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Abstract—Compared to the generations up to 4G, whose main
focus was on broadband and coverage aspects, 5G has expanded the
scope of wireless cellular systems towards embracing two new types
of connectivity: massive machine-type communication (mMTC)
and ultra-reliable low-latency communications (URLLC). This
paper discusses the possible evolution of these two types of con-
nectivity within the umbrella of 6G wireless systems. The paper
consists of three parts. The first part deals with the connectivity
for a massive number of devices. While mMTC research in 5G
predominantly focuses on the problem of uncoordinated access in
the uplink for a large number of devices, the traffic patterns in
6G may become more symmetric, leading to closed-loop massive
connectivity. One of the drivers for this type of traffic patterns is
distributed/decentralized learning and inference. The second part
of the paper discusses the evolution of wireless connectivity for
critical services. While latency and reliability are tightly coupled
in 5G, 6G will support a variety of safety critical control appli-
cations with different types of timing requirements, as evidenced
by the emergence of metrics related to information freshness and
information value. Additionally, ensuring ultra-high reliability for
safety critical control applications requires modeling and estima-
tion of the tail statistics of the wireless channel, queue length,
and delay. The fulfillment of these stringent requirements calls
for the development of novel AI-based techniques, incorporating
optimization theory, explainable AI, generative AI and digital twins.
The third part analyzes the coexistence of massive connectivity
and critical services. Specifically, we consider scenarios in which a
massive number of devices need to support traffic patterns of mixed
criticality. This is followed by a discussion about the management
of wireless resources shared by services with different criticality.
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I. INTRODUCTION

One of the defining features of 5G was the native support for
Internet of Things (IoT) through massive machine-type commu-
nication (mMTC) and ultra-reliable low-latency communications
(URLLC). While mMTC aimed to provide delay-tolerant service
for a very large number of low-cost devices, URLLC targeted
human-centric and machine-centric real-time applications, such
as virtual reality and self-driving cars. Along with enhanced
mobile broadband (eMBB), these services constituted the “5G
triangle,” which served as the guiding framework for the 5G
research and standardization efforts [1]. At the conception of
5G, it had been thought that mMTC and URLLC, as well as their
combinations with eMBB were sufficient to cover almost all IoT
use cases. Nevertheless, with the evolution and deployment of 5G
it started to emerge that the requirements for mMTC and URLLC
would need to be redefined, as illustrated in Fig. 1. For instance,
the stringent latency requirements of URLLC can be relaxed to a
set of more general timing requirements that dynamically adjust
to the current state of the system, such as Age of Information
(AoI), Age of Loop (AoL), and Value of Information (VoI) [2].
Furthermore, new use cases, especially centered around machine
learning (ML) and artificial intelligence (AI), have introduced
new scenarios that were unthinkable when the 5G vision was
initially sketched, such as federated learning and intelligent
digital twins. Finally, there is a major change in the overall access
infrastructure by embracing nonterrestrial networks (NTNs) [3],
[4]. These networks introduce moving elements in the infrastruc-
ture, such as low Earth orbit (LEO) satellites and significantly
augment the spatial coverage, thereby the number of potentially
accessing devices. Although NTNs will have an important role in
massive connectivity, as also indicated in Fig. 1b, in this article
we will not cover the NTN aspects in detail, as it would require a
more elaborate discussion on the specifics of the related network
architecture, which is significantly different from the terrestrial
one.

As we move towards 6G, the 5G triangle has been expanded to
a hexagon, defined by enhanced variants of the three 5G service
types, as well as new scenarios targeting integrated sensing
and communication, integrated AI and communication, and
ubiquitous connectivity [5]. With the four overarching require-
ments of sustainability, security/privacy/resilience, ubiquitous
intelligence, and connecting the unconnected, the support for
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Fig. 1: The evolution of IoT from 5G and 6G. In addition to supporting more
devices, mMTC evolves to embrace closed loop, NTN, and to offer critical ser-
vices with a massive number of devices. URLLC gets augmented to generalized
timing and reliability requirements.

IoT is expected to play an even larger role in 6G. To fulfill
the long-term 6G vision that involves IoT connectivity requires,
however, progress in three key areas: communication for massive
number of devices, communication for critical services, and
service coexistence and slicing capabilities. It is important to
outline that the denomination “6G” can be understood in two
different ways. In a broader sense, 6G refers to the future wireless
connectivity, accompanied with sensing, positioning, learning,
etc. In a narrower sense, 6G refers to the next standardized
generation of wireless cellular communication system. The
discussion on 6G in this paper should be understood in the
broader sense, but in specific parts, such as Section II-E, we
elaborate upon the potential impact on standardization.

The evolution of massive communication from 5G to 6G will
be characterized primarily by two aspects. The first aspect is
the even higher device densities targeted in 6G, ranging from
106 to 108 devices/km2 [5]. This requires more scalable random
access protocols that can resolve transmissions from a large
number of uncoordinated, simultaneously transmitting devices.
The second aspect is a widening of the device spectrum, ranging
from zero-energy devices with extremely limited capabilities
and long lifetimes, to highly capable devices equipped with
advanced sensors, such as microphones and cameras, and able
to execute ML algorithms locally or in the cloud. By predicting
when and what data are relevant at a given time, ML-driven
decisions will increasingly govern the traffic patterns and deter-
mine the communication targets, since the need to communicate
will be triggered by unpredicted events rather than occurring
periodically. For example, an AI may autonomously request
data from IoT devices based on what is needed to reduce the
uncertainty of a digital twin model, or because it predicts that
the data will soon be requested by an external entity. Besides
data requests, advanced devices also require frequent firmware
updates, and may continuously participate in distributed learning
algorithms, such as federated learning, leading to closed-loop
communication. In conclusion, massive connectivity in 6G will
shift the focus from uplink-oriented massive IoT to a wide range
of traffic patterns including both small, sporadic transmissions,
and closed-loop uplink and downlink driven by interactive ap-
plications and distributed learning.

Critical communication refers to communication with strict
performance requirements, and was introduced in 5G as URLLC.
The aim was to provide a service that could replace traditional
cabled industrial networks by delivering packets within millisec-
onds with a reliability in the order of 1 − 10−5 (five nines)
or higher. While the vision in 6G is to provide even stricter
latency and reliability requirements [5], meeting the vision of
critical communication requires fundamental changes. While
this paper is focused only on the wireless access part, in a
broader perspective, timing and reliability need to be consid-
ered end-to-end at the system level, including the mobile core
network and various hardware components that influence the
overall reliability. Furthermore, since the initial vision of 5G
was defined, there has been a realization that the latency and
reliability can be decoupled to some extent by focusing on the
specific task and goals of the application rather than the link-level
requirements [2]. However, maximizing these benefits requires
a close integration between the communication system and the
application itself, and identifying the control interface will be an
important task in the development of 6G. Meeting the complex
demands of communication systems, closely linked with control
systems and stringent constraints on delay, reliability, availability
and resilience, necessitates the development of advanced AI
techniques, incorporating optimization theory, explainable AI,
generative AI and digital twin, for optimal performance. For
instance, AI can help bridging the gap between model accuracy
and complexity in interacting systems comprising both wireless
channels and physical sensors and actuators, and where the
relation between inputs and outputs has no simple mathematical
expression. This is particularly important when the tail behavior
of the model predictions are crucial, as in systems that require
high reliability.

Finally, providing tailored communication services for the
diverse range of IoT applications envisioned in 6G necessitates
flexible and efficient resource slicing mechanisms. In 5G, this
was achieved through network slicing, a core network function-
ality that indicates to the Radio Access Network (RAN) the
requirements associated with a specific slice. This indication is
used by the RAN to allocate appropriate radio resources. The
most straightforward approach, although far from the most effi-
cient one, is to allocate orthogonal radio (time/frequency/spatial)
resources to different slices. In general, there can be advantages
derived from allocating non-orthogonal resources to different
slices [6] and these considerations can be a basis for devising
more efficient methods for resource sharing in 6G while keeping
the configuration complexity manageable.

In this article, we present a comprehensive review of the
technological developments that have the potential to serve
as the foundation for massive and critical connectivity in 6G.
The paper is organized as follows. In Section II, we describe
the evolution of massive connectivity. We review the massive
random access techniques required to support the envisioned
device densities, and discuss the role of massive downlink com-
munication. Section III presents applications for critical services
and enabling technologies in 6G. We explore network design
for control systems with a broad range of performance metrics
that go beyond only latency and reliability, and considerations
for ultra-reliable communications, involving finite-blocklength
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Fig. 2: Massive connectivity in 6G will be a mix of uplink and downlink
transmissions.

communication and tail statistics related to the channel and queue
length. We then present advanced AI based techniques to address
the strict constraints in the resulting problems. In Section IV, we
discuss how to accommodate services with different criticality
through flexible network slicing. Concluding remarks are given
in Section V.

II. MASSIVE CONNECTIVITY

A. Massive Connectivity in 6G: A Mix of Uplink and Downlink

Massive connectivity refers to the problem of serving a very
large number of users that access the channel in a sporadic fash-
ion, as illustrated in Fig. 2. Traditionally, massive connectivity
has been associated with simple IoT devices, such as sensors,
that wake up periodically or sporadically to transmit short sensor
readings to the base station. This was also the motivation in 5G,
where massive connectivity was introduced as the mMTC use
case and enabled by the NB-IoT and LTE-M technologies, which
provided native support for low-power devices and short packet
transmissions through simplified connection establishment pro-
cedures [7].

Massive connectivity will remain a central component of 6G,
where the vision is to support even higher device densities and
serving a broader spectrum of device capabilities. In particular,
data collection and environmental monitoring will be crucial for
important 6G applications, such as AI-based predictions and deci-
sion making, which may involve devices that make coordinated,
intelligent decisions, such as actively requesting information
or initiating model retraining. Some important applications of
massive connectivity in 6G include:

• Sensing and actuation for digital twins: Digital twinning is
being promoted as one of the central use cases in 6G, where
physical objects will have virtual representations that can
be used for monitoring, simulations, or virtual interactions
in, e.g., industrial and smart traffic scenarios [8]. Massive
connectivity plays a key role in enabling the data collection
that will allow the digital twins to accurately represent their
physical counterparts in real-time. The collected data may
then be fused with data from other sensors or combined
with, e.g., sensing and localization information collected
by the base station within the same temporal window [9].
Finally, the simulations and interactions with the digital

twins may eventually trigger actions or decisions that need
to be communicated back to the devices for execution.

• Logistics: The ubiquitous connectivity of 6G will enable
IoT-based worldwide tracking of objects for logistics and
supply chain management [10]. Depending on the com-
plexity of the IoT device, applications may span from
simple location reporting to tamper-resistant logging using
distributed ledger technology, such as blockchain [5].

• Massive sensing using zero-energy devices: Ultra simple,
low-cost, battery-less devices that harvest energy from, e.g.,
vibrations or radio waves drastically simplifies the deploy-
ment of IoT. Without the need of a battery, these devices
can be made extremely small and printed on things like
textiles and warehouse packages for tracking and sensing
purposes [10], [11].

• Channel access in densely populated areas: 6G aims to
target even higher device densities compared to 5G, such
as crowded stadiums [5]. In such scenarios, allocating
dedicated resources to each device for coordination of,
e.g., scheduling requests, is impossible, and efficient and
scalable massive connectivity technologies are crucial to
ensure a good user experience.

While the overhead reductions introduced in 5G mMTC were
crucial to enable the support of IoT, the access procedures in 5G
still perform significantly worse in terms of energy and spectral
efficiency compared to what is possible [12]. Consequently, 6G
will need additional technological innovations to support the
envisioned target device densities and applications in 6G without
imposing a significant cost in terms of spectral efficiency. In
this respect, one central protocol component that can benefit
from substantial improvements is the random access procedure,
which is needed due to the sporadic uplink transmissions, since
the set of transmitting users is unknown a priori to both the
transmitters and the base station. Most commercially available
mMTC technologies, including those in 5G, are still imple-
mented using techniques that resemble the first random access
protocol, namely slotted ALOHA [13]. While slotted ALOHA
protocols are simple to implement, it is well known that they have
significant limitations in terms of energy and spectral efficiency,
which has also been documented in the context of 5G [12].
Furthermore, since random access is central in any massive
connectivity protocol regardless of its specific requirements, its
performance will be reflected across all applications. Besides
random access, several of the new applications envisioned in 6G,
such as interactive digital twins, blockchain-enabled logistics,
and inference/learning, will bring more symmetric traffic pat-
terns that require equal uplink and downlink, leading to massive
closed-loop communication [10], [14]. Since 5G mMTC was
primarily targeting uplink traffic [15], the downlink channel for
IoT is another area that will require new innovations in 6G.

In the remainder of this section, we review the enabling
technologies for enhancing the massive connectivity support
in 6G. We first present an overview of the technologies in
the context of grant-based, grant-free, and unsourced random
access as the main categories of massive uplink. We then go
into details with sparse recovery as a promising and general
building block for efficient and scalable uplink connectivity. This
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Fig. 3: Grant-based and grant-free random access. In grant-based random access
(a), the preamble is transmitted first, allowing the base station to assign dedicated
resources for the data transmission (i.e., a grant). In grant-free random access
(b), the preamble and data are transmitted without intermediate feedback from
the base station, typically in a sequential fashion.

is followed by an overview on recent work towards designing
massive connectivity for the downlink. We conclude the section
by discussing what is needed to integrate these developments
into 6G standards and outlining some remaining open problems.

B. Grant-Based, Grant-Free, and Unsourced Random Access
for Massive Uplink Connectivity for 6G

Broadly speaking, the recent developments in massive random
access protocols can be divided into grant-based, grant-free, and
unsourced random access. We discuss each category in turn.

1) Grant-Based Random Access: Many commercial systems
for mMTC, including NB-IoT and LTE-M, rely on grant-based
random access. In grant-based random access, the packet trans-
mission contains three steps as illustrated in Fig. 3a: (1) each
active user transmits a random preamble in the uplink; (2) the
base station responds with assigned transmission slots (grants)
to each of the decoded preambles; (3) each of the granted users
transmits its packet in its assigned slot. Due to the dedicated
channel resources for the packet transmission in step 3, the
packets can be transmitted efficiently provided that the preamble
phase, known as activity detection, is successful.

Both NB-IoT and LTE-M use orthogonal preambles in the
first step, where each active user transmits a preamble ran-
domly selected from a pool of orthogonal preambles without
the possibility of multipacket reception. While this leads to low
complexity at the decoder, it is well known that the throughput
measured by the fraction of non-colliding transmissions is upper
bounded by 1/e ≈ 0.37 [13]. Consequently, the utilization of the
channel resources (i.e., the spectral efficiency) is inherently low.
Furthermore, since the number of available preambles is limited
by the channel coherence length, the number of simultaneously
transmitting users that can be served in the same area is also
limited. In scenarios with low coherence times, such as the smart
traffic scenarios envisioned in 6G, this severely restricts the
scalability of the IoT protocols.

The performance of grant-based schemes can be greatly im-
proved by relaxing the orthogonality requirement of the pream-
bles, which significantly increases the number of preambles
available within a coherence block. While this can be done
without increasing the complexity of the transmitter, it necessi-
tates more sophisticated preamble decoding techniques, such as
sparse recovery algorithms that rely on compressed sensing [16],
[17]. In this case, the number of available preambles needs to
be selected to balance the collision probability, the probability
of false alarms, and the complexity of the activity detection
algorithm. When the total number of users is not too large, the
error is dominated by collisions rather than false alarms, and
it may be advantageous to assign a unique preamble to each
user to completely avoid collisions. Furthermore, this enables
user identification “for free”, since the transmitting users can
be identified based from the decoded preambles. By allocating
multiple preambles to each device, it is even possible to embed
a few bits of information in the preambles as well, e.g., to
indicate the amount of data that the user has to transmit [18].
Besides avoiding collisions, the idea of assigning dedicated
preambles to each user can be further justified by the result
that the probability of activity detection error can theoretically
be made to go to zero as the number of base station antennas
goes to infinity [17]. However, when the total number of users
is large, the computational complexity of the activity detection
algorithm may be prohibitive, and false alarms may also be more
prominent than collisions. In this case, letting the users randomly
select their preamble may lead to better overall performance-
complexity tradeoff. We return to the use of sparse recovery for
massive uplink in Section II-C.

The main disadvantage of grant-based random access is the
latency and power consumption introduced by the three protocol
steps. Furthermore, when the packets are short, the additional
overhead introduced by the transmission of the grant message
may outweigh the advantage of having dedicated channel re-
sources for the packet transmissions. An alternative strategy
that avoids this procedure is grant-free random access, which is
discussed next.

2) Grant-Free Random Access: In grant-free random access,
illustrated in Fig. 3b, the active devices transmit their preambles
and packets immediately, typically in a sequential manner, with-
out waiting for intermediate feedback from the base station. The
recently-added Small Data Transmission (SDT) feature in 5G is
an example of steps in this direction [19]. To decode the trans-
mitted packets, the base station performs activity detection and
channel estimation based on the preambles, and then decodes the
messages coherently while treating the interfering transmissions
as noise.

As in the case of grant-based random access, grant-free
random access suffers from preamble collisions, and several
techniques have been proposed to improve the performance.
One approach is to let the devices transmit multiple repetitions
with specific delays, and then apply successive interference
cancellation (SIC) at the decoder, as in, e.g., coded slotted
ALOHA [20]. Note that this comes at the cost of increased
power consumption at the devices, as each packet needs to be
transmitted multiple times. Grant-free access can also benefit
from non-orthogonal preambles and sparse recovery for activity
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detection. Compared to grant-based access, false alarms are less
severe since they do not reduce the spectral efficiency. On the
other hand, the estimation error introduced by the non-orthogonal
preambles can significantly degrade the performance of the
coherent decoding. This is further exacerbated by the fact that
both preamble and data must be transmitted within a single
coherence block, and thus increasing the preamble length to
improve channel estimation reduces the number of symbols
available for data transmission [21]. Using ideas from coded
slotted ALOHA, this problem can be mitigated using coded
repetitions and SIC, so that the probability of having at least one
transmission with a good channel estimation is boosted [22].

3) Unsourced Random Access: Unsourced random access
refers to an information-theoretic formulation of the grant-free
massive access problem proposed in [23]. Rather than treating it
as a separate category, it is therefore more meaningful to consider
it as a specific instance of grant-free random access. In unsourced
random access, the active users encode their messages using a
common codebook, and the codewords are transmitted simultane-
ously over a shared channel. The task of the decoder is to produce
an unordered list of the transmitted messages. The fact that all
users share the same codebook implies that the messages cannot
contain identification information (hence the term “unsourced”).
Initially, this constraint arose as a consequence of the desire
to study the limits of random access in the asymptotic regime,
where the number of users approaches infinity. Since user identi-
fication would then require an infinite number of bits, including
user identification would force the transmission rate to zero.
However, this is purely an information theoretic implication that,
for any practical purpose, can be circumvented by including the
user identity in the message itself (i.e., handling the identification
problem at a higher layer, although strictly speaking it reduces
the transmission scheme back to sourced random access). The
main advantage of unsourced random access appears when the
number of users is very large or changes frequently, thus keeping
track of the preambles assigned to each user is cumbersome, as
in, e.g., satellite networks, or in applications where the identities
of the transmitters are not important, but only their messages
(e.g., a message fire could be important regardless of where it
comes from).

The majority of the protocols developed for unsourced ran-
dom access rely on sparse recovery, possibly combined with
additional coding [24], [25], although techniques based on,
e.g., tensor decomposition have been proposed as well [26].
Specifically, the work in [24] proposes a scheme where each user
transmits its message across multiple sub-blocks. Each sub-block
is transmitted non-orthogonally with the other active users, and
using sparse recovery techniques the receiver tries to recover the
transmissions within each sub-block. Using an outer tree code,
the receiver tries to stitch together the decoded transmissions
from each sub-block into complete messages. The same idea is
adopted in [25], but with an alternative sparse recovery algorithm
that is better suited for handling a very large number of preambles.
Finally, we note that many random access schemes designed for
grant-free access can also be made unsourced by making the
preamble selection random or determined based on the message
data (as opposed to assigning a unique preamble to each user).

4) Grant-Based vs. Grant-Free Massive Random Access:
Both grant-based and grant-free methods can be useful in ap-
propriate setups. Generally speaking, grant-based schemes tend
to perform better [27], especially for larger payloads, but the
three phases increase latency and power consumption. Grant-
free schemes, on the other hand, tend to suffer from channel
estimation errors. Therefore, multiple transmission repetitions
are needed to achieve a performance that is comparable to that
of grant-based schemes, which in turn also increases latency and
power consumption. In conclusion, the grant-based approach
appears generally as a more attractive choice. However, grant-
free schemes might be a better choice for ultra low-power devices
that can tolerate the larger error probability, or for uplink-only
devices, such as zero-energy devices. Finally, grant-free might
be attractive when the payload size is very small so that the addi-
tional overhead incurred by the grant-based approach becomes
significant in comparison. Combinations of the two schemes can
also be envisioned for 6G. For example, data transmission can
start using a grant-free scheme and seamlessly be moved to a
grant-based scheme in case the amount of data to transmit is
large.

C. Sparse Recovery for Massive Random Access

As argued in Section II-B, many modern random access
methods rely on the use of non-orthogonal preambles to enlarge
the set of available preambles, so as to reduce the probability
of preamble collisions. However, the non-orthogonality of the
transmitted preambles makes the activity detection problem
nontrivial. The predominant strategy is to apply sparse recovery
techniques that exploit the sparse user transmission patterns that
result from the fact that only a small fraction of the users are
active at any given time. In this section, we provide a brief
review of the foundations behind this strategy in the context
of massive random access. To simplify the presentation, we
will focus on the case where each user is assigned a unique
preamble, which precludes collisions. Clearly, supporting a
massive number of users under this strategy is only possible
with a very large number of preambles, which necessitates the
preambles to be non-orthogonal. We consider a scenario with
N single-antenna devices and a single base station with M
antennas. Let sk ∈ CL×1 denote the preamble assigned to user
k, k = 1, . . . , N , which is assumed to be known at the base
station. Suppose a random number K out of the N users are
active, and let ak = 1 if user k is active, otherwise ak = 0. The
channel between device k and the base station is assumed to be
given by the random vector gkhk ∈ CM×1, composed by large
scale fading coefficient gk ∈ R, and unknown Rayleigh fading
coefficients hk ∈ CM drawn independently from CN (0, 1). The
signal Y ∈ CL×M received by the base station can then be
written as

Y =

N∑
k=1

√
gkakskh

T
k +W (1)

=
[
s1 · · · sN

] a1
√
g
1

. . .
aN

√
g
N


h

T
1
...

hT
N

+W (2)
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≜ SΓ
1
2H+W, (3)

whereS = [s1, . . . , sN ] ∈ CL×N is the matrix of fixed preamble
sequences as columns, Γ = diag (γ1, . . . , γN ) ∈ RN×N with
sparse diagonal entries γn = angn, H = [h1, . . . ,hN ]

T ∈
CN×M , and W ∈ CL×M is additive white Gaussian noise with
elements drawn independently from CN (0, σ2

W ). The goal is to
recover the set of user activities {an}Nn=1, possibly along with
{hn}Nn=1, based on Y. Depending on the different scenarios,
we may design sparse recovery algorithms that assume {gn}Nn=1

are deterministically known by the base station, or that they are
random quantities with a known prior distribution, or that they are
completely unknown. Note that we assume that the transmission
takes place within a single coherence block. In the following, we
outline the two algorithms for recovering {an}Nn=1 that dominate
the literature on massive random access, namely approximate
message passing (AMP) and covariance-based decoding. The
two algorithms differ in that the former provides an estimation of
the channels in addition to recovering the user activities, but the
latter can accommodate a much larger number of active users.

1) Approximate Message Passing Decoding: AMP [28] is a
low-complexity algorithm for sparse recovery in compressed
sensing. Applied to the multi-antenna scenario in Eq. (3), a
multiple measurement vector (MMV) variant of AMP (MMV-
AMP) [16] can be used to recover the row-sparse matrix X =
Γ

1
2H ∈ CN×M . Since X uncovers both the set of active users

and their channels, the MMV-AMP algorithm is particularly
suitable for the grant-free scenario since no separate channel
estimation phase is needed. Starting with X0 = 0 and Z0 = Y,
MMV-AMP operates iteratively according to the recursion

Xt+1 = η
(
S∗Zt +Xt

)
, (4)

Zt+1 = Y − SXt+1 +
N

L
Zt

〈
η′
(
S∗Zt +Xt

)〉
, (5)

where η(·) is a vector denoiser with derivative η′(·) applied row-
wise, and ⟨·⟩ denotes the average across the rows of the argument.
The first step in MMV-AMP (Eq. (4)) can be interpreted as
a gradient step followed by a denoising operation to promote
sparsity in the estimate of Xt+1. The second step (Eq. (5)) com-
putes the resulting residual corrected by the so-called Onsager
term that transforms the statistics of the residual to enable faster
convergence.

The choice of the denoiser function in Eq. (4) depends on
the specific model assumptions and the goal. Traditionally, the
denoiser is implemented as a soft thresholding function, which
is suitable when the activation probabilities and {gn}Nn=1 are
treated as unknown quantities. However, if the statistics of these
quantities are known to the decoder, it is possible to derive
minimum mean-square error denoisers, which tend to have
better overall performance [16]. The complexity of MMV-AMP
iterations is dominated by the computation of SXt+1, and thus
MMV-AMP has a complexity in the order of O(NLM) per
iteration [17].

The preamble symbols are often chosen as independent and
identically distributed zero-mean complex random variables with
variance 1/L. In this case, the evolution of the MMV-AMP
algorithm can be accurately predicted through state evolution
for the asymptotic regime where L,N,K → ∞ while N/L and

K/N remain constant [16], [17]. As a rule of thumb, the AMP
algorithm works well in the regime where the number of users
K is less than the preamble length L. This is due to the fact that
the AMP algorithm attempts to recover K channels based on L
observations.

2) Covariance-Based Decoding: The covariance-based re-
covery method was proposed in [25] as an alternative to MMV-
AMP for the case where the total number of preambles is
very large. Furthermore, it tends to perform better than AMP
in many regimes, including when the number of antennas is
large. Contrary to AMP, the covariance-based approach does
not recover the fading coefficients {hn}Nn=1 but only the user
activities {an}Nn=1. This makes the technique less suitable for
grant-free random access, where channel estimates are required
to decode the user messages. Finally, covariance-based decoding
does not require knowledge of the large-scale fading statistics
and the activation probabilities.

The covariance-based approach arises from the observation
that the received signal at each antenna are independent and
identically distributed realizations of a multivariate complex
Gaussian distribution with zero mean and covariance matrix
Σ =

∑N
k=1 γksks

H
k + σ2

ZI, where the superscript H stands for
conjugate transposition. The likelihood function of the received
signal Y given γ = [γ1, . . . , γN ] ∈ RN can then be computed
as

p(Y|γ) =
M∏

m=1

1

|πΣ|
exp

(
−yH

mΣ−1ym

)
(6)

=
1

|πΣ|M
exp

(
− tr

(
Σ−1YYH

))
. (7)

Although maximizing the likelihood leads to a non-convex
problem, it is possible to obtain good solutions using a coordinate
descent algorithm. The resulting set of active users can then be
recovered from γ. By analyzing the coordinate descent, it can be
shown that the computational complexity is O(TNL2), where
T is the number of iterations [25]. In practice, the covariance-
based method tends to have longer runtime than AMP for small
values of M , but is more efficient for larger M [29].

Compared to AMP, performance analysis of the covariance-
based approach is more involved, but have been characterized
in [29] for the asymptotic case where the number of antennas
goes to infinity while N ,K, andL remain finite. In this regime, it
is possible to numerically obtain the detection error. This analysis
reveals that the algorithm exhibits a phase transition, where the
decoding error vanishes for a specific region of N , K, and L.
As a key advantage as compared to AMP, the covariance-based
approach can work well in the regime where the number of
users K is in the order of the square of the preamble length
L. This is due to the fact that the covariance matrix is of size
O(L2). However, such advantage comes at a cost of not being
able to estimate the channels. Finally, we remark that while
the discussion in this section has been confined to the single-
cell case, both the algorithmic developments and the analyses of
AMP and the covariance method can be extended to the multi-cell
or the cell-free massive multiple-input multiple-output (MIMO)
scenarios [30]–[33].
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D. Massive Downlink Connectivity

The majority of the research in massive connectivity has been
put into the uplink scenario and the design of protocols for mas-
sive random access. However, the increasing amount of downlink
traffic required by future IoT applications necessitates efficient
communication schemes for the massive downlink scenario as
well. In massive downlink communication, the transmitter, i.e.,
the base station, aims to deliver a set of messages to a small
subset of a large user population. Because the set of recipients is
unknown to the users a priori, the messages must include some
form of metadata that allow each recipient to extract its own
message. A naive implementation would be to include a list of the
recipient identifiers, which would require a total ofK log2 N bits
of metadata. For large values of N , this cost can be prohibitive,
especially when the messages are short in comparison. However,
by exploiting the structure of the problem, it is possible to reduce
the amount of metadata significantly.

In a massive downlink channel, the base station aims to jointly
send N messages W1, . . . ,WN to users 1, . . . , N , respectively,
where Wn ∈ M ∪ {∅} for n = 1, . . . , N . Each message
Wn (n = 1, . . . , N ) can either be informative, drawn from the
message set M, or empty, denoted by Wn = ∅, indicating
that the transmitter has no message to user n or that user n
is not actively listening to the base station. In line with the
overall massive connectivity scenario, we assume that only a
small random subset comprising K out of the N messages are
informative, i.e., the fraction of empty messages (Wn = ∅) is
equal to N−K

N . This formulation is reminiscent of the classical
broadcast channel, which has been thoroughly studied in infor-
mation theory. However, the regime that is of interest in massive
downlink differs from the widely studied broadcast channel in
the following ways:

• The number of users, N , is very large, often in the order of
several thousands;

• The set of informative messages is small (i.e., the messages
are short), and only a small fraction of the messages are
informative, leading to a highly skewed message distribu-
tion.

In the rest of this section, we consider three instances of
the massive downlink problem, and demonstrate that, in these
fairly general cases, it is possible to significantly reduce the
amount of metadata by jointly encoding the messages into a
single packet. Specifically, the dependency on N can be reduced
from O(logN) to O(log logN) or even O(1) for fairly general
problem setups. To keep the presentation clear, we focus on
the source coding aspect of the problem and assume that the
channel is ideal, i.e., Yn = X for n = 1, . . . , N . However, we
note that joint encoding is also beneficial from a channel coding
perspective, as the larger packet size allows for more efficient
coding.

1) Message Acknowledgments: Suppose the base station
wants to send binary message acknowledgements to K out
of the N users, e.g., after an uplink massive random access
transmission. This corresponds to the case where |M| = 1, so
that the base station sends the empty message as a negative
acknowledgment and the informative message as a positive
acknowledgment. When K is much smaller than N , it might

seem reasonable to construct the acknowledgment packet by
concatenating the identifiers of the users to acknowledge, which
would require K log2 N bits. However, as shown in [34], it
is possible to significantly better by enumerating all possible
subsets of users to acknowledge, which requires only log2

(
N
K

)
≤

K log2(N/K)+K log2 e+O(1) bits. Nevertheless, the number
of bits can still be significant when N is large. For instance,
acknowledging K = 50 users, each identified by a 64-bit
identifier (N = 264), still requires more than 2900 bits.

Reducing the packet length further requires that errors are
allowed. When K is much smaller than N , allowing for a small
fraction of false positive acknowledgments can lead to significant
savings, whereas false negative errors provide limited gains.
While false positive acknowledgments may be undesirable from
an application perspective, they can be corrected at higher layers
in the protocol stack at the cost of an increased latency using,
e.g., packet sequence numbers. By allowing false positive errors
with probability at most ϵ, it is possible to construct an acknowl-
edgment packet using as little as K log2(1/ϵ) + O(log logN)
bits [34]. Remarkably, the introduction of false positive errors
makes the acknowledgment message almost independent of N .
Furthermore, this can be realized using practical methods that
are efficient up to relatively large values of K (in the order of
hundreds). Disregarding the constant term (which is very small in
practice), acknowledging K = 50 users with ϵ = 10−4 requires
a packet of only 665 bits, which is significantly less than in the
error-free case.

2) Transmission of General Feedback Messages: We con-
sider next the problem of transmitting K general messages
W1′ ,W2′ , . . . ,WK′ ∈ M to K out of the N users, which was
recently studied in [35], [36]. Compared to the previous case,
instead of assuming a false positive rate, we will assume that the
devices know whether their own message is informative or empty,
but have no information about the other messages. This assump-
tion is often reasonable, e.g., if the messages are transmitted as
responses to an uplink transmission. Alternatively, the message
acknowledgment scheme presented in Section II-D1 can be used
to indicate the intended recipients. The central problem is then
to encode the K messages in such a way that the recipients know
how to decode their own message without knowing the identities
of the K−1 other recipients of informative messages. Note that,
if the users know perfectly the identifiers of all K recipients, this
can be done simply by listing the messages in the order of the
identifiers. However, when each user only knows whether there
is a packet for them or not, and not who the other recipients
are, the problem becomes more involved. Assuming that the
messages are independent and identically distributed across
users, the naive encoding scheme of concatenating each of the K
messages with the identity of its recipient requires approximately
kH(Wn)+K log2 N bits, where H(Wn) denotes the entropy of
a messageWn. However as shown in [35], theoretically speaking,
the overhead of K log2 N bits can in fact be reduced to only
O(log2 K) bits for any independent and identically distributed
(i.i.d.) messages, and further to O(1) when the messages are
equally likely across the alphabet, thus removing the dependency
on N .

3) Collision-Free Scheduling: Finally, we consider the prob-
lem of communicating a specific type of a collision-free schedul-
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ing message that assigns K out of N users to B ≥ K indices
without collisions. This problem is central in, e.g., grant-based
random access, where the base station needs to assign uplink
resources to the users after the initial preamble transmission. A
naive implementation would be to transmit an ordered list of
the K identities and assign each user to the index at which their
identity appears in the list. This would require a total ofK log2 N
bits. However, as in the previous cases it is possible to improve
significantly by jointly encoding the assignments and exploiting
the fact that the users do not care about the indices assigned to
other users. Furthermore, the scheduling problem differs from
the previous two problems in that the ordering of the scheduled
users does not matter as long as the schedule is non-colliding. By
taking advantage of these characteristics, it was shown in [37]
the packet length can be reduced to K log2 e + O(log logN)
bits for fixed-length encoding and K log2 e+O(1) for variable-
length encoding. As expected, the packet length can be further
reduced when either B > K or B < K, where in the latter
case up to ⌈K/B⌉ users are allowed in each slot. While no
practical encoding method is known to achieve the theoretical
bounds, techniques developed to construct minimum perfect
hash functions can be used to achieve rates that are within a
relatively small constant factor of the bounds [37].

To summarize, communicating a downlink message in the
massive random access scenario can theoretically be made much
more efficient than what a straightforward implementation would
suggest. These theoretical bounds point to significant potential
for future protocol-level improvements for massive downlink
random access in 6G and beyond.

E. Integration of Massive Connectivity in 6G Standardization

So far, we have discussed massive connectivity technologies
from a theoretical perspective. In this section, we discuss how
these ideas can be integrated in 6G standardization, as well as
some of the remaining challenges that need to be addressed.

Let us first focus on the integration of the enhanced technolo-
gies for random access schemes in the uplink presented in Sec-
tion II-B. A first step towards improving the performance would
be to reuse the existing access structure in 5G, and augmenting
it with, e.g., non-orthogonal preambles. This idea has recently
been analyzed for grant-free access in [12], where the authors
demonstrate that the inclusion of non-orthogonal preambles in
the 5G SDT procedure substantially increases the energy and
spectral efficiency, albeit still being far from the theoretical
limits. In this case, the sparse recovery algorithms discussed
in Section II-C will play a central role in the decoding of the
preambles. Furthermore, since grant-based random access also
benefits from non-orthogonal pilots, this approach can also be
adopted to improve the grant-based random access procedures.

In the context of downlink, the techniques discussed in Sec-
tion II-D are more straightforward to realize, as they do not
require modifications to the physical layer. For the same reason,
they do not rely on specific assumptions that need to be validated
experimentally. However, while it may be unlikely that downlink
designs tailored for specific applications will be implemented
in early 6G, the theoretical insights from Section II-D provide
useful guidelines in the design of the control information for

massive access in 6G, such as the design of acknowledgments
and scheduling for grant-based access.

III. CRITICAL SERVICES

Critical services in wireless communication have undergone
a significant evolution, transitioning from 5G focus on mission-
critical applications with stringent reliability and latency re-
quirements to the more advanced landscape of safety critical
control applications. The emerging demands include real-time
responsiveness, task-oriented communications, high availability,
and resilience.

The spectrum of applications within this safety critical control
domain is extensive, encompassing autonomous vehicle platoons,
advanced industrial automation and human augmentation. Fulfill-
ing the stringent requirements of these applications necessitates
integrating cutting-edge technologies, such as appropriate spec-
trum, systems with massive number of antennas, and ML. The
critical requirements may also benefit from some of the emerging
technologies, such as reconfigurable intelligent surfaces (RIS)
or the THz band. Moreover, the sophisticated interaction be-
tween control and communication systems must be carefully
considered during the design phase. The resultant complexity of
this multifaceted problem underscores the need for the usage of
AI. AI enables the optimization of resources and design in an
adaptive manner, learning from near-real-time physical operating
scenarios.

However, the deployment of AI requires careful consideration.
There is a need for the development of novel techniques aimed at
enhancing the convergence time of the algorithms, especially in
the context of improving network intelligence within strict delay
constraints. Moreover, ensuring reliability and robustness while
fostering continuous learning poses a challenge. In addition,
fortifying the resilience of developed algorithms is imperative
for sustained performance in dynamic environments.

In the following, we begin by describing the applications
and requirements of critical services. Following this, we delve
into the enabling technologies essential for supporting these
critical services. Subsequently, we provide the network design
to meet the specific requirements of control applications within
the critical services domain. Finally, we illustrate the usage of AI
based techniques, emphasizing their role in generating solution
methodologies that effectively address the stringent requirements
of delay, reliability, and resilience inherent to these applications.
An overview of the key enablers is given in Fig. 4.

A. Applications for Critical Services

The applications of critical services in 6G introduce height-
ened demands for superior delay, reliability, availability, and
resilience. These applications closely interact with control sys-
tems, necessitating real-time responsiveness and task-oriented
communications. As the realm of 6G progresses, the potential
applications for critical services continue to evolve. A few
representative examples are listed as follows:

• Autonomous vehicle platoon: An autonomous vehicle pla-
toon refers to a convoy of self-driving vehicles seamlessly
communicating in real-time for synchronized acceleration,
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Network Design for Control Systems:
• Stochastic MATI, MAD
• Age of Information
• Age of Loop
• Value of Information

Network Design for Ultra-Reliable
Communications:
• Extrapolation-based Technique
• Extreme Value Theory
• Stochastic Network Calculus

AI Based Techniques:
• Optimization Theory based AI
• Explainable AI
• Generative AI
• Digital Twin

Fig. 4: Enabling tools and technologies for supporting critical services in 6G.

braking and steering. The communication platform support-
ing these platoons necessitates careful consideration of their
close interaction with automotive control systems. Real-
time responsiveness is paramount, demanding an excep-
tionally high level of reliability, availability, and resilience,
along with guaranteed low delay. This robust communica-
tion framework is essential to prevent any disruptions in
platoon operations, ultimately ensuring the utmost safety
for the occupants of the vehicles.

• Advanced industrial automation: Industrial automation
was targeted by 5G through multiple applications, such
as remote monitoring, predictive maintenance, and smart
manufacturing. 6G elevates this paradigm to new heights by
introducing applications with even more stringent demands.
Specifically, it enables real-time control of robotic systems,
facilitates collaboration among robots and orchestrates the
seamless integration of humans and robots in safety-critical
processes. This evolutionary step in 6G requires a close
examination of the interaction between communication
systems, and industrial and robotic control systems. It
aims to provide exceptional performance in terms of delay,
reliability, and availability, leading to a new era of precision
and efficiency in industrial automation.

• Human augmentation: Building upon the foundation laid
by 5G, 6G represents a significant leap forward in the
realm of sensory augmentation devices, including smart
prostethics, implants and wearables. Going beyond the
capabilities of its predecessor, 6G advances sensory aug-
mentation through its close interaction with precise and real-
time control, showcasing significantly improved latency,
reliability, and availability performance. This evolution
broadens the spectrum of applications, enabling the precise
control of augmented limbs, the delivery of more realistic
haptic feedback and the attainment of higher resolution
bionic vision and hearing.

B. Enabling Technologies

Critical services in 6G necessitate the adoption of cutting-
edge technologies to meet the stringent demands for reliability,
low latency, availability, and resilience. In general, critical com-
munication requires sources of diversity in all forms, including

spectrum, redundant equipment, failover mechanisms, and, not
the least, large number of antennas. Additional diversity can be
sourced from some of the emerging technologies, such as RIS
with large number of reflective elements, as well as integration
of spectrum with very high frequencies, such as THz and visible
light communication. Some of these technologies are discussed
in the sequel.

Distributed MIMO and cell-free massive MIMO represent
an evolution of the traditional cellular network architecture,
transforming into a collaborative system of a multitute of access
points (APs), each equipped with multiple antennas per AP and
distributed across the coverage area. This type of deployment
significantly improves the reliability and delay performance
of communication links by minimizing the average distance
between users and APs due to the spatial distribution of multiple
antennas [38]. Moreover, this cell-free architecture accommo-
dates diverse reliability, delay and availability requirements of
multiple users simultaneously through spatial multiplexing over
which multiple users can be concurrently served using the same
frequency resources [39]. Transmit beamforming over multiple
spatially distributed antennas is another key feature, enabling the
system to precisely direct signals towards the intended receivers
while concurrently minimizing interference for other users [40],
[41]. Finally, there is also the possibility of exploiting diversity at
the network level by taking advantage of multi-hop cooperative
relaying opportunities, which can be effective especially in
scenarios with blockage [42].

At this stage, the use of RIS and THz frequencies in 6G is more
speculative, although there are prototypes and demonstrations
of benefits of these technologies in specific setups. RIS leverage
programmable materials, with configurable phase and amplitude,
to alter the reflection behavior of the incident waves. This
dynamic control of the signal propagation serves to mitigate
fading and interference, thus fostering heightened reliability
in communication while ensuring exceptional availability [43],
[44]. In the context of critical services, RIS can also optimize
signal propagation paths and facilitate of precise beamforming
techniques [45].

Finally, THz communications encompass the transmission
of signals within the frequency range of 100 GHz to 10 THz,
offering a significantly increased bandwidth compared to lower
frequency bands. This ultra-high bandwidth capacity facilitates
the transmission of data at exceptionally high data rates, paving
the way for applications that demand both high rate and high
reliability, such as wireless virtual reality [46]. However, THz
communication faces a significant challenge: high atmospheric
absorption by atmospheric gases, leading to signal attenuation.
Nevertheless, recent advances have addressed this challenge by
developing techniques to select frequency bands with lower ab-
sorption rates [47], utilize beamforming to avoid regions of high
absorption [48], and develop adaptive modulation and coding
schemes to minimize errors induced by absorption [49]. These
advances have been demonstrated to achieve multi-kilometer
transmission ranges [50]. Although THz communications do
have a potential to be combined with RIS, its adoption in 6G
standards may still be premature, leaving its use open for future
wireless generations.
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C. Network Design for Critical Services in 6G

The evolution of critical services, transitioning from mission-
critical applications with stringent reliability and latency re-
quirements to safety critical control applications, necessitates an
enhanced approach to network design. This progression calls for
the integration of advanced control system-aware performance
metrics, ensuring not only high availability and resilience but
also a shift towards task-oriented communications. Moving
beyond the usual guarantees for correct reception of individual
transmitted bits, the network design for critical services should
consider the impact of each data portion on the stability and
performance of the associated control systems. Furthermore,
meeting the requirements of high availability and resilience
entails a comprehensive grasp of the statistical properties of the
channel, queue length, and delay. By modeling the tail statistics
of these parameters, the network design can better account for
extreme events and fluctuations, leading to a more robust and
adaptive system architecture.

1) Network Design for Control Systems: The joint design
of control and communication systems requires a thorough
examination of their dynamic interdependencies. Key consider-
ations include the sampling pattern within the control system,
along with the patterns of message delay and dropout within
the communication system. Achieving seamless integration of
these two systems requires a detailed exploration of control
system abstractions, as well as working with more general timing
measures, rather than focusing only on latency [2]. The following
details various such abstractions and some timing measures:

• Stochastic maximum allowable transfer interval (MATI)
and maximum allowable delay (MAD): The criteria govern-
ing the performance and stability of control systems are ex-
pressed through the definition of two key parameters: MATI
and MAD [51], [52]. While wireline networks can often
meet these rigorous real-time criteria, the same expectations
are infeasible in wireless networks due to inherent packet
error probability. Consequently, wireless control systems
adopt a stochastic MATI constraint, ensuring that the time
interval between successive state vector reports remains
above MATI value with a predefined probability [53], [54].
The incorporation of stochastic MATI and MAD constraints
have been recently explored in the context of joint de-
sign with communication systems [54]–[56]. In [54], these
constraints are incorporated into the optimization problem
aiming to minimize power consumption while ensuring
schedulability in the communication system. This initial
formulation is tailored for M-ary Quadrature Amplitude
Modulation (MQAM) as the modulation scheme and Ear-
liest Deadline First (EDF) as the scheduling algorithm.
Building on this foundation, [55] extends the framework
to accommodate any modulation scheme and scheduling
algorithm. Both [54] and [55] propose efficient polynomial
time heuristic algorithms, leveraging optimality conditions,
relaxation and search space reduction techniques to achieve
close-to-optimal performance. The demonstrated success
of the proposed joint design methodology highlights its
superiority over the traditional practice of separately de-
signing control and communication systems. This holds

true across a diverse range of network and control system
parameters, affirming its robustness and adaptability in
varying conditions.
Taking the exploration further, [56] incorporates ultra-
reliable transmission in the finite blocklength regime. The
proposed solution methodology adopts an optimization the-
ory based Deep Reinforcement Learning (DRL) approach,
comprising two stages: an optimization theory stage where
optimality conditions are derived to reduce the decision
variables, and a DRL stage where DRL is employed to
tackle specific parts of the optimization problem that are
not tractable. This AI based approach ensures the adaptivity
of the solution in stochastic environments.

• Age of Information (AoI): AoI is a metric that measures
the time elapsed since the latest relevant information was
generated for a state update at the controller. The effec-
tiveness and stability of the control processes hinge on
adhering to constraints on AoI statistics, ensuring that the
control system operates with the latest and most pertinent
state information. The analysis and optimization of AoI
statistics has attracted significant attention across diverse
communication network scenarios, as evidenced by studies
such as [57].
Recent research has delved into connecting the AoI of
sensor data with the control system performance [58]–[60].
Specifically, [58] proposes a deep learning (DL)-based
framework for co-designing estimators, controllers and
schedulers, incorporating awareness of the sensor’s AoI
and dynamic channel states. This framework introduces
an AoI-based importance sampling algorithm, enhancing
learning efficiency by considering both data accuracy and
freshness. Targeting stable mean-square estimation (MSE)
performance over short periods for time-critical systems,
[59] limits AoI growth through optimizing Hybrid Au-
tomatic Repeat Request (HARQ) packet retransmission
schemes. This involves allowing partial retransmissions and
optimizing retransmission times to facilitate the early arrival
of subsequent status updates. Additionally, [60] studies
optimal scheduling to minimize overall estimation MSE,
deriving structural properties of the optimal sensor schedul-
ing policy based on AoI states and corresponding channel
states. This policy is integrated into a deep reinforcement
learning (DRL) framework, enhancing effective exploration
of the action space.

• Age of Loop (AoL): AoL is defined as the elapsed time
since the generation of information leading to the latest
action or state update in a wireless networked control
system (WNCS). Unlike AoI, which is defined for a single
communication direction, either downlink or uplink, AoL
is considered a more relevant metric for optimizing closed-
loop WNCS by considering both uplink and downlink of the
control loop [61], [62]. In [61], the AoL metric is employed
to learn the WNCS latency and freshness bounds. The study
proposes an AoL-based bandwidth allocation policy aimed
at minimizing the WNCS cost. Results show that the pro-
posed algorithm outperforms policies based on fixed latency
requirements. Expanding on this, [62] conducts a thorough
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investigation of the peak age of loop (PAoL) performances.
This includes the average, variance and outage probability
of PAoL for WNCSs operating in the finite blocklength
regime over fading channels. This comprehensive anal-
ysis paves the way for a PAoL-oriented communication
and control co-design, introducing an adaptive scheme for
transmission power, blocklength and the maximum number
of allowable transmissions. The proposed PAoL-oriented
scheme demonstrates significant performance gains when
compared to UL-only and DL-only optimization schemes.

• Value of Information (VoI): VoI serves as a crucial metric,
capturing the variation in a value function concerning the
information available to the controller about the state of a
process. Distinguished from AoI and AoL, which focus on
the timeliness of the updates, VoI delves into the content
of the information, measuring the semantics of each data
packet [63]–[65]. In [63], VoI is quantified as the difference
between the benefit derived from enhancing regulation
quality due to reduced uncertainty at the controller and the
transmission cost of a packet. This study introduces a strat-
egy based on VoI, demonstrating optimal management of
the communication between the sensor and controller. It is
worth noting that this research assumes negligible network-
induced effects, such as transmission delay, quantization
or packet dropouts. Extending this concept to networked
control systems with arbitrary transmission delay, [64]
defines VoI metric as the reduction of uncertainty from the
decision maker’s perspective given a measurement update.
This VoI metric serves as the triggering condition for NCS
closed over a communication network. The proposed VoI
based event-triggering policy proves to achieve a lower
MSE compared to the AoI-based and periodic updating
policies. In the context of an event-triggered control system
with multiple subsystems sharing a wireless channel, [65]
proposes a channel access prioritization scheme based
on the VoI. The VoI of a subsystem depends on channel
reliability and represents the difference between sensor’s
a posteriori state estimate and the estimator’s estimate in
the absence of any data. The objective of the proposed
scheme is to minimize the discrepancy in the state estimate.
Utilizing measurement based triggering and VoI as the
priority measure leads to optimal performance.

The exploration of the joint design of control and commu-
nication systems is currently in its early stages. A comprehen-
sive comparison of control system abstractions across various
application scenarios remains an open research topic. While
the consideration of all the system parameters and realistic
assumptions in the system model is crucial for optimal network
design, it has been largely neglected in most designs due to
increasing complexity. Dealing with the resulting high complex-
ity of these problems necessitates the application of adaptive
machine learning techniques.

2) Network Design for Ultra-Reliable Communication: Crit-
ical services often demand URLLC with a targeted packet error
rate ranging from 10−9 to 10−5, and acceptable latency on the
order of milliseconds or less. In certain cases, depending on the
fading and knowledge of channel state information, the Shannon

capacity formula applicable to infinite blocklengths may not be
sufficiently accurate when finite blocklength is considered [66].
In [67], rigorous bounds as well as an approximation for the rates
achievable in the finite-blocklength regime has been derived,
considering signal-to-noise ratio (SNR), blocklength, and decod-
ing error probability. This expression has further been extended
to fading channels in [67], [68]. Recent studies on URLLC
have integrated these finite blocklength rate expressions into
their designs, focusing on methodologies to extend the original
approximation to practically relevant transceiver architectures
and to evaluate such an approximation efficiently [69]–[74].

Ensuring ultra-high reliability involves tackling fundamental
challenges in the statistical modeling of the wireless channel,
queue length, and delay within the ultra-reliable region. Meeting
the stringent reliability requirement of URLLC necessitates
innovative techniques to analyze the lower tails of distributions,
especially when dealing with extremely low probabilities. Ad-
ditionally, efficiently handling and optimizing a large amount
of data are crucial for modeling infrequently occurring extreme
events. Deriving tail statistics might be perceived as collecting
a large amount of data and fitting it to probabilistic distribu-
tions. However, these distributions may fall short in capturing
rare events due to limited data or may not be applicable in
different environmental conditions. Furthermore, since diversity
techniques (time, frequency, interface, and spatial diversity) are
employed to reduce the required signal-to-noise-ratio (SNR)
for achieving a specific reliability, tail statistics must account
for the dependencies of extreme events in multiple dimensions.
Various statistical methods have been employed to address these
challenges, as summarized below:

• Extrapolation based technique: The extrapolation based
technique relies on establishing a unified statistical repre-
sentation for a diverse set of wireless channels operating
in the ultra-reliable regime of operation [75]. This method
approximates the behavior of wireless channels in the ultra-
reliable regime using simple power law expression, where
the exponent and offset are contingent on the specific
channel model. The framework is extended to accommodate
multiple receivers by incorporating the simplified expres-
sion into maximum ratio combining (MRC).
Building upon this foundation, [76] further extends the
study by introducing a rate selection framework tailored for
URLLC systems. This framework comprises three essen-
tial components: channel model selection, model learning
through training; and transmission rate selection to meet the
required reliability. Recognizing the inadequacy of specify-
ing URLLC requirements solely through packet error rates,
two types of statistical constraints are introduced: averaged
reliability, governing the mean outage probability across
all possible realizations of the training sample, suitable for
designing URLLC systems with desired average perfor-
mance, and probably correct reliability, which manages the
probability that the outage probability surpasses a specified
threshold for a given training sample. These extrapolation-
based approaches prove effective when the extrapolation
of average-statistics channel models aligns with empirical
data in the ultra-reliable region.
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Collecting a sufficient number of samples from a device at a
given spatial point may require excessive number of channel
samples. Extrapolation-based approaches can be extended
to leverage the past data collected at nearby spatial points in
order to make reliability prediction for a given spatial point.
This is the main idea behind statistical radio maps [77],
where reliability prediction relies on assumptions for spatial
smoothness.

• Extreme value theory: Extreme value theory (EVT) stands
out as a distinctive statistical discipline designed to devise
methodologies and models for characterizing rare events
in ultra-reliable communication through the application
of mathematical limits as finite-level approximation. EVT
finds applications at physical layer to model the tail statistics
of the channel and design ultra-reliable communication sys-
tems based on these tail statistics [78]–[82]. Additionally, it
is employed at data link and network layers to model the tail
statistics of queue length and delay, and incorporate these
tail statistics into the optimization of resource allocation
[83]–[85].
In [78], EVT techniques are used at the physical layer to
determine the optimum threshold below which the received
power samples are classified as extreme events and incor-
porated into the tail distribution. The generalized Pareto
distribution (GPD) is then employed to model this tail
distribution. The validity of the proposed EVT-based model
is assessed through the examination of probability plots.
Building upon this, [79] extends the methodology to char-
acterize the tail of the non-stationary channel distribution.
This is achieved by identifying external factors contributing
to non-stationarity and segmenting the channel data into
multiple stationary sequences. The parameter of the fitting
distribution is modeled as a change-point function with
respect to time. Furthermore, [80] takes these techniques a
step further for systems employing spatial diversity. It calcu-
lates the lower tail statistics of received signal power across
multiple dimensions, efficiently managing extensive corre-
sponding data. The approach involves fitting bi-variate GPD
to the tail of the joint probability distribution, employing
logistic distribution-based and Poisson point process-based
approaches. The validity of these approaches is evaluated
by incorporating the probability measure function of the
Pickands coordinates.
Moving to real-time ultra-reliable communication, [81]
proposes a framework for rate selection using EVT. The
maximum transmission rate is determined by integrating
GPD into the rate selection function. This framework is
expanded in [82] by introducing confidence intervals to the
estimations, addressing cases with limited data availability.
The outcomes of these studies indicate that the proposed
rate selection framework provides a feasible approach to
reach a specified target error probability. This is accom-
plished by using a higher transmission rate and reducing
the amount of training data, as opposed to conventional rate
selection methods.
Transitioning to data link and network layers, [83], [84]
and [85] employ EVT principles to analyze the statistical
properties of large queue lengths and AoI, and integrate

them into resource allocation problem. In [83], the dis-
tribution of the maximal queue length across a vehicular
network is characterized through the application of EVT.
These findings are integrated into a stochastic optimization
problem aimed at minimizing total power. This methodol-
ogy effectively contributes to lowering both the mean and
variance of the maximal queue length within the network.
On the other hand, [84] focuses on characterizing the tail
distribution of AoI using EVT. This is subsequently utilized
to formulate a transmit power minimization problem, con-
sidering probabilistic AoI constraints. The study sheds light
on the tradeoff between the arrival rate of status updates,
and the average and worst AoI achieved by the network.
Characterizing the distribution of extreme events using EVT
in the above works necessitates the acquisition of sufficient
samples capturing extreme events, which may introduce
unacceptable overheads in the process of gathering samples
over the network. To address this problem, [85] proposes a
distributed approach based on federated learning, where the
vehicular users estimate the tail distribution of the network-
wide queues locally without sharing the actual queue length
samples. The proposed method has been demonstrated to
learn the statistics of the network-wide queues with high
accuracy.

• Stochastic network calculus: Stochastic network calculus
(SNC) offers robust theoretical insights into the analysis of
tail distributions for ultra-reliable communications. Within
this framework, non-asymptotic statistical performance
bounds on delay, AoI, and reliability are computed, while
considering complex stochastic processes [86]–[88]. In
[86], a comprehensive procedure is presented for calcu-
lating the end-to-end delay violation probability for target
traffic in industrial Internet of Things by using SNC and
moment generating functions. The analysis explores the
impacts of various resource allocation strategies and pa-
rameters on probabilistic end-to-end delay. An SNC-based
model to derive an upper bound for packet transmission
delay, given the amount of allocated radio resources for
a URLLC slice, the target violation probability and the
distribution of traffic demand is proposed in [87]. The
study proposes heuristics for the strategic planning of
URLLC slices. It determines the optimal allocation of
radio resources to each slice, ensuring that its delay bound
aligns with the specified delay budget. Furthermore, [88]
introduces a non-orthogonal multiple access-assisted up-
link URLLC network architecture, incorporating a SNC-
based statistical quality of service-provisioning theoretical
framework to facilitate tail distribution analysis concerning
delay, AoI, and reliability. The study formulates a power
optimization problem aimed at minimizing transmit power
while satisfying ultra-reliability constraints on delay, AoI,
reliability, and power consumption.

The investigation of tail statistics for ultra-reliable commu-
nication systems is currently in its initial phases. A thorough
examination of system behavior, taking into account tail statistics
across multiple layers, remains an ongoing research area. More-
over, the integration of the tail statistics and finite blocklength
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information theory into the network design for control systems
has been primarily explored in the context of AoI. To establish a
more comprehensive understanding, further research is needed
to connect these studies with control system performance. Fur-
thermore, efficient derivation of these tail statistics with minimal
overhead calls for the application of novel machine learning
techniques, including transfer learning and federated learning.
As a final remark, the presented tools and methods should be
used as a basis to design actual procedures for assessing ultra-
reliability in communication protocols. Eventually, all reliability
guarantees should be data-driven, where the data is collected in
a way that can capture the specifics of the communication setup
and can deal with the changes in the data statistics.

D. AI Based Techniques for Critical Services

The growing demands of critical service applications, charac-
terized by stringent requirements in terms of delay, reliability,
availability and resilience, coupled with the close interaction of
these applications with control systems, and the ongoing trend
towards deploying massive MIMO and RIS systems at higher
frequency bands, pose substantial challenges in the effective
management of network functions and wireless resources. The
resulting complexity in network design surpasses the capabilities
of conventional analytical methods for modeling and optimiza-
tion. Therefore, leveraging data-driven AI approaches becomes
imperative for the network design of critical services. These AI-
based approaches are instrumental in addressing the complexity
and potential intractability of problem formulations, while si-
multaneously enhancing adaptability through the learning of
near-real-time communication characteristics.

Despite the remarkable performance of AI, the application
of AI techniques in critical services necessitates considerable
caution. AI based approaches demand extensive data for training,
giving rise to significant communication delay. Moreover, the
resulting models often rely on intricate deep learning (DL)-based
models and algorithms, characterized by their black-box nature,
making them challenging to understand and interpret. This lack
of interpretability raises concerns about their suitability across
diverse scenarios. Potential performance issues may arise when
confronted with new data that deviates from the training set,
thereby affecting resilience. Additionally, the exploration of
various actions in these techniques may have safety implications,
introducing risks to the reliability and robustness of system. The
deficiencies in delay, interpretability, robustness, reliability, and
resilience of AI-based techniques present a significant risk in
their deployment for critical services. To address these concerns,
various techniques have been proposed, as detailed below:

• Optimization theory based AI: Optimization theory based
AI approach aims to leverage optimization theory knowl-
edge to improve the performance of AI algorithms. This
reduces the reliance on extensive training data, leading to
minimized delays and improved solution reliability and
robustness [89], [90], [56], [91]. In [89], a deep neural
network (DNN) is first pretrained using synthetic data
generated from an optimization-theory based algorithm,
followed by fine-tuning in a real environment with actual
measured data. In DNN, system parameters are mapped

to optimal resource allocation. Pretraining DNN involves
generating a diverse set of system configurations, represent-
ing all possible inputs, and computing the optimal resource
allocation using the optimization-theory based algorithm.
This pretraining substantially decreases the amount of real-
time data required for the implementation of AI approaches.
In [90], [56] and [91], the optimization theory based model
breaks down algorithms into fundamental building blocks,
replacing them with DNN architectures rather than treating
the entire algorithm as a black box. Specifically, [90] in-
troduces a low-complexity optimization theory-based deep
learning framework for minimizing the schedule length
in net-zero-energy networks with short packets. By deriv-
ing optimality conditions, mathematical relations among
optimal decision variable values are established. Conse-
quently, only a subset of outputs requires direct DNN
computation, reducing training time by simplifying the
complexity of the DNNs. On the other hand, [56] pro-
poses an optimization theory based DRL framework for
the joint design of controller and communication systems.
Optimality conditions illustrate the mathematical relations
between optimal decision variable values, enabling the
problem to be decomposed into multiple building blocks.
Blocks that are simplified but not tractable are then replaced
by DRL. The frameworks in [90] and [56] are further
generalized in [91] by constructing the block diagram of any
optimization theory-based solution, leveraging optimality
conditions at both the input and output, and structure of
iterative solutions from the realm of optimization theory.
The proposed approaches not only reduce training time but
also show significant enhancements in both overall accu-
racy and robustness performance in comparison to earlier
propositions in optimization theory and deep learning.

• Explainable AI: Explainable AI (XAI) comprises processes
and techniques designed to unveil the internal workings
of AI algorithms to improve their interpretability, robust-
ness and convergence time performance [92], [93]. XAI
facilitates the creation of interpretable models by develop-
ing a locally reliable representation of the original black-
box model behaviour using Local Interpretable Model-
agnostic Explanations (LIME) method. Moreover, XAI
plays a crucial role in evaluating and enhancing system
robustness against adversarial attacks through sensitivity
analysis and adversarial training. Sensitivity analysis quan-
tifies the model output’s sensitivity to changes in input
data, whereas adversarial training involves augmenting the
training data with adversarial examples, improving decision
reliability and resistance of the model to future attacks. In
the context of DL-based robust beam alignment for MIMO
networks, [92] demonstrates the effectiveness of XAI in
improving robustness, with up to a 17-fold increase in the
number of detected adversarial beam indices. XAI also
contributes to reducing model complexity and shortening
convergence time by providing techniques to eliminate less
important input features and employing model compression
techniques. The study in [92] showcases the application of
XAI to decrease the average training time by 49.1%, while
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maintaining the performance gap less than 1% for the DRL
based resource allocation problem in vehicular networks.

• Generative AI: Generative AI pertains to artificial intelli-
gence systems designed to generate new and realistic data
instances resembling and distinguishable from the training
data. In the context of ultra-reliable communication for
critical services, its primary application involves data aug-
mentation during the pretraining of DRL algorithms using
generative adversarial networks (GANs) [94], [95]. This
aids in acquiring experience and learning extreme events,
enhancing reliability, and attaining resilience. Utilizing
GANs, a limited set of real traffic and wireless channel
data is transformed into an extensive and diverse dataset,
facilitating the training of DRL agents by providing experi-
ential knowledge. The GAN-generated dataset effectively
eliminates transient training times, enabling the agent to
quickly adapt and recover during extreme conditions.

• Digital twin: Digital twin (DT) represents a digital replica
of a physical entity, mapping real-world objects and environ-
ments to a virtual space in real time [96], [97]. Typically sit-
uated at the network edge to accommodate the low-latency
requirements of critical services, DT undergoes an initial
pretraining phase to optimize resources efficiently by em-
ploying mathematical optimization and machine learning
techniques alongside virtual representation. The pretraining
phase allows for exploration within a simulation platform,
avoiding potential risky decisions, thus, enhancing the
communication reliability. Subsequently, the DT leverages
real-time data from the physical environment to enhance
the training of the previously trained model through the
application of transfer learning techniques. This addresses
the challenges of model mismatch and nonstationarity in
wireless networks. The pretraining significantly improves
the convergence of the algorithms, thereby minimizing
delays and enhancing the robustness of communication.

The ongoing exploration of AI-based techniques to fulfill
the delay, robustness, reliability and resilience requirements of
critical services remains an active and open area of research.
Specifically, AI based techniques can only be expected to work
as well as what the algorithms have seen in the training dataset, so
it would be challenging for an AI based solution to be truly robust
in the sense of being able to anticipate and to deal with unforeseen
rare events. Further, while innovative AI techniques have been
introduced in specific contexts, there is a need for the design of
new network architectures to establish a systematic methodology
for their development and implementation. Moreover, the trans-
ferability of the methodologies across diverse wireless systems
and applications requires thorough investigation. Furthermore,
as these algorithms are mostly developed in simulation environ-
ments, comprehensive testing in practical settings is essential to
facilitate real-time validation of their capability.

IV. SERVICES WITH MIXED CRITICALITY

A. From Network Slicing to Intent-Based Management

Network slicing was introduced in 5G to support applica-
tions with different requirements in terms of quality of service
(e.g., transmission rate, latency, and reliability). In a nutshell, a

network slice is a logical network serving a certain business
or customer need [98]. For example, one network slice can
be set up to support mobile broadband applications with full
mobility support and another slice can be set up to support IoT
applications. These slices will all run on the same underlying
physical core and radio networks and use the same transport
network, but, from the end-user application perspective, they
appear as independent networks, each with its unique capabilites.
Network slicing relies on the 5G core network; this means that it
requires the 5G network to operate in the so-called stand-alone
mode. To date, however, most 5G networks operate in non-stand-
alone mode, i.e., they connect to the 4G core network and rely
on 4G for connection setup and mobility. This should be seen as
an intermediate step toward the stand-alone operation required
to fully unleash the 5G capabilities.

Each network slice uses an appropriate set of network func-
tions to realize the slice. In the radio-access network, slicing is
not explicitly visible. Instead, packets to/from the core network
are marked with a QoS Flow ID (QFI). Based on the QFI, the
radio-access network process the data packets in the appropriate
manner, for example prioritizing critical packets over non-critical
packets in the scheduler or extending transmissions in time to
achieve sufficient coverage for a coverage-critical massive IoT
service.

Orchestrating and managing the different network slices can
be a complex task [99], [100]. It is expected that 6G will
leverage the use ML techniques to deploy intent-based network-
management solutions [101]. The underlying idea is that network
management will be performed via an abstraction layer, which
will interpret and automatically translate the intents into network
configurations and, while operating the network, continuously
learn and fine-tune the configurations based on the ongoing data
communication. Given the recent advances in natural language
processing, future systems may even allow the intents to be
given in human language (e.g., “configure the network to enable
50 IoT devices to share their local machine-learning models
via federated learning, with a high differential-privacy require-
ment”). Intent-based network management is a powerful tool
that could enable an operator to offer service-level agreements
beyond the best-effort type of services provided today. For
example, it could allow an operator to guarantee a certain data
rate and latency characteristic throughout a city as the intent-
based management automatically and continuously monitors
and adjusts the network configuration to meet this requirement,
possibly by prioritizing this traffic over other traffic types such as
massive IoT connections, which may have significantly relaxed
latency requirements in comparison.

B. Slicing of RAN Communication Resources: A Case Study

We provide next a case study that highlights the network-
slicing challenges and tradeoffs occurring when services with
mixed criticality need to be supported simultaneously. For sim-
plicity, we shall focus exclusively on the handling of radio
resources to meet the requirements of the different network slices.
Let us assume that, together with the massive connectivity and
critical services reviewed in Sections II and III, respectively, the
network needs also to support conventional mobile broadband
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Fig. 5: (a)–(c): Typical allocation of time-frequency resources for different kind
of traffic typologies in 5G. (d): Non-orthogonal slicing using H-NOMA.

traffic, which is characterized by large payload and stable device-
activation patterns.

The simplest approach to this scenario is to allocate distinct
and non-overlapping radio resources in time and/or frequency
to each one of these three services. Following [6], we shall refer
to this approach as heterogeneous orthogonal multiple access
(H-OMA). It turns out that this approach is suboptimal and can
be outperformed, in some scenarios, by a heterogeneous non-
orthogonal multiple access (H-NOMA) approach where time-
frequency resources are shared among some of the services. The
key observation is that one can exploit the difference in the
services requirements in terms of reliability via SIC decoding.
In other words, one can exploit the inherent reliability diversity
among the services.

To understand why this is the case, we will consider the
problem of coexistence between broadband, massive, and critical
services as sketched in Fig. 5. Let us first focus on the coexistence
between broadband traffic and critical services as originally
defined in 5G. From a communication theory perspective, we can
model the broadband-traffic transmission problem as a problem
of communicating information over multiple frequency channels
(see Fig. 5a) over a fading channel that can be assumed to be
known to both transmitter and receiver. This assumption is a
plausible approximation, because of the large payloads that are
typically assumed for broadband traffic, which make the cost of
exchanging channel-state information negligible. One reasonable
objective when transmitting broadband traffic is to maximize the
transmission rate under a long-term power constraint as well as
a constraint on the outage probability.

As proven in [102], the rate-maximizing strategy for this
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Fig. 6: Pictorial representation of the tradeoff between outage rate of broadband
and outage rate of critical traffic. The solid lines correspond to the case in which
the SNR experienced during the transmission of the critical traffic is larger than
that experienced during the transmission of the broadband traffic. The dotted
lines correspond to the opposite case.

scenario is truncated channel inversion, according to which
transmission occurs at a power that is inversely proportional
to the square of the channel amplitude, provided that the channel
gain is sufficiently large. If this is not the case, no transmission
occurs, which results in an outage.

Furthermore, as illustrated in Fig. 5b, we can model the critical-
traffic transmission problem as the problem of decoding the
sporadic transmission of information allocated over a single
time slot of multiple frequency channels. Such traffic allocation
has the advantage of minimizing the decoding delay. For the
transmission of critical traffic, it is reasonable to assume that no
fading-channel knowledge is available at the transmitter, since
acquiring such a knowledge would typically result in large delays.
Also in this case, the outage probability for a given transmission
rate is a natural performance metric [68].

For this setup, H-OMA would entail reserving one or more
time slots across a number of frequency channels for critical
traffic. As pointed out in Section I, though, this may be wasteful
in terms of resources because of the sporadic nature of critical-
service transmission. The approach in H-NOMA is to let both
traffic types overlap in the same time-frequency resources, as
illustrated in Fig. 5d. The idea is to exploit the fact that critical
services need to be decoded with a failure rate that is typically 2
to 3 orders of magnitude smaller than broadband services. The
receiver can exploit this reliability diversity by decoding the
critical service first, and then removing the interference it causes
on the broadband service prior to its decoding. As proven in [6]
and shown pictorially in Fig. 6, this approach is advantageous
when the SNR experienced during the transmission of the critical
traffic is larger than the SNR experienced during the transmission
of the broadband traffic. This condition guarantees that the
critical traffic can be decoded at the desired reliability level,
in the presence of the broadband-traffic interference, which is
a necessary condition to enable interference cancellation. On
the contrary, when the critical-traffic SNR is lower than the
broadband-traffic SNR, H-OMA is preferable.

Next, we consider the coexistence between massive-
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Fig. 7: Pictorial representation of the tradeoff between outage rate of broadband
traffic (per frequency channel) and average number of decoded IoT devices.

connectivity and broadband traffic. As illustrated in Fig. 5c,
and in agreement with Section II, we can assume that this
kind of traffic results in a random numbers of overlapping
transmissions over a pre-allocated frequency channel, each
one occupying multiple time slots. As discussed in Section II,
a reasonable performance metric for this kind of traffic is
the fraction of correctly decoded transmissions. A common
approach in many massive random access protocols to address
the interference resulting from multiple transmission is SIC,
where channel quality and interference patterns are accounted
for to successfully decode the active users.

The H-NOMA approach in this context entails extending
SIC, to include the decoding of the broadband-traffic. As shown
in [6], the order in which the data belonging to the two types of
service are decoded is critical from a performance perspective.
However, such ordering is difficult to determine analytically.
A good heuristic is to perform SIC decoding of the massive-
access users until no more users can be decoded. At this point,
decoding of the broadband traffic is attempted, and, if it succeeds,
the decoding of the remaining massive-access users via SIC
is resumed. As demonstrated in [6], and illustrated pictorially
in Fig. 7, the H-NOMA approach is typically beneficial for
intermediate values of the broadband-traffic rate, i.e., when the
broadband-traffic can be decoded only after few strong massive-
connectivity users have been decoded and their signal canceled.
On the contrary, H-OMA is advantageous when the rate of the
broadband traffic is large. Indeed, H-NOMA performs poorly
in this regime because whenever the decoding of the broadband
traffic fails, so does the decoding of a large fraction of massive-
connectivity users.

While no results are provided in [6] as far as slicing between
critical and massive connectivity is concerned, intuitively, for the
resource-allocation model considered in Fig. 5, it seems unlikely
that one can satisfy with H-NOMA the reliability requirements
of critical traffic, in the presence of the random interference
caused by massive connectivity.

As pointed out in Section I, critical connectivity, latency and
reliability do not necessarily need to be coupled in 6G. This
suggests that the model for critical connectivity presented in
Fig. 5b should be revised. An alternative model is considered

Physical
phenomenon

Fig. 8: A 6G scenario for the coexistence of massive and critical connectivity.
A large population of sensors may transmit both ordinary messages and alarm
messages triggered by a physical phenomenon to a sink. Alarm messages need
to be decoded with much higher reliability than ordinary messages.

in [103], where the authors assume that both critical and massive
services are provided over a number of consecutive time slots
over the same frequency channel, similar to what depicted in
Fig. 5c. A possible relevant scenario for this setup is presented in
Fig. 8: a large population of sporadically active sensors transmit
individual information to a sink. The occurrence of a certain
physical phenomenon may, however, trigger a subset of sensors
to transmit an alarm message that needs to be decoded with much
higher reliability than ordinary messages.

In such a setup, H-OMA would entail subdividing the slots
available on the frequency channel into slots dedicated to critical
messages and slots dedicated to ordinary messages, whereas H-
NOMA would entail the transmission of a superposition of both
messages when both are available.

For the simple physical-layer model considered in [103], H-
OMA turns out to be advantageous over H-NOMA. Indeed, when
using H-OMA, one can leverage the fact that, since all sensors
conveying the alarm message transmit the same codewords, such
codewords combine coherently over the air, which implies that
only a small number of time slots is required to achieve the
desired reliability. This makes the transmission of the alarm
message very energy efficient. Furthermore, even in situations
where these slots are often idle because the alarm-triggering
physical phenomenon is rare, the ordinary traffic is not penalized,
because the number of reserved slots is small. On the contrary,
as pointed out already in [6], H-NOMA suffers from the limited
performance of interference cancellation in such a scenario.
Indeed, even when the alarm is correctly decoded, it turns out to
be difficult to estimate the number of sensors that transmitted it to
the level of accuracy required not to impact the decoding of the
ordinary messages after SIC. As a consequence, transmitting
the alarm message with H-NOMA involves a much higher
expenditure in terms of energy per bit.

The network architecture described so far, in which only a
single receiver is in charge of collecting the signals from all
users, may be replaced in 6G by a distributed architecture, where
a multitude of low-cost coordinated APs are deployed over a
coverage area. As noted in, e.g., [104], different AP deployments
may be optimal for different traffic typologies. Going back to
the example considered in Fig. 8, a uniform deployment of the
APs is typically optimal for the ordinary massive-connectivity
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traffic. The situation is different in the alarm-message case.
Indeed, if we require the alarm message from each sensor to
be decoded individually, then a centralized deployment, where
the distributed APs are replaced by a centralized massive antenna
array, results typically in better performance. Indeed, the locality
of the physical event generating the alarm traffic, implies that
the locations of the activated sensors are highly correlated. As
a consequence, a receiver with a large number of antennas is
required to separate their signals.

C. Network Slicing for Decentralized Learning and Inference:
Challenges and Open Problems

As pointed out in Section I, the main driver for massive
connectivity in 6G is expected to be distributed/decentralized
learning and inference. This raises the question of whether this
kind of traffic should be allocated a separate network slice
and, if so, which kind of key performance indicators should
be associated to this network slice. This is an active area of
research and no accepted metric is available so far. Obviously,
one can choose a specific distributed learning application, as
often done in the literature, and exhibit results in terms of training
convergence or generalization error. However, such an approach
lacks generality.

Another interesting challenge brought by this traffic typol-
ogy is how to exploit effectively the inherent communication-
computation convergence opportunities. Such convergence op-
portunities arise from the fact that, in distributed/decentralized
learning and inference applications, the sink is often interested
only in a function of the signals transmitted by the active users.
For example, in the case of over-the-air federated learning—one
of the applications that have been studied more in depth in the lit-
erature [105], [106]—each active user may send a quantized ver-
sion of its local gradient, whereas the sink is interested only in the
arithmetic average of the local gradients. The initial approaches
proposed in the literature to perform such an aggregation over
the air, rely on the transmission of analog waveforms that are not
compatible with the digital communication protocols used in cel-
lular communication standards. Digital-domain versions of such
initial approaches have been recently investigated in, e.g., [107].
Such recent protocols rely on a combination of the grant-free
massive access approach proposed [23] with the type-based
multiple-access approach proposed in e.g., [108]. This promising
combination augments the framework proposed in [23] with an
explicit mapping between messages and observations, and with
the requirement that the multiplicity of each observation is also
detected by the decoder [14]. However, no fundamental bounds
on the performance achievable using this approach are available,
which makes it difficult to assess the optimality of the protocols
proposed so far.

V. CONCLUDING REMARKS

The focus on massive communication and critical services
started in 5G, with the consideration of mMTC and URLLC as
two generic services. This article has discussed the evolution
of massive and critical connectivity towards 6G, reflecting the
updated understanding of the requirements for these services as
well as the methods and tools available to design and assess those

services. Regarding massive connectivity, besides the protocols
and algorithms for uplink access relevant already in 5G, we
have presented methods for downlink transmission, necessary to
support massive closed loop communication. The discussion on
critical services was centered on the generalization of latency-
reliability requirements towards other types of timing require-
ments. The focus was also put on models of channel and traffic
dynamics for attaining the critical service requirements. Notably,
we have discussed the role of AI technologies in meeting and
assessing the requirements for criticality and robustness. Finally,
we have discussed the problem of sharing wireless resources
among services with different criticality. This part is an important
illustration of the existence of use cases in which massive and
critical communication converge.
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and X. Costa-Pérez, “A stochastic network calculus (SNC)-based model
for planning B5G uRLLC RAN slices,” IEEE Trans. Wireless Commun.,
vol. 22, no. 2, pp. 1250–1265, 2023.

[88] Y. Chen, H. Lu, L. Qin, Y. Deng, and A. Nallanathan, “When xURLLC
meets NOMA: A stochastic network calculus perspective,” IEEE Com-
mun. Mag., vol. 62, no. 6, pp. 90–96, 2024.

[89] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in
the era of deep learning: Model-based, AI-based, or both?” IEEE Trans.
Commun., vol. 67, no. 10, pp. 7331–7376, 2019.

[90] A. G. Onalan and S. Coleri, “Optimization theory and deep learning based
resource allocation in net-zero-energy networks with short packets,” IEEE
Commun. Lett., vol. 27, no. 8, pp. 2098–2102, 2023.

[91] S. Coleri, A. G. Onalan, and M. D. Renzo, “Integrating optimization
theory with deep learning for wireless network design,” 2024, submitted
for publication.

[92] N. Khan, S. Coleri, A. Abdallah, A. Celik, and A. M. Eltawil, “Explainable
and robust artificial intelligence for trustworthy resource management in
6G networks,” IEEE Commun. Mag., vol. 62, no. 4, pp. 50–56, 2024.

[93] T. Zhang, H. Qiu, M. Mellia, Y. Li, H. Li, and K. Xu, “Interpreting AI
for networking: Where we are and where we are going,” IEEE Commun.
Mag., vol. 60, no. 2, pp. 25–31, 2022.

[94] A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experienced
deep reinforcement learning with generative adversarial networks (GANs)
for model-free ultra reliable low latency communication,” IEEE Trans.
Commun., vol. 69, no. 2, pp. 884–899, 2021.

[95] A. Salh et al., “Refiner GAN algorithmically enabled deep-RL for guar-
anteed traffic packets in real-time URLLC B5G communication systems,”
IEEE Access, vol. 10, pp. 50 662–50 676, 2022.

[96] C. She et al., “A tutorial on ultrareliable and low-latency communications
in 6G: Integrating domain knowledge into deep learning,” Proc. IEEE,
vol. 109, no. 3, pp. 204–246, 2021.

[97] A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision
and research directions for 6G and beyond,” IEEE Commun. Mag., vol. 61,
no. 11, pp. 128–134, 2023.

[98] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung,
“Network slicing based 5G and future mobile networks: Mobility, resource
management, and challenges,” IEEE Commun. Mag., vol. 55, no. 8, pp.
138–145, Aug. 2017.

[99] J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-
Zeid, “Intelligent radio access network slicing for service provisioning in
6G: A hierarchical deep reinforcement learning approach,” IEEE Trans.
Commun., vol. 69, no. 9, pp. 6063–6078, Sep. 2021.

[100] W. Wu et al., “AI-native network slicing for 6G networks,” IEEE Wireless
Commun., vol. 29, no. 1, pp. 96–103, Feb. 2022.

[101] A. Leivadeas and M. Falkner, “A survey on intent-based networking,”
IEEE Commun. Surv. Tutorials, vol. 25, no. 1, pp. 625–655, Jan. 2023.

[102] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fading
channels,” IEEE Trans. Info. Theory, vol. 45, no. 5, pp. 1468–1489, Jul.
1999.

[103] K.-H. Ngo, G. Durisi, A. Graell i Amat, P. Popovski, A. E. Kalør, and
B. Soret, “Unsourced multiple access with common alarm messages:
Network slicing for massive and critical IoT,” IEEE Trans. Commun.,
vol. 72, no. 2, pp. 907–923, Oct. 2024.
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“Blind federated edge learning,” IEEE Trans. Wireless Commun., vol. 20,
no. 8, pp. 5129–5143, Aug. 2021.

[107] L. Qiao, Z. Gao, Z. Li, and D. Gündüz, “Unsourced massive access-based
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