
Prepared for submission to JHEP

A SymTFT for Continuous Symmetries

T. Daniel Brennana and Zhengdi Suna,b

aDepartment of Physics, University of California San Diego
bMani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, Univer-

sity of California Los Angeles, CA 90095, USA

E-mail: tbrennan@ucsd.edu, zdsun@physics.ucla.edu

Abstract: Symmetry is a powerful tool for studying dynamics in QFT: it provides selection

rules, constrains RG flows, and often simplifies analysis. Currently, our understanding is

that the most general form of symmetry is described by categorical symmetries which can be

realized via Symmetry TQFTs or “SymTFTs.” In this paper, we show how the framework of

the SymTFT, which is understood for discrete symmetries (i.e. finite categorical symmetries),

can be generalized to continuous symmetries. In addition to demonstrating how U(1) global

symmetries can be incorporated into the paradigm of the SymTFT, we apply our formalism

to study cubic U(1) anomalies in 4d QFTs, describe the Q/Z non-invertible chiral symmetry

in 4d theories, and conjecture the SymTFT for general continuous G(0) global symmetries.
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1 Introduction and Summary

Symmetry is a powerful tool for studying physical processes. In general, symmetries provide

selection rules for dynamical processes and can be used to constrain RG flows. Recently,

the notion of symmetry in quantum theories has been expanded to include the action of

all topological operators which goes beyond the notion of group-like symmetries. These

topological operators, along with their braiding and fusion, are instead described by category

theory and are referred to as “generalized” or “categorical symmetries.” For a review of

generalized/categorical symmetries see [1–7] and sources therein.

A particularly useful tool for studying the general symmetry structure of a quantum

theory is the Symmetry TQFT or SymTFT for short [2, 8–22]. To a given d-dimensional

QFT, we can associate a (d + 1)-dimensional TQFT (defined by the symmetry category1)

which encodes all of the symmetries (and their anomalies [8, 16–19]) of the physical QFT.

If we take our QFT on the spacetime manifold Xd, then the associated SymTFT is placed

1Here we will not define the symmetry category as it is relatively complicated and even the type of category

differs by the dimension of the QFT/SymTFT.
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(a) (b)

Figure 1: In this figure we illustrate the idea of the SymTFT in the sandwich/slab config-

uration where the QFT boundary is on the left (blue) and the quiche boundary is on the

right (orange). In (a) we illustrate the SymTFT as a TQFT on the interval which admits

a set of topological operators with non-trivial braiding. In (b) we show some topological

operators (green lines) of the SymTFT can be pushed into the boundary where they act as

the topological operators that generate the symmetry, while other topological operators (red

lines) can terminate on the boundary representing operators that are charged under the global

symmetries.

on the manifold Yd+1 = Xd × [0, 1]. If we parametrize the interval (sometimes called “the

sandwich” or “the slab”) by a coordinate t ∈ [0, 1], then the boundaries of Yd+1 at t = 0, 1

must correspond to non-trivial boundary conditions of the SymTFT. By convention, we take

t = 0 to be the boundary associated to the QFT while the boundary at t = 1 is a topological

boundary (called the “quiche” boundary). The SymTFT is comprised of a collection of

topological operators which describe the possible topological symmetry operators in the QFT

as well as their fusion, and linking. Their expression in the QFT is explicitly controlled by

the choice of quiche boundary condition.

See for example Figure 1. The advantage of the SymTFT over the standard construction

of SPT phases is that it admits a description of more general global symmetries in QFTs

such as non-invertible and categorical symmetries and allows one to capture the topological

manipulations via changing the symmetry boundaries.

The utility of the SymTFT is that it gives us a uniform mechanism to extract the “topo-

logical sector” of a QFT. Because the interval is topologically trivial, the path integral of

the SymTFT on the interval identifies the topological operators on the QFT boundary with

their realization on the quiche boundary. Alternatively, since the SymTFT is topological,

we can dimensionally reduce along the interval, colliding the quiche boundary with the QFT

boundary, thereby fixing the topological sector of the QFT by the quiche boundary conditions.

There is also a dual picture where one quantizes the SymTFT along the interval (i.e.

use t as a “time” coordinate). In this picture, the boundary conditions correspond to states

on which the topological operators of the SymTFT act and the path integral on the interval
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(again being topologically trivial) computes the inner product between these states. In this

picture, it is clear that fixing the quiche boundary state projects the QFT onto a particular

state which realizes how the topological symmetry operators act in the QFT.

Because of the role of the quiche boundary condition in realizing how the symmetry

category of the SymTFT acts in the QFT, we can discuss the possible realizations of a

particular symmetry category in terms of the SymTFT on the semi-infinite line, Ŷd+1 =

Xd × R+, independent of the QFT; much in the same way one can discuss the property of

groups independent of a representation. There, we can discuss all possible topological quiche

boundaries and different possible symmetry protected gapped phases that can realize a given

symmetry.

While the SymTFT is a ubiquitous tool for studying symmetries in QFT, thus far it has

only been used to study finite categorical symmetries including for example finite groups,

duality defects, and certain non-invertible symmetries [2, 8–19, 22]. However, in order to

have a complete framework to study all symmetries, one would also like to understand how

to describe continuous symmetries and their interaction with finite symmetries using the

framework of the SymTFT. This is important for example in studying gapless, interacting

theories that arise from spontaneously breaking a continuous global symmetry.

In this paper, we will demonstrate how to one can incorporate continuous symmetries

into the framework of symmetry TQFTs. Here we will give a Lagrangian formulation of

these theories and perform our analysis within that framework. We will primarily focus on

U(1) p-form global symmetries although we will also propose a SymTFT for G(0) symmetries

where G is a continuous non-abelian Lie group. Although one may be able to describe a

U(1)(p) global symmetry of a QFT and its ’t Hooft anomalies in terms of more traditional

SPT phases, their description in using the SymTFT is more powerful because it naturally

allows more general manipulations such as discrete gauging and, as we will see, captures the

interplay of U(1)(p) symmetry with more general symmetries such as non-invertible global

symmetries.

For a d-dimensional QFT with U(1)(p) global symmetry we can express the SymTFT for

a U(1)(p) global symmetry in terms of the action:

SU(1) =
i

2π

∫
dap+1 ∧ h̃d−p−1 , (1.1)

where ap+1 is a (p+1)-form U(1) gauge field and hd−p−1 is a R-valued (d−p−1)-form gauge

field. This TQFT is reminiscent of the ZN SymTFT which is described by a BF theory [23–

25], and indeed, one can restrict to the Z(p)
N subsector of the U(1)(p) SymTFT and reproduce

the standard BF action. We can heuristically think of the U(1)(p) as the Z(p)
N SymTFT in the

limit N → ∞ where NBd−p−1 7→ hd−p−1 and Ap+1 7→ ap+1

SZN
=

iN

2π

∫
dAp+1 ∧Bd−p−1 7−→ SU(1) =

i

2π

∫
dap+1 ∧ hd−p−1 , (1.2)
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which straightforwardly describes the symmetry defect operators that source flat background

U(1)(p) connections.

Similar to the ZN SymTFT, the U(1)(p) symmetry can be described in terms of the pair

of topological operators

Wn(γ) = ein
∮
a , Wα(Σ) = eiα

∮
h , (1.3)

for n ∈ Z and α ∈ U(1) which have non-trivial linking.2

The possible quiche boundary conditions are given by the familiar Dirichlet and Neumann

boundary conditions which fixes either ap+1 (diagonalizes Wn) or hd−p−1 (diagonalizes Wα)

respectively. However, note that the Neumann boundary condition for this SymTFT only

sums over the flat U(1) connections. In Section 3 we analyze this theory, its operators and

boundary conditions, and demonstrate how spontaneous symmetry breaking is encoded in

the SymTFT. Additionally, we discuss how one can modify the structure of the SymTFT to

dynamically gauge the U(1) global symmetry on the boundary by summing over all of the

states in all defect Hilbert spaces.

Additionally, in Section 4 we discuss several applications of the continuous SymTFT

such as how anomalies are realized and how they prevent the existence of Neumann bound-

ary conditions and how non-invertible chiral Q/Z symmetry in 4d are realized in the U(1)2

SymTFT.

Finally, in Section 5 we propose a symmetry TQFT that we believe may encode the

continuous, non-abelian G(0) global symmetries in a QFT. Our proposal is that

SG(0) =
i

2π

∫
Tr (f2 ∧ hd−1) , (1.4)

where the trace is over the defining representation. Here f2 is the G
(0) field strength and hd−1

is a Lie[G(0)] = g-valued (d− 1)-form gauge field which together transform under G(0) gauge

transformations as

f2 7−→ g−1f2g , hd−1 7−→ g−1(hd−1 +Dλd−2)g , (1.5)

where λd−2 is a g-valued (d− 2)-form transformation parameter.

In addition to the fact that this is the clear generalization of the abelian action, it is also

similarly related to the topologically B-twisted 3d N = 4 G(0) gauge theory [26–29]. The

non-abelian BF theories we propose here have additionally been studied in dimension four in

[30, 31].

This theory contains a series of Wilson lines WR = TrRP ei
∮
a1 , admits both Dirichlet

and Neumann boundary conditions, and can describe anomalies in analogy with the SymTFT

for U(1) global symmetry. However, these TQFTs are non-trivial and require further study

2We are unsure what the proper categorical description should be; however we suspect that it is related

to the categories of line operators in topologically twisted 3d N = 4 Yang-Mills theory that are described in

[26–29].
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as it is unclear what the full spectrum of topological operators are in this theory (due to

issues with normal ordering for non-abelian Wilson-type operators of dimension greater than

1) and what becomes the G(0) symmetry defect operator in the QFT with Dirichlet boundary

conditions.

Note Added: While preparing edits for the second version of this paper, the papers [32–34]

were also submitted, which discuss similar ideas.

2 SymTFT Review

In this section, we will briefly review the idea of the SymTFT [2], taking the case of ZN

0-form symmetry as our primary example. For more details see [2, 4, 6–11].

Consider a d-dimensional QFT T on a spacetime manifold Xd. We will assume that this

theory has a global symmetry structure that is determined by a collection of topological op-

erators. Due to the standard picture of anomaly inflow, it is natural to expect that one may

be able to describe these topological symmetry operators in terms of a (d + 1)-dimensional

TQFT on a manifold Yd+1 which has a boundary component Xd. In this picture, the topo-

logical operators of the TQFT would become the topological symmetry operators of the QFT

on the boundary, but their braiding and fusion would be determined by the behavior of the

bulk operators in the TQFT.

However, for any non-trivial symmetry, one must have a non-trivial TQFT which in

general will have a non-trivial dependence (i.e. the Hilbert space, partition function, and

etc.) on the choice of bounding manifold Yd+1. For example, if Yd+1 has non-trivial bulk

cycles/topology away from its boundary ∂Yd+1 = Xd (i.e. non-trivial Hn(Yd+1, Xd)), then

the TQFT partition function will sum over all possible topological operators wrapping these

cycles.

The framework of the the Symmetry TQFT or (“SymTFT” for short) indeed uses this

idea, but solves the problem of choosing a (d+ 1)-dimensional manifold in a very clever way.

The SymTFT gives a canonical choice of Yd+1 by coupling the QFT on Xd to a TQFT in

one higher dimension on Yd+1 = Xd × [0, 1] where t ∈ [0, 1] parametrizes the interval where

t = 0 is the boundary on which the dynamical QFT resides. Since the interval is topologically

trivial there will be no dependence on the (d+1)-dimensional physics except on an additional

choice of boundary condition at t = 1. Since we do not want to add additional degrees of

freedom introduced into our QFT by the SymTFT, we demand that the boundary condition

at t = 1 is topological (i.e. gapped). See Figure 2 for the setup. For reasons that will become

clear, we will refer to this boundary as the “quiche boundary.”

This construction allows us to isolate the behavior of the topological symmetry operators

of the QFT and describe them in terms of the topological operators of the (d+1)-dimensional

SymTFT. One way to see this is the following. Since the SymTFT is topological and the

interval is topologically trivial, the theory does not depend on the size of the interval. In

particular, we can take the limit as the size of the interval goes to zero. In this limit, we are
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(a) (b)

Figure 2: In this figure we illustrate the setup of the SymTFT. In (a) we show the SymTFT

as a TQFT on the interval which has a gapped boundary on one end (quiche boundary) and

the dynamical QFT at the other end. This configuration is sometimes called “the sandwich”

as we can collapse the interval due to the fact that the SymTFT is topological, thereby

“sandwiching” the two boundaries together. In (b) we show the SymTFT where we only focus

on the gapped boundary. This configuration is often called “the quiche” as the SymTFT has

an open boundary.

effectively taking the product of the topological boundary and the QFT, so the bulk operators

are completely reduced to those that exist in both the QFT and the quiche boundary.

Here, the product reproduces the path integral of the QFT in a certain phase that is de-

termined by the quiche boundary conditions. This can be computed by either computing the

partition function on the sandwich with the appropriate boundary conditions or equivalently

by taking the inner product of the QFT boundary state with the quiche boundary state. In

this way, the SymTFT encodes the possible topological manipulations one can perform on

the QFT path integral in terms of the different choices of quiche boundary conditions.

This picture of taking the product of the QFT with the quiche boundary by reducing the

interval is an intrinsic feature of the SymTFT: we can think of it as defining an action of the

topological boundary of the SymTFT on the QFT (in our convention the SymTFT acts on

the QFT as a right module). Because of this action, we can think of the SymTFT with the

quiche boundary as an independent object, much like how we study groups independently of

their representations. This object (i.e. the SymTFT on a half-space Xd ×R−) is often called

“the quiche.”
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2.1 ZN SymTFT

Let us now specify to the example of a d-dimensional QFT with Z(0)
N global symmetry on

Xd.
3 We want to couple the d-dimensional theory to the (d + 1)-dimensional SymTFT on

Xd × [0, 1]. Here, the SymTFT is described by the 1-form ZN BF theory which has the

Lagrangian:

S =
iN

2π

∫
da1 ∧ bd−1 , (2.1)

where a1 and bd−1 are U(1)-valued 1-form and (d − 1)-form gauge fields respectively. This

theory contains ZN Wilson lines of a1 gauge field and the ZN Wilson surfaces of the bd−1

gauge field4

Wn(γ) = ein
∮
γ a1 , Wm(Γ) = eim

∮
Γ bd−1 , n,m ∈ ZN . (2.2)

These operators have the following non-trivial braiding relation

⟨Wn(γ)Wm(Γ)⟩ = e2πi
mn
N

Link(γ,Γ) . (2.3)

We additionally want to point out that the surface operators eiα
∮
da1 and eiβ

∮
dhd−1 are

topological and gauge invariant, but are trivial operators in the SymTFT.

We now want to consider the SymTFT quiche. In any (Euclidean) TQFT there is a one-

to-one mapping between codimension 1 boundary conditions on Xd and states in the TQFT

Hilbert space quantized on Xd: H[Xd]. The reason is that the Euclidean signature of the

TQFT allows us to quantize along the t-direction or along some orthogonal direction along

Xd. This gives two equivalent descriptions of a spacetime boundary in a TQFT.

For the ZN SymTFT, we can use the fact that a1 and bd−1 are canonically conjugate

variables to see that there are two dual bases of orthonormal states/boundary conditions for

the SymTFT: 1.) states that diagonalize the a1 and 2.) states that diagonalize the bd−1 fields.

More precisely, the two classes of states diagonalize the gauge invariant operators 1.) Wn(γ)

and 2.) Wn(Γ). By convention, we call these boundary conditions 1.) “Dirichlet” denoted

|DA⟩ and 2.) “Neumann” denoted |NB⟩:

1.) Wn(γ)|DA⟩ = ein
∮
γ A|DA⟩ , 2.) Wp(Σ)|NB⟩ = ein

∮
Σ B|NB⟩ . (2.4)

Generally, we will work with the basis of Dirichlet states which we will usually write as

|A⟩ := |DA⟩. We will always refer to the Neumann states by |NB⟩ and will revert to the

notation |DA⟩ for Dirichlet state whenever there is possible ambiguity.

As is standard in canonical quantization, these two boundary conditions are related by

a Fourier transform:

|NB⟩ =
1√

|H1(Xd,ZN )|

∑
A∈H1(Xd;

2π
N

ZN)

e
iN
2π

∫
A∪B |A⟩ . (2.5)

3For simplicity, we will only focus on the case of 0-form global symmetries, but the cases for general Z(p)
N

symmetries will follow with straightforward modification.
4The operators WpN ,WqN where p, q ∈ Z act as trivial operators in the TQFT because they have trivial

linking with all operators and can be absorbed by a shift of bd−1 or a1 respectively by a non-flat gauge field.
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Note that here we choose to normalize A1 so that it is a ZN ⊂ U(1) gauge field – matching

most of the discussion in our paper.

Similarly, the Dirichlet boundary condition can be constructed from the Neumann bound-

ary condition by inverse Fourier transform:

|A⟩ = 1√
|Hd−1(Xd,ZN )|

∑
B∈Hd−1(Xd;

2π
N

ZN)

e−
iN
2π

∫
A∪B |NB⟩ . (2.6)

This procedure which allows us to go back-and-forth between Dirichlet and Neumann bound-

ary conditions is formally gauging the associated Z(0)
N or Z(d−2)

N global symmetry as appropri-

ate on the boundary. This procedure is often referred to as a type of condensation as we can

implement these gaugings by summing over all possible boundary insertions of the b-surfaces

or a-lines respectively. Thus in the two cases, we condense the b-surface operators to go from

Dirichlet to Neumann (since they implement the gauge transformations for the a1 gauge field)

or a-line operators to go from Neumann to Dirichlet respectively.

To better understand the notion of condensation, let us first consider the Dirichlet bound-

ary condition. Here, the a-line operators are diagonalized by the states |A⟩. On the other

hand, the b-surface operators act non-trivially on the Dirichlet states by shifting A by a flat

ZN gauge field since the b-surface operators source a flat background gauge field for a.

A closely related construction of the Dirichlet states in H[Xd] are the states in the defect

Hilbert space HWn [Xd]. Here we construct the defect Hilbert space by inserting a Wilson line

Wn(γ) so that it stretches along the t-direction and intersects Xd along at a point x ∈ Xd and

quantizing the theory on Xd in this background. This Hilbert space is spanned by Dirichlet

states which again diagonalize the a-lines. However, due to the fact that the Wn(γ) have

non-trivial linking with the Wp(Σ), we see that the associated Neumann states are all trivial.

This should come as no surprise because going from Dirichlet to Neumann is accomplished

by gauging a symmetry under which all of the states in HWn [Xd] are charged.

Since the Neumann boundary condition |NB⟩ is the analogous Dirichlet boundary condi-

tion for the b-surface operators (Wp), we can similarly define the defect Hilbert spaceHWp [Xd]

where we have inserted a bulk Wp(Σ) operator that stretches along the time direction so that

Σ intersects Xd along a (d − p − 2)-manifold σ. For similar reasons, the HWp [Xd] does not

admit boundary conditions which diagonalize the Wn(γ) operators since this would require

gauging the Z(d−2)
N global symmetry under which all states in HWp [Xd] are charged.

Often, we will not differentiate between the Dirichlet states of HWn [Xd] and H[Xd] or

the Neumann states of HWp [Xd] and H[Xd]. Rather we will think of the states of the defect

Hilbert space |A⟩Wn ∈ HWn [Xd] as constructed from |A⟩ ∈ H[Xd] and |NB⟩Wp ∈ HWp [Xd] as

constructed from |NB⟩ ∈ H[Xd] which we “dress” with (or really intersect with) a bulk Wn(γ)

or Wp(Σ) operator as appropriate. With this viewpoint, we can say that if we start with a

Dirichlet boundary condition |A⟩, we can end a Wn line operator on the boundary. However,

condensing the Wn operators (i.e. gauging the Z(0)
N symmetry on the boundary) so that when

we pass from |A⟩ 7−→ |NB⟩ ending the Wn operators are prevented on the boundary.
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Now that we have discussed the Z(0)
N SymTFT, we would like to discuss how the Z(0)

N

quiche acts on a QFT with Z(0)
N global symmetry. Because we are considering a theory with

a group-like global symmetry, we know explicitly how to couple the partition function to a

background gauge field: ZT [A1]. Because of this, we can also gauge the symmetry to arrive

at the theory T /ZN by summing over the Z(0)
N background gauge fields:

ZT /ZN
[Bd−1] =

1√
|H1(Xd;ZN )|

∑
A1∈H1(Xd;

2π
N

ZN)

e
iN
2π

∫
A1∪Bd−1 ZT [A1] , (2.7)

where we have included a background gauge field Bd−1 for the quantum/dual Z(d−2)
N global

symmetry. The SymTFT allows us to unify both of these in terms of a state representing the

boundary QFT which is given by

⟨QFT| =
∑

A∈H1(Xd;
2π
N

ZN)

ZT [A] ⟨A| .
(2.8)

Additionally, we can also present the state in terms of the Neumann boundary conditions by

⟨QFT| =
∑

B∈Hd−1(Xd;
2π
N

ZN)

ZT /ZN
[B] ⟨NB| . (2.9)

We can then realize the background and dynamically gauged theories by sandwiching the

SymTFT quiche with Dirichlet and Neumann boundary conditions respectively. In terms of

the Dirichlet presentation of ⟨QFT|, the inner product is given by

⟨QFT|A⟩ = ZT [A] ,

⟨QFT|NB⟩ =
∑

A∈H1(Xd;
2π
N

ZN)

e
iN
2π

∫
A∪B⟨QFT|A⟩√

|H1(Xd,ZN )|

=
∑

A∈H1(Xd;
2π
N

ZN)

e
iN
2π

∫
A∪B ZT [A]√

|H1(Xd,ZN )|
= ZT /ZN

[B] .

(2.10)

Here, the defect Hilbert spaces HWn ,HWp also have a natural interpretation. In par-

ticular, we can end the a/b-Wilson operators on charged operators in the QFT. These two

perspectives are more natural in the Dirichlet/Neumann presentation of ⟨QFT| respectively
in which case we can elevate each term in the sum

ZT [A] ⟨A| 7−→ ⟨Op(x)⟩A ⟨A|Wp ,

ZT /ZN
[B] ⟨NB| 7−→ ⟨Õp′(σ)⟩B ⟨NB|Wp′ ,

(2.11)

where here Op(x) carries charge p under Z(0)
N and Õp′(σ) carries charge p′ under the quan-

tum/dual symmetry Z(d−2)
N .
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Figure 3: In this figure we illustrate how the operator Op(x) in the QFT requires dressing

with a Wilson line Wp(γ) for the case of Neumann boundary conditions.

Note that whether or not there exists a gauge invariant operator that is charged under the

Z(0)
N or Z(d−2)

N global symmetry is dependent on the realization of the Z(0)
N global symmetry

in the QFT. For the case of Op(x), the operator is only charged under a global symmetry in

the case where we do not gauge Z(0)
N . In the gauged case, Op(x) is not a gauge invariant local

operator and does not constitute a good operator in our theory – rather it must be dressed by

a Wilson line Wp(γ) where ∂γ = x in Xd. For the case of Õp(σ), the operator is only charged

under a global symmetry when we gauge Z(0)
N . In the ungauged case, Õp is not a well defined

operator but rather must also be dressed by a Wp(Σ) surface operator where ∂Σ = σ.

We can see this from inserting corresponding Wp(γ) and Wp(Σ) in the SymTFT and then

reducing along the interval. In the case of the Neumann boundary condition on the quiche

boundary, the Z(0)
N global symmetry is not gauged. Here, the Wp(γ) can end on the QFT

boundary but not on the quiche boundary. See Figure 3. Rather, on the quiche boundary, the

Wp(γ) operator must be continued by a boundary Wp(γ) operator, reflecting the fact that the

operator Op(γ) is not a gauge invariant operator. On the other hand, the Wp(Σ) operators

can end on the the QFT and Neumann boundary state where they source an operator that

is charged under the dual quantum Z(d−2)
N – i.e. a vortex-type operator.

Now consider reducing the SymTFT along the interval with the Dirichlet boundary con-

dition so that the Z(0)
N global symmetry is not gauged in the QFT. Now, we can end the

Wp(γ) Wilson line on both the QFT and quiche boundary in which case we can interpret

the bulk Wp(γ) as enforcing the transformation properties of Op(x) in the QFT under Z(0)
N

global transformations that are enacted by bulk Wp(Σ) operators. In the case of the Dirichlet

boundary condition, we can also end the Wp(Σ) operator on the QFT boundary, but in the

quiche boundary, it must be continued by a boundary Wp operator. This reflects the fact

that Õp(σ) is not a well defined operator and must be attached to a Wp(Σ) operator as with

Op for Dirichlet boundary conditions.
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2.2 Reducing to ZM ⊂ ZN SymTFT

One feature which will be important for our discussion of the U(1) SymTFT is how we can

reduce the SymTFT from ZN → ZM where M divides N . This reduction can be realized in

two complimentary ways.

First, let us consider taking the action for the Z(0)
N SymTFT:

S =
iN

2π

∫
da1 ∧ bd−1 , (2.12)

and decompose N = nM . We can reduce to the Z(0)
M SymTFT if we restrict

Bd−1 = n bd−1 . (2.13)

If we plug this restriction directly into the action, we find

S =
inM

2π

∫
da1 ∧ bd−1 7−→ iM

2π

∫
da1 ∧Bd−1 , (2.14)

which indeed describes the Z(0)
M SymTFT. This corresponds to restricting the set of operators

Wp = eip
∮
a1 , W̃qn = eiqn

∮
bd−1 , p, q = 0, 1, ...,M − 1 . (2.15)

We can also think of this reduction from ZN 7→ ZM as a projection which can be enacted

by gauging the Z(d−1)
n subgroup which is generated by WM = eiM

∮
a1 . Here we see that this

gauging will restrict the operators Wp for p = 0, ...,M − 1 and project out the operators that

have non-trivial linking with it: Wq where q /∈ nZ.
There is an alternative reduction of the ZN SymTFT to the ZM SymTFT. Instead of

gauging the Z(d−1)
n global symmetry of the ZN BF theory, we can instead gauge the Z(1)

n

global symmetry. This sums over all insertions of the operators WMq. This reduces the set

of non-trivial line operators to Wq where q = 0, ...,M − 1 and projects out the Wilson lines

except those of the form Wnp. At the level of the Lagrangian, this is equivalent to presenting

the SymTFT as

S′
ZN

=
iN

2π

∫
a1 ∧ dbd−1 , (2.16)

and restricting A1 = na1 so that

S′
ZN

=
inM

2π

∫
a1 ∧ dbd−1 7−→ iM

2π

∫
A1 ∧ dbd−1 . (2.17)

These two reductions describe similar physics and simply correspond to a choice of operators

that generate the ZM global symmetry.

More generically, it is possible to decompose Z(0)
NM -SymTFT into a coupled Z(0)

M - and

Z(0)
N -SymTFT. This coupling is determined by whether or not ZNM splits as a direct product
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of ZN × ZM or not. This depends on whether or not gcd(N,M) is non-trivial. For our

following discussion we will use the presentation of ZN discrete gauge theory in terms of

discrete cohomology.

In the case where gcd(M,N) = 1, ZNM = ZN × ZM and the Z(0)
NM -SymTFT trivially

factorizes into a Z(0)
M -SymTFT and a Z(0)

N -SymTFT. This can be seen by starting with the

Z(0)
NM -SymTFT

SNM =
2πi

NM

∫
A1 ∪ δBd−1 , (2.18)

where the fields are discrete co-chains Bd−1 ∈ Cd−1(M ;ZNM ), A1 ∈ C1(M ;ZNM ). Since

gcd(M,N) = 1, there exist p, q ∈ Z such that

pM + qN = 1 , (2.19)

which allows us to decompose

A1 = qNa
(M)
1 + pMa

(N)
1 , Bd−1 = Nb

(M)
d−1 +Mb

(N)
d−1 . (2.20)

To see that this is a “faithful” change of variable, notice that
∮
a
(M)
1 =

∮
a
(N)
1 = 1 corresponds

to
∮
A1 = 1 and

∮
b
(M)
d−1 = q,

∮
b
(N)
d−1 = p corresponds to

∮
Bd−1 = 1; thereby generating the

entire field space. If we then plug this decomposition into the action we find

S =
2πi pM

N

∮
a
(N)
1 ∪ δb

(N)
d−1 +

2πi qN

M

∮
a
(M)
1 ∪ δb

(M)
d−1 , (2.21)

which can be brought to the form

S =
2πi

N

∮
a
(N)
1 ∪ δb

(N)
d−1 +

2πi

M

∮
a
(M)
1 ∪ δb

(M)
d−1 , (2.22)

by adding the integral counter terms

Sc.t. = 2πiq

∮
a
(N)
1 ∪ δb

(N)
d−1 + 2πip

∮
a
(M)
1 ∪ δb

(M)
d−1 . (2.23)

Indeed, the spectrum of operators can be matched between the Z(0)
NM -SymTFT and that

of the product SymTFT. Denoting (W1,W1), (W
′
1,W ′

1) as the generators of the spectrum of

topological operators of the Z(0)
M -SymTFT and the Z(0)

N -SymTFT respectively, then(
WqW

′
p , W1W ′

1

)
:=

(
(W1)

q(W ′
1)

p , W1W ′
1

)
(2.24)

generate the topological operators of the Z(0)
MN -SymTFT.

When M,N are not coprime, ZNM is more generally an extension of ZN by ZM . Due

to the factorization when gcd(M,N) = 1, it suffices to demonstrate how to factorize the
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Z(0)
Np+q -SymTFT into ZNp and ZNq components. In this case, the decomposition in (2.20) is

modified to

A1 = N qa1 + ã1 , Bd−1 = Npb̃d−1 + bd−1 , (2.25)

where a1, bd−1 are ZNp-valued gauge fields and ã1, b̃d−1 are ZNq -valued gauge fields. This

decomposition is supplemented by the additional shifts in the ZNp+q lift:

a1 7−→ a1 +Npλ1 − λ̃1 , ã1 7−→ ã1 +N qλ̃1 ,

bd−1 7−→ bd−1 +NpΛd−1 , b̃d−1 7−→ b̃d−1 +N qΛ̃d−1 − Λd−1 .
(2.26)

Plugging this into the action, we get

S =
2πi

Np

∫
a1 ∪ δbd−1 +

2πi

N q

∫
ã1 ∪ δb̃d−1 +

2πi

Np+q

∫
ã1 ∪ δbd−1 , (2.27)

up to integral terms. Here the mixed term can be interpreted as a sort of “mixed anomaly”

which requires the extension of the symmetry transformations above (2.26).

We can additionally check that the action in (2.27) realizes the operator spectrum for

Z(0)
Np+q -SymTFT. Here, because of the gauge transformations in (2.26) that are necessary for

the action to be invariant under the Z(0)
Np gauge transformations, the bd−1-surfaces must be of

the form

Wk = exp

{
2πi k

Np+q

∮ (
Npb̃d−1 + bd−1

)}
, k = 0, ..., Np+q − 1 , (2.28)

and the Wilson lines must be of the form

Wp = exp

{
2πi p

Np+q

∮
(N qa1 + ã1)

}
, q = 0, ..., Np+q − 1 , (2.29)

which together generate the topological operators of the Z(0)
Np+q -SymTFT. Here the quantiza-

tion of operators has additional factors of 2π/Np+q due to the fact that we are working with

the integral-valued fields.

2.3 Anomalies of Z(0)
N in the SymTFT

One powerful feature of the SymTFT is that it provides a way to encode both the global

symmetries of a QFT and their anomalies [8, 17–19]. Although we do not say that the

SymTFT nor the symmetries are innately anomalous, any realization of the symmetry in

a QFT or conversely an action of the SymTFT (thought of as the TQFT with a quiche

boundary) on a QFT will be anomalous.

Let us illustrate how these anomalies can be realized in the case of the Z(0)
N SymTFT

with an example. In 4d QFTs with a Z(0)
N global symmetry, there is a unique, purely Z(0)

N
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anomaly which can be given by the 5d SPT phase:5

A =
i κ

24π2

∫
A1 ∧ dA1 ∧ dA1 , (2.31)

where A1 is the integral lift (i.e. U(1) representative) of a ZN gauge field which is normalized

ei
∮
A1 = e

2πin
N , n ∈ Z . (2.32)

In the SymTFT, this anomaly is incorporated by adding a corresponding Chern-Simons term

SSymTFT =
iN

2π

∫
da1 ∧ b3 +

iκ

24π2

∫
a1 ∧ da1 ∧ da1 . (2.33)

One of the well known features of anomalies is that they prevent the gauging of corresponding

symmetry. In the context of the SymTFT, the Chern-Simons term obstructs the existence of

the Neumann boundary condition. We can see this as follows.6

First let us consider the theory with the action in (2.33). Adding the Chern-Simons term

has the effect of shifting the equations of motion:

N
da

2π
= 0 ,

Ndb3
2π

+
κ

8π2
da1 ∧ da1 = 0 . (2.34)

Because of this, the Wilson line operator ein
∮
a1 is still topological, and to see that the

b-surface is topological, we must use the fact that equations of motion imply da = 0.

The fact that the anomaly prevents Neumann boundary conditions can be seen directly

from studying these operators. The Chern-Simons term in the action above can be interpreted

as giving the Wp operator a non-trivial expectation value

⟨Wp(Σ)⟩ = e
2πi
N3 κp

3 Link(Σ,Σ,Σ) , (2.35)

where here the Link is given by the triple self-intersection number [8, 35, 36]. Because of

this, condensing the Wp operators in an attempt to construct the Neumann state from the

Dirichlet state as in (2.5) will lead to the empty state: |A⟩ 7→ 0. In this way, the anomaly

prevents the Neuamann boundary state.

We can also solve for the possible boundary conditions by studying the Lagrangian: they

are given by the Lagrangian subspaces of phase space so that the boundary contribution to

5In terms of discrete cohomology elements, this anomaly is given by

A =
2πi

6N
κ

∫
a1 ∪ β(a1) ∪ β(a1) . (2.30)

6In the SymTFT literature [8, 9, 17–19], the anomaly is said to obstruct the existence of a “fiber functor.”

Physically, this is the existence of a pair of boundary conditions which are “orthogonal” in phase space. In

other words, there are no pair of boundary conditions that we can impose on the interval so that the path

integral describes the trivially gapped phase. In terms of the boundary QFT, this is the statement that an

anomaly obstructs the theory from flowing in the IR to a trivially gapped phase.
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the variation of the action vanishes. The boundary variation can be computed directly as:

δSSymTFT =
iN

2π

∫
Xd

δa1 ∧
(
b3 +

iκ

6πN
a1 ∧ da1

)
= 0 . (2.36)

Here, the boundary conditions can be reduced to solving:

1.) δa1
∣∣
Xd

= 0 or 2.)
Nb3
2π

+
κ

3(2π)2
a1 ∧ da1

∣∣
Xd

= 0 . (2.37)

Here, the first condition is the standard Dirichlet boundary condition. The second boundary

condition, is the would-be Neumann boundary condition; however, there are several problems

with 2.). First, the boundary conditions are not compatible with the bulk equations of

motion. Since the boundary conditions are not compatible with the bulk equations of motion

(in addition to not being gauge invariant), the space of solutions to the boundary conditions

intersects the bulk phase space transversely except for where a1 ∧ da1 = 0 and b3 = 0. These

restrictions are over determined – they do not form a Lagrangian subspace of phase space –

and hence do not form good boundary conditions.7 Indeed, if there was a Neumann state that

was constructed in this way, we would be able to trivialize the SymTFT (which corresponds to

the existence of a trivially gapped phase) by considering the sandwich between the Dirichlet

and Neumann state. However, it is well known that these anomalies obstruct the existence

of a trivially gapped phase.

3 SymTFT for U(1)(0) Symmetry

In this section we discuss the SymTFT for describing U(1) global symmetries. Here, we first

present the SymTFT and study its operator content on a closed manifold Yd+1 and then study

the canonical quantization of the theory on Xd × Rt. Next we consider the SymTFT on the

quiche configuration where we describe its possible gapped boundaries and the behavior of

the bulk operators on the boundary. Using this, we then describe how the SymTFT couples

to a QFT on the interval and discuss the behavior of the U(1)(0) symmetry and the operators

of the SymTFT in the QFT.

We then discuss how different IR phases of a QFT with U(1) global symmetry are realized

in the SymTFT and how to realize different global structures of the U(1)(0) symmetry. Finally,

we conclude the section with a discussion of how the SymTFT can be used to couple the QFT

to non-flat connections and we additionally comment on the dynamical gauging of the U(1)

symmetry.

The (d+1)-dimensional SymTFT for a U(1)(p) global symmetry in a d-dimensional QFT

is described the action

S =
i

2π

∫
Yd+1

dap+1 ∧ h̃d−p−1 , (3.1)

7Technically, one could consider the theory for which a1 ∧ da1 = 0, however it is not usually what we mean

by ZN BF theory (it would require some additional interaction or restriction on the path integral) and indeed

would correspond to a strange global symmetry for which we only allow ourselves to couple to ZN bundles

with this extra constraint that trivializes the putative anomaly.
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where ap is a p-form U(1) gauge field and h̃d−1 is a (d − p − 1)-form R gauge field. For

simplicity, we will focus on the case where p = 0 for the rest of this section, and drop the

subscripts denoting the rank of the form. It is straightforward to generalize our discussion to

the case with generic p.

Let us begin by studying the topological operators in the theory. From a1, we can

construct the Wilson line

Wn(γ) = ein
∮
γ a , n ∈ Z . (3.2)

Similarly, one can construct the surface operator from h̃d−1:

Q(Γ) =

∮
Γ
h̃ , (3.3)

which is gauge invariant as h̃d−1 is a R gauge field. It is convenient to introduce the Wilson

type surface operator of the form

Wα(Γ) = eiα
∮
Γ h̃ , α ∈ [0, 1) , (3.4)

which has non-trivial braiding with the operator Wn(γ):

⟨Wn(γ)Wα(Γ)⟩ = e2πinαLink(γ,Γ) . (3.5)

Here, α effectively takes value in [0, 1) because the flux sum over the da1
2π forces Q(Γ) to be

valued in 2πZ, thus Wn(Γ) where n ∈ Z should be identified as the identity operator as we

will show momentarily.

3.1 Canonical Quantization

In order to study the SymTFT placed on Xd × [0, 1] where Xd is a compact d-dim manifold,

one must understand the boundary conditions of the SymTFT. As is standard for TQFTs,

the topological boundary conditions can be described in terms of the states of the TQFT

where we canonically quantize along the same manifold. Here we will perform this canonical

quantization to derive the allowed boundary conditions.

For simplicity, we will assume H2(Xd,Z) is torsion free (or equivalently, there is no

torsion 1-cycle in Xd) throughout the paper. A boundary condition is specified by a state in

the Hilbert space quantized on Xd, which we now study following [37]. For simplicity, we will

take Xd = T d; but the result generalizes to Xd with no torsion 1-cycle straightforwardly. For

this, consider placing the theory on Xd × Rt, and rewrite the action as

S =
i

2π

∫ ∞

−∞
dt

∫
Xd

ȧ ∧ h̃+ atdh̃+ da ∧ h̃t , (3.6)

where we have decomposed any n-form w = w+dt∧wt into a n-form w and a (n−1)-form wt

on Xd, and we use d to denote the exterior derivative on Xd. We also suppress the subscript

denoting the degree of the forms to simplify the equations.
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We immediately see that ht and at are Lagrangian multipliers enforcing da = dh̃ = 0.

Together with the gauge transformation of the a and h̃, we learn that the classical phase space

containing flat U(1) connections a and flat R connections h̃ modulo gauge transformations.

It is then convenient to introduce operators

Xγ =

∮
γ
a, γ ∈ H1(T

d,Z) ∼= Zd ,

QΓ =

∮
Γ
h̃, Γ ∈ Hd−1(T

d,Z) ∼= Zd .

(3.7)

Notice that while QΓ is gauge invariant, Xγ is not and the large gauge transformation of a

will shift Xγ → Xγ + 2πn where n ∈ Z. To proceed, we now take the basis {γi}di=1 and

{Γj}dj=1 for H1(Xd,Z) and Hd−1(Xd,Z) such that their intersection numbers satisfy

#(γi ∩ Γj) = δij . (3.8)

Let us denote the corresponding operators Xγi ,QΓj as Xi and Qj . Due to the intersection of

γi,Γj , we find the commutation relations

[Xi,Qj ] = 2πiδij . (3.9)

The Hilbert space can be constructed by viewing the operator Xi as the coordinate and Qi

as the momentum. Notice the large gauge transformation which forces Xi ∼ Xi + 2π means

the system is a particle on a ring, therefore the eigenvalues of the momentum operator Qi

must be quantized. There are two complete orthonormal bases of the Hilbert space. One

basis (Dirichlet) diagonalizes the Wilson line operators eik⃗·X⃗ and are spanned by |θ⃗⟩ for

θ⃗ ∈ (R/2πZ)d where

eiXi |θ⃗⟩ ≡ e
i
∮
γi

a|θ⃗⟩ = eiθi |θ⃗⟩ , eiα⃗·Q⃗|θ⃗⟩ = |θ⃗ + 2πα⃗⟩ , (3.10)

where α⃗ ∈ (R/Z)d. Here we can then interpret the eigenvalues eiθj as describing the holonomy

of flat U(1) connection on T d.

The other basis (Neumann) diagonalizes the Qi operators and is spanned by |qi⟩ for

q⃗ ∈ 2πZd where

Qi|q⃗⟩ = qi|q⃗⟩ , eik⃗·X⃗ |q⃗⟩ = |q⃗ − 2πk⃗⟩ . (3.11)

The two basis obey the standard orthonormality conditions:

⟨q⃗|⃗k⟩ =
∏
i

δqi,ki , ⟨θ⃗|ϕ⃗⟩ = δd(θ⃗ − ϕ⃗) . (3.12)

Because these bases offer a resolution of the identity, the partition function will satisfy cutting

and gluing conditions, as we would expect from a Lagrangian QFT, one the TQFT axioms set

out in [38]. However, we would like to point out that our SymTFT violates one axiom which

requires the Hilbert space associated to a compact manifold Σg to be finite dimensional. This
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is standard for example in 2d fusion category symmetries where the SymTFT is captured by

its Drinfeld center, which automatically satisfies the finiteness axiom and forms a modular

tensor category (MTC). Therefore, one should be cautious in applying results there that

follow from these axioms.

In our case, however, not only are the spectrum of the bulk line operators not finite (which

is required by the definition of a MTC), but also they are parameterized by a continuous

variable valued in R/Z (together with an integer Z). We will leave the proper description of

the mathematical structure together with understanding how to generalize the known results

on TQFTs satisfying the Atiyah axioms to future study.

These two bases are related by the Fourier series transform

|θ⃗⟩ = 1

(2π)d/2

∑
q⃗∈2πZd

e
i
2π

q⃗·θ⃗|q⃗⟩ (3.13)

Note that one can see that in both the Dirichlet and Neumann bases, that the integer h̃-Wilson

surfaces, here written as einjQj , acts as the identity operator.

Quantizing the theory on a generic manifold Xd will lead to a basis of states labeled

by gauge inequivalent flat U(1) connection A’s on Xd which diagonalize the Wilson lines

operators

ei
∮
γ a|A⟩ = ei

∮
γ A|A⟩. (3.14)

Acting with the Wilson surface operator eiα
∮
Γ h̃ on the other hand will shift the background

field by introducing an additional non-trivial holonomy e2πiα#(γ∩Γ) along the 1-cycle γ which

has non-trivial intersection with Γ.

3.2 Gapped Boundaries of the SymTFT and Coupling to a QFT

We can also derive the allowed boundary conditions/states for the quiche from the Lagrangian

perspective. This will be beneficial for studying the case where the SymTFT has additional

couplings which arise for example in the case of QFTs with anomalous U(1) global symmetries.

The consistent boundary conditions of the theory are given by the (gauge invariant) sub-

spaces of field space for which the boundary contribution to the action vanishes. For the U(1)

SymTFT, the variation of the action leads to boundary term

δS
∣∣
bnd

= − i

2π

∫
Xd

δa ∧ h̃ . (3.15)

In addition, the construction of the SymTFT requires quotienting by the gauge transforma-

tions that are non-trivial on the boundary due to the state-boundary correspondence. Thus,

we require that the gauge transformation of the action also vanishes:

δgaugeS
∣∣
bnd

=
i

2π

∫
Xd

da ∧ λ̃ , δh̃ = dλ̃ . (3.16)

– 18 –



The topological boundary conditions are therefore given by either 1.) fixing a
∣∣
bnd

= A to be a

flat gauge field while h̃ fluctuates, or 2.) by fixing h̃
∣∣
bnd

= 0 while allowing a to fluctuate8. The

first of these is the Dirichlet boundary condition while the second is the Neumann boundary

condition.

Here, we focus on the following two type of topological boundary conditions:

1. The path integral sums over a such that a
∣∣
bnd

= A up to gauge transformation where

A is a flat connection, as well as h̃ such that h̃
∣∣
bnd

is flat and has integer holonomy;

2. The path integral sums over h̃ such that h̃
∣∣
bnd

= 0 up to gauge transformations and all

flat connections a
∣∣
bnd

.

The first of these is the Dirichlet boundary condition while the second is the Neumann bound-

ary condition.

Let us focus on the Dirichlet boundary condition. Here, the fact that we only fix the

boundary condition a
∣∣
bnd

= A up to gauge transformation is due to the fact that we require

gauge invariant boundary conditions and matches the result from the canonical quantization.

The corresponding states, which we denote as |A⟩, are labelled by gauge inequivalent flat

U(1) connections A ∈ H1(Xd,R/Z) on Xd:

|A⟩ ∈ HXd
, A ∈ H1(Xd,R/Z) . (3.17)

Thus, in the path integral we are only fixing a
∣∣
bnd

up to gauge transformations which means

that the boundary variation of a is given by a gauge transformation δa
∣∣
bnd

= dφ and the

vanishing of the boundary variation of the action

δS
∣∣
bnd

= − i

2π

∫
Xd

δa ∧ h̃ = − i

2π

∫
Xd

dφ ∧ h̃ , (3.18)

requires dh̃
∣∣
bnd

= 0 and
∮
Γ h̃ ∈ 2πZ for Γ ∈ Cd−1(Xd,Z). As a result, the h̃ Wilson surface

operators are topological on the boundary and the integer h̃ Wilson surface operators ein
∮
Γ h̃

act as trivial operators.

We would like the derive the inner product of the Dirichlet boundary conditions from

the path integral. Let us compute the partition function on Yd+1 = Xd × [0, 1] and fix the

boundary conditions a
∣∣
t=0,1

= AL,R up to gauge equivalence.

With these boundary conditions, we can rewrite the action as

S =
i

2π

∫
Y
a ∧ dh̃+

i

2π

∫
Xd

(AL ∧ h̃L −AR ∧ h̃R) , (3.19)

where h̃L/R := h̃
∣∣
t=0,1

respectively which are flat R connections with 2πZ holonomies.

8We can additionally fix h̃
∣∣
bnd

̸= 0 by adding a boundary term as we will discuss later in this section.
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Now we would like to compute the partition function with these boundary conditions:

⟨AL|AR⟩. Let us integrate out the bulk gauge field a. This imposes a constraint on h̃:

⟨AL|AR⟩ =
∫
[dh̃] δ(dh̃) e

i
2π

∫
Xd

(AL∧h̃L−AR∧h̃R)
. (3.20)

This delta function localizes the path integral to the constrained space of R-valued gauge

fields h̃ which satisfy:

˙̃
h− dh̃t = 0 , dh̃ = 0 . (3.21)

The first of these imposes that h̃L = h̃R + dλ̃ where λ̃ = −
∫ 1
0 dt h̃t and the second imposes

h̃L ∈ Zd−1(Xd; 2πZ). The path integral then localizes:

⟨AL|AR⟩ =
∫
[dh̃L] e

i
2π

∫
Xd

(AL−AR)∧h̃L+AL∧dλ̃

=

∫
[dλ] e

i
2π

∫
Xd

(AL−AR)∧dλ
= δ([AL −AR]) ,

(3.22)

where in the second step we replace the integral over flat connections with 2πZ holonomy

h̃L with the integral over U(1) (d − 2)-form connection λ. Notice that this is valid (up to a

normalization factor) because AL − AR is a flat connection, therefore only the flux sum dλ

would contribute non-trivially and reproduce the holonomy sum of h̃L. Here, we see that

the inner product enforces that AL − AR is the trivial cohomology class which we denote as

δ([AL −AR]), reproducing the inner product from canonical quantization in (3.12).

Now we would like to discuss the Neumann boundary condition. From the previous

discussion, we expect this class of boundary condition is labelled by gauge inequivalent flat

R connections h̃
∣∣
bnd

with 2πZ holonomies, or equivalently, (d− 1)-form Z gauge fields. This

holonomy can be conveniently represented as the flux part of the field strength dB of a

boundary U(1) (d − 1)-form gauge field B. To realize such a boundary conditions, we add

the additional gauge invariant boundary term

Sbnd =
i

2π

∫
a ∧ dB . (3.23)

This modifies the boundary variation of the action

δS
∣∣
bnd

= − i

2π

∫
δa ∧ (h̃− dB) , (3.24)

so that the Neumann boundary conditions are given by fixing

h̃
∣∣
bnd

= dB up to R gauge transformation (3.25)

while allowing a to be a general flat U(1) connection on the boundary, which guarantees the

vanishing of (3.23) and the gauge variation (3.16). Because of this, we can naturally identify

the Neumann boundary condition

|NdB⟩ =
∫
A0/G

[dA1] e
i
2π

∫
Xd

A1∧dBd−2 |A1⟩ , (3.26)
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where A0/G is the space of flat U(1) connections modulo gauge transformations where Bd−2

is a (d − 2)-form U(1) gauge field.9 Note that the phase labeled by dBd−2 is similar to the

case of the standard (i.e. dynamical) gauging of the U(1) symmetry except that for flat gauge

fields the Neumann boundary condition only depends on the flux dBd−2 instead of the full

(d− 2)-form gauge field Bd−2.

This decomposition allows us to compute the inner product of the Neumann boundary

conditions:

⟨NdB|NdB′⟩ =
∫
A0/G

[dA][dA′] ⟨A|A′⟩ e−
i
2π

∫
(A∧dB−A′∧dB′)

=

∫
A0/G

[dA] e
i
2π

∫
A∧(dB−dB′) = δ[dB],[dB′] .

(3.27)

Notice that because the A integral is only taken over the space of flat U(1) connections, it

only sets equals the flux of the B and B′ up to R gauge transformations, which we denote as

δ[dB],[dB′]. Note that these fluxes, and therefore the Neumann states themselves, are classified

by a set of integers and have an inner product of the form of a Kronecker delta function as

we found in the canonical quantization.

Now, let us describe the operator content of the SymTFT in the presence of the two

boundary conditions. With the Dirichlet boundary condition |A⟩, the a-Wilson lines are

diagonalized as in the case of canonical quantization. Due to the linking of the a-Wilson lines

and h̃-Wilson surfaces, we see that the h̃-Wilson surface acts non-trivially on the boundary

state:

eiα
∮
Γ h̃|A⟩ = |A′⟩ , A−A′ = 2πα δ(Γ) . (3.28)

Additionally, as in the case of the ZN SymTFT, the Wilson lines can end terminate on the

boundary to construct defect Hilbert spaces.

In the Neumann boundary condition, the h̃-lines are diagonalized by the boundary state.

Due to the action of the h̃-surfaces on the Dirichlet states, we see that:

eiα
∮
h̃|NB⟩ = eiα

∮
dB|NB⟩ . (3.29)

The fact that
∮
h̃d ∈ 2πZ is also reflected in the canonical quantization computation from

the previous section as in (3.11). Similarly, the action of the a-Wilson line shifts:

ein
∮
γ a|NB⟩ 7−→ |NB′⟩ , dB′ − dB = 2πn δ(γ) . (3.30)

Now we are ready to describe how to couple the SymTFT to QFT. Let’s consider a d-dim

QFT T on Xd with U(1)(0) global symmetry. In the SymTFT on Xd × [0, 1]t the QFT lives

9Here we will implicitly normalize our path integral by the (regulated) volume of A0/G = H1(Xd;U(1)),

but will suppress the normalization factor for convenience.
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Figure 4: An operator On with charge n under the U(1)(0) symmetry in the SymTFT is

captured by a Wilson line stretching between On on the QFT boundary (blue) and a point

on the Dirichlet boundary (orange). The Wilson surface Wα becomes the U(1) symmetry

operator.

at t = 0 while the quiche boundary lives at t = 1. The QFT boundary is naturally described

by a state

⟨QFT | =
∫
H1(Xd,R/Z)

[dA] ZT [A] ⟨A| , (3.31)

where ZT [A] is the partition function of the theory T coupled to flat background U(1) con-

nection A′ on Xd.

Pairing the QFT state with a Dirichlet boundary state |A⟩ on the quiche boundary effec-

tively leads to the inner product of the two boundary states ⟨QFT|A⟩. Using the orthogonality
of the Dirichlet states, we recover the partition function of the theory T coupled to the flat

U(1) connection A:

⟨QFT|A⟩ = ZT [A] . (3.32)

With the Dirichlet pairing, a local operator On in the QFT with charge n under the

U(1)(0) symmetry is captured a Wilson line that stretches across the slab so that the quiche

boundary state is an element of the defect Hilbert space as shown in the Figure 4. Here the

action of a U(1)(0) symmetry operator on On is captured by encircling the end point of the

Wilson line on the Dirichlet boundary with the associated operator Wα(Γ).

Generically, in a QFT with U(1)(0) symmetry there are codimension-2 (non-topological)

surface operators Sα bounded by the corresponding U(1) symmetry operator.10 As a result,

around the these operators, the background gauge field has holonomy eiα where α ∈ U(1). In

10These operators will become the more familiar Gukov-Witten surface operators (which are also sometimes

known as Aharanov-Bohm strings) in the phase where we gauge the U(1)(0) symmetry [39, 40].
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Figure 5: A non-local codimension-2 surface operator Sα bounding the open U(1)(0) sym-

metry operator in the QFT is described by the Wilson surface Wα terminates on the operator

Sα.

the sandwich picture, these Sα in the QFT boundary are constructed from a Wα(Γ) surface

terminating on the QFT boundary. However, since Wα(Γ) can not end on the Dirichlet

boundary, the Wα operator must extend along the Dirichlet boundary when it reaches the

end of the interval as shown in Figure 5. After shrinking the sandwich, the tail of Wα on the

Dirichlet boundary condition naturally becomes the U(1)(0) symmetry operator that bounds

Sα in the QFT.

Similarly, we can couple the QFT state with the Neumann boundary condition:

⟨QFT|NB⟩ =
∫
A0/G

[dA]ZT [A] e
i
2π

∮
A∧dB . (3.33)

This is the partition function where we have performed a “flat gauging” of the U(1) symmetry

– i.e. we have summed over only flat gauge U(1) connections with a phase determined by

a fixed choice of h̃
∣∣
bnd

∈ Hd−1(Xd;Z) which we represent as the flux of the “dual” U(1)

background gauge field B. While the above mathematical manipulation is allowed, it is

slightly unclear what the correct physical interpretation of such a gauging is. We will leave a

discussion of such a gauging to future discussions.

3.3 Spontaneous Symmetry Breaking of U(1) Global Symmetry

An important feature of the SymTFT is that it provides a tool which an be used to classify

the possible IR phases of generic QFTs that realize a given symmetry structure. Due to its

topological nature, the SymTFT is particularly well suited to classify the possible topological

phases that can realize a certain categorical symmetry.11 These topological phases can be

11It is certainly an interesting question whether or not one can use the SymTFT to additionally classify the

conformal phases that can realize a given symmetry. Classifying such conformal phases would correspond to

classifying the conformal boundary conditions of the SymTFT. We will not classify these conformal boundary
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achieved by considering the possible (topological) states ⟨QFT| and how they can be paired

with the topological states of the quiche boundary [2, 8–22, 41, 42].

First, let us consider the case where ⟨QFT | = ⟨NB| with the quiche boundary condition

|A⟩. As in the case of the Z(0)
N SymTFT, since the two bases of boundary conditions are

fourier transforms of each other, we see that the partition function:

⟨QFT |A⟩ = ⟨NB|A⟩ =
∫
A0/G

[dA′]⟨A′|A⟩ e
i
2π

∫
Xd

A′∧dB
= e

i
2π

∫
Xd

A∧dB
. (3.34)

encodes the trivial SPT phase for the U(1)(0) symmetry.12

Another phase of U(1) global symmetries is the case when there is spontaneous symmetry

breaking. In the case of a ZN global symmetry, the spontaneous symmetry breaking phase

is described by the Dirichlet state. The reason is that the Dirichlet boundary conditions

encapsulate the h̃-symmetry operators (which realize the domain walls) as well as charged

operators (in the defect Hilbert spaces) which act as the order parameter.

For continuous symmetries, the arguments from ZN generalize straightforwardly. This

implies that the QFT phase that realizes the spontaneous symmetry breaking should also be

realized by a Dirichlet state, possibly dressed by a non-trivial phase. Indeed, we can see this

by noting that the orthogonality relation for the Dirichlet-Dirichlet boundary conditions can

be rewritten in the more suggestive way as

⟨A|A′⟩ = δ([A−A′]) =

∫
[dφ] δ(A−A′ − dφ) , (3.35)

where φ is a periodic scalar field corresponding to gauge transformation parameter of the

U(1) gauge field. Since φ is a periodic scalar field dφ ∈ H1(Xd;Z) and we are imposing a

Dirac delta function on the cohomology classes [A′
1 −A1] ∈ H1(M ;U(1)).

Here we see that the inner product can be interpreted as the partition function over the

field configuration space of a U(1)-valued Goldstone boson. This is suggestive that we should

identify this phase with the spontaneous symmetry breaking (SSB) phase of the U(1)(0) global

symmetry without a kinetic term.

In order to determine the correct ⟨QFT| = ⟨SSB| to describe the spontaneous symme-

try breaking, we would like to also match the partition function of the Goldstone mode by

⟨QFT|A⟩. To incorporate the kinetic term, we consider the state

⟨SSB| =
∫
A0

[dA] e
− 1

R2

∫
Xd

A∧∗A⟨A| =
∫
A0/G

[dA]

∫
[dφ] e

− 1
R2

∫
Xd

(dφ+A)∧∗(dφ+A)⟨A| , (3.36)

and it’s straightforward to check that

⟨SSB|A⟩ =
∫
[dφ]e

− 1
R2

∫
Xd

(dφ+A)∧∗(dφ+A)
, (3.37)

conditions here, but will give to a couple important examples. See [12] for a discussion of conformal boundary

conditions in the SymTFT for finite symmetries.
12Actually, the pairing ⟨NdB |A⟩ is a non-trivial SPT of the U(1)(0) × Z(d−2) global symmetry where Z(d−2)

is the “dual” quantum symmetry described by the Neumann conditions. But it is the trivial SPT if we restrict

to the U(1)(0) symmetry by fixing dBd−2 = 0.
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which reproduces the partition function of a Goldstone boson coupling to a flat U(1) connec-

tion A.

As one can see, the ⟨SSB| breaks the topological invariance, therefore does not represent

a topological boundary condition of the SymTFT. This is not a surprise as the standard

kinetic term for the Goldstone boson breaks topological invariance but preserves conformal

symmetry, so ⟨SSB| can be interpreted as a conformal boundary condition of the SymTFT. In

a general QFT, the IR phase at finite energies will exhibit quantum corrections. Indeed, the

standard U(1)(0) SSB phase will generically have higher order corrections as well as couplings

to other dynamical sectors. These theories can still be consistently coupled to the U(1)

SymTFT due to the non-linearly realized U(1) symmetry. They will have a different (i.e.

non-conformal) ⟨QFT| state which includes the higher order corrections.

We conclude by mentioning that the state corresponding to the spontaneously symmetry

breaking of U(1)/ZN subgroup of U(1) can be constructed similarly following (3.36)

⟨SSBN | =
∫
[dA]

∫
[dφ]e

− 1
R2

∫
Xd

(dφ+NA)∧∗(dφ+NA)⟨A| . (3.38)

3.4 Global Form of Symmetry: U(1) vs U(1)/ZN

Now let us discuss how the global form of the U(1) global symmetry is realized. Here by the

global form of the symmetry we mean fixing our global symmetry to be U(1) (where the unit

charge is 1) v.s. U(1)/ZN (where the unit charge is N).

It is straightforward to write down the SymTFT for U(1)/ZN symmetries, where we

simply need to replace the U(1) gauge field a1 to be the U(1)/ZN gauge field in the action

(3.1). Notice that we can also start from a U(1) SymTFT and gauge a Z(1)
N -form symmetry

to get the U(1)/ZN SymTFT.

To see this, one could rewrite the U(1)(0)-SymTFT as a coupled theory between (U(1)/ZN )(0)-

SymTFT and a ZN -SymTFT:

S =
i

2π

∫
da1 ∧ h̃d−1 +

iN

2π

∫
dA1 ∧Bd−1 −

iN

2π

∫
da1 ∧Bd−1 (3.39)

where a1 is a U(1)/ZN gauge field and A1, Bd−1 are U(1) gauge fields and h̃d−1 is a R gauge

fields. We want to emphasize here that because a1 is a U(1)/ZN gauge field, it is not possible

to absorb a1 into A1 and the last term is indeed non-trivial.

Without the coupling term between U(1)/ZN -SymTFT and ZN -SymTFT, the spectrum

of topological operators are given by

eiqN
∮
γ a1 , eiα

∮
Γ h̃d−1 , q ∈ Z, α ∈ [0, 1/N) ,

ein
∮
γ A1 , ein

∮
Γ Bd−1 , n ∈ ZN , n ∈ ZN .

(3.40)

When there is a coupling, the way the flux sums identify operators is modified. The flux sum

of
∮ dBd−1

2π ∈ Z, instead of identifying the charge N A1-Wilson line eiN
∮
A1 with the trivial
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operator, now identifies that line with the minimal a1-Wilson line (which is of charge N as

a1 is a U(1)/ZN connection)

eiN
∮
γ A1 ≃ eiN

∮
γ a1 . (3.41)

Because of this, we can match the U(1) line operator spectrum:

Wn ≃ eiq
∮
a1 × eipN

∮
A1 , n = q +Np where q ∈ {0, · · · , N − 1} . (3.42)

Similarly, the flux sum of
∮

da1
2π ∈ 1

NZ identifies

e
i
N

∮
h̃d−1 ≃ ei

∮
Bd−1 (3.43)

which extends the U(1)/ZN to U(1) and we can match the symmetry operators as

Wα ≃ eiα
′ ∮ h̃d−1eiq

∮
Bd−1 , α = α′ +

q

N
, (3.44)

where α′ ∈ [0, 1/N) and q ∈ {0, · · · , N − 1}. It is straightforward to check that these

identifications preserve the desired braiding relation to describe a U(1)-SymTFT.

To get the U(1)/Z-SymTFT itself, we only need to gauge the Z(1)
N -symmetry generated by

the surface operator ei
∮
Bd−1 . This will project out all the A1-Wilson lines, thereby effectively

setting Bd−1 = A1 = 0 in the action (3.39) and resulting in the (U(1)/ZN )(0)-SymTFT.

The form of U(1)(0)-SymTFT (3.39) also allows us to naturally describe some other

boundary conditions one can get with U(1)(0)-SymTFT. For instance, starting with U(1)(0)

global symmetry and gauging a Z(0)
N subgroup will lead to the symmetry (U(1)/ZN )(0) ×

Z(d−2)
N -form symmetries with a mixed ’t Hooft anomaly. The new symmetry is described by

the same U(1)(0)-SymTFT, and the discrete gauging is simply realized by picking different

boundary states13∣∣A1;Bd−1

〉
U(1)/ZN

:=
1√

|H1(Xd,ZN )|

∑
A′

1∈H1(Xd,
2π
N

ZN )

e
iN
2π

∫
Xd

A′
1∪Bd−1

∣∣Â1 +A′
1

〉
U(1)

. (3.45)

where A1 is a U(1)/ZN gauge field with a choice of U(1) lift Â1, and the field Bd−1 is the

background gauge field for the dual Z(d−2)
N symmetry. On the other hand, the description

of the U(1) SymTFT in (3.39) is more natural for simultaneously realizing the (U(1)/ZN )(0)

and dual Z(d−2)
N symmetry: the boundary condition realizing (U(1)/ZN )(0) × Z(d−2)

N global

symmetries is the one generated by condensing the a1-Wilson lines together with the Bd−1-

Wilson surface operators and the coupling term characterizes the mixed ’t Hooft anomaly

between (U(1)/ZN )(0) and Z(d−2)
N .

13Note that the general boundary condition (including this discrete gauging) can come with an additional

topological term for the Z(0)
N gauge field and the U(1) gauge field. We will not consider these additional terms

in this paper.
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3.5 Non-Flat Connections and Dynamical U(1) Gauging

In this subsection, we will describe how to realize non-flat connection in the SymTFT and

also give a description of dynamical U(1) gauging in the SymTFT. We want to warn the

readers that the construction here is quite different from the one in conventional SymTFT:

the boundary states corresponding to the non-flat connections are not states in the SymTFT

Hilbert space, but rather states in some defect Hilbert space. Subsequently, the sandwich

description of the dynamical U(1) gauging is achieved by coupling a U(1) gauge theory to

the SymTFT where the monopole (charged operators) and the symmetry operators of the

dual U(1)(d−3) magnetic symmetry both live on the boundary, but can be pushed into the

SymTFT bulk by a change of variables.

We will first describe how we can realize Dirichlet boundary conditions with non-flat

connection. As discussed previously, imposing the Dirichlet boundary condition a1|bdy = A1

where dA1 ̸= 0 violates the gauge invariance due to a surface term under gauge transformation.

On the other hand, it is possible to cancel this by adding a bulk term.

To see this, we go back to the action in terms of decomposed fields on Xd × [0, 1]t:

S =
i

2π

∫ 1

0
dt

∫
Xd

ȧ ∧ h̃+ atdh̃+ da ∧ h̃t , (3.46)

and consider adding an extra bulk term

∆S = − i

2π

∫ 1

0
dt

∫
Xd

dA ∧ h̃t , (3.47)

where A is a generic U(1) connection along Xd-direction and does not depend on t. Adding

∆S does not affect the boundary term arising from the variation of the action, but will

introduce non-trivial surface term under the gauge transformation to ensure gauge invariance

when the boundary value a1 is non-flat. To see this, notice that the gauge transformation of

the decomposed fields are

h̃ → h̃+ dλ̃ , h̃t → h̃t − dλ̃t +
˙̃
λ ,

a → a+ dφ , at → at + φ̇ ,
(3.48)

where we decompose the gauge transformation parameter λ for h̃ → h̃+ dλ̃ as

λ̃ = dt ∧ λ̃t + λ̃ . (3.49)

Then, we find, up to total derivative along Xd direction,

δgaugeS =
i

2π

∫ 1

0
dt

∫
Xd

∂

∂t
(da ∧ λ̃) ,

δgauge(∆S) = − i

2π

∫ 1

0
dt

∫
Xd

∂

∂t
(dA ∧ λ̃) ,

(3.50)
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so that S + ∆S is gauge invariant. Thus, one can realize a non-flat U(1) connection as the

Dirichlet boundary condition of a1 on the boundary by adding the term (3.47).

In the special case where 1
2πdA is the Poincare dual of some (d−2)-cycle Σ ∈ Hd−2(Xd,Z),

the bulk term

e−∆S = e
i
2π

∫ 1
0 dt

∫
Xd

dA∧h̃t = ei
∫ 1
0 dt

∫
Σ h̃t = e

i
∫
Σ×[0,1]t

h̃
(3.51)

is nothing but an integer h̃ Wilson surface extending along the t-direction – more generally it

is a smeared h̃-Wilson surface given by (3.47). This means we should interpret the boundary

states representing the U(1) connections whose field strength is 2πδ2(Σ) should be viewed

as a state in the defect Hilbert space of the operator e
i
∫
Σ×[0,1]t

h̃
. Based on this, we then

view a generic state representing a non-flat connection Anf as a state |Anf ⟩⟩ in the defect

Hilbert space HF where F is the field strength associated to the connection Anf . Here use

the notation |A⟩⟩ to differentiate states in defect Hilbert spaces HF from the Hilbert space

of the theory.

Notice that if |Anf ⟩⟩ and |A′
nf ⟩⟩ belong to the same defect Hilbert space HF , then A′

nf −
Anf is a flat connection, as the corresponding ∆S for the two connections are identical. Their

inner product is then computed identically to before except that there is a non-zero base-point

connection Anf .

Proceeding as before, we find that after imposing large gauge invariance on the bound-

aries, the inner product on a defect Hilbert space HF is given by

⟨⟨A′|A⟩⟩ =
∫

[dλ] exp

(
i

2π

∫
Xd

(A′ −A) ∧ dλ

)
= δ([A−A′]) , (3.52)

where |A⟩⟩, |A′⟩⟩ ∈ HF and λ is (d − 2)-form U(1) gauge field which serves as a Lagrangian

multiplier to set A′ = A up to gauge transformation.

We can then define the extended Hilbert space Ĥ =
⊕

F HF as the formal sum over all

defect Hilbert spaces. The inner product on each HF then lifts to Ĥ as

⟨⟨A|A′⟩⟩ =
∫
[dλ] e

i
2π

∫
Xd

(A′−A)∧dλ
= δ([A−A′]) , (3.53)

for |A⟩⟩, |A′⟩⟩ ∈ Ĥ. The QFT state can be naturally extended to a state in Ĥ by incorporating

the non-flat connections as:

⟨⟨QFT| =
∫
A/G

[dA′]ZT [A
′]e

− 1
2g2

∫
Xd

dA′∧∗dA′
⟨⟨A′| , (3.54)

where A/G is the space of all U(1) connections modulo gauge transformations.

In a similar spirit, one can define an “extended Neumann” state

|NB⟩⟩ =
∫
A/G

[dA] e
i
2π

∫
dA∧B|A⟩⟩ , (3.55)

where Bd−2 is a background (d − 2)-form U(1) gauge field. Notice that since the extended

Neumann state sums over non-flat gauge fields A, the state |NB⟩⟩ depends on the the full

data of the (d− 2)-form gauge field Bd−2.
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Evaluating the inner product then leads to the partition function of the theory T with

U(1) dynamically gauged

⟨⟨QFT|NB⟩⟩ =
∫
A/G

[dA′][dA] ZT [A
′] e

− 1
2g2

∫
Xd

dA′∧∗dA′+ i
2π

∫
Xd

dA∧B ⟨⟨A′|A⟩⟩

=
1

N

∫
A/G

[dA′][dA] ZT [A
′]e

− 1
2g2

∫
Xd

dA′∧∗dA′+ i
2π

∫
Xd

dA∧B
e

i
2π

∫
Xd

(A′−A)∧dλ

=

∫
A/G

[dA] ZT [A] e
− 1

2g2

∫
Xd

dA∧∗dA+ i
2π

∫
Xd

dA∧B
= ZT /U(1)[B] .

(3.56)

This inner product has the bulk interpretation of summing over all insertions of integer

h̃-Wilson surfaces with fixed end points on the QFT and quiche boundaries up to bulk topo-

logical deformations.

In order to study the operators in this theory, we can rewrite the path integral as

⟨⟨QFT|NB⟩⟩ =
∫

[dA′][dA][da][dh̃]ZT [A
′]e

− 1
2g2

∫
Xd

dA′∧∗dA′+ i
2π

∫
Xd

dA∧B+ i
2π

∫
Xd×[0,1]t

(da−dA)∧h̃

(3.57)

where the path integral over A,A′ is taken over all U(1) connections on Xd and the path

integral over a is taken over all the a’s with the boundary condition a|t=0 = A′ and a|t=1 = A

up to a gauge transformation. Notice on the domain where A′ − A is not flat, then the

SymTFT part of the action is not gauge invariant and therefore the total contribution to the

partition function on this domain will vanish identically.

Here, we see that the bulk theory is modified by the appearance of an extra dynamical

field A along the Xd direction, which leads to a TQFT like picture of the magnetic quantum

U(1)(d−3) symmetry. Namely, the charge n codim-3 monopole operator placed on Σ ⊂ Xd in

the QFT can be lifted to a (non-topological) codim-3 monopole operator for a1 supported on

Γ = Σ× [0, 1]t in the bulk that lives at the end of a charge n h̃-surface operator. The surface

operator eiα
∮
σ dA′

wrapping σ ⊂ Xd then lifts to the non-trivial operator e
iα

∮
σ×{t0}

da
(due to

its linking with the bulk monopole operator) and plays the role of the U(1)(d−3) symmetry

operator. The operator e
iα

∮
σ×{t0}

da
can then be pushed to the quiche boundary (t0 → 1)

where it becomes the operator eiα
∮
σ dA. Because of this, we can physically interpret the state

|NB⟩⟩ as introducing a free U(1) gauge theory on the quiche boundary (described by A) which

is then identified with the dynamical degrees of freedom of the T /U(1) theory (described by

A′) by computing the path integral over the bulk degrees of freedom (described by a, h̃).

Although the boundary state |NB⟩⟩ is not a standard boundary condition in the SymTFT

since it is a formal sum over boundary conditions with bulk operators inserted, this construc-

tion is still useful for understanding U(1) global symmetries in QFTs as we will demonstrate

in the next section. We will leave the search for a SymTFT which realizes all U(1) connections

as genuine states in the Hilbert space to future study.
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4 Applications

In this section we discuss several applications and extensions of our construction of the Sym-

metry TQFT for U(1) global symmetries.

4.1 U(1)(0) ‘t Hooft Anomalies

First we would like to discuss how anomalies of U(1) global symmetries are incorporated into

the U(1)-SymTFT. Here we will focus on the cubic anomaly of a single U(1)(0) in a 4d QFT

which is given by the 5d anomaly SPT:14

A =
iκ

24π2

∫
Y5

a1 ∧ da1 ∧ da1 . (4.1)

In the SymTFT such an anomaly is encoded by adding an analogous Chern-Simons term so

that the total bulk action is

S =
i

2π

∫
Y5

da1 ∧ h̃3 +
iκ

24π2

∫
Y5

a1 ∧ da1 ∧ da1 . (4.2)

This additional term has several effects. First, let’s consider the operators in the bulk. The

5d CS term modifies the equation of motion of a1 to be

dh̃3 =
κ

8π
da1 ∧ da1 . (4.3)

Generically, this implies that the h̃-surface operator eiα
∮
Γ h̃3 is no longer topological in the

bulk. Furthermore, similar to the case of ZN -SymTFT discussed in Section 2.3, the surface

operator eiα
∮
Γ h̃3 in the bulk now has non-trivial self triple intersection. This implies that

we can not consistently construct the Neumann boundary condition by the condensation of

these operators on the boundary [8, 17, 18] and therefore we can not realize a trivially gapped

phase via pairing with the Dirichlet boundary with the Neumann boundary.

To demonstrate this as well as other effects of the 5d CS term, we study the SymTFT

placed on a manifold with boundary. The surface terms on the boundary from the variation

of the action and the gauge variation are given by

δS
∣∣∣
bnd

=
i

2π

∫
X4

δa1 ∧
(
h̃3 +

κ

6π
a1 ∧ da1

)
,

δgaugeS
∣∣∣
bnd

=
i

2π

∫
X4

da1 ∧ λ̃2 +
iκ

24π2

∫
X4

φda1 ∧ da1 ,

(4.4)

where the gauge transformation is given by a1 → a1 + dφ, h̃3 → h̃3 + dλ̃2. Notice that the

anomaly term leads to a boundary contribution to the gauge variation of the action.

14The 5d anomaly SPT phase is the Chern-Simons term whose variation is a boundary term which describes

the variation of the partition function. In terms of the descent formalism, the derivative of the 5d SPT action

is the “anomaly polynomial” which is an integral-quantized characteristic class.
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On the other hand, if the boundary value a1
∣∣
bnd

is flat, then the extra contribution due

to the 5d CS term vanishes. Therefore, it is straightforward to define a Dirichlet bound-

ary condition realizing flat U(1) background gauge field following the previous construction

in Section 3.2. Furthermore, the vanishing of da1 also guarantees that the eiα
∮
Γ h̃ on the

boundary is topological and realizing the U(1) global symmetries.

One way to see that this anomaly obstructs the Neumann boundary condition for a1 is

the following. From (4.4), we see that the Neumann boundary conditions, which are described

by the solutions to

h̃3 +
κ

6π
a1 ∧ da1

∣∣∣
bnd

= 0 , (4.5)

are not compatible with the bulk equation of motion (4.3). Thus we recover the well-known

fact that the anomaly of U(1) global symmetry prevents the existence of trivially gapped

phase realizing anomalous U(1) symmetry [43].

Now, we want to demonstrate that the SymTFT (4.2), when turning on non-flat connec-

tions on the boundary, produce the anomalous phase familiar in the 4d QFT. In this case, we

must carefully define the path integral. With the bulk defect term (3.47) to source a non-flat

boundary gauge field, the variation of the action is modified to

δ(S +∆S)
∣∣∣
bnd

=
i

2π

∫
X4

δa1 ∧
(
h̃3 +

κ

6π
a1 ∧ da1

)
,

δgauge(S +∆S)
∣∣∣
bnd

=
i

2π

∫
X4

(da1 − dA1) ∧ λ̃2 +
iκ

24π2

∫
X4

φda1 ∧ da1 .

(4.6)

Naively, one may want to define the path integral as summing over the bulk a1 gauge field

such that a1
∣∣
bnd

= A1 up to gauge transformations. However, this leads to non-vanishing

surface term under gauge variation as

δgauge(S +∆S)
∣∣∣
bnd

=
iκ

24π2

∫
X4

φdA1 ∧ dA1 ̸= 0 , (4.7)

for generic A1 and φ.

To construct the gauge invariant quiche state, one can start with the path integral where

one sums over all bulk gauge field a1 such that a1
∣∣
bnd

= A1, and sum over all the gauge

transformations A1 7→ A1 + dφ.

Notice that a boundary gauge transformation can be described by a bulk gauge trans-

formation a1 → a1 + dφ where dφ
∣∣
bnd

̸= 0. Such a gauge transformation will shift a1|bnd to

a1|bnd+dφ|bnd, and therefore relates different strict Dirichlet boundary conditions (where we

do not sum over boundary gauge transformations in the path integral and fix the boundary

value of a1 exactly) which we denote |A⟩⟩0. Note that these are not physical states in the

Hilbert space as we have not yet imposed gauge invariance. This allows us to compute that
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the strict Dirichlet states transform with a phase under a boundary gauge transformation:

|A⟩⟩0 =
∫

[da dh̃]
a|bnd=A

e−S[a,h̃] =

∫
[da dh̃]
a|bnd=A

e−S[a+dφ−dφ,h̃] =

∫
[da′ dh̃]

a′|bnd=A+dφ

e−S[a′−dφ,h̃]

= e
iκ

24π2

∫
X4

φdA1∧dA1

∫
[da′ dh̃]

a′|bnd=A+dφ

e−S[a′,h̃]

= e
iκ

24π2

∫
X4

φdA1∧dA1 |A+ dφ⟩⟩0 .

(4.8)

In order to construct gauge invariant states, we must integrate over the gauge orbit of a

strict Dirichlet states with an additional anomalous phase:

|A⟩⟩ =
∫
[dφ] e

iκ
24π2

∫
X4

φdA1∧dA1 |A+ dφ⟩⟩0 . (4.9)

In the setting of the SymTFT, this phase naturally arises from pairing the gauge-dependent

state with a partition function that exhibits the same anomalous phase. This does not affect

the construction of the extended QFT state (3.54) since the theory T has the corresponding

’t Hooft anomaly. Namely, the combination ⟨⟨A1|ZT [A1] is gauge invariant provided that

ZT [A1 + dχ] = ZT [A1]e
− iκ

24π2

∫
X4

χdA1∧dA1 , therefore the extended QFT state

⟨⟨QFT| =
∫
A
[dA′

1] ZT [A
′
1] e

− 1
2g2

∫
Xd

dA′
1∧∗dA′

1
0⟨⟨A′

1| (4.10)

remains well-defined. The extended Dirichlet state for the quiche boundary can additionally

be cured by dressing the state with a the bulk SPT phase as described in [2]:

|A⟩⟩ :=
∫
[dφ] ZSPT [A+ dφ] |A+ dφ⟩⟩0 . (4.11)

Physically, this is analogous to the statement that the SymTFT is Witt equivalent to the

anomaly SPT phase by condensing Wilson lines, for our case where the topological theory

has an infinite-dimensional Hilbert space/set of Wilson lines.

The inner product between ⟨⟨QFT | and |A⟩⟩ then computes the gauge invariant combi-

nation of the partition function that is dressed by the (d+ 1)-dimensional SPT phase:

⟨⟨QFT|A⟩ = ZQFT[A]× ZSPT [A] . (4.12)

The extended Neumann state (3.55), on the other hand, is ill-defined, consistent with the fact

that one can not dynamically gauge the U(1) symmetry when there is an anomaly.

4.2 Mixed U(1)(0) × U(1)(0) Anomaly and Non-Invertible Q/Z Symmetry

In a 4d theory with U(1)
(0)
A × U(1)

(0)
a global symmetry we can write down the SymTFT as

SU(1)×U(1) =
i

2π

∫
da1 ∧ h̃3 + dA1 ∧ H̃3 . (4.13)
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These symmetries admit a mixed anomalies: without loss of generality we will consider the

case where the theories have a mixed U(1)2a×U(1)A anomaly. This anomaly will prevent the

existence quiche boundary conditions which realizes the symmetries as simultaneously gauged

in the QFT. However, it does not prevent boundary conditions which realizes the U(1)
(0)
a or

U(1)
(0)
A as gauged in the QFT. However, in the phase where U(1)

(0)
a is gauged, the U(1)

(0)
A

will exhibit an ABJ anomaly.15 As discussed in [46, 47], a U(1)(0) global symmetry in a 4d

QFT with an ABJ anomaly of this type should be converted into a non-invertible (Q/Z)(0)

global symmetry. Here we will demonstrate how the U(1)(0) × U(1)(0) SymTFT will capture

this non-invertible symmetry with the appropriate choice of quiche boundary conditions.

In the SymTFT, the U(1)2a × U(1)A anomaly can be accounted for by adding the term

∆S = ik

∫
A1 ∧

da1 ∧ da1
8π2

. (4.14)

When we add this coupling, the allowed boundary variation is modified:

δS
∣∣
bnd

=
i

2π

∫
δa1 ∧

(
h̃3 +

k

2π
A1 ∧ da1

)
+ δA1 ∧ H̃3 . (4.15)

As in the case of the U(1) self-anomaly, these boundary conditions do not allow simultaneous

Neumann boundary conditions for a1, A1.

The anomaly also changes the bulk equations of motion for H̃3, h̃3:

dH̃3 +
k

4π
da1 ∧ da1 = 0 , dh̃3 +

k

2π
dA1 ∧ da1 = 0 . (4.16)

These are not compatible with the Neumann boundary conditions described by the boundary

variation of the action in (4.15). We would like to comment that one can add a boundary

term to the action which allows us to choose either the h̃ or H̃ equations of motion to be

compatible with the corresponding Neumann boundary condition. However, there does not

exist a boundary term that makes both of them simultaneously compatible – this is prevented

by the term describing the anomaly.

On a closed manifold without boundary the h̃3, H̃3 surfaces are topological due to the

other equations of motion:

da1
2π

= 0 ,
dA1

2π
= 0 . (4.17)

However, in the presence of a boundary we can turn on da1, dA1 ̸= 0 in which case the

h̃3, H̃3-surfaces may not be topological.

Here we will consider fixing the Dirichlet boundary condition for A1 so that A1 is a flat

gauge field. In the case with flat Dirichlet boundary conditions for a1, the H̃3 surface is

topological. However, for generic boundary values of a1 – such as in a generic defect Hilbert

15Alternatively, in the phase where U(1)A is gauged, U(1)a participates in a 2-group [44, 45]. We will not

discuss this scenario in this paper.

– 33 –



space where a1 is not flat – the H̃3 surfaces are not topological except for the surfaces of the

form e
in
k

∮
(H̃3+

ik
4π

a1∧da1). This is consistent with the fact that upon dynamically gauging the

global U(1)
(0)
a symmetry, the corresponding ABJ anomaly will break the group-like symmetry

U(1)A 7→ Zk.

However, as discussed in [46, 47], the ABJ anomaly for a U(1)(0) global symmetry trans-

mutes the broken group-like symmetry into a non-invertible Q/Z(0) global symmetry.

To realize this Q/Z non-invertible symmetry in the U(1)2 Symmetry TQFT, we can

construct the topological operator associated to the H̃-surface by dressing the bare H̃-surface

with a fractional quantum hall state

Dq[Σ] = AN,p[Σ; a1]× eiq
∮
Σ H̃3 , k q =

p

N
, (4.18)

where AN,p[a1] is the minimal ZN TQFT [48] which satisfies

δΣAN,p[Σ; a1] = AN,p[Σ; a1]× e−ik
∫
δΣ

a1∧da1
4π . (4.19)

This composite operator Dq[Σ] is topological as the non-topological nature of the H̃3-Wilson

surface and AN,p[Σ; a1] cancel. However, due to the non-trivial structure of the product of the

AN,p[Σ; a1] operators [48], the Dq[Σ] will now generate a non-invertible symmetry structure

[46, 47].

This operator Dq[Σ] is innately topological (i.e. independent of the boundary condition).

However, when we take a1 to have (flat) Dirichlet boundary conditions, the operator factorizes

into the product of two topological operators – one of which is the group-like H̃3-Wilson

surface.

5 Comments on Continuous Non-Abelian 0-form Symmetries

In this section we will propose a Symmetry TQFT for a non-abelian, continuous 0-form global

symmetry. Our proposal is a simple extension of the U(1) SymTFT where we interpret R as

the Lie algebra of U(1).

Let us take G to be a continuous non-abelian Lie group and consider a G gauge field a1
and a g = Lie[G]-valued (d− 1)-form gauge field hd−1. Here we will consider the case where

hd−1 transforms under the adjoint representation of G. We can then construct a topological

action

S =
i

2π

∫
Tr [f2 ∧ hd−1] , (5.1)

where f2 is the field strength of a1. Using this action to define a quantum theory is more

subtle than the U(1) case as the non-abelian gauge transformations requires one to introduce

ghost fields or use BRST/BV-quantization. In this paper, we will not discuss such subtleties.

The equations of motion

f2 = 0 , Dhd−1 = 0 , (5.2)
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where D is the covariant exterior derivative, imply that the Wilson line WR = TrP ei
∮
a1 is

topological. As mentioned in the introduction, the definition of a gauge invariant h-surface is

subtle because the notion of path ordering, which is necessary for non-abelian gauge invari-

ance, does not naturally extend to surface operators of higher dimension.

In this theory we can still diagnose the possible boundary conditions. This can be done

from the Lagrangian formalism either by doing canonical quantization16 or by looking at the

boundary conditions from the variation of the action as above. Here we will take the approach

of studying the boundary variation of the action.

The boundary variation of the action and the gauge variation of the action are given by

δS
∣∣
bnd

=

∫
Xd

Tr [δa1 ∧ hd−1] , δgaugeS
∣∣
bnd

=

∫
Xd

Tr[f2 ∧ λd−2] . (5.3)

We then see that there are two boundary conditions

1. a1 is fixed and flat up to gauge transformations and Dh̃ = 0 with the constraint that

Tr[Λ
∮
h̃d−1] ∈ 2πZ where Λ is any co-root of G;

2. hd−1 = 0 up to gauge transformations and a1 flat.

Boundary condition 1.) is the natural Dirichlet boundary condition |A1⟩ while 2.) is naturally

the Neumann boundary condition |N⟩. As in the case of the U(1) gauge field, this SymTFT

straightforwardly accommodates flat G-gauge fields. However, it is unclear how to construct

the analogous defect Hilbert spaces that allow forG-gauge fields with non-trivial characteristic

classes since it is unclear how to construct the corresponding gauge invariant h̃-surfaces as

discussed above.

The Dirichlet boundary conditions clearly form an orthogonal set among the space of flat

G-connections modulo gauge transformations as any pair of (gauge) inequivalent connections

will require a non-trivial field strength in the bulk which will be projected out by the inte-

gral over h. The Neumann boundary conditions can then be constructed by summing over

Dirichlet boundary conditions as the G-connection is free on the boundary.

When coupling to the QFT, we can define the QFT state as above

⟨QFT| =
∫
A0/G

[dA1]ZQFT [A1] ⟨A1| , (5.4)

where the path integral is over the space of flat G-connections A0 modulo gauge transforma-

tions G. The Dirichlet boundary condition then exhibits the coupling of the QFT to a flat

background gauge field:

⟨QFT|A1⟩ = ZQFT [A1] . (5.5)

16Here is one place where the subtlety associated to ghost fields arises. As is standard, the canonical

quantization of the non-abelian gauge theory requires projecting onto gauge invariant states which requires

BRST/BV quantization or the introduction of ghost fields.
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Additionally, this SymTFT has the capacity to encode the anomalies of G(0) global

symmetries. This can be accomplished by introducing the corresponding Chern-Simons term

S =
i

2π

∫
Tr [f2 ∧ hd−1] + i

∫
CSκ[a1] , (5.6)

where CSκ[a1] is the Chern-Simons polynomial with coefficient κ ∈ Z of the G-connection a1.

As above, this will make the Neumann boundary condition ill defined and obstructs us from

gauging the G(0) global symmetry in the QFT.

Because this TQFT we proposed above captures these universal features of G(0) global

symmetries, we believe that this does indeed describe the G(0) SymTFT. We believe it is an

interesting open problem to understand this TQFT, its operator spectrum, and categorical

description in general dimension. In d = 2 dimensional QFTs (i.e. a 2 + 1d SymTFT), this

symmetry has been studied as the topological sector of 3d N = 4 twisted G(0) gauge theory

in [26–29] and directly studied in 4d in [30, 31].
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