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Abstract. Near-future facilities observing the high-redshift universe (2 < z < 5) will have
an opportunity to take advantage of “multi-tracer” cosmology by observing multiple tracers
of the matter density field: Lyman alpha emitters (LAE), Lyman break galaxies (LBG), and
CMB lensing κ. In this work we use Fisher forecasts to investigate the effect of multi-tracers
on next-generation facilities. In agreement with previous work, we show that multiple tracers
improve constraints primarily from degeneracy breaking, instead of the traditional intuition
of sample variance cancellation. Then, we forecast that for both BBN and CMB primary
priors, the addition of lensing and LAEs onto a LBG-only sample will gain 25% or more in
many parameters, with the largest gains being factor of ∼ 10 improvement for fEDE. We
include a preliminary approach towards modelling the impact of radiative transfer (RT) on
forecasts involving LAEs by introducing a simplified model at linear theory level. Our results,
albeit preliminary, show that the while RT influences LAE-only forecasts strongly, its effect
on composite multi-tracer forecasts are limited.
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1 Introduction

The large-scale structure of the Universe arises from primordial fluctuations in space-time in
the very early Universe, acted upon by gravitational instability in a dark-matter-dominated
Universe over many Gyr [1–4]. As such it provides us with a window into fundamental
physics and all of the constituents, processes and parameters that influence the evolution of
large-scale structure even in subtle ways. In turn this has led to exciting proposals for next-
generation facilities that can make high precision measurements of the quasi-linear modes
that contain such a wealth of information [5–9].
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Much of the focus of these next generation facilities will be measurements of large-scale
structure at redshifts above z ∼ 1 − 2 in order to take advantage of several simultaneous,
advantageous trends [10]. First, probing a wide lever arm in time (redshift) is critical to
disentangle evolutionary influences from primordial ones and leads to rotated degeneracy
directions that tighten joint constraints. Second, the larger volume and smaller scale of non-
linearity both allow a larger lever arm in scale to break degeneracies between cosmological
and nuisance parameters. Third, the modes are in the linear or quasi-linear regime and carry
information from the early Universe before it has been lost to non-linear evolution.

A fundamental limitation to how well we can probe fundamental physics and cosmology
comes from the influence of complex astrophysical processes that affect the clustering of
objects on the length scales that we observe. This influence is usually described by a set of
bias parameters [11] whose form is dictated by the symmetries of our problem (e.g. rotational
invariance, the equivalence principle, ...). The ability to break degeneracies between these
bias parameters and the fundamental parameters of interest is key to the success of the
program. Such degeneracy breaking is dramatically improved if we have multiple tracers
of the same underlying density fluctuations with different (or no) biases, such as multiple
galaxy populations (known as “multi-tracer”; [12]) or gravitational lensing (of the CMB;
[13, 14])). Traditionally, multitracer has been considered in the context of ‘sample variance
cancellation’, which avoids the payment of sample variance by measuring quantities, such as
ratios of biases, at field level. However, for our forecast we will not have high enough number
densities for this to be interesting, nor will we present forecasts for parameters that can be
measured at field level.

At z > 2 there are two sets of galaxies that make natural targets for spectroscopic sur-
veys: Lyman break galaxies (LBGs) and Lyman alpha emitters (LAEs). LBGs are massive,
actively star-forming galaxies with a luminosity approximately proportional to their stellar
mass. They are abundant, well studied and well understood [15–17]. By contrast LAEs are
compact, metal-poor, star-forming galaxies with SFR∼ 1 − 10 M⊙yr

−1 that live in much
lower mass halos and consequently are expected to have significantly lower bias [18]. These
two classes of targets naturally possess different biases, making them ideal laboratories for
the multi-tracer approach. In addition we have lensing of the CMB, which provides a (pro-
jected) tracer of the matter field itself (i.e. with no biases) which further serves to break
degeneracies.

In this paper we extend the Fisher formalism developed in ref. [5] to the case of mul-
tiple galaxy populations (plus the CMB lensing already included in [5]) and forecast the
improvement in constraining power that this provides. The outline of the paper is as follows.
In §2, we introduce and characterize the three matter density tracers. In §3 we describe
the theoretical framework used for forecasting, including the modelling of biased tracers and
the Fisher information formalism. In §4 we then investigate the mechanism of multi-tracer
cosmology through forecasting of simplified galaxy tracers with varying characteristics. §5
explains our approach to radiative transfer (RT), which potentially poses concerns toward
the use of LAEs as tracers. Finally in §6 we present our forecasts for two experiment designs,
Stage 4.5, motivated by DESI II, and Stage V, and conclude in §7 with discussion.

2 Tracers of large-scale structure at high redshift

In this section we describe the relevant properties of the three tracers used for this study;
Lyman alpha emitters (LAEs), Lyman break galaxies (LBGs), and gravitational lensing.
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For the galaxy tracers we determine the large-scale bias, b, and comoving number density,
n̄, of the objects based on previous astronomical surveys that have probed these tracers
at the redshifts of relevance. The distinction between these tracers is made primarily by
observational technique than physical properties, causing overlap of these populations in
many cases.

2.1 Lyman Alpha Emitters

Lyman alpha emitters (LAEs) are young, low-mass, actively star-forming galaxies at high
redshift [18, 19]. In the astronomical literature the designation is primarily determined by the
method of sample selection, and LAEs are normally selected from narrow or intermediate
band imaging surveys as galaxies having large rest-frame equivalent width Lyα emission
[18, 20]. While practical, this designation complicates the physical interpretation of the
population. Although the dominant physical origins of these emissions (e.g. young massive
stars, AGNs, and shock heating with minimal absorption by dust) have been identified [18], a
complete understanding of what determines the high Lyα emissivity of LAEs has not yet been
obtained. Although we will largely follow the observational designation, from the perspective
of cosmology the primary interest will be in the ability to obtain a redshift for the galaxy,
which is more closely associated with line flux. There may also be arguments for having
detectable continuum emission in order to minimize radiative transfer effects on the galaxy
selection.

Due to the method of selection, the characterization of the LAE population for the pur-
pose of cosmological forecasts contains some subtleties and difficulties. The majority of LAE
surveys probe faint populations over relatively small areas of sky, whereas the ideal objects
for wide-field spectroscopy tend to be brighter and not well-represented in such surveys. Pure
narrow-band selection is also not likely to be an efficient means of finding galaxies over large
cosmological volumes due to the limited comoving depth each filter provides. This, along
with varying observational definitions of LAE across literature, means our estimates have an
element of uncertainty.

The two key parameters for our forecasts will be the abundance and large-scale clustering
of LAEs, as determined by the 3D number density (n̄) and large-scale bias (b). In order to
determine these we make use of published studies [21–29], which we discuss further below.
The final inputs are shown in Figure 1.

LAE luminosity functions (LF) are frequently quoted in terms of the Lyα luminosity and
fit with the Schechter functional form [31]. While the uncertainties in the three parameters
of the Schechter function are often covariant, this information is not usually provided which
makes assessing uncertainties in n̄ more difficult. Thus, we choose to compare different
surveys as an estimate of uncertainty. This has the advantage of also including sample
variance due to survey volume, though it unfortunately mixes differences in observational
selection into the uncertainty.

Assuming a Schechter LF the number density, n̄, of objects brighter than some minimum
luminosity, Llim, can be written in terms of three parameters (ϕ∗, L∗ and α) as

n̄(z) = ln 10

∫ ∞

log10 Llim

ϕ⋆

(
L

L∗

)1+α

e−L/L∗
d log10 L (2.1)

where L is the Lyα line luminosity. As it ties more directly to observational ‘cost’, we will
typically use the line flux (f) instead of luminosity, the two are related by L = 4πf D2

L(z),
with DL the luminosity distance.
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Figure 1: Left: 3D number density (n̄) of LAEs found using Schechter function fits to
LF from previous studies [22–24]. The point markers refer to the values reported in the
original studies, while the lines use interpolations of Schechter LF parameters. We see that
although there is rough consistency across the literature, a ‘factor of two’ difference is not
uncommon. We take the LF parameters from SC4K [22] as our fiducial model in what follows.
Right: Large scale bias b of LAEs reported across the literature with various redshift and
line flux limits [21, 25–30]. The solid lines show the fit of Eq. (2.4) for flim = 3, 5 and
10× 10−17 erg cm−2 s−1. The region b ≥ 6 is shaded, as populations with such high bias are
not traditionally used for cosmology.

In Figure 1, we compare number densities using various LF parameters from different
surveys [22–24]. While there is rough consistency, there are frequently factors of ∼ 2 between
curves, suggesting our estimates of n̄ are likely uncertain ‘at the factor of two level’. We
will investigate the impact of this later in §6. We adopt the LF from the Slicing COSMOS
4K (SC4K) survey [22] as our fiducial model. Since the LF-derived number densities reflect
the total number of galaxies at a given line flux limit after correcting for incompleteness, we
further include an estimated 50% selection and redshift efficiency.

For our forecasts we will also need to understand the large-scale bias of these popu-
lations, which is more complex than the number densities. Existing surveys quote a range
of different measures (see e.g. Fig. 3 of ref. [21] for a recent compilation). The clustering
strength in LAE surveys is often quoted in terms of a correlation length, r0, assuming a
power-law (real-space) correlation function:

ξgg(r) =

(
r

r0

)γ

(2.2)

and the power-law index γ is often held fixed (typically to −1.8) in the fit. Given that
astronomical LAE surveys typically have discrete narrow- or medium-band selection over a
small field, in practice r0 is obtained by fitting the angular correlation function, w(θ), to
a power-law. Ignoring redshift-space distortions (RSD) the projection of an isotropic 3D
correlation, ξ(r), to 2D would give w(θ) ∝ θβ with β = γ+1. The presence of redshift-space
distortions leads to appreciable changes in this relation on scales comparable to the depth of
the shell in comoving distance, an effect that is usually neglected in the literature.

Given the limited information available, we will convert the reported r0 values to large-
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scale biases by working to linear order in bias, in which case

b2 =
ξgg
ξmm

(2.3)

Again, any RSD contribution to the linear power-spectrum is ignored assuming that the
constraints are primarily from scales much smaller than the depth of the survey. A subtlety
involved here is that while we are using the linear approximation for the bias, the power-law
approximation for ξgg assumes nonlinear growth which is normally associated with non-linear,
scale-dependent bias. Although this poses an inconsistency in our approach, considering
higher order biases or re-investigating raw data to find the exact form of ξgg goes well beyond
the scope of this work and likely will not alter the conclusions of this study significantly. It
would be worthwhile to refine these estimates when a new analysis of the clustering of LAEs
over wide areas becomes available.

This method for estimating the bias requires us to make a number of choices. We
evaluate b by computing the ratio in Eq. 2.3 at a fixed scale, r. Since the above estimation
assumes that the power-law approximation of ξgg is valid we choose an angular scale of
θ ∼ 235′′. The validity of the power-law approximation at this scale across surveys and
redshifts can be confirmed through inspection of the power-law fit to the angular correlation
in the literature [21, 25]. This scale corresponds to r ≃ 5h−1Mpc at z = 3, and 5h−1Mpc is
large enough to be in the quasi-linear regime for z > 2 while being smaller than the typical
survey depth to reduce the impact of RSD. The numerator is estimated from the power-law
fit, while for the denominator we use the Hankel transform of the HaloFit [32] power spectrum
as computed by CLASS [33] which is approximately a power-law on these scales.

We utilize clustering measurements from various surveys in the literature [21, 25–30].
Note that we adopt r0 values from [21] for all surveys, as they have reported the values from
the literature after normalizing for some methodology differences. We estimate b as described
above for a range of redshifts (z) and flux limits (flim) and the results are shown in Fig. 1.
For convenience we fit these results with

b(flim, z) = A(flim)(1 + z) +B(flim)(1 + z)2 (2.4)

where

A(flim) = 0.457− 1.755(log10 flim + 17) + 0.720(log10 flim + 17)2 (2.5)

B(flim) = 0.012 + 0.318(log10 flim + 17) + 0.043(log10 flim + 17)2 (2.6)

are both quadratic functions of log10 flim, with the flux measured in erg cm−2 s−1 by standard
convention. The shape of this fit is motivated by a similar fit to the LBG bias in ref. [17].
Since at these high redshifts the linear growth rateD(z) ∝ (1+z) the (1+z) term corresponds
to co-evolution [34] while the (1 + z)2 term is its first order correction. Ultimately, however,
this is simply a convenient fit to the observed results. The solid lines in Fig. 1 show the
fit for flim = 3, 5 and 10 × 10−17 erg cm−2s−1. Note that while we choose to model b as
a function of flim, which can be derived from Llim, it is common for surveys to report the
limiting luminosity in terms of the median luminosity Lmed. The conversion from Lmed to
Llim, assuming a Schechter luminosity function, is described in Appendix B.

2.2 Lyman Break Galaxies

Lyman break galaxies (LBGs) [15–17] are a set of massive, actively star-forming galaxies at
high redshift. The population is typically selected through a ‘dropout’ technique in which the
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Figure 2: Left: Number density n̄ of LBGs using Schechter function fits to the UV LF [17],
using fit parameters reported from preceding studies [35–37]. Right: Large-scale bias b of
LBGs using a fit function b(m, z) in Eq. 2.9 [17]. The region b ≥ 6 is shaded to indicate that
these high bias tracers are traditionally not used for cosmology.

selection targets the distinct drop in flux density Fν that occurs at 912Å (the Lyman break)
due to absorption by stellar atmospheres and interstellar medium on top of an otherwise
flat spectrum. For the redshifts of our interest, the spectra bluewards of 1216Å is further
suppressed due to Lyman-series blanketing [38]. Importantly, selection for this drop yields
physically similar galaxies across redshift. Each selection sample is typically named after the
filter that is used to detect this drop. For instance, a u-dropout sample will have a lack of
flux in the u band compared to significant flux in redder bands, corresponding to galaxies
at z ≈ 3. The typical width for each sample is ∆z ≈ 0.7. Similar to LAEs, the number
density n̄ and large scale bias b are our key parameters, allowing us to use a nearly identical
approach for parameter estimation. The results are summarized in Figure 2.

The Schechter formalism is once again useful to predict the number density. Here, we
will be using the UV (≈ 1500Å rest-frame) LF with absolute magnitude MUV

dn(MUV) =

(
ln 10

2.5

)
ϕ∗10−0.4(1+α)(MUV−M∗

UV) exp
{
−10−0.4(MUV−M∗

UV)
}
dMUV (2.7)

with the LF parameters from Table 3 of ref. [17] (in turn based on refs. [35–37]). The absolute
magnitude can be converted to apparent magnitude, m, using the appropriate (near-zero)
k-correction [17]

MUV = m− 5 log10

(
DL(z)

10pc

)
+ 2.5 log10(1 + z) +mUV −m︸ ︷︷ ︸

≈0

(2.8)

We will use this to model (apparent) magnitude limited surveys.
The LBG biases are calculated using the same power-law approximation of correlation

functions as in LAEs. Ref. [17] fit a function b(m, z) to results from the literature

b(m, z) = A(m)(1 + z) +B(m)(1 + z)2 (2.9)

where A(m) = −0.98(m − 25) + 0.11 and B(m) = 0.12(m − 25) + 0.17. Again, while this
fitting model has some physical basis on the co-evolution approximation of galaxies, it is
ultimately a useful fit to the data.
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z 2.2 2.5 3.1 3.9 4.7 5.4

LAE f∗
lim 13 11 5.6 5.1 5.4 6.9

z 2 – 3 3.8 4.9 5.9

LBG m∗ 24.2 – 24.7 25.4 25.5 25.8

Table 1: Characteristic luminosity of Schechter function fits to the LAE LF [22] and LBG
LFs [17] (in turn based on [35–37]), converted to line flux (in units of 10−17 erg cm−2 s−1)
and apparent magnitude, respectively. This can be used to gauge what the optimal limiting
luminosity is for experiments, as the LF will transition from an exponential to a power-
law fainter than these characteristic luminosities and provide diminishing returns in galaxy
counts.

Experiment
2.4 < z < 3.2 3.2 < z < 4.4

fskyLAE 1017flim LBG m LAE 1017flim LBG m

Stage 4.5 10 24.5 – – 0.1212
Stage V Plan A 10 24.5 10 24.5 0.4
Stage V Plan B 10 24.5 5 24.5 0.3211
Stage V Plan C 10 24.5 10 25.0 0.2796

Table 2: Experiment designs considered for this work. The Stage 4.5 design is strongly
motivated by the proposed DESI II design.

The summary of the characteristic luminosities for LAEs and LBGs, shown in Table 1
provide us with an intuitive limit on where our gains are maximized when pushing to fainter
luminosities. Starting at high luminosities, the number densities increase exponentially as
we push fainter until we reach the “knee” at the characteristic luminosity (L⋆), where the
increase turns to a power-law. Near-term surveys will be able to reach such regimes.

For this work, we will consider a ‘Stage 4.5’ design motivated by the DESI II design
with 2.4 < z < 3.2, and a ‘Stage V’ design with 2.4 < z < 4.4. Both designs are constrained
by the limiting luminosities for LAEs and LBGs. While Stage 4.5, with a closer timeline, is
specified in luminosity limits, we will consider multiple scenarios of Stage V luminosity limits
to perform a crude optimization. The optimization will be done by assuming both a fixed
total integration time for the experiment and a fixed individual integration time per galaxy,
regardless of flux, magnitude, or galaxy type. This is equivalent to fixing the total number
of galaxies observed. The experimental designs are shown in Table 2. A comparison against
Table 1 shows that for a Stage 4.5 survey with flim = 10 × 10−17, m = 24.5, and z ≲ 3,
the luminosity limits are near the characteristic luminosities with the exception of LAEs at
z = 3.1.

A more quantitative measure of the strength of our signal is where in k-space we become
shot noise limited in the monopole, as shown in Figure 3. For the Stage 4.5 survey, the LAE
signals become shot noise limited at k ≃ 0.15hMpc−1 and LBGs at k ≃ 0.3 − 0.4hMpc−1.
Furthermore, if we extend these luminosity limits to z = 4, we are totally shot noise domi-
nated for LAEs. Notice that the magnitude limits on the right axis do not go to 26 for z = 2.5
and 3.0. This is because the bias-corrected shot noise [n̄(b2 + 2bf/3 + f2/5)]−1 increases at
fainter magnitudes due to the decrease in bias over-powering the increase in number density
as we push fainter than the corresponding characteristic magnitudes of the LBG Schechter
function fit.
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Figure 3: Monopole of the signal (P − Pstoch) against the shot noise at various luminosity
limits (right axis) for LAEs (top) and LBGs (bottom). The k where signal equals shot noise
reflects where we enter a shot noise dominated regime (n̄P=1). The bias-correction simply
refers to dividing out the monopole Kaiser factor, b2 + 2bf/3 + f2/5, so that the large-scale
clustering is independent of magnitude. The spread in the curves at high-k is due to scale-
dependent bias, which we model as described in §3. The dotted lines illustrate where the
fiducial Stage 4.5 survey become shot noise dominated.

2.3 CMB Lensing

We will also include CMB lensing κ as a third tracer of the matter density. The aspect
of lensing that makes it a particularly interesting addition to the set of tracers is that it
introduces fewer nuisance parameters than a galaxy tracer; it is an unbiased tracer of matter,
with no shot noise. The high redshifts of near-term experiments further motivate the use of
lensing, as the CMB lensing kernel peaks near these redshifts. On the other hand, we will
not be including cosmic shear as a tracer, as this will require galaxy sources at extremely
high redshift.

We consider Simons Observatory (SO) [39] with fsky = 0.4 as the CMB experiment for
our forecasts and use the noise Nκ

ℓ obtained from the SO noise calculator as in ref. [5]. The
calculator uses an iterated minimum variance (MV) quadratic estimator and MV internal
linear combination of both CMB temperature and polarization data for calculation, and
includes atmospheric effects [5].
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3 Theory and formalism

In this section we outline the theoretical models we employ and the forecasting formalism
we adopt, which is based on the Fisher matrix and is substantially similar to that used1 in
ref. [5]. We take ΛCDM as our fiducial cosmology with parameters given in Table 3.

3.1 Model

As in ref. [5], our theoretical model is based upon 1-loop perturbation theory with a general,
quadratic bias model. This model has been shown to be accurate (at the relevant scales)
well beyond the demands of current and next-generation surveys [40] while including scale-
dependent bias and mode-coupling due to quasi-linear evolution that improve the reliability
of the forecasts. It has been applied to earlier surveys in ref. [41–43] and is currently being
evaluated for use in the DESI and Euclid surveys [44]. For further details of the model see
[40, 45, 46].

Within this formalism, the auto- or cross-spectra for our tracers can be written as a lin-
ear combination of different ‘basis’ spectra multiplied by bias coefficients, plus contributions
from counterterms and stochastic terms:

P (k, µ) =
∑
X,Y

bXbY PXY (k, µ) + Pc.t.(k, µ) + Pstoch(k, µ) (3.1)

where X,Y ∈ {m, δL, δ
2
L, s

2
L,∇2δL, · · · } label the component spectra, Pc.t. are counterterms

arising from small-scale physics not directly included in the model, and Pstoch are stochastic
terms such as shot noise and fingers of god. Figure 4 shows the contribution of each com-
ponent in a sample case of constant biases, ba = 2 and bb = 5, constant number density,
n̄ = (100b2)−1, and no correlation between the shot noise in the two samples (these assump-
tions correspond to Ñ = 100 and fover = 0, as introduced later in this section). Note how
the scale and angle dependence of each component spectra differ, allowing us to potentially
break degeneracies between parameters.

3.2 Parameters

The parameters that we use can be categorized into ‘global’ and ‘local’ parameters. The global
parameters are those that are common to all redshifts, such as cosmological parameters.
The local parameters are those that are assigned for each redshift that we consider. The
perturbation theory parameters that we describe here (bi, Ni, αi) are examples of local
parameters. For a complete list of parameters, their categorization (global or local), and
their fiducial values, refer to Table 3.

The bias parameters bX contribute to the spectra are organized in terms of the depen-
dence of the galaxy overdensity field δg on the matter field δ and shear sij . Up to one-loop,
the bias terms that we include in our model are

δg = b1δ +
b2
2
δ2 + bss

2 (3.2)

where s2 = (sij)
2 [45]. The cubic bias terms are nearly degenerate with our counter- and

stochastic terms and so do not need to be included explicitly. This expression corresponds

1https://github.com/NoahSailer/FishLSS
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Figure 4: The contributions to the power spectra from each component in Eq. (3.1), where
ba = 2, bb = 5, z = 3, and PPT refers to the sum of quadratic bias component spectra∑

X,Y bXbY PXY (k, µ). The columns refer to the monopole, quadrupole, and hexadecapole of
each component. Red lines show the aa auto-spectra, green lines the ab cross-spectra, and
blue lines the bb auto-spectra. The shaded region reflects the knl limit at z = 3.

to the parametrization used in Eulerian perturbation thoery (EPT). Each Eulerian bias can
be related to the Lagrangian biases bLX as [11, 45]

b1 = bL1 + 1, b2 = bL2 +
8

21
bL1 , bs = bLs − 2

7
bL1 . (3.3)

The fiducial values for each parameter is dependent on that of b1, which we have estimated
for both LAEs and LBGs in §2. For b2, we use the Sheth-Tormen mass function [47] and
peak-background split model, for which [48, 49]

bL1 =
1

δc

[
aν2 − 1 +

2p

1 + (aν2)p

]
(3.4)

bL2 =
1

δ2c

[
a2ν4 − 3aν2 +

2p(2aν2 + 2p− 1)

1 + (aν2)p

]
(3.5)

with δc = 1.686, a = 0.707 and p = 0.3. This is shown to agree well with N-body simulations
for b2 [50] and thus motivates a reasonable fiducial value for our samples. Furthermore, we
have confirmed that our results are qualitatively invariant to our choice of b2. For bs, we use
the coevolution approximation, which assumes bLs = 0. While this does not agree as closely
with simulations as our choice for b2, simulations suggest that for of our samples we expect
|bLs | ≲ 1 [50], and the differences have little impact on our forecasts.

Our model for the counterterm consists of parameters α2n,a, such that

Pa ⊃ α2n,a µ
2n(k/k⋆)

2Pcb (3.6)

for each auto-spectrum, with k⋆ = 1hMpc−1. We inherit the fiducial values of galaxy α’s
from ref. [5], where α0 values are determined using fits towards Halofit simulations and
higher order parameters are set to 0 for convenience. For α0,κ, we obtain fiducial values by
simply fitting PHF (z) = Plin(1 + α0,κk

2). Cross-spectra counterterm contributions are fully
determined by those of the auto-spectra, thus we do not have degrees of freedom for αab,a̸=b,
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for example. A detailed discussion of cross-spectrum counterterms is provided in Appendix
C.

For the stochastic terms, we use a set of parameters N2n,ab, such that

Pab ⊃ N2n,ab(kµ)
2n (3.7)

Our fiducial values of the parameters are survey dependent for n = 0 or 1, and zero for higher
orders. Note that n = 0 is the “shot noise term”, and hence our fiducial value is N0,aa = 1/na

for auto-spectra. Extending this model to cross-spectra, we let N0,ab = fover/
√
nanb fiducially

for a ̸= b, where fover ∈ [0, 1] is a measure of how much correlation we have between the
tracers’ shot noise (e.g. to what degree the populations occupy the same halos). As the
fiducial value for N2, we set N2,ab = −N0,abσ

2
v , with σv = (1 + z)(100km/s)/H(z) being the

typical velocity dispersion in comoving units [5]. Notice that the stochastic parameters are
the only new degrees of freedom introduced when including the cross-spectra, motivating the
use of all available spectra.

Our kmax is set by the non-linear scale. Unless explicitly stated, we will use kmax(z) =
knl(z) = Σ−1(z) where Σ is the rms displacement in the Zel’dovich approximation. We take
kmin = 0.003hMpc−1, motivated by the longest mode that fit in our surveys, i.e. kmin ∼
2π/V 1/3. Our results are in general not very sensitive to kmin.

3.3 2D power spectrum

To include CMB lensing in our analysis, we must also have a method to calculate the 2D
power-spectra, where we can cross-examine the LSS and CMB data on equal footing. The 2D
power-spectra can be calculated from the 3D power-spectra using the Limber approximation,

Cab
ℓ =

∫ χ∗

0
dχ

W a(χ)W b(χ)

χ2
Pab

(
k⊥ =

ℓ+ 1/2

χ
, k∥ = 0

)
(3.8)

where the a and b are available tracers, either κ or galaxies. χ∗ is the comoving distance to
the surface of last scattering and W ’s are the lensing kernels

W κ(χ) =
3

2
ΩmH2

0 (1 + z)
χ(χ∗ − χ)

χ∗
and W ga(χ) ∝ H(z)

dNa

dz
(3.9)

where W g is normalized such that
∫
χW

g(χ) = 1. Note that we take the lowest order

correction to the Limber approximation ℓ → ℓ + 1/2, improving our precision to O(ℓ−2)
[5, 51]. We do not marginalize over higher order stochastic and counter-term parameters for
the 2D power-spectra, as the Limber approximation limits us to µ = 0. For the lensing-
lensing auto-spectrum, the ℓmax is limited not by knl, but by a stricter constraint from
baryonic feedback, which limits us to ℓ < 500. For the rest of the spectra, we translate our
kmax constraints into ℓmax.

3.4 Fisher formalism

The Fisher matrix formalism [52] allows us to forecast the parameter constraints on an as-
sumed underlying model, given a experimental configuration. It is widely used to understand
the impact of survey design choices and parameter degeneracies on the inference of cosmo-
logical parameters [5, 53–57]. The Fisher matrix can be calculated as

Fij =
∑
X,Y

∫
k2 dk dµ

2π2

∂PX

∂θi
C−1

XY

∂PY

∂θj
(3.10)
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where X,Y label available auto- and cross-spectra, θi are parameters, C−1
XY = (C−1)XY and

the covariance matrix C is
Cabcd = PacPbd + PadPbc (3.11)

where the subscripts represent the samples used to calculate spectra. Note that the power-
spectra (PX , Pab) above include the counter and stochastic terms. We compute these matrices
using the FishLSS code, which was originally developed for single-tracer forecasts [5] and
extended to multitracer forecasts for this work. In the development process we have confirmed
that the new version of the code reproduces previous results in single-tracer cases. Without
full consideration of multi-tracer effects, one would calculate the Fisher matrix with X, Y
summing over only the auto-spectra and thus lose information gained from the cross-spectra.

For a general galaxy-galaxy-lensing sample, the formalism is modified slightly. While
the Fisher matrix earlier still holds, one must compute the matrix using the angular power-
spectra CX

ℓ as well. One obtains the full set of information by combining the Fisher matrices
from the 3D power-spectra and 2D power-spectra. By restricting the full-shape signal to
k∥ > 10−3, there will be no covariance between the full-shape and the angular spectra that
probe k∥ ∼ 0. This will allow for the Fisher matrices to simply add together [5, 52].

The covariance matrix for a galaxy-galaxy-lensing cross-analysis is

(Cℓ)XY =



2(Cκκ
ℓ +Nκκ

ℓ )2/fCMB
sky X = Y = κκ

(C
κga,i
ℓ C

κgb,j
ℓ + δij(C

κκ
ℓ +Nκκ

ℓ )C
ga,igb,i
ℓ )/f∩

sky X = κga,i, Y = κgb,j
δij(C

ga,igc,i
ℓ C

gb,igd,i
ℓ + C

ga,igd,i
ℓ C

gb,igd,i
ℓ )/fLSS

sky X = ga,igb,i, Y = gc,jgd,j
2(Cκκ

ℓ +Nκκ
ℓ )C

κga,i
ℓ /fCMB

sky X = κκ, Y = κga,i
2C

κga,i
ℓ C

κgb,i
ℓ f∩

sky/(f
CMB
sky fLSS

sky ) X = κκ, Y = ga,igb,i
δij(C

κgb,i
ℓ C

ga,igc,i
ℓ + C

κgc,i
ℓ C

ga,igb,i
ℓ )/fLSS

sky X = κga,i, Y = gb,jgc,j

(3.12)

and the Fisher matrix is

F 2D
ij =

ℓmax∑
ℓ=ℓmin

(2ℓ+ 1)
∑
XY

∂CX
ℓ

∂θi
(Cℓ)

−1
XY

∂CY
ℓ

∂θj
(3.13)

where f∩
sky is the overlapping sky area between LSS and CMB surveys, and X,Y sum over

the available spectrum {κκ, κga,i, ga,igb,i} for all available galaxy tracers a, b and redshift bins
i [5]. For the purposes of our forecast we assume maximal overlap between LSS and CMB
experiments, i.e. f∩

sky = min(fCMB
sky , fLSS

sky ). Note that the cross-spectra between tracers at
different redshift bins is zero, so we do not sum over them.

The simple treatment of priors is a strength of the Fisher formalism, with the inverse
covariance of the priors simply treated as an added information matrix. We will be using
conservative priors on the nuisance parameters to regularize forecast behavior. The set of
priors used is shown in Table 4. Most of the nuisance parameter priors reflect the fidelity we
have on constraining these parameters, by applying uncertainties proportional to their fiducial
value. This cannot be done for parameters with a fiducial value of 0, so we describe this briefly.
For Nab,a̸=b and N2,ab,a̸=b, we apply the same errors as those of the auto-spectra, assuming
there is full correlation between the shot noise of two galaxy populations (e.g. Nab,a̸=b =
1/

√
nanb). The other terms with fiducial value have no prior, due to the lack of conservative

expectation for their values. We have confirmed that our conservative priors have little effect
on our final results. We will be considering both BBN and Planck priors for cosmological
parameters.
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3.5 Benefits of multi-tracer cosmology

The use of multiple tracers is closely associated with the idea of ‘sample variance cancellation’
[12, 58]. For two quantities, e.g. a density and velocity field, some relationships can be
measured at the field level and thus do not pay any sample variance penalty. For example,
within linear theory and in general relativity, the density contrast δ(k) is related to the
velocity divergence, θ(k) mode-by-mode. A ratio of measured modes can thus measure f with
no sample variance penalty. Similarly, for linear theory and scale-independent, deterministic
bias the ratio of δi(k) for two galaxy samples measures the ratio of their biases in a way that
is not limited by sample variance. Colloquially we say that sample variance has ‘canceled’,
though it would be more correct to state that sample variance only enters when comparing
a particular realization to the ensemble average. While in general, cosmology dependence
enters quantities (such as the linear power spectrum) that are expectation values, for some
situations (such as the scale-dependent bias introduced by primordial non-Gaussianity) this
is not the case and ‘cancellation’ can lead to tremendous gains in precision.

Sample variance cancellation can be recast as a fitting problem, in which case it becomes
the statement that when including cross-correlations in addition to auto-correlations noise
that is highly correlated between probes does not get double counted [55]. In such situations
some eigenvectors ‘pay’ the sample variance penalty while others do not.

Past applications of sample variance cancellation [59] have not found drastic gains in
constraining power from easily achievable number densities and we are unlikely to have high-
enough number densities for this either. However, another use of multiple tracers is to break
degeneracies between parameters. Including multiple tracers allow us to distinguish between
parameter dependencies of the data, breaking parameter degeneracies that limit our precision.
Recent studies indicate that in a general case, it is this degeneracy breaking that drives the
improvements in constraints, rather than sample variance cancellation [60, 61].

4 Multitracer

Before we turn to forecasts for particular models let us investigate some test samples with
semi-realistic parameters to gain a better understanding of the multitracer approach. To do
this, we make forecasts for the amplitude of the linear theory power spectrum, σ8, holding
fixed the other ΛCDM parameters {h, τ, ns, ωc, ωb} at some fiducial values. We allow the
biases, counterterms and stochastic terms for each sample to vary.

Throughout this section we use the notation a and b to refer to the auto-spectrum
analyses of each tracer, “auto” or aa + bb refers to using two tracer populations, but with
only the galaxy auto-spectra considered (i.e. incomplete multitracer) and “full” or a×b refers
to the complete multitracer approach including the galaxy-galaxy cross-spectrum.

4.1 Linear

We will start by investigating multitracer cosmology in the Fisher formalism using linear
theory. In linear theory, with the exception of shot noise, the power spectra of each galaxy
population is proportional to the linear matter power spectrum

Pab(k, µ) = (ba + fµ2)(bb + fµ2)PL(k) +Nab (4.1)

where b is the (deterministic, scale-independent) linear bias, f is the scale-independent growth
factor, PL is the linear theory matter power spectrum, Nab is the shot noise term, and µ is

– 13 –



Parameter Definition Fiducial value

logAs Primordial amplitude 2.10732× 10−9

ns Spectral index 0.96824
h Hubble parameter: H0/100 km/s/Mpc 0.6770
τ Optical depth to reionization 0.0568
ωc fractional dark matter density: Ωch

2 0.11923
ωb fractional baryonic matter density: Ωbh

2 0.02247

b First order bias δg ⊃ bgδm bLAE: Eq. 2.4
bLBG: Eq. 2.9 [17]

b2 Second order bias Eq. 3.5
bs Shear bias −2

7(bg − 1)
α0 Lowest order counter term Paa ⊃ α0,ak

2Pm 1.22 + 0.24b2a(z − 5.96)
α2n Higher order counter terms Paa ⊃ α2n,aµ

2nk2Pm 0
Nab Shot noise term Pab ⊃ Nab Naa = 1/n̄a

Nab,a̸=b = 0
N2,ab FOG-like effect Pab ⊃ N2,ab(kµ)

2 −Nabσ
2
v

N4,ab FOG-like effect Pab ⊃ N4,ab(kµ)
4 0

Table 3: The parameters for our fiducial cosmological model, ΛCDM with massive neu-
trinos. The cosmological parameters are placed on the top and model parameters are on
the bottom. The model parameters are individually assigned either to each tracer or each
spectra. Furthermore, we allow model parameters to evolve over redshift, which gives us new
degrees of freedom for each additional z bin.

Parameter Uncertainty Parameter Uncertainty Parameter Uncertainty

b 100% Naa 100% α0 100%
b2 100% Nab,a̸=b

√
NaaNbb α2 ∞

bs 100% N2,aa 300% α4 ∞
N4 ∞ N2,ab,a̸=b 3

√
N2,aaN2,bb

Table 4: Prior uncertainties for nuisance parameters. For ΛCDM parameters, we use BBN
or CMB primary priors appropriately.

the cosine of the angle to the line of sight. The relevant derivatives for linear theory power
spectrum are expressed as

∂Pab

∂ log σ8
= 2(ba + fµ2)(bb + fµ2)PL

∂Pab

∂bc
= [δac(bb + fµ2) + δbc(ba + fµ2)]PL

∂Pab

∂Ncd
= δab,cd

(4.2)

We use this method first as a check on our code (since the calculation can be done analytically)
and second to illustrate some of the features of multitracer cosmology.

The Fisher information is a function of both the amount of data and the degeneracy
between the derivatives of the data with respect to the parameters. In multitracer cosmology,
we hope to see an increase in constraints that goes beyond the simple increase in data
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quantity, which must come from breaking of degeneracy. However, in linear theory, the lack
of parameter dependencies beyond the σ8-b degeneracy suggests that this will not occur.

At the minimum, we expect the low-bias tracer to improve the constraints by a sig-
nificant margin, as low-bias tracers have an inherent advantage in constraining structure
growth compared to high-bias tracers. Even if there is no synergy between the measurement,
matching the low-bias constraints will significantly reduce the error from having a single,
high-bias tracer. This can easily be explained in the following sense. In linear theory, the
auto-spectrum of a biased tracer is given by

P (k, µ) = (b+ fµ2)2PL(k) +N = (bσ8 + fσ8µ
2)2P̂L(k) +N (4.3)

where P̂L is the normalized linear power-spectrum, PL = σ2
8P̂L. As b is a nuisance parameter,

one must probe for the µ-dependence of the spectrum to obtain σ8. With the error propor-
tional to the overall spectrum mode-by-mode (δP ∝ P ), one loses constraining power on σ8
with greater b. To maximize SNR, it’s clear that we must minimize b and maximize n̄, both
of which are satisfied by choosing a low-bias sample. In the limit that we go to b = 0, we
are measuring the velocity divergence θ. In this case, our precision of the amplitude of P is
sample variance limited such that δA/A =

√
2/Nmodes, making δσ8/σ8 = (1/2)

√
2/Nmodes.

Before proceeding further, let us define an effective shot noise Ñ , as

b2Ñ ≡ 1

n̄
(4.4)

We will use Ñ to explore different noise regimes throughout this section. For reference, at
z = 3, LAEs with flim of 3, 5, 10×10−17 erg cm−2 s−1 have Ñ ≈ 100, 170, 410, and LBGs
with m = 24, 24.5, 25 have Ñ ≈ 570, 230, 140, respectively, in units of h3Mpc−3.

Let us consider samples in linear theory, with constant biases, ba = {1.5, 2, 3, 4}, bb = 5,
and a linear regime kmax = 0.1hMpc−1. A subset of our constraint calculations are shown
in Figure 5. As we predict there is little to no improvement from adding the cross-spectrum,
as shown in Figure 6, indicating that we are losing little to degeneracy.

In the same figure, we detect that the ‘auto’ (aa+bb) results are significantly better than
the single low-bias result. This indicates that a naive error propagation of 1/σ2 = 1/σ2

1+1/σ2
2

is not appropriate, as this predicts the low-bias and ‘auto’ constraints to be similar for most
of our samples. The reason is that we must include the correlation between measurements
(e.g. the velocity part of the power spectra is the same). Including the correlation, r, the
variance σ2 becomes

σ2 =
(1− r2)σ2

1σ
2
2

σ2
1 − 2rσ1σ2 + σ2

2

(4.5)

for the composite measurement, with σi referring to the uncertainty of the i’th measurement.
Refer to Appendix A for detailed calculations.

This result explains the two main trends that we see. The first trend, the decreasing
improvement as one takes ba → bb, can be illustrated by the case with redundant measure-
ments (σ1 = σ2, r → 1), which yields σ2 = σ2

1 = σ2
2. The second trend, the increasing

improvement as one goes to lower noise, follows the limit of non-redundant measurements
with high correlation (σ1 ̸= σ2, |r| → 1), which yields σ2 → 0.

One can directly compare the δσ8/σ8 results with improvements in constraints for the
linear bias ratio ba/bb, where sample variance cancellation is present [12]. A direct comparison
is made in Figure 6. The lack of improvement in δ log σ8 by including the cross-correlation,
as compared to the significant improvement in δ(ba/bb), illustrates that sample variance
cancellation is not relevant for constraining σ8.
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Figure 5: The relative constraints of σ8 computed in linear theory, with constant linear
biases and number densities. Ñ = (b2n̄)−1 is the effective shot noise. a and b refer to
the one-tracer constraints from each tracer, aa + bb refer to the auto-spectra (incomplete
multitracer) constraints, and a× b refer to the complete multitracer constraint.

Figure 6: Left: Showing improvement in relative constraints of σ8, when including the high
bias tracer to the low bias (auto/aa) and including cross-spectrum to auto-spectra (full/auto).
Right: Showing improvement in relative constraints of ba/bb when including cross-spectrum
to auto-spectra (full/auto). The significant improvement in δ(ba/bb) compared to δ log σ8
show the power of sample variance cancellation where present.

4.2 Nonlinear

Now let us study the nonlinear scenario, with the fully general power spectrum (Eq. 3.1).
The existence of many more parameters allows for the existence of significant parameter
degeneracies, and hence the potential for significant degeneracy breaking from multitracer
techniques. We test on samples of identical linear biases and noise to the linear regime
examples, but with further analysis including CMB lensing as well.

A subset of the results are shown in Figure 7. For some samples there is visible improve-
ment of constraints from adding the ab cross-spectrum, contrary to the marginal improvement
seen in the linear regime. This indicates that we have degeneracy breaking at hand, as the
test case in the linear regime has shown that the increase in information from the additional
spectrum only improves our constraints marginally. The average improvement in constrain-
ing power by adding the cross-spectrum (auto→full), which can be interpreted as the average
degeneracy breaking, is 17%. This marks a 22% improvement from the low-bias tracer a and
a 68% improvement from the high-bias tracer b. This effect of degeneracy breaking can vary
significantly with the noise regime that we are working in. For instance, at Ñ = 10 the
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Figure 7: The relative constraints of σ8 in the nonlinear regime, with various noise and ba
values. The constraints with smaller caps show the respective constraints including lensing.

improvement from auto→full is 30% on average, while at Ñ = 500 it is only 5%.
One can hope to further improve these results by reducing the number of added free

parameters. A common practice in the field is to neglect the cross-spectrum stochastic terms
N2n,ab, by assuming that the two galaxy tracers have completely disjoint inhabitance of halos.
While past work has shown that the inclusion of these parameters do not crucially change
the forecast behavior [61], it will be worthwhile to investigate this further by considering
small-scale cross-clustering of LBGs and LAEs at the redshifts and luminosities of relevance
to future cosmology surveys.

From the perspective of added parameter space, the lack of new parameters other than
α0,κ makes CMB lensing an ideal candidate for cross-analysis. Our results, also shown in
Figure 7, indicate that we have 11% improvement on average when adding lensing to our
full multitracer case. When adding to each one-tracer case, we see a 6% improvement and
19% improvement for tracers a and b, respectively. Although the increments are significantly
less than that of the galaxy-galaxy multitracer analysis, it is worthwhile to note that there
is still improvement from lensing after including two galaxy tracers. We may attribute the
little improvement from lensing to the limitations placed on the number of modes measured
in a 2D power-spectrum, which is significantly less than that of the 3D spectrum, and the
lack of cosmological parameters in this “fixed-shape” approach.

5 Radiative transfer

Radiative transfer (RT) is a known, yet unresolved potential cause of concern for the use
of LAEs as matter density tracers. Ref. [62] suggests that RT can significantly vary the
number of galaxies in catalog depending on the local density and LOS velocity divergence.
The latter effect is degenerate with the µ dependence used to constrain fσ8 in RSD studies
(refer to §4 for a brief discussion in linear theory). A more recent work [63] argues that
the limited resolution of early simulations are the source of such a large effect. Simulations
with higher resolution show that regions of Lyα emission tend to have higher density, such
that the photons escaping the galaxy have shifted further away from resonance and thus are
less susceptible to scattering by the surrounding environment. While direct observations of
RT effect are currently unavailable, the impact of Hi absorption on LAE clustering has been
detected [64].

For an analysis using only LAEs, a large RT contribution to the selection of galaxies
would lead to very large errors on σ8. However, with a complex model that can potentially
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break degeneracies through multi-tracers, these samples may prove to be useful. In order
to make a preliminary investigation of whether RT-affected tracers can still be valuable in
multi-tracers, we take the following approach. We imagine that the RT effect is small enough
that it can be included by taking

P (k, µ) → P (k, µ) + 2δf
(
bµ2 + fµ4

)
PL +O(δf2) (5.1)

while leaving the higher loop terms unchanged. In principle there are corrections to all of
the higher order biases and the 1-loop terms as well, but we are assuming that these terms
are sub-dominant and multiplied by a “small” RT effect and thus they can be neglected. A
more complete and consistent calculation will be attempted in a future publication.

6 Results

In this section we outline our main forecast results for two experiment designs: ‘Stage 4.5’,
motivated by DESI II, and ‘Stage V’. As discussed in §2 we will use one luminosity limit
(flim = 10 × 10−17 for LAEs and m = 24.5 for LBGs) as the fiducial design for Stage 4.5
and consider multiple scenarios of Stage V luminosity limits for a preliminary optimization
constrained on the total number of galaxies observed. The experimental designs are shown
in Table 2.

In this section. we will consider gains from any additional tracer as “multi-tracer im-
provement”, e.g. improvements from LBG-only analysis to an LAE×LBG or κ×LBG analysis.
This is unlike §4 where the focus was on the improvement gained through the inclusion of
cross-spectra, and hence now the appropriate cross-spectra are always included when multi-
ple tracers are in use. It should not be a surprise, however, that an inclusion of additional
tracer improves the constraints with all else unchanged. To distinguish the gains from mul-
titracer from the simple increment in data, we will be adjusting the number density of the
LBG data available when including LAEs. The constraint here will be the total number of
galaxies observed, as we have done when deciding the optimization for Stage V. As we have
shown in Figure 4 that LBGs are less shot-noise dominated with existing luminosity cuts and
the number density of LAEs are several factors smaller than LBGs, we will observe LAEs at
maximum efficiency and decrease the LBG observation efficiency necessarily, to 0.61 (note
that these efficiencies are multiplied by the 50% success rate for redshift detection that is
always in place)2. A similar treatment cannot be made for lensing as they are provided by
CMB surveys separate from LSS experiments. Hence, we will compare the galaxy-only and
κ×galaxy with the same galaxy samples and for this reason the LAE and lensing multitracer
improvements should not be regarded on the same basis.

For all forecasts using full shape information, we include all relevant ΛCDM and nuisance
parameters (Table 3) and treat extra parameters of interest as one parameter extensions. For
cosmological priors, we will use conservative BBN priors of σ(ωb) = 0.0005 or CMB primary
priors from Planck. A summary of the multi-tracers improvement in the Stage 4.5 design are
provided in Figure 8.

The blue curve in the figure shows a case for when LAE number densities are doubled,
in the BBN prior scenario. This is to address the concern raised in §2.1 that offsets of factor
2 on LAE number density estimates are not unlikely. While this increases the improvement
∼ 10% for most parameters, there are no qualitative changes to the final results.

2We have confirmed that the lack of inclusion of this LBG efficiency decrease affects the improvement
results by < 10%
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Figure 8: A summary of parameter constraint improvements from using multitracers in the
Stage 4.5 design. The ‘ST’ and ‘MT’ on the y-axis refer to single tracer and multitracers,
where the LBG-only sample is considered the base single tracer sample. The type of marker
depicts what tracer was added on to the sample. The shown improvements for fEDE, Alin,
Alog are the average improvements across the parameter space probed.

6.1 Growth rate

In this section, we measure structure growth by measuring σ8 constraints. While σ8 is
a well-motivated variable to pursue in multi-tracers both in terms of existing tensions in
the field and linear theory arguments provided in §4, it is also a variable where we expect
significant impact from RT effects as mentioned in §5. It is possible that multi-tracers break
the RT-induced degeneracies enough such that inclusion of LAEs significantly improve σ8
constraints.

We use two approaches in this section. First we have our full-shape approach, which
marginalizes over all of the ΛCDM parameters. Another approach is to use the ‘fixed-shape’
approach of §4, which takes a model-agonistic approach and only marginalizes over amplitude.
The latter approach marginalizes over a subset of the former approach’s parameters and
thus always yields tighter constraints. In both approaches, the lensing auto-spectrum is not
included. This ensures that the σ8(z) constraints are local, using only the data collected in
each redshift bin up to the shared BBN prior.

The results for Stage 4.5 are shown in Figure 9. We find that the both approaches gain
≈ 10% from the introduction of LAEs. This is less than the improvements from including
lensing, which are ≈ 20− 30%. These improvements in total amount to ≈ 25− 35%. Notice
that unlike in §4, the low bias tracer LAE do not have tighter σ8 constraints than the high
bias tracer LBG. This is due to LAEs being more shot noise dominated than LBGs at the
luminosity limits of Stage 4.5. This increases the importance of lensing as well. Multi-
tracer benefits from LAEs diminishes significantly when RT is present with the constraints
weakening by approximately 5%. This turns to an improvement when lensing is included
(κ×LBG→ κ×LAE×LBG), but the improvements remain less than 5%.

Figure 10 shows the Stage V constraints for all 3 scenarios, with both galaxy tracers
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Figure 9: Relative constraints on σ8(z) from Stage 4.5 in the ΛCDM-derived (left) and fixed
shape (right) methods. The smaller cap sizes correspond to the constraints including lensing.
We see that the inclusion of RT effects diminish majority of the improvement from including
LAEs.

Figure 10: Relative constraints on σ8(z) from Stage V surveys in the ΛCDM-derived (left)
and fixed shape (right) methods, with both LAEs and LBGs, without RT. The smaller cap
sizes correspond to the constraints including CMB lensing. All error bars assume inclusion
of all multi-tracer spectra.

included without RT. While there are sizable differences between scenarios, they are not
drastic, especially with the inclusion of lensing. This indicates that σ8 constraints are robust
to experiment designs.

6.2 Standard model

Multi-tracers will further assist next-generation LSS experiments to provide constraints sim-
ilar to CMB experiments alone. Figure 11 shows a summary of forecasts. It does not include
ωb as it shows no influence from either multi-tracers nor RT, likely due to the prior dominat-
ing the constraining power. Forecasts indicate that with a BBN prior, multi-tracers through
LAEs will improve the constraints on all other cosmological parameters by ≲ 10%. Inclusion
of lensing generally yields larger improvements, with the improvement varying from ∼ 20%
for h to ∼ 85% for Ωk. Overall, the improvements amount to 25− 45%, with the exception
of Ωk at 89%.
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Figure 11: ΛCDM and extension results. The ‘4.5+BBN’, ‘4.5+Planck’ and ‘SV+BBN’
each refer to Stage 4.5 with a BBN prior, Stage 4.5 with a Planck prior, and Stage V with
a BBN prior, respectively. The massive neutrino constraints include DESI BAO and lensing
auto-spectra for all results. The magenta errorbars at z∗ are the constraints given by Planck
[65].

With Planck primary priors, there are varying multi-tracer effects. Multi-tracers with
LAEs on a LBG-only sample will have even less improvement compared to when using BBN
priors, at ∼ 5%, but when lensing is included (i.e. LBG×κ → LAE × LBG × κ) the im-
provements increase, marking ∼ 35% for h and ωc. Similarly, the improvements from adding
lensing vary across parameters, marking a wide range between ∼ 20% to ∼ 65%. h and
ωc are again most affected, with constraints improving ∼ 60% when adding lensing to the
LAE×LBG sample. Refer to Figure 8 for specific parameter constraint improvements.

Inclusion of RT generally has little effect on the cosmological constraints, except for
log(As) that experience significant effects for forecasts without κ due to reasons similar to
σ8. The final constraints with inclusion of all tracers experience sub-percent effect from RT,
however. Our results also indicate that Stage V designs provide constraints significantly
stronger than that of Stage 4.5, regardless of the luminosity limits adopted.

6.3 Distances

One of the most important constraints from LSS surveys are the distance measurements
made through the BAO peaks in the power-spectra. Previous work have forecasted that
near-term surveys such as DESI, Euclid and HIRAX can measure angular diameter distance
and Hubble parameter to sub-percent and percent precision, respectively, up to z ∼ 2, and
future experiments to sub-percent precision up to z ∼ 5 [5]. We will follow the modelling
methods used in ref. [5], marginalizing over linear bias and 15 polynomial coefficients defined

– 21 –



Figure 12: Stage 4.5 constraints on A-P parameters (α⊥, α∥), which can be interpreted as
relative constraints on BAO parameters (DA(z)/rd, rdH(z)), respectively. The inclusion of
RT clearly have minimal effect for BAO constraints.

as

Pobs = α−1
∥ α−2

⊥ Precon +

4∑
n=0

2∑
m=0

cnmknµ2m (6.1)

where α∥ and α⊥ are A-P parameters and Precon is the post-reconstruction power-spectrum
calculated within the Zeldovich approximation using the “RecSym” convention [66, 67]. We
refer the reader to ref. [5] for further details about the model.

Our results, shown in Figure 12, show that Stage 4.5 will reach sub-percent precision
in both distance measures in its entire redshift range 2.4 < z < 3.2, with the aid of multi-
tracers improving constraints by ∼ 10 − 15%. More significantly, these improvements are
uninfluenced by the presence of RT. This is not surprising, given that BAOs are a well-
localized feature with a known shape and the modelling process already marginalizes over
any k dependence for each spectrum beyond Precon.

Forecasts for Stage V surveys, shown in Figure 13, indicate that future survey of such
kind can improve and further extend these constraints up to z = 4.4. The comparable results
between the different designs of Stage V indicate that such constraints are robust to the
survey optimization, although fractional improvements can be gained at some redshifts in
price for constraining power at other redshifts.

6.4 Neutrino mass and light relics

Variation of neutrino mass is a reasonable extension to the ΛCDM model. Measurements
have yet to determine whether the neutrino mass hierarchy is normal (mν2 < mν3 , Σmνi ≳
58meV) or inverted (mν2 > mν3 , Σmνi ≳ 105meV) [68]. Sum of neutrino masses can be
constrained cosmologically by measuring its effect on power-spectra. As neutrinos transition
from relativistic to non-relativistic species at scale factor anr, neutrinos only cluster at large
scales (k ≪ knr = anrH(anr)), and damp the power-spectra on smaller scales [5].

For neutrino mass (Mν = Σmνi) forecasts, we include DESI BAO and SO lensing auto-
spectrum for all results. The DESI BAO data included is from the Bright Galaxy Survey
(BGS; [69, 70]), Luminous Red Galaxies (LRG; [70, 71]), and Emission Line Galaxies (ELG;
[72]), post-reconstruction. We do not include the Lyman-alpha data due to its redshift overlap
with next-generation facility galaxies. The results shown in Figure 11, show that Stage 4.5
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Figure 13: Stage V constraints for A-P parameters (α⊥, α∥), which can be interpreted
as relative constraints on DA(z)/rd and rdH(z), respectively. Each constraint assumes the
inclusion of all multi-tracer spectra.

will be able to constrain the total neutrino mass to 157meV (28meV) with BBN (Planck)
priors. While improvements from individual tracers are ≲ 10% for BBN priors and ≲ 4%
for Planck priors, the total improvement from both LAEs and lensing combined are double
that, at 20% and 11% for BBN and Planck priors, respectively.

Ref. [5, 73–75] notes that improvement of τ measurements will significantly tighten
Mν measurements by removing the τ -As degeneracy in primary CMB. Ref. [76] has shown
that this leads to immense advantages when considering the τ -constraints provided by near-
future CMB surveys. Multiple galaxy tracers allow us to further take advantage of this.
Figure 14 shows the effect, by showing forecasts for σs towards normal hierarchy detection
using external τ constraints from current and near-future sources. In particular, LiteBIRD
[77] will be able to provide cosmic variance limited constraints on τ for CMB experiments at
σ(τ) = 0.002 [78–80]. At the tightest τ constraints from 21cm surveys [73, 75, 81, 82], the
inclusion of LAEs will improve the measurements by 0.7σ and 0.3σ for Stage 4.5 and Stage
V, respectively, allowing for the 5.5σ detection of the normal mass hierarchy.

The light relic forecasts on Neff show that while near future constraints from Stage 4.5
and Stage V will be comparable to or tighter than the Planck constraints. The assistance
of multi-tracers are more significant with a BBN prior, with the total improvement at 38%.
With a Planck prior, the help of both tracers decrease, marking a total improvement of 25%.
Finally, we see that the choice of Stage V design has minimal effect on the final constraints,
providing errors tighter than that of Planck using only galaxy tracers and a BBN prior.

6.5 Primordial features

Current constraints of inflation, primarily by CMB observations, are consistent with a simple,
single scalar field slow-roll inflation. The (near) flatness of the inflationary potential leads
to a simple explanation of the nearly scale-invariant primordial power-spectrum. When
formulating a model from a more fundamental basis, however, one often finds deviation from
said scale-invariance [5, 85, 86]. A canonical subclass of such models approximate deviation
from scale-invariance over a narrow range of scales, using oscillations in k or log k. For this
work, we model this as oscillations in the linear power-spectrum

Pm(k) → [1 +Alin sin (ωlink + ϕlin) +Alog sin (ωlog log k/k∗ + ϕlog)]Pm(k) (6.2)
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Figure 14: Fidelity of detection for normal neutrino mass hierarchy given τ constraints
provided by external facilities. Each contour represents different information used for fore-
cast. The red contour is only the default set of data, from Planck+SO CMB prior, DESI
BAO measurements, and SO lensing auto-spectrum. The other contours include Stage 4.5
of Stage V galaxies and appropriate galaxy-lensing cross-correlations in addition to the de-
fault set. The labels show external constraints on τ that can be obtained currently or in the
near-future. σ(τ) in each case are 0.0071 [5, 83, 84], 0.0058 [5, 75], 0.002 [79, 80], and 0.0009
[75], for Planck, Planck+SO+DESI (PSD), LiteBIRD, and 21cm surveys, respectively. In
particular, the constraint provided by LiteBIRD is the cosmic variance limit [78] for CMB
experiments.

where k∗ = 0.05h−1Mpc is the pivot scale [5, 86, 87]. We fix ϕlin and ϕlog to π/2 for all
forecasts and characterize the change in constraining power as we vary ωlin and ωlog.

Our results, shown in Figures 15 indicate that use of multiple galaxy tracers benefits
our sensitivity by 8% for Alin and 16% for Alog with BBN priors, and less than 2% for
both with Planck priors. Furthermore, the inclusion of RT minimally affect the constraints,
as increasing uncertainty in µ dependence does not directly alter our ability to detect k
dependence. We find that these constraints are robust against crude optimization strategies
for Stage V.

6.6 Early dark energy

While current measurements of cosmology are consistent with that of the cosmological con-
stant Λ as the source of dark energy, dynamical dark energy is an active area of research.
Early dark energy (EDE) is among these models, with ΩDE rapidly dropping at high redshift.
The specific model that we probe has the potential V (ϕ) ∝ [1 − cos (ϕ/f)]3, where ϕ is a
light scalar field [5, 88]. The field is parameterized by redshift zc, where fEDE ≡ ρEDE/ρtot
is maximum, and the initial value of the field θi ≡ ϕi/f . This model, as well as other major
EDE models, invokes a phase shift in BAO when zc ≳ z∗, where z∗ ∼ 1100 is recombina-
tion. Otherwise, when zc ≲ z∗, EDE damps the power-spectrum equally across scales for
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Figure 15: Forecast results for Alin and Alog for a BBN-prior. The loss in δAlin near
ωlin = 100 with the BBN prior is due to the degeneracy with BAO [5], but this degeneracy
is removed when using a Planck prior.

k ≳ 0.01hMpc−1 [5]. This can be understood by simply considering the derivation for sound
horizon rs and angular diameter distance DA(z)

rs =

∫ ∞

z∗

cs(z)

H(z)
dz DA(z) =

∫ z

0

dz

H(z)
(6.3)

When zc ≳ z∗, the BAO scale is impacted by influence on rs, while for zc ≲ z∗, there is
no influence on either parameters (as long as z < zc, which is always the case for realistic
models and any quasi-near-time surveys). The phase shifts on BAO, or more specifically
modifications of the Hubble parameter measurements from the CMB, has the potential to
relieve the Hubble tension. For the forecasts in this section, we fix θi = 2.83 and probe
1.5 < log10(zc) < 6.5 using CLASS EDE [89].

The results shown in Figure 16 indicate that multi-tracers play a significant role in EDE
constraints. While the improvements through LAEs alone remain modest at ≲ 10% for both
priors, lensing improves the constraints by 91% with a BBN prior and ∼ 64% with a Planck
prior, totalling together to 97% and 85%, respectively.

We also observe that composite constraint is affected marginally by the presence of
RT, while for LAE-only constraints this is not always true. Ref. [5] makes note that LSS-
only constraints (without RT) are worsened at low zc (zc ≲ z∗) and attribute this to the
degeneracy between the damping of power-spectra at k ≳ 0.01hMpc−1, As and b. We
recognize that for LAE-only constraints in the Planck prior case, RT significantly diminishes
our constraining power further at this regime. This is entirely expected, as the variational f
at linear-theory level introduces an additional degree of freedom on the existing amplitude
degeneracy. Notably, the inclusion of lensing nearly recovers our constraining power lost
from RT. This again suggests that the inclusion of lensing aids the breaking of degeneracy
introduced by RT.
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Figure 16: Forecast results for early dark energy. RT induces a loss of constraining power
at with a Planck prior due to the additional amplitude degeneracy.

7 Conclusions

Next generation experiments in large-scale structure aim to probe the high redshift universe
to constrain the ΛCDM model and its extensions. Modelling of large-scale structure using
perturbation theory introduces nuisance parameters (Table 3) such as bias bX , counter-terms
α2n, and stochastic terms N2n in order to make predictions in a controlled manner. A major
limitation to cosmological constraints are the degeneracy that these parameters introduce in
the data, as well as inherent degeneracies between cosmological parameters. Tracing multiple
different tracers at the same redshift, called the “multi-tracer” technique, may allow us to
break these degeneracies by using the different dependence of tracers to each parameter.
Next generation facilities may choose to do this with Lyman alpha emitters (LAEs), Lyman
break galaxies (LBGs), and CMB lensing κ. With different large-scale biases (Figures 1, 2,
or the lack thereof), these tracers will be well-suited for multi-tracer cosmology. In this work,
we have compared forecasted cosmological constraints from single tracers, an “incomplete”
multi-tracer technique (where one uses multiple galaxy tracers but only includes the two
galaxy auto-spectra as signals neglecting the galaxy-galaxy cross-spectrum) and one which
includes all available spectra.

We start with a generic investigation of the mechanism of multi-tracer cosmology, using
σ8 forecasts for a set of simplified tracers. We find that degeneracy breaking indeed drives a
majority of the improvement in constraining power, in agreement with recent studies [60, 61].

We then apply the multi-tracer technique for Fisher forecasts of next generation surveys,
namely “Stage 4.5”, inspired by DESI II, and “Stage V”, using both BBN and Planck primary
priors. We find that the multi-tracer technique has varying effect on constraining power, as
shown in Figure 8. In general, multi-tracer with LAEs on a LBG-only sample do not improve
the constraints drastically with the improvements ≲ 15% for most parameters. Interestingly,
when using LAEs as an addition onto a κ×LBG sample, there are parameters that improve
considerably, namely h and ωc with a Planck prior, at ∼ 35%, and fEDE at ∼ 60%. CMB
lensing proves to be a better contribution to multi-tracers than LAEs in many cases, although
the improvements cannot be compared on equal footing as they are adopted without any
cost, while observing LAEs cost observation time that can otherwise be used for LBGs.
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With lensing, many of cosmological parameters being improved ≳ 20%, with a factor of ≳ 10
improvement for fEDE being the most drastic. Importantly, we find that these improvements
aggregate well in general (e.g., for δσ8 the ∼ 10% and ∼ 20% improvements from LAEs and
lensing, respectively, lead to ∼ 30% improvements when combined), proving that we are not
in a regime where there are enough tracers that additional tracers become insignificant.

Where they overlap our results agree well with the recent study of ref. [61], although
the results are presented differently. Ref. [61] quotes ∼ 50% improvement in constraining
power from multi-tracers with two galaxy samples, using σST /σMT − 1 as their metric. We
use 1 − σMT /σST which leads to smaller quoted improvements, e.g. a 50% improvement in
ref. [61] corresponds to a 33% improvement in our metric, bridging a significant portion of
the apparent gap between the final results. Remaining differences in results can be attributed
to differences in the galaxy samples used, such as the difference between galaxy biases. A
similar comment can be made for differences between this work and ref. [90], which show
improvements ranging from 5% to 33% from ELGs and LRGs. In both studies, there is a
factor ∼ 2 difference between linear biases, whereas LAE and LBG biases differ only by 30%
at most (for Stage 4.5) in this work.

We also perform a crude optimization of Stage V survey designs by changing luminosity
limits for both LAEs and LBGs while keeping the total integration time fixed. We find that
most Stage V constraints are robust to this optimization, leaving room for future optimization
involving specific targets and observation techniques. A detailed study of survey optimization,
including galaxy mix as a function of redshift, time-to-redshift and redshift efficiency factors,
is left for future work.

A possible source of concern for the use of LAEs as cosmological probes is the impact
of radiative transfer (RT), specifically the absorption and scattering of Lyα emission lines
by neutral hydrogen near the LAE. By assuming that RT effects are small, we attempt a
preliminary investigation of the impact of RT by including its effects at the linear theory
level, ignoring higher order contributions. Forecasts using this model show that σ8 loses
nearly half of its multi-tracer gains by LAEs, and LAE-only forecasts experience significant
loss of constraining power for σ8, As, neutrino mass, and early dark energy with Planck
priors at low zc due to the additional amplitude degeneracy. On the contrary, however, we
find that other forecasts are fairly unaffected, and all constraints experience little effect for
the final, three-tracer forecast. Of course, this treatment of RT is merely preliminary and a
more complete calculation will be attempted in the future.
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A Variance of measurements with correlation

In this section we walk through the calculation of the composite variance from two correlated
measurements, leading to Eq. 4.5. Suppose that two measurements (x1, x2) are made drawing
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from a Gaussian distribution of mean µ and covariance C. The covariance matrix will be of
the form

C =

(
σ2
1 rσ1σ2

rσ1σ2 σ2
2

)
(A.1)

where r ∈ [−1, 1] is the correlation coefficient. The probability of measuring (x1, x2), then,
is

P (x1, x2) ∝ exp
{
(x⃗− µ⃗)TC−1(x⃗− µ⃗)/2

}
(A.2)

where x⃗ = (x1, x2) and µ⃗ = (µ, µ). Maximizing the likelihood of observation provides the
best estimate of µ, with variance σ2

µ =
1⃗TC−1x⃗

1⃗TC−11⃗
, σ2 =

(1− r2)σ2
1σ

2
2

σ2
1 − 2rσ1σ2 + σ2

2

(A.3)

where 1⃗ = (1, 1). Taking some limits with these expressions reveal important insights. In
the fully uncorrelated case r = 0, one recovers the standard weighted average µ = (x1/σ

2
1 +

x2/σ
2
2)(1/σ

2
1+1/σ2

2)
−1, σ2 = (1/σ2

1+1/σ2
2)

−1. When two measurements are redundant, with
σ1 = σ2 and r → 1, one obtains σ2 = σ2

1, as expected. The best case is where there is near
full correlation |r| →, with non-redundant information σ1 ̸= σ2. Then, one obtains σ2 → 0.

B Conventions of limiting luminosity in literature

Literature from the astronomy community often use two different conventions to make note
of their luminosity function integration range. In this section we show the conversion between
the two conventions.

The first approach is to simply use the lower limit of the integral, e.g.

n̄ =

∫ ∞

Llim

Φ(L′)dL′ (B.1)

Another is to use the median, e.g. Lmed, such that∫ ∞

Lmed

Φ(L′)dL′ =
1

2

∫ ∞

Llim

Φ(L′)dL′ (B.2)

Note that in some authors place an explicit, finite upper limit on the integrals depending on
the context. These definitions are extended for limiting line fluxes or magnitudes analogously.
It is clear that with the luminosity function (LF) parameters, one can convert one to the
other easily. For the regimes of our interest, the differences are typically ∼ 0.1 − 0.2 in
log-space.

C Counterterms

The theory of Lagrangian EFT has been developed in refs. [49, 91–106]. However in those
works the cross-spectra between different tracers was not highlighted. In this appendix we
briefly recap the key points of Lagrangian EFT, with a focus on the counterterms for the
cross-spectra which have not appeared explicitly before. This will also allow us to make
contact with the Eulerian approach of ref. [61], which has the same counterterm structure.

We will perform calculations at both the density field-level and the power-spectrum-
level. The latter is a more precise follow-through of the calculation, as the expectation
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values are taken explicitly, but we will see that the former will yield the same result with a
simpler interpretation.

We will start with the field-level interpretation. In Lagrangian EFT, the density field
of a tracer is given by

δa + (2π)3δD(k) =

∫
q
F [δ(q)] eik · (q+Ψ(q)) (C.1)

where Ψ is the displacement field and the functional F describes the tracer’s dependence on
underlying fields using bias. For this section, we limit ourselves to linear order, F = 1+ b1δ,
with b1 the Lagrangian bias. Including higher-order terms (δ2, s2, etc.) will not add to
this section as their contributions to the counterterm will exceed one-loop order. For similar
reasons we will limit ourselves to the linear solution of Ψ.

To obtain the counterterms, we begin by dividing the displacements into long-wavelength
components and a short-wavelength component. The former are treated perturbatively, while
the latter can only be constrained by symmetry arguments and are included as a derivative
expansion. Some of these terms correlate with the long-wavelength contributions while some
do not. We refer to the former as counterterms and the latter as stochastic terms. These
terms allow for the final results to be independent of the cutoff scale Λ used in defining the
perturbative terms.

To linear order the (long-wavelength) displacement field ΨL is simply (ik⃗/k2) δlin(k)
[91]. In redshift space we apply an additional displacement along the line of sight [107].
Since Ψ̇L = fΨL, in Hubble units, for the linear displacement the transition to redshift
space is accomplished by multiplying the line-of-sight component of ΨL by 1 + f . Then, in
the absence of counterterms (i.e. absence of small-scale contributions), we obtain the Kaiser
power spectrum by expanding the exponent eik ·Ψ as

eik ·Ψ(s) ≃ 1 + ik ·Ψ(s) = 1 + ik · [Ψ(q) + fn̂(n̂ ·Ψ(q))] (C.2)

where q and s are the real-space and redshift-space coordinates, respectively. Substituting

this to Eq. C.1 and using k · n̂ = kµ yields δa = ([1+b
(a)
1 ]+fµ2)δlin, where 1+b1 is equivalent

to linear bias in Eulerian PT.
Now let us divide our displacement field into Ψ = ΨL + c0(t)∇δlin + ϵi + · · · . The term

c0∇δlin is the first-order counterterm (i.e. due to small scale dynamics) contribution to Ψ
allowed by symmetry, whereas ϵ is the stochastic noise. As the time-dependence of c0 and
ϵ are unknown, we gain additional degrees of freedom for Ψ̇. Let us define this as c2 and ϵ̇
such that

Ψi = ΨL
i + c0∇δlin + ϵi (C.3)

Ψ̇i = Ψ̇L
i + c2∇δlin + ϵ̇i (C.4)

Performing a direct expansion for small-scale contributions as we did for linear theory calcu-
lations, we find

δa ⊃
∫
q
eik ·q∑

n

1

n!
[iki(Ψi + Ψ̇n̂,i)]

n (C.5)

⊃
∫
q
eik ·q

(
−ca,0 − ca,2µ

2 +
1

2
(1 + fµ2)((k̂iϵi)

2 + (n̂iϵ̇i)
2µ2)

)
k2δlin (C.6)

– 29 –



where we use Ψ̇L
n̂,i = n̂in̂jΨ̇

L
j for shorthand and the subscripts a on coefficients allow for

tracer-dependent small-scale dynamics (whereas stochastic contributions ϵ do not have tracer-
dependence). Note that we have neglected terms that go as even powers of δlin or odd powers
of ϵ, ϵ̇ as they vanish when taking expectation values at the power-spectrum level.

To lowest order the counterterms for the autospectrum of tracer a are thus k2 Plin times

2
(
[1 + b

(a)
1 ] + fµ2

) (
−c̃a,0 +−c̃a,2µ

2 − c̃4µ
4
)

(C.7)

while those for the cross-spectrum between tracers a and b are k2 Plin times(
[1 + b

(a)
1 ] + fµ2

) (
−c̃b,0 +−c̃b,2µ

2 − c̃4µ
4
)
+
(
[1 + b

(b)
1 ] + fµ2

) (
−c̃a,0 +−c̃a,2µ

2 − c̃4µ
4
)

(C.8)
where we have redefined coefficients for simplicity. The cross-spectra thus introduce no new
free parameters beyond those already needed for the counterterms of the auto-spectra, and
this increases the utility of the cross-spectrum in breaking degeneracies. Note that although c̃4
is a shared contribution across tracers, in this work we will allow them to be tracer-dependent,
in order to be conservative. We expect that this will change the results minimally.

Now, we will perform the calculation at the power-spectrum-level to see that our results
above are indeed correct. To do this, we will follow the moment expansion approach [106,
108, 109]. In this approach, one uses the fact that the redshift space power-spectrum is a
specific case of the moment generating function and expands it such that

k3

2π2
Ps(k) = M̃(J = k,k) =

k3

2π2

∫
d3reik · r

〈
(1 + δg(x1))(1 + δg(x2))e

ik ·∆u
〉
x1−x2=r

(C.9)

=
k3

2π2

∞∑
n=0

in

n!
ki1 . . . kinΞ̃

(n)
i1...in

(k) (C.10)

where u = n̂(n̂ ·v)/H is the LOS velocity, ∆u = u(x1)−u(x2) their difference, and Ξ̃(n) are
Fourier transforms of the velocity moments

Ξ
(n)
i1...in

= ⟨(1 + δ1)(1 + δ2)∆ui1 . . .∆uin⟩ . (C.11)

Notice that here, the first moment is simply the real-space power-spectrum and the higher
moment contributions provide information about redshift space distortions (RSD). As RSD
depend only on the line-of-sight component of velocities, the only non-vanishing contributions
to Ps come from the LOS component of Ξ̃. With this in mind, we rewrite the equation above
as

Ps(k) =
∞∑
n=0

in

n!
(kµ)n

n∑
ℓ=0

Ξ̃
(n)
ℓ Lℓ(µ) (C.12)

where Ξ̃
(n)
ℓ are Legendre moments of the velocity moments.

Formally, counterterm contributions arise from UV-divergences that arise from contrac-
tions of operators at small distances. As our theory knows only of large-scale dynamics, the
only constraints we have on these contributions are from symmetry. Those that appear in
the final expression are

⟨ΨiΨj⟩ ⊃ β1δij + β2δijδ + β3k̂ik̂jδ (C.13)

⟨δΨi⟩ ⊃ β4ikiδ (C.14)
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and similarly for contact terms with derivatives, e.g. ΨiΨ̇j ⊃ β̇1δij + β̇2δijδ + β̇3k̂ik̂jδ.
Using the above contributions, one can compute the contributions to each velocity

moment multipole. For example, we have

...
W ijk =

〈
∆̇i∆̇j∆̇k

〉
(C.15)

=
〈
Ψ̇i(q1)Ψ̇j(q1)Ψ̇k(q1)− (q1 → q2)

〉
︸ ︷︷ ︸

∝⟨δ⟩=0 for c.t.

+
〈
Ψ̇{i(q1)Ψ̇j(q2)Ψ̇k}(q2)− (q1 ↔ q2))

〉
(C.16)

⊃
〈
2ik{i

k2
δ1

(
β̈1δjk} + β̈2δjk}δ2 + β̈3k̂j k̂k}δ2

)〉
(C.17)

=
2i

k
PLf

(
β̈2k̂{iδjk} + 3β̈3k̂ik̂j k̂k

)
(C.18)

Using the velocity moment expressions [45], we see that this contributes to the velocity
moment multipoles

−iΞ̃
(3)
1,ct =

6

k
PLf

(
β̈2 +

3

5
β̈3

)
, −iΞ̃

(3)
3,ct =

12

5k
PLfβ̈3 (C.19)

which in turn contributes
Ps.ct ⊃ k2PL(β̈2fµ

4 + β̈3fµ
6) (C.20)

Note that for n = 3 we use the Legendre basis instead of the polynomial basis shown in the
Appendix of [45]. Performing a similar computation for all terms, one obtains

Ps,ct = k2PL(β2 + β3 − 2bβ4 + (2β̇2 + 2β̇3 − 2bβ̇4 + β̈2)µ
2 + β̈3µ

4)(1 + b+ fµ2) (C.21)

in agreement with the field-level calculation above.
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[60] T. Mergulhã o, H. Rubira, R. Voivodic, and L. R. Abramo, The effective field theory of
large-scale structure and multi-tracer, Journal of Cosmology and Astroparticle Physics 2022
(apr, 2022) 021.

[61] T. Mergulhão, H. Rubira, and R. Voivodic, The effective field theory of large-scale structure
and multi-tracer ii: redshift space and realistic tracers, 2023.

[62] Z. Zheng, R. Cen, H. Trac, and J. Miralda-Escudé, Radiative Transfer Modeling of Lyα
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