)) is contained in a real connected com-

ponent of VR(I(G, κ)). This fact, together with Corollary 5.3, yields the following sufficient
condition to detect ACR.

Proposition 5.4. If there exists α > 0 such that every real connected component of VR(I(G, κ))
lies either in some coordinate hyperplane {xj = 0} or in the hyperplane {xi − α = 0}, then
the reaction system (G, κ) has ACR in Xi.
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The condition in Proposition 5.4 is sufficient, but not necessary for ACR. For example,
if I(G, κ) = ⟨xAxB(xA − 1)(xB + 2)⟩, then VR(I(G, κ)) has four real components: the real
hyperplanes {xA = 0}, {xB = 0}, {xA − 1 = 0}, and {xB + 2 = 0}. By examining the
last component, {xB + 2 = 0}, we see that the reaction system (G, κ) does not satisfy the
hypothesis of Proposition 5.4, despite having ACR in species A.

Remark 5.5. Proposition 5.4 is related to Remark 2.16, as the method of Pascual-Escudero
and Feliu in [61] aims to determine whether every real connected component of VR(

>0
√

I(G, κ))
is contained in a finite union of hyperplanes of the form {xi − α = 0}.

In this section, we give two numerical techniques to check for ACR. Procedure 5.12 – for
precluding ACR – relies on Proposition 5.4, while Procedure 5.9 – for detecting ACR – relies
on numerical irreducible decompositions, which we define in the next subsection.

5.2. Numerical irreducible decomposition and witness sets. Let VC be a complex
variety. The pure j-dimensional component of VC is the union of the irreducible components
of dimension j. Thus, the variety VC has an irreducible decomposition of the form

(22) VC =

dimVC⋃
j=0

Vj =

dimVC⋃
j=0

kj⋃
l=1

Vj,l ,

where Vj is the pure j-dimensional component of VC, and each Vj,l is a j-dimensional ir-
reducible component, which can be found using symbolic or numerical methods. Symbolic
methods, which are more costly, find irreducible decompositions algebraically, and the out-
put is a set of ideals described by generators. In contrast, methods using numerical algebraic
geometry find numerical irreducible decompositions by combining tools from algebraic geom-
etry and numerical analysis (e.g., via a polynomial homotopy continuation), and the output
is a witness set.

Here we briefly describe numerical irreducible decompositions (see [7] for details). At a
high level, each such decomposition is a collection of points obtained from intersecting each
complex component of the variety with an affine generic linear space. In particular, let Vj,l

be a j-dimensional irreducible component of VC with dj,l = deg Vj,l; then for a fixed j-
codimensional generic affine linear space Hj,l ⊆ Cn, the intersection Vj,l ∩Hj,l consists of dj,l
points. In this context, we will use the genericity condition in [69, §13.2]. In particular, an
affine linear space H of codimension j defined by a linear system L = (L1, L2, . . . , Lj) =
0 is generic with respect to an irreducible algebraic set X ⊆ Cn if for any given subset
{Li1 , Li2 , . . . , Lir} ⊆ {L1, L2, . . . , Lj} it follows that (1) either X ∩ VC(Li1 , Li2 , . . . , Lir) is
empty or dim (X ∩ VC(Li1 , Li2 , . . . , Lir)) = dimX − r ≥ 0, and (2) the singular points of
X ∩ VC(Li1 , Li2 , . . . , Lir) are a subset of the singular points of X. In the case of an algebraic
set X that is reducible, an affine linear space H defined by a linear system L is generic
with respect to X if it is generic with respect to all irreducible components of X, plus all
irreducible components of intersections of any number of the irreducible components of X.

After associating to each Hj,l a linear system Lj,l, such that VC(Lj,l) = Hj,l. The set Vj,l ∩
VC(Lj,l) = Vj,l ∩Hj,l is called a witness point set for Vj,l. The tripleWj,l = {I(VC), Lj,l, Vj,l ∩
VC(Lj,l)} is a witness set for Vj,l. A numerical irreducible decomposition of VC is of the form

(23)

dimVC⋃
j=0

kj⋃
l=1

Wj,l ,
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where Wj,l is a witness set for a distinct j-dimensional irreducible component of VC and the
union operation is a formal union. By construction, each witness set includes information
about the dimension and degree of the corresponding component.

Next, if we change our choice of generic linear space VC(Lj,l), then the set of points in
Vj,l ∩ VC(Lj,l) will change, unless j = 0 (that is, unless Vj,l is a 0-dimensional component).
We state this observation formally, as follows.

Proposition 5.6. Let VC ⊆ Cn be an irreducible complex variety of dimension d > 0. Assume
that there exist α ∈ C, i ∈ {1, 2, . . . , n}, and an affine codimension-d linear space H1 that is
generic with respect to VC such that pi = α for all p ∈ VC ∩ H1. Assume, additionally, that
there exists an affine codimension-d linear space H2 that is generic with respect to both VC
and VC ∩ {xi − α = 0}, such that qi = α for all q ∈ VC ∩H2. Then VC lies in the hyperplane
{xi − α = 0}.

Proof. Assume H1 is a generic affine codimension-d linear space with respect to VC, and H2

is a generic affine codimension-d linear space with respect to both VC and VC ∩{xi−α = 0}.
Now assume pi = qi = α for all p ∈ VC∩H1 and q ∈ VC∩H2. By the genericity of H1 and H2,
the sets VC ∩H1 and VC ∩H2 are both nonempty zero-dimensional sets containing the same
number of points [69, Theorem 13.2.1], in particular, VC ∩H2 ∩ {xi − α = 0} is nonempty.

Now, suppose VC does not lie in the hyperplane {xi − α = 0}. This implies that
dim (VC ∩ {xi − α = 0}) ≤ d−1, and thus, by the genericity ofH2, the set VC ∩H2 ∩ {xi−α =
0} is empty, a contradiction. □

Remark 5.7. The hypothesis in Proposition 5.6 would be satisfied with probability-one by
choosing affine codimension-d linear spaces H1 and H2 that are generic with respect to VC.

The next subsection shows how to use numerical irreducible decompositions to detect ACR.

Remark 5.8. Numerical irreducible decompositions can be computed using software such
as Bertini [6], PHCpack [75], and HomotopyContinuation.jl [10].

5.3. ACR via numerical irreducible decomposition. Consider the complex variety of
the steady-state ideal of a mass-action system (G, κ) with n species:

V G,κ
C = V (I(G, κ)) = {x ∈ Cn | fκ(x)1 = fκ(x)1 = . . . fκ(x)n = 0} .

It follows from Proposition 5.6 that we can detect ACR by computing two (distinct)
numerical irreducible decompositions and then comparing results. This observation underlies
the next procedure. As the procedure requires checking equality up to an estimation error δ,
we refer to the ACR detected by the procedure as Numerical ACR within δ. Note though,
due to estimation error, it is possible that the procedure falsely detects ACR.

Procedure 5.9. Detecting Numerical ACR by numerical irreducible decomposition

Input. A reaction system (G, κ∗) with ideal I(G, κ∗) generated by steady-state equations
fκ∗(x) = (fκ∗(x)1, fκ∗(x)2, . . . , fκ∗(x)n). Numerical tolerance δ > 0.

Output. “Numerical ACR within δ” or “Inconclusive.”

Step 1. Compute two distinct numerical irreducible decompositions of V G,κ
C and store witness

sets in two lists, W and W ′.
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Step 2. Remove witness sets that represent boundary components fromW andW ′. In partic-
ular, for each witness set Wj,l = {I(VC), Lj,l, Vj,l ∩ VC(Lj,l)}, if there exists 1 ≤ i ≤ n
such that for all points (x1, x2, . . . , xn) ∈ Vj,l ∩ VC(Lj,l) it is the case that |xi| < δ,
then update W by removing Wj,l. Repeat the process for W ′.

Step 3. If there exists a coordinate xi such that for all the points in Vj,l ∩ VC(Lj,l), ranging
over all Wj,l ∈ W , and for all the points in Vj,l ∩ VC(L

′
j,l), ranging over all W ′

j,l ∈ W ′,
the absolute value of pairwise differences of the ith coordinates is less than δ, then
return “Numerical ACR in Xi within δ.”

Step 4. Otherwise, return “Inconclusive.”

Proof of correctness of Procedure 5.9. This follows from Propositions 5.2 and 5.6 and Re-
mark 5.7. □

Procedure 5.9 returns “Inconclusive” when there are two points in the returned witness sets
that differ at every coordinate. In this case, since we are working over C, we cannot preclude
ACR because we do not know how each component intersects the positive real orthant.
For example, a numerical irreducible decomposition of the system in Example 2.4 returns
three witness sets, one for each of the three hyperplanes {xB = 0}, {xA −

√
κ1/κ2 = 0},

{xA +
√

κ1/κ2 = 0}. After removing the witness set that corresponds to the hyperplane
{xB = 0}, the remaining witness points (one for each remaining hyperplane) do not agree on
any coordinate, however, the corresponding system does in fact have ACR in species A.

In practice, homotopy continuation software that computes numerical irreducible decompo-
sitions use random coefficients to define the intersecting linear spaces, thus, since it cannot be
guaranteed that the linear spaces are indeed generic, they are “probability one” algorithms.

Example 5.10. (Lee et al. [47] Wnt model) Here we use Procedure 5.9 to test whether a
model of Wnt pathway has ACR. The network is displayed in the input below. The model de-
scribes known interactions between core components of the canonical pathway where species
can become active or inactive, denoted by a subscript a or i, respectively.As far as we are
aware, our analysis is the first testing of ACR in the Lee et al. Wnt model. To do so, we use
Macaulay2 [29] calling the ReactionNetworks.m2 package [33], the NumericalAlgebraicGeometry.m2
package [48], and the following code. In the code, we substitute the reaction rates with ran-
dom rational positive values. We use δ = 10−8 since that is the default error tolerance in
NumericalAlgebraicGeometry.m2.

RN= reactionNetwork({"Di<-->Da", "Ya<-->Yi", "Da+Yi-->Da + G + CNA", "G + CNA --> Yi",

"Yi --> G + CNA", "A+N<-->CNA", "Ya+X<-->CXY", "CXY-->CYXp", "CYXp --> Xp + Ya","Xp-->0",

"X<-->0", "0<-->N", "X+T<-->CXT", "X+A<-->CXA"}, NullSymbol => "0");

R = createRing(RN,QQ);

I = ideal( subRandomReactionRates RN);

S=QQ[RN.ConcentrationRates];

J = sub(I, S);

NV1 = numericalIrreducibleDecomposition(J);

Components1=components NV1;

This returns to us the following numerical variety with a single witness set representing a
single irreducible component of dimension 4 and degree 7:

i1: peek NV1

o1= NumericalVariety{4 => {(dim=4,deg=7)}}
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Taking a peek at the witness point of the component gives us

i1: (points Components1_0)_0

o1 = {-.257725+.843632*ii, -1.23708+4.04943*ii, -.351557-.187174*ii, -2.87105-1.52859*ii,

-.415284+3.13649*ii, -1.6121-.443075*ii, -.286596-.0787689*ii, 3, -.256615+.671232*ii,

.479671-.417656*ii, 1.5989-1.39219*ii, 1.19918-1.04414*ii, -1.52228+3.79967*ii,

-.493674-.456425*ii, 3.16043-4.30398*ii}

We can see that there is a 3 in the 8th entry, which corresponds to Axin (N). In fact, in
this example, all seven witness points contains a 3 in the 8th entry. A second witness point
can be inspected using the following command, but we do not present the output here:

(points Components1_0)_1

Comparing witness points in this first decomposition suggests that we may have ACR.
Following Procedure 5.9, we can confirm ACR by performing a second numerical irreducible
decomposition. This amounts to choosing a new generic linear space VC(L4,1). Again, we get
a numerical variety of dimension 4 and degree 7.

i1: NV2 = numericalIrreducibleDecomposition(J);

i2: peek NV2

o2= NumericalVariety{4 => {(dim=4,deg=7)}}

Again, every witness point has a 3 in the 8th entry; one such point is shown below.

i1: (points Components2_0)_1

o1 = {-.691939+.081125*ii, -3.32131+.389401*ii, .434359+.0253714*ii, 3.54727+.2072*ii,

-.182904-.70573*ii, .307375-3.42684*ii, .054645-.609217*ii, 3, .201325-.0071503*ii,

.194731+.0044491*ii, .649103+.014830*ii, .486827+.0111228*ii, -3.10059+6.38549*ii,

-.132244+.29891*ii, .16613-3.07604*ii}

Since each coordinate corresponding to Axin (N) is within δ for all points in both witness
sets, we conclude that the system has Numerical ACR in N within δ = 10−8.

5.4. ACR via numerically computing points on each real connected component.
While finding the real connected components of a real algebraic set symbolically is challeng-
ing, we can gain information about the connected components by using numerical algebraic
geometry. In particular, using results from [24, 32, 65], we can find at least one point on each
real connected component, and by repeating this procedure we can find multiple points on
each component. In fact, we can find a provably dense set of points on each real connected
component [24]. This yields a numerical algorithm for precluding ACR (Procedure 5.12).

Given a reaction system (G, κ) with ideal I(G, κ) generated by fκ(x) = (fκ(x)1, fκ(x)2, . . . , fκ(x)n),
we can find a real point on every component of VR(I(G, κ)) using an approach by Seiden-
berg [65]. In that approach, we let g = fκ(x)

2
1 + fκ(x)

2
2 + · · ·+ fκ(x)

2
n, and choose a random

point w ∈ Rn. We then solve the following system in indeterminates x and λ = (λ0, λ1):

g(x) = 0,(24)

λ0(x− w) + λ1∇g = 0 .

For the system (24), which is referred to as the Fritz John optimality conditions, the
solutions will include the closest point on VR(I(G, κ)) to the point w. As described in [32],
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solutions to the Fritz John optimality conditions can be found through constructing and, in
turn, tracking a homotopy. For β ∈ Cn−d, the homotopy we want to consider is

(25) Hw,β(x, λ, t) =

[
g(x)− tβ

λ0(x− w) + λ1∇g = 0

]
.

For generic choices of w and β, the homotopy Hw,β is a well-constructed homotopy [24,
Proposition 3.2]. In practice, this means that we can find the solutions to the system in
(25) by tracking a finite number of paths from the solutions Hw,β(x, λ, 1) at t = 1 to the
target solutions Hw,β(x, λ, 0) at t = 0, which are solutions of (24). Such homotopies can
be tracked using polynomial homotopy continuation solvers Bertini [6], PHCpack [75], and
HomotopyContinuation.jl [10].

Repeatedly choosing pairs (w, β), tracking the resulting homotopy (25), and projecting
target solutions at t = 0 onto the x-coordinates gives us a way to find multiple points on
each component. Moreover, using Algorithm 4.2 in [24], we can find a dense sample of points
on VR(I(G, κ)) in a given region, as follows.

Lemma 5.11. There is an algorithm, which we call DenseSamplingAlgorithm, with the
following input and output:

• Input: A set of real polynomials f = (f1, f2, . . . , fk) on n variables, a box R =
[a1, b1]× · · · × [an, bn], a sampling density ϵ > 0, and an estimation error 0 ≤ δ < ϵ.
• Output: A list A of points that form an (ϵ, δ)-sample of VR(f) ∩R.

Here, an (ϵ, δ)-sample means (i) every point in A is within δ of a point in VR(f) ∩ R, and
(ii) every point in VR(f) ∩R is within ϵ of a point in A.

The next procedure shows how to numerically preclude ACR using DenseSamplingAlgorithm.
This method can also be used to gain a better understanding of the components of VR(

>0
√
I(G, κ)).

Procedure 5.12. Numerically precluding ACR by computing points on each real connected
component

Input. A reaction system (G, κ∗) with ideal I(G, κ∗) generated by steady-state equations
fκ∗(x) = (fκ∗(x)1, fκ∗(x)2, . . . , fκ∗(x)n), a box R = [a1, b1] × · · · × [an, bn] with
0 < ai < bi, a sampling density ϵ, and an estimation error δ with 0 ≤ δ < ϵ.

Output. “No Numerical ACR” or “Inconclusive”

Step 1. Let Sols be the output of DenseSamplingAlgorithm[fκ(x), R, ϵ, δ].
Step 2. If |Sols| = 0 or 1, or if there exists a coordinate xi such that for all the points in Sols

the absolute value of pairwise differences of the ith coordinates is less than δ, then
return “Inconclusive”.

Step 3. Else, return “No Numerical ACR”.

Proof of correctness of Procedure 5.12. The correctness of the procedure follows from [24],
Corollary 5.3, and the fact that the box R is contained in the positive orthant. □

Procedure 5.12 computes a sample of VR(
>0
√

I(G, κ)) that is dense when intersected with
a box. Yet, to preclude ACR, it is sometimes enough to sample only two sets of points.
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Example 5.13. Here we consider the one-site distributive phosphorylation cycle:

G =

{
S0 + E

κ1

⇄
κ2

X
κ3→ S1 + E, S0 + F

κ4

⇄
κ5

Y
κ6→ S1 + F

}
.

We let x1, x2, x3, x4, x5, and x6 represent the concentrations of S0, E,X, S1, F , Y , respectively.

We pick two random points w1 =
(
2
3
, 6, 2

7
, 1
2
, 2, 5

2

)
and w2 =

(
3
4
, 1
3
, 7
6
, 5
3
, 3
4
, 5
3

)
. Setting up and

tracking the homotopy in equation (25) twice returns the following two sets of real solutions:

Sols1 = {(1.35308, 1.08525, .734218, 1.58447, .273065, .262221),
(−.115201,−.190334, .0109633, .0497815, .129778, .00391547)}

Sols2 = {(.390274, 5.98197, 1.1673, .348599, 1.97325, .416894),
(.617545, .00506007, .00156241,−.0576906,−.0159594, .000558004)} .

Each set contains one positive solution. The positive solutions differ in every coordinate,
thus, we can numerically preclude ACR for the one-site distributive phosphorylation cycle.
Macaulay2 code for this example can be found in Appendix C.

6. Discussion

This paper gives an overview into the algebra and geometry of absolute concentration
robustness. While at first glance, the property of ACR seems like it should be straightforward
to check algorithmically, this paper highlights the subtleties involved. Indeed, the problem
of detecting ACR ends up to be a nuanced problem in real algebraic geometry: Does every
positive real component of a complex algebraic variety lie in a hyperplane of the form {xi−α}?

The motivation for this study is biochemical reaction networks; however, there may be
other applications that distill down to the same question. Thus, this manuscript can serve as
guide in those cases. For example, there are several techniques that would be good first steps,
while others would be good second steps. Other techniques would be valuable for in-depth
case studies of parameterized polynomial systems.

The easiest to implement approaches in the setting of biochemical reaction networks are
those centered on graph theoretic and linear algebra tests. For example, Shinar and Feinberg
give a combinatorial condition on the graph when the reaction network has deficiency one,
and they show that ACR is impossible when the network has deficiency zero [66]. A next
approach would be those of [61] and [26], discussed in Remarks 2.16 and 5.5, that give a
necessary linear algebra condition for ACR, and thus, can be used to quickly preclude ACR.

From the point-of-view of computational algebraic geometry, given a reaction system (G, κ)
with steady-state ideal I, the first step in checking for ACR would be through previously
suggested methods as captured in Proposition 3.8 and Remark 4.5. In particular, we suggest
to first compute a Gröbner basis of I and check for an element of the form xi − α. In most
examples, this was enough for us to detect ACR. If that doesn’t work, then we suggest
computing the saturation I : (x1x2 · · ·xn)

∞ and checking for an element of the form xi − α.
Then, if that doesn’t work, compute each elimination ideal I ∩Q[xi] and check whether there
is a generator g of any of the elimination ideals such that g has a unique positive root. While
these three computations constitute reasonable first steps, as we saw in Example 3.10, none
of the conditions in Proposition 3.8 are necessary conditions for ACR. Indeed, this point is
the main motivation for this paper.
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If the methods suggested by Proposition 3.8 fail, either due to inconclusive results or
computational limitations, the next steps would be those proposed in Sections 3.3.3–4.2. If
the system is small, then a next step could be Procedure 3.29, which relies on computing a
decomposition of the positive-restriction ideal and successively augmenting the ideals with
Jacobian minors. However, it may be that the system is too large to effectively compute
decompositions in a reasonable time. In this case, or in the case that we have irrational
rate constants κ or we expect irrational ACR-value α, then we suggest numerically checking
for ACR through a numerical irreducible decomposition (Procedure 5.9). For those looking
for a more complete algebraic or geometric description of a specific network in respect to
ACR, then we suggest Algorithm 1, which examines the leading coefficients of generators of
elimination ideals obtained through Gröbner bases, as well as Procedure 5.9, which returns
a dense sample of each real component intersected with the positive orthant.

Finally, Section 4 raises some interesting questions related to computational algebraic
geometry and ACR. In particular, we asked whether zero-divisor ACR can always be detected
from a Gröbner basis with respect to an elimination order (Conjecture 4.7). An affirmative
answer would certify that Algorithm 1 always succeeds in detecting zero-divisor ACR, thereby
strengthening the connection between ACR and computational algebraic geometry.
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[62] Mercedes Pérez Millán and Alicia Dickenstein. The structure of MESSI biological systems. SIAM J.
Appl. Dyn. Syst., 17(2):1650–1682, 2018.

[63] Jean-Jacques Risler. Une caractérisation des idéaux des variétés algébriques réelles. C. R. Acad. Sci.
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Appendix A. The Real Nullstellensatz for rational coefficients

The Real Nullstellensatz (Proposition 3.7) is well known, but we did not readily find the
version we need in the literature. Accordingly, the aim of this appendix is to show how
Proposition 3.7 follows from a result in [49].

The authors of [49] considered an ordered field K and a real closed extension of K, de-
noted by R (for instance, K = Q and R = R). Next, they defined the following subset of
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K[x1, x2, . . . , xn]:

N (∅) :=

{
m∑
i=1

ωiV
2
i | m ∈ Z≥0, ω1, ω2, . . . , ωm ∈ K>0, V1, V2, . . . , Vm ∈ K[x1, x2, . . . , xn]

}
.

With this notation, the following result is called the Real Nullstellensatz in [49]:

Proposition A.1 (Theorem 1.11 in [49]). Let Q,P1, P2, . . . , Ps ⊆ K[x1, x2, . . . , xn], and let J
denote the ideal in K[x1, x2, . . . , xn] generated by P1, P2, . . . , Ps. If Q vanishes on the common
zero set of P1, P2, . . . , Ps in Rn, then there exist e ∈ Z>0, N ∈ N (∅), and Z ∈ J such that

Q2e +N = Z .

Now we use Proposition A.1 (specifically, the case of K = Q) to prove Proposition 3.7.

Proof of Proposition 3.7. Let J be an ideal of Q[x1, x2, . . . , xn]. We must show that R
√
J (the

real radical of J) equals the vanishing ideal of VR(J) (the real variety of J).

For the first containment, let P ∈ R
√
J and let x ∈ VR(J). We must show that P (x) = 0.

As P ∈ R
√
J , there exist m, ℓ ∈ Z≥0 and h1, h2, . . . , hℓ ∈ Q[x1, x2, . . . , xn] such that P 2m +∑ℓ

i=1 h
2
i ∈ J . Thus, as x ∈ VR(J), we have the following sum of squares:

(P (x))2m +
ℓ∑

i=1

(hi(x))
2 = 0 .

We conclude, as desired, that P (x) = 0.

For the reverse containment, consider the ordered field K = Q. Every positive rational
number is a sum of squares, as follows:

p

q
= p · q · 1

q2
=

1

q2
+ · · ·+ 1

q2︸ ︷︷ ︸
p·q times

,

for p, q ∈ Z>0. This fact readily implies that N (∅) consists of sums of squares, as follows:
N (∅) = {

∑m
i=1 V

2
i | Vi ∈ Q[x1, x2, . . . , xn]}. This property of N (∅), together with Proposi-

tion A.1 (applied to K = Q and R = R), imply the following: for every P in the vanishing
ideal of VR(J), there exist e,m ∈ Z>0 and V1, V2, . . . , Vm ∈ Q[x1, x2, . . . , xn] such that the sum

P 2e +
∑m

i=1 V
2
i is in J , that is, P ∈ R

√
J . Hence, the ideal of VR(J) is contained in R

√
J . □

Appendix B. Complex-number ACR

In this appendix, we widen our scope to the (algebraically closed field of the) complex
numbers C, where in general we lose chemical significance, but gain much from the theoretical
and computational point of view. Specifically, we introduce the notion of complex-number
absolute concentration robustness (CACR), which – in contrast to ACR – can be readily
detected from the steady-state ideal (Proposition B.6 and Algorithm 2).

In short, CACR generalizes the notion of ACR, by broadening the consideration from all
positive zeros to all complex zeros with nonzero coordinates.

Definition B.1 (CACR for mass-action systems). A mass-action system (G, κ) with n
species and mass-action ODEs as in (2), has:
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(1) complex-number absolute concentration robustness (CACR) in species Xi if, for every
x∗ ∈ (C∗)n satisfying fκ(x

∗)1 = fκ(x
∗)2 = · · · = fκ(x

∗)n = 0, the value of xi is the
same. This value of xi is the CACR-value.

(2) vacuous CACR if there does not exist x∗ ∈ (C∗)n satisfying fκ(x
∗)1 = fκ(x

∗)2 =
· · · = fκ(x

∗)n = 0.

As we do for ACR, we say that (G, κ) has CACR if it has CACR in some species. It is
immediate from the relevant definitions that CACR implies (possibly vacuous) ACR.

Proposition B.2 (CACR implies ACR). If a mass-action system (G, κ) has CACR in some
species Xi, then the system also has ACR in Xi. Moreover:

(1) If (G, κ) has non-vacuous CACR in Xi with CACR-value a positive real number, then
(G, κ) has (possibly vacuous) ACR in Xi.

(2) If (G, κ) has vacuous CACR or has non-vacuous CACR in Xi with CACR-value that
is not a positive real number, then (G, κ) has vacuous ACR.

Example B.3. Consider the following network:

G =

{
A+B

κ1

⇆
κ2

B
κ3

⇆
κ4

0 , 2B
κ5

⇆
κ6

3B

}
.

It is straightforward to check that G has no conservation laws and that for any positive
steady state (x∗

A, x
∗
B), we have x∗

A = κ2/κ1. Thus, G has ACR in species A. Also, x∗
B can

take up to three positive-steady-state values. For instance, if κ3 = 11, κ4 = κ5 = 6, and
κ6 = 1, then x∗

B takes three values (namely, x∗
B = 1, 2, and 3), yielding three positive steady

states (x∗
A = κ2/κ1, x∗

B). Hence, G is multistationary and does not have ACR in B. It is
straightforward to check that these systems also have CACR in species A (with CACR-value
x∗
A = κ2/κ1).

Example B.4 (Example 3.30, continued). For network G = {3A 1→ 4A, A + 2B
1→ 2A +

2B, 2A
2→ A, A + B

4→ B, A
5→ 2A, 2A + B

1→ 2A + 2B, 3B
1→ 4B, A + B

2→ A, 2B
4→

B, B
5→ 2B} we saw that the only positive root of fA = fB = 0 is (xA, xB) = (1, 2), and so

this system has ACR in both species. However, (4, 2 + 3i), (4, 2 − 3i), (−2, 2 + 3i) ∈ (C∗)2

are also roots of fA = fB = 0 and so the system does not have CACR.

Another example with ACR but not CACR is Example 2.9.

What we gain from expanding the definition of ACR to CACR is necessary and sufficient
conditions for CACR. Moreover, in theory, CACR can be detected algorithmically (if compu-
tations over C are possible). We record this claim in Proposition B.6 and Algorithm 2 below,
which make use of radical ideals (7) and saturation ideals (Definition 3.1). We also extend
steady-state ideals to reside over C as follows:

Definition B.5. For a mass-action system (G, κ), the complex-steady-state ideal is the ideal
of C[x1, x2, . . . , xn] generated by the right-hand sides of the ODEs in (2).

For part (3) of the next result, recall that any ideal of C[xi] (with only one variable xi)
is principally generated, so we may speak of “a generator”. Also, the proof makes use of
Hilbert’s Nullstellensatz (e.g., see [16]).
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Proposition B.6 (CACR and ideals). Let (G, κ∗) be a mass-action system with n species
and complex-steady-state ideal I. Let m := x1x2 · · ·xn, and let 1 ≤ i ≤ n. Then (G, κ∗) has

vacuous CACR if and only if
√

(I : m∞) = ⟨1⟩. On the other hand, for α ∈ C∗, the following
are equivalent:

(1) (G, κ∗) has non-vacuous CACR in species Xi with CACR-value α,

(2) xi − α is in
√

(I : m∞), and
√
(I : m∞) ̸= ⟨1⟩,

(3) xi − α is a generator of
√

(I : m∞) ∩ C[xi].

Proof. The equivalence of vacuous CACR and
√

(I : m∞) = ⟨1⟩ is readily deduced from [16,
Theorem 10 of § 4] and the Weak Nullstellensatz. It is also straightforward to see that (2)
and (3) are equivalent, so we show the equivalence of (1) and (2) below.

First assume that the system has non-vacuous CACR in species Xi with CACR-value α.
Then, m (xi − α) is identically zero over all the zeros of I in Cn. We deduce from Hilbert’s
Nullstellensatz that there exists a natural number k such that mk (xi − α)k ∈ I. Thus,

(xi − α)k ∈ (I : m∞) and so xi − α ∈
√

(I : m∞).

Now assume that xi − α is in
√
(I : m∞). Then mk(xi − α)k ∈ I for some k. Consider

x̃∗ ∈ (C∗)n for which fκ(x̃
∗)1 = fκ(x̃

∗)2 = · · · = fκ(x̃
∗)n = 0. It follows that (x̃∗

1x̃
∗
2 . . . x̃

∗
n)

k(x̃∗
i−

α)k = 0. As (x̃∗
1x̃

∗
2 . . . x̃

∗
n) ̸= 0, we have (x̃∗

i − α)k = 0, and so x̃∗
i = α. Thus, we have CACR

in Xi with CACR-value α. □

Proposition B.6 yields Algorithm 2 for detecting CACR. The algorithm does not compute
the radical ideal until Step 3 because it is cheaper to do computations in one variable. For
details about the computations of these ideals and generators, see the book [16].

Algorithm 2: Algorithm for CACR.

Input: The complex-steady-state ideal I of a mass-action system (G, κ∗).
Output: The CACR-value if (G, κ∗) has non-vacuous CACR in Xi; “Vacuous ACR”
or “No CACR” if (G, κ∗) has, respectively, vacuous ACR or no CACR in Xi.

Step 0: Let m := x1x2 . . . xn, where n is the number of species of G.
Step 1: Compute the saturation ideal (I : m∞).
Step 2: Compute the elimination ideal Ii := (I : m∞) ∩ C[xi].
Step 3: Compute

√
Ii and find a generator g.

Step 4: If g has degree 1, return its root. If g has degree 0, return “Vacuous CACR”.
Otherwise, return “No CACR”.

Proof of correctness of Algorithm 2. The correctness of this algorithm follows directly from
Proposition B.6 and the fact that the generator g in Step 3 can not be the degree-1 polynomial
g = xi, due to having performed saturation in Step 1. □

Appendix C. Numerically sampling real points

Here we give Macaulay2 code for Example 5.13. We use the ReactionNetworks.m2 package
where the one-site distributive phosphorylation network can be called as follows:
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N = oneSiteModificationA();

We can also use the ReactionNetworks.m2 package to fix random reaction rates and
conserved quantities.

R = createRing(N,QQ);

I = trim ideal (subRandomReactionRates N);

S=QQ[N.ConcentrationRates];

J = sub(I, S);

We then can then choose a random point and use NumericalAlgebraicGeometry.m2 to
solve the start system of the homotopy described in equation 25.

w = apply(6, i-> random QQ);

gen=flatten entries gens J;

var=flatten entries vars ring J;

N=length var;

D=length gen;

T=QQ[var| toList (lambda_1..lambda_(D))];

K=sub(J,T);

var=apply(N,i->sub(var_i,T));

gen=apply(D, i->sub(gen_i, T));

Jc = jacobian (K);

beta = apply(D, i-> random QQ);

Hstart =

apply(#gen, i-> gen_i+beta_i) |

apply(N, i-> ((var_(i)-w_(i)) + sum (apply (D, j -> lambda_(j+1)*Jc_(i,j) ) ) ) );

sols = solveSystem (Hstart);

Finally, we can construct the target system and track the start solutions to our target
solutions. We finish by applying a real filter to the target solutions.

Htarget = apply(#gen, i-> gen_i) |

apply(N, i-> ((var_(i)-w_(i)) + sum (apply (D, j -> lambda_(j+1)*Jc_(i,j) ) ) ) )

solsT = track(Hstart, Htarget, sols, gamma=>0.6+0.8*ii)

realPoints(solsT)
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University of Oxford and Max Planck Institute of Molecular Cell Biology and Genetics
and Technische Universität Dresden

Lawrence Technological University

Santa Clara University

Universidad de Buenos Aires and CONICET

Texas A&M University


	1. Introduction
	2. Mass-action systems and ACR
	2.1. Chemical reaction networks
	2.2. Mass-action systems
	2.3. Steady states and related ideals
	2.4. Absolute concentration robustness

	3. Ideal theoretic approaches to detecting ACR
	3.1. Ideals in polynomial rings
	3.2. Problems with standard approaches to deciding ACR ideal theoretically
	3.3. The real radical

	4. Detecting zero-divisor ACR
	4.1. Gröbner bases, elimination orders, and zero-divisor ACR
	4.2. Algorithm
	4.3. Connection to parametric ideals and Gröbner covers

	5. Numerical methods for detecting or precluding ACR
	5.1. Real algebraic sets
	5.2. Numerical irreducible decomposition and witness sets
	5.3. ACR via numerical irreducible decomposition
	5.4. ACR via numerically computing points on each real connected component

	6. Discussion
	Acknowledgements

	References
	Appendix A. The Real Nullstellensatz for rational coefficients
	Appendix B. Complex-number ACR
	Appendix C. Numerically sampling real points

