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ABSTRACT

Optical phase curves of hot Jupiters can reveal global scattering properties. We implement a Bayesian inference framework for optical
phase curves with flux contributions from: reflected light from a potentially inhomogeneous atmosphere, thermal emission, ellipsoidal
variations, Doppler beaming, and stellar rotation via a Gaussian process in the time domain. We probe for atmospheric homogeneity
and time-variability using the reflected light inferences for highly precise Kepler light curves of five hot Jupiters. We also investigate
the scattering properties which constrain the most likely condensates in the inhomogeneous atmospheres. Cross validation prefers
inhomogeneous albedo distributions for Kepler-7 b and Kepler-41 b, and a weak preference for inhomogeneity for KOI-13 b. None of
the five planets exhibit significant variations in geometric albedo on one-year timescales, in agreement with theoretical expectations.
We show that analytic reflected light phase curves with isotropic multiple scattering are in excellent agreement with full Rayleigh
multiple scattering calculations, allowing for accelerated and analytic inference. In a case study of Kepler-41 b, we identify perovskite,
forsterite, and enstatite as possible scattering species consistent with the reflected light phase curves, with condensate particle radii in
the range 0.01 − 0.1 µm.

Key words. Techniques: photometric; Instrumentation: photometers; Planets and satellites: atmospheres, gaseous planets

1. Introduction

Optical phase curves of exoplanets can constrain properties of
planetary atmospheres (see reviews by Deming & Seager 2017;
Parmentier & Crossfield 2018). The phase curve encodes de-
generate information about the temperature of the photosphere
or surface, the reflectance or scattering properties of the photo-
sphere or surface, and the effects of the planet on the host star
such as ellipsoidal variations and Doppler beaming.

The amplitudes and shapes of reflected light phase curves
are functions of fundamental properties of the photosphere or
scattering surface (Cowan & Agol 2011; Demory et al. 2013;
Hu et al. 2015; Shporer & Hu 2015; García Muñoz & Isaak
2015; Jansen & Kipping 2018; Farr et al. 2018; Mayorga et al.
2020; Luger et al. 2021; Fraine et al. 2021). These properties in-
clude the single-scattering albedo as a function of longitude, and
the asymmetry of scattering events (forward or backward scat-
tering). In general these quantities are also functions of wave-
length, and broad-optical phase curves constrain the bandpass-
integrated quantities. From these scattering parameters, the geo-
metric albedo and integral phase function can be computed.

Reflected light phase curves of exoplanet atmospheres are
contaminated by thermal emission, ellipsoidal variations, and
Doppler beaming (e.g.: Demory et al. 2011, 2013; Shporer et al.
2014; Esteves et al. 2015). The precise ratio of reflected light
to thermal emission is often poorly constrained by optical ob-
servations alone, since the contribution from thermal emission
often peaks at a similar orbital phase to the orbital phase of max-
imal reflected light for a homogeneous reflector (Demory et al.
2013). For short-period planets, the hottest point on the dayside
of a planet with strong atmospheric circulation may not be at the

substellar point, which can sometimes be equally described with-
out circulation but with inhomogeneous cloud coverage, when
measured with photometry in the optical and near-infrared. The
ellipsoidal and Doppler contributions to the phase curve are con-
strained by the orbital period of the planet with uncertain ampli-
tudes. Due to the uncertain mixture of these contributions in a
given phase curve, all these effects must be considered simulta-
neously.

The joint inference required for studying planets in reflected
light is strongly motivated by the planetary constraints revealed
by reflected light. Phase curves can directly constrain two optical
properties of condensates in the atmosphere, namely the single
scattering albedo and scattering asymmetry parameter, which are
linked to the species of condensates responsible for the scatter-
ing (Kitzmann & Heng 2018a). Furthermore, with the analytic
reflection model in Heng et al. (2021), the shape of the reflected
light phase curve can be linked to a scattering phase function.
Common phase functions used in the exoplanet literature in-
clude Rayleigh (Hubbard et al. 2001), isotropic (Demory et al.
2013), Henyey-Greenstein (Sudarsky et al. 2000; de Kok & Stam
2012; Robinson 2017) and double Henyey-Greenstein (Heng &
Li 2021; Adams et al. 2022) for example. The choice of a par-
ticular planetary scattering phase function can be directly linked
to the scattering phase function of condensates, given a particle
composition and size as well as cloud coverage. The Solar Sys-
tem planets offer guideposts with more complex scattering phase
functions. Mayorga et al. (2016, see Figure 5) and Dyudina et al.
(2016, see Figures 4, 5) found that flyby observations of Jupiter
are inconsistent with pure isotropic or Rayleigh scattering phase
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functions1. These precision Solar System observations and the-
oretical advances indicate that the scattering phase function can
and should be inferred from the phase curves themselves.

Stellar rotation and instrumental systematics generate corre-
lated signals in the aperture photometry of exoplanet host stars.
A Bayesian retrieval framework for exoplanet phase curve pa-
rameters must also account for the uncertainty in the detrending
technique used to account for stellar rotation and instrumental
systematics. Gaussian process (GP) regression is an effective and
efficient technique for removing these time-correlated signals,
and propagating the uncertainties in the kernel hyperparameters
that describe the correlation in time into the atmospheric param-
eters retrieved for a system (see e.g.: Angus et al. 2018).

Markov Chain Monte Carlo (MCMC) methods are com-
monly used in astrophysics to estimate posterior distributions for
uncertain parameters from measurements (see review by Sharma
2017). Recently, gradient-based inference techniques are becom-
ing more widely used in photometric analyses of exoplanets,
such as Hamiltonian Monte Carlo (HMC) and its popular vari-
ant, the No U-Turn Sampler (NUTS; see for example: Luger
et al. 2019; Agol et al. 2020; Colón et al. 2020; Price-Whelan
et al. 2020; Stefánsson et al. 2020; Dalba et al. 2021; Daylan
et al. 2021; Agol et al. 2021; Van Eylen et al. 2021; Foreman-
Mackey et al. 2021a). NUTS is especially useful for efficiently
sampling high dimensional and degenerate posterior distribu-
tions (Betancourt 2017). Many of the probabilistic programming
frameworks which implement HMC methods also provide meth-
ods for Leave-One-Out cross-validation, which can be used to
compare and select among a suite of models (). This approach
has been applied more recently in astronomical contexts (Wel-
banks et al. 2023; Gandhi et al. 2023; Challener et al. 2023).

In this work, we develop a Bayesian inference framework for
determining reflected light properties of hot Jupiters observed
with Kepler . We outline the photometric model and its sampler
in Section 2. We present the results of the photometric anal-
ysis and a predictive accuracy/model comparison technique in
Section 3, including assessments of inhomogeneity in exoplanet
albedos, time variability, and inference of the single scattering
phase function. We interpret these results in terms of potential
condensates and observational biases in Section 4. We discuss
the implications in Section 5, and conclude in Section 6.

2. Methods

In this section we outline the numerical methods for sampling
from the posterior distributions for the single-scattering albedos
and scattering asymmetry parameters of exoplanet atmospheres
with optical phase curve photometry. The source code is freely
available in a package called kelp2. For computational efficiency,
the phase curve models have been implemented in JAX (Brad-
bury et al. 2018), a transpiled framework in Python. All phase
curve parameter priors are listed in Table 1.

2.1. Photometry and system parameters

In this work, we focus our attention on planets with equilibrium
temperatures Teq ≳ 1500 K, as the daysides of these planets
are likely to transition from cloudy to cloud-free as temperature

1 Much older observations like those, for example, of Venus in Ho-
rak (1950, Figure 3) also show the non-ideal scattering phase function
behavior in the Solar System.
2 https://github.com/bmorris3/kelp

Parameter Prior dist./value Interval
Reflected light
ω0 0 –
ω′ U [0, 1]
g N(0, 0.01) [−1, 1]
Ag U (for inh. models⋆) [0, 0.6]
x′1 = sin(x1) U [−1, 0]
x′2 = sin(x2) U [0, 1]

Thermal emission
C11 N(0, 0.1) [0, 0.2]
α 0.6 –
ωdrag 4.5 –
f N(2−0.5, 0.01) [0.67, 0.74]
∆ϕ 0◦ –

Stellar artifacts
Ellipsoidal amp. N(Aellip, 0.25Aellip) [0, 100] ppm
Doppler amp. N(ADoppler, 0.25ADoppler) [0, 50] ppm

GP & uncertainty
σGP N(σ f , 0.1σ f ) [0, 10σ f ] ppm
ρGP 30 d –
Jitter U [0, 103] ppm

Table 1. Prior distributions or values adopted for the reflected light from
Heng et al. (2021) and thermal emission phase curves from Morris et al.
(2022), as well as parameters for stellar and instrumental artifacts. ⋆The
inhomogeneous reflector model defines Ag as a free parameter, whereas
the homogeneous reflector model derives a deterministic Ag from ω, g,
and the scattering phase function.

increases above the stability limits of condensates near the sub-
stellar longitude. We selected five planets spanning a range of
equilibrium temperatures above 1500 K with geometries favor-
able for measuring reflected light. The sample of selected planets
is shown in Figure 1.

We fix the orbital period, mid-transit time, the stellar mass,
planetary mass, planetary radius, semimajor axis, stellar density,
impact parameter, and stellar temperature to literature values cu-
rated by the NASA Exoplanet Archive in the PSCompPars ta-
ble.

We retrieve each long-cadence light curve from MAST as
Simple Aperture Photomery (SAP) fluxes. We detrend the un-
masked light curves with cotrending basis vectors (CBVs) also
downloaded from MAST3 via lightkurve (Lightkurve Collabo-
ration et al. 2018), extracting the first eight basis vectors and
applying single-scale CBV correction with the L2-norm regular-
ization penalty α = 10−4.

2.2. Reflected light

The reflected light phase curve is computed with the ab ini-
tio solutions for any reflection law by Heng et al. (2021). We
test models with both homogeneous and inhomogeneous plan-
etary atmospheres, where the latter is a generalization of the

3 https://mast.stsci.edu/
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Fig. 1. Host star Kepler magnitudes and their planetary equilibrium
temperatures for the five planets we consider (large points). The color
of each point indicates the amplitude of the reflected light phase curve
assuming Ag = 1 (upper limit).

piecewise-Lambertian model of Hu et al. (2015). The inhomo-
geneous sphere has a dark region with single scattering albedo
0 ≤ ω0 ≤ 1 which is surrounded by a brighter region 0 < ω ≡
ω0 + ω

′ < 1. The less reflective region is bounded by longitudes
−π/2 < x1 < x2 < π/2. The geometric albedo is the last free
parameter, which completes the set of parameters necessary to
derive the scattering asymmetry parameter −1 < g < 1.

We apply a prior to the scattering asymmetry parameter
g ∼ N(0, 0.01) since the approximations in the reflected light
model are most accurate for strongly asymmetric phase func-
tions when g is closer to zero. The reflected light model for an
inhomogeneous atmosphere is given by

Freflect =

(
Rp

a

)2

AgΨ(ω0, ω, g, x1, x2), (1)

where Rp is the planet radius, a is the semimajor axis, Ag is the
geometric albedo, and the functional form of the integral phase
function Ψ is stated in equations (40) and (42) of Heng et al.
(2021). Whenω0 = ω, the inhomogeneous sphere model reduces
to a homogeneous sphere.

The less-reflective substellar region is bounded by longi-
tudes x1 and x2, defined relative to the substellar longitude. To
sample longitudes uniformly in the reference frame of a distant
observer, we sample x1 = sin−1(x′1) and x2 = sin−1(x′2), with
x′1 ∼ U(−1, 0) and x′2 ∼ U(0, 1).

2.2.1. Single scattering albedo

The two-albedo inhomogeneous model was inspired by the
phase curve of Kepler-7 b (Hu et al. 2015). The physical mo-
tivation for the two albedos used for Kepler-7 b comes from the-
oretical expectations that cloudy regions have high albedos in
comparison with low-albedo cloud-free regions. The tempera-
ture near the substellar longitude in these atmospheres is likely
too hot for condensates to persist, though at some longitude
closer to the limb, the temperatures may dip below the stability
curves of highly refractory species. The inhomogeneous model
captures this behavior with a dark substellar region with albedo
ω0, bounded by freely-varying longitudes to the west and east
where the albedo increases to ω.

Phase curve analyses with two-albedo models usually infer
that the substellar regions have near-zero albedo (Hu et al. 2015;

Adams et al. 2022). We confirm that fits to the phase curves with
a uniform, uninformative prior on ω0, and we find that all phase
curves in this work are consistent with ω0 ≈ 0. In all subsequent
fits, including all results presented in this work, we simplify the
inhomogeneous model parameterization by fixing ω0 = 0 in the
substellar region. In addition to improving fit convergence, fixing
ω0 simplifies the interpretation of the results in Section 4, since
we can cleanly assume the region between x1 and x2 is cloud-
free.

We note that the single-scattering albedo constrained in this
work is defined mathematically by Heng et al. (2021), and its ap-
plication to Kepler phase curves has some subtleties. The single-
scattering albedo is defined for a particular wavelength. Since
Kepler observations span a red-optical bandpass, the single-
scattering albedos reported here are flux-weighted in the Kepler
bandpass. The albedo measured here is also a weighted mean
over the single-scattering albedo of the gas as well as the single-
scattering albedo of the clouds.

2.2.2. Scattering phase function

The phase curve formulae from Heng et al. (2021) allow users to
trivially substitute different scattering phase functions for the ex-
oplanet atmosphere. In principle, the choice of scattering phase
function maps onto assumptions about the particle size in the
planet’s atmosphere, the type of condensate (refractive indices),
cloudiness, and the proportion of single-to-multiple scattering.
Three simple scattering phase functions are considered in this
work: (1) isotropic, which is convenient to implement, though
practically one should not expect phase functions from single
scattering events to be isotropic; (2) Rayleigh, which is expected
for clear or cloudy atmospheres with particles that are much
smaller than the wavelength of light considered (Strutt 1871,
1899); and (3) the Cornette & Shanks (1992) scattering phase
function,

P =
3
2

1 − g2

2 + g2

1 + µ2

(1 + g2 − 2gµ)3/2 , (2)

shown in Figure 2. The latter is a generalization of the Rayleigh
scattering phase function with additional freedom for stronger
forward or backward scattering, parameterized by the scatter-
ing asymmetry parameter g. In the limit of g = 0, the Cornette-
Shanks scattering phase function correctly reduces to Rayleigh
instead of isotropic scattering.

2.3. Thermal emission

We model thermal emission of each exoplanet in the optical with
the thermal emission model defined in Morris et al. (2022). The
so-called hmℓ basis describes the temperature map of the exo-
planet using generalized spherical harmonics (parabolic cylinder
functions, Heng & Workman 2014). There are two parameters
which define the strength of the chevron shape of the hotspot fea-
ture on the dayside, which we fix to the values compatible with
both GCM temperature maps and Spitzer phase curves, α = 0.6
and ωdrag = 4.5. Details and validation for this approach are pro-
vided in Morris et al. (2022).

We sample for two free parameters that define the atmo-
sphere’s temperature map, which produces thermal emission.
The first is the power in the m = ℓ = 1 spherical harmonic
term, C11, which determines the contrast between the dayside
and nightside temperatures. Expected values for C11 are of or-
der 0.1, so we draw from a normal distribution C11 ∼ N(0, 0.1),
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Fig. 2. The scattering phase function proposed by Cornette & Shanks
(CS, 1992), which reduces to Rayleigh when g = 0.

with lower and upper limits at zero and 0.2. The lower limit cor-
responds to the limiting case of perfect heat redistribution from
the dayside to the nightside, and the upper limit prevents extreme
day/night contrasts.

The second free parameter is f , which is sometimes called
the greenhouse factor. If we write the temperature map of the
planet as a perturbation around a mean temperature T̄ , which is
similar to the equilibrium temperature,

T̄ = f T⋆
√

R⋆/a, (3)

f is related to the atmosphere’s efficiency at converting incom-
ing stellar radiation into thermal emission (see Sections 2 and 3
of Morris et al. 2022 for more discussion). We sample within a
small range about the expected value f ∼ N(2−1/2, 0.01).

We find that the prior’s upper limit C11 < 0.2 is necessary
for fits to optical phase curves in this parameterization. Primar-
ily, f sets the global mean temperature and C11 sets the day/night
contrast. Since the great majority of the flux from thermal emis-
sion is detected at full phase (ξ = 0), the hemisphere-averaged
dayside temperature would be the best-constrained quantity to
measure from an thermal phase curve in the optical. The dayside
temperature in this parameterization results from a combination
of f and C11, where these terms are somewhat degenerate – a
higher global mean temperature and smaller contrast can pro-
duce the same dayside temperature as a lower global mean tem-
perature and a higher contrast. In infrared phase curves, as in
Morris et al. (2022), this degeneracy can be avoided because the
nightside thermal emission can be clearly detected. The night-
side emission is negligible in the optical Kepler bandpass, so an
upper limit on C11 prevents sampling extreme solutions with hot
daysides, cool nightsides, and low global mean temperatures.

We assume zero hotspot offset for each planet, ∆ϕ = 0.
Spitzer phase curve analysis in (Bell et al. 2021) and Morris
et al. (2022, see their Figure 8) showed that the hotspot offset is
often small for planets with 1000 K < Teq < 2500 K, which en-
compasses all planets in this sample. Practically, assuming zero
hotspot offset also provides the maximum contamination of the
reflected light signal from thermal emission, and allowing C11
to vary allows us to explore the degeneracy between thermal
emission and reflected light at secondary eclipse. Fixing ∆ϕ = 0
therefore implies that the geometric albedos that we report may

be lower limits, since a non-zero hotspot offset will increase the
contribution of reflected light to the phase curve amplitude.

2.4. Ellipsoidal variations and Doppler beaming

We use the following relations to estimate the amplitudes of
the ellipsoidal variations and Doppler beaming respectively (see
e.g.: Shporer et al. 2014, and references therein):

Aellip [ppm] ≈
αellip

0.077
Mp

MJ

(
R⋆
R⊙

)3 (
M⋆
M⊙

)−2 (
P

day

)−2

(4)

ADoppler [ppm] ≈
αDoppler

0.37
Mp

MJ

(
M⋆
M⊙

)−2/3 (
P

day

)−1/3

(5)

where each α coefficient is a factor of order unity.
The flux from ellipsoidal variations has the form

Fellip = Aellip (1 − cos 4π(ϕorb − 0.5)) , (6)

where the orbital phase ϕorb is normalized to vary from zero at
mid-transit to 0.5 at secondary eclipse.

The Doppler beaming model has the form

FDoppler = ADoppler sin 2πϕorb, (7)

and generally has a smaller amplitude than the ellipsoidal varia-
tions.

2.5. Eclipse model

The secondary eclipse model for each planet λe is the occulta-
tion defined by Agol et al. (2020) as implemented in exoplanet
(Foreman-Mackey et al. 2021a). We normalize λe such that it is
unity out-of-eclipse and zero between second and third contacts,
so that we can multiply the planetary contributions to the phase
curve by this function.

2.6. Flux contamination from nearby stars

In Kepler observations, the flux from the target star may be di-
luted by flux from neighboring stars which falls within the pho-
tometric aperture of the target star. For each target except KOI-
13, we adopt the Simple Aperture Photometry (SAP) crowding
factor CROWDSAP in the Kepler and TESS input catalogs as
the fraction of flux in the aperture from the target star. For KOI-
13, we adopt the crowding factor due to flux from the other
components in the hierarchical triple measured by Shporer et al.
(2014).

2.7. Composite mean model

The complete phase curve model is given by
Fp

F⋆
=

(
λe(Freflect + Fthermal) + Fellip + FDoppler

)
/δF , (8)

where δF is the crowding factor as described in Section 2.6.

2.8. Gaussian process regression

We incorporate a Gaussian process regression step into the
phase curve analysis using the Matérn 3/2 kernel implemented
in celerite2 (Foreman-Mackey 2018). We use a fixed timescale
ρGP = 30 days and unknown standard deviation of the process
σGP. The fixed ρGP timescale is about ten-times longer than the
phase curve variations (P < 3 d), and thus removes instrumental
and stellar rotation signals without affecting the phase curve.
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2.9. Posterior Sampling

We construct the composite mean model and Gaussian pro-
cess marginal likelihood in the numpyro framework with JAX
(Bradbury et al. 2018; Phan et al. 2019). The numpyro infer-
ence framework allows Python code to be compiled for efficient,
parallel, Monte Carlo posterior sampling. numpyro provides
support for several samplers, including standard Metropolis-
Hastings and the No U-Turn Sampler (NUTS), which is a vari-
ation of the gradient-based Hamiltonian Monte Carlo (HMC)
technique (for a review of HMC, see Betancourt 2017). We
choose the No U-Turn Sampler for this work because in com-
parison with Metropolis-Hastings, for example, it often produces
more effective samples from the posterior distribution in the less
time.4

For each exoplanet, we construct phase curve models with
the homogeneous and inhomogeneous reflected light parameter-
izations, and draw posterior samples with each model until the
Gelman-Rubin statistic r̂ < 1.01 (Gelman & Rubin 1992; Vehtari
et al. 2019).

2.10. Injection-recovery test

To evaluate the accuracy and precision of the kelp framework for
retrieving planetary atmospheric properties, we inject a synthetic
phase curve into the real Kepler photometry of KIC 8424992.
This G2V solar analog is a reasonable target for phase curve
injections, as it is similar to the mostly Sun-like stars in this
sample, with Kp = 10.3 mag, without known planets, and the
following asteroseismic stellar properties: mass 0.9 M⊙, radius
1.05 R⊙, and age 9.8 Gyr (Silva Aguirre et al. 2017).

To stress-test the framework, we inject a synthetic phase
curve into the light curve of KIC 8424992 with significant albedo
asymmetry, substantial thermal emission, and significant stellar
artifacts. We inject an inhomogeneous reflected light phase curve
similar in asymmetry to Kepler-7 b, and we give the planet ther-
mal emission and orbital properties similar to HAT-P-7 b for sig-
nificant thermal emission and stellar artifacts.

The posterior distributions for each of the stellar and plane-
tary atmosphere parameters are shown in Figure 3, along with
the “true” (injected) values marked in blue. Most parameters
are retrieved within 2σ of their input values. The least accu-
rate measurements are the geometric albedo Ag (3.1σ), the start
longitude of the darker region x1 (2.8σ), and the spherical har-
monic power C11 (1.7σ), which are all degenerate with one other
in the presence of ellipsoidal variations and Doppler beaming.
These marginal inconsistencies arising from parameter degen-
eracies suggest that geometric albedos in this framework may
have larger uncertainties than the posterior distributions suggest,
up to a factor of a few.

3. Results

The maximum-likelihood models for all targets are shown in
Figure 4, and the reflected light and thermal emission fitting pa-
rameters are enumerated in Table 2. The four phase curve com-
ponents are plotted both separately and combined. The silver
points are the raw Kepler time series after applying the CBV
4 In general, JAX can accelerate linear algebra computations on GPUs,
and phase curve calculations can benefit from this acceleration. How-
ever, the calculation of the matrix inversion in the Gaussian process
regression, which we describe in Section 2.8, is memory-intensive and
makes likelihood calculations quite expensive on the GPU. For these
reasons, we run our JAX inference framework on the CPU.

and GP corrections. No binning in time was applied to these
long-cadence (30 minute) observations.

The time series after CBV correction but before phase curves
and GPs are removed is shown in Figure 5, in the time domain.
Each light curve on the left shows one year of Kepler observa-
tions, and their corresponding residual histogram is plotted in
the matching color on the right. With the exceptions of infre-
quent outliers, the log-histogram on the right is approximately
quadratic, which indicates nearly-Gaussian noise.

3.1. Leave-One-Out Cross-Validation

After we estimate posterior distributions for the phase curve
parameters, we use cross validation and stacking to select be-
tween the homogeneous and inhomogeneous reflected light
models. Two information criteria often used are Leave-One-
Out Cross-Validation (LOO-CV) and the Widely Applicable (or
Watanabe-Akaike) Information Criterion (WAIC). Following the
recommendations in Vehtari et al. (2015a), we choose Pareto-
Smoothed Importance Sampling (PSIS) LOO-CV for this analy-
sis (Vehtari et al. 2015b). Since we construct our likelihood with
a Gaussian process, we compute the LOO for a non-factorized
model with the efficient algorithm of Bürkner et al. (2018). We
briefly summarize this procedure below.

PSIS-LOO-CV can be constructed as an iterative procedure
where the ith observation yi is left out, denoted with the negative
subscript y−i to represent all observations except the ith. The log-
likelihood of the remaining observations is recomputed, repeat-
ing this calculation for all observations. The sum of these log-
likelihoods gives the expected log pointwise predictive density,
elpdLOO. When the likelihood we are evaluating is the marginal
likelihood of a Gaussian process, the model can not be trivially
factorized, since the elpdLOO will depend on the draws for the
GP hyperparameters.

Bürkner et al. (2018) show that for invertible covariance ma-
trix C, one can define two quantities,

gi =
[
C−1y

]
i
,

c̄ii =
[
C−1

]
ii
,

where the ii subscripts denote diagonal elements, such that the
log predictive density becomes

log p(yi | y−i, θ) = −
1
2

log(2π) +
1
2

log c̄ii −
1
2

g2
i

c̄ii
. (9)

Since this procedure involves inverting the full covariance ma-
trix, it is expensive to compute, incurring computation times
comparable to the integration for the posterior samples for these
models. We perform this step “offline”, after posterior sampling
is complete. To further accelerate LOO-CV computation times,
we make another simplifying assumption. We assume that the
log pointwise predictive density can be computed on local sub-
sets of the observations and then concatenated to produce an ap-
proximate global lpdLOO. This assumption is based on the finite
autocorrelation timescale of the Matérn kernel. The observed
fluxes are uncorrelated on timescales of several times ρGP, and
therefore the influence of widely-separated observations on the
marginal likelihood should be negligible.

In practice, we choose each Kepler Quarter – three months
of elapsed observing time – to be the local subset of observa-
tions on which to compute each lpdLOO. The size of the covari-
ance matrix that must be inverted in Equation 9 would be the
square of the full Kepler time series, of size ≈ 44,0002 elements.
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Fig. 3. Posterior correlation plot demonstrating an injection-recovery exercise with a synthetic inhomogeneous phase curve signal injected into
the real Kepler light curve of KIC 8424992. The blue lines indicate the values chosen for each of the injected phase curve parameters. The most
challenging inference in this analysis is determining which fraction of the phase curve signal comes from reflection or thermal emission, since
higher geometric albedos and hotter daysides both increase the planetary flux. This produces the anti-correlation between C11 and Ag, since a
cooler dayside can produce a similar phase curve to a more reflective atmosphere. The model produces accurate inferences despite this degeneracy
by fitting for complementary parameters that define the shape of the phase curve at all phases, such as x1, x2, and g.

Using the proposed subset LOO calculation reduces the size of
the covariance matrix by a factor of 256 to a more computation-
ally inexpensive ≈ 2,7002 elements. This smaller matrix can be
inverted on a desktop computer without special memory require-
ments.

The batched, subset estimate of the LOO will be least accu-
rate for observations at the beginning and end of Kepler quar-

ters, on the ends of the batches. At these times, we will not
propagate information into the marginal likelihood from auto-
correlated astrophysical signals such as stellar rotation that are
coherent across multiple Kepler quarters. Most stars considered
in this work are solar-type stars and rarely have activity signals
that are coherent for more than one month (Giles et al. 2017;
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Fig. 4. Kepler phase curves of five hot Jupiters after CBV detrending and removing the Gaussian process which captures stellar and instrumental
artifacts. The four components of the phase curve are: reflected light (blue), thermal emission (orange), ellipsoidal variations (green), and Doppler
beaming (dark red), along with the composite model in thick red. The unbinned 30-minute Kepler time series is shown in gray circles and is used
in the fit, and median-binned photometry is shown with black circles for ease of visualization.
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Fig. 5. Kepler SAP fluxes (gray points) after CBV corrections are applied, in relative flux units of ppm, for Quarter 2 (roughly 6% of each dataset).
The composite fit (red curve) contains components including planetary phase curve (reflected light and thermal emission), strictly periodic stellar
artifacts (ellipsoidal variations, Doppler beaming), and a Gaussian process for stochastic stellar artifacts such as magnetic activity (via a Gaussian
process). The fit to the light curves on the left produces residuals which are shown in the histogram on the right.

Morris et al. 2019) – see Figure 5. Thus we posit that the subset
LOO estimates may be sufficient for model selection in this case.

3.2. Bayesian model selection

When several models are available to describe the observations,
one may discard disfavored models by means of Bayesian model
selection. Yao et al. (2018) recommend the stacking after com-
paring three types of Bayesian model averaging (BMA) with
the model stacking technique. Both stacking and BMA meth-
ods yield values called the “model weights.” The model weights
must sum to unity, and a model with weight close to zero can be
rejected in favor of models with weights close to unity. Interme-
diate weights indicate no strong preference for either model.

We compute the model weights using a fork of the
arviz.compare function. To confirm that stacking works within
our framework, we verified that the PSIS-LOO-CV and stack-
ing techniques indicate a clear preference for the inhomoge-
neous model when applied to the injection/recovery tests in Sec-
tion 2.10, producing an inhomogeneous model weight close to
unity for a phase curve with significant, prescribed inhomogene-
ity.

3.3. Homogeneity

Using the above LOO-CV and stacking techniques (see
Sect. 3.1), we can efficiently compute the posterior predictive
density for the full model including the GP, and determine
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Parameter TrES-2 b Kepler-7 b Kepler-41 b HAT-P-7 b KOI-13 b

Model comparison results

Homogeneity Hom. Inhom. Inhom. Hom. Inhom.

Phase Func. C-S. C-S. Iso. Iso. C-S.

Weight Inh. 0.00 0.90 1.00 0.28 0.72

Weight C-S 1.00 1.00 0.00 0.00 0.77

Posterior distributions

ω 0.06+0.02
−0.03 0.99+0.00

−0.01 0.92+0.04
−0.06 0.40+0.07

−0.07 0.98+0.01
−0.02

Ag 0.01+0.00
−0.01 0.26+0.01

−0.01 0.13+0.01
−0.02 0.09+0.02

−0.02 0.32+0.03
−0.03

x1 [deg] – −8.23+3.55
−3.19 −29.44+6.95

−5.51 – −21.03+3.44
−3.89

x2 [deg] – 56.76+5.24
−4.10 38.80+4.50

−4.34 – 12.77+5.72
−6.81

C11 0.05+0.05
−0.03 0.06+0.07

−0.04 0.07+0.06
−0.05 0.14+0.02

−0.02 0.10+0.02
−0.02

f 0.71+0.01
−0.01 0.71+0.01

−0.01 0.71+0.01
−0.01 0.70+0.01

−0.01 0.70+0.01
−0.01

Derived quantities

Reflected light phase offset [deg] – 34.42+2.38
−4.14 2.00+1.40

−1.21 – −1.24+0.32
−0.43

Reflected light amplitude [ppm] 2.21+1.24
−0.98 11.71+0.61

−0.59 5.20+0.62
−0.85 47.76+11.63

−9.02 14.21+1.25
−1.67

Thermal emission amplitude [ppm] 1.61+1.05
−0.51 1.19+1.24

−0.44 6.44+6.35
−2.89 20.27+5.17

−3.72 51.14+8.48
−8.50

Td [K] 1653+70
−50 1730+108

−67 1925+127
−102 2408+62

−55 2812+56
−64

Tn [K] 1510+49
−69 1531+65

−108 1652+100
−126 2138+53

−63 2289+64
−55

Table 2. Reflected light and thermal emission phase curve parameters inferred from Kepler observations. For prior distributions, see Table 1. The
first section gives results from model comparison with leave-one-out cross-validation (LOO-CV) and model stacking. Models are marked "Hom."
when LOO-CV prefers the homogeneous reflected light model, "Inhom." when LOO-CV prefers the inhomogeneous model. The scattering phase
function is included when preferred by LOO-CV with the same criteria. The posterior distributions for the reflected light and thermal emission
parameters are in the second section, excluding g which was consistent with the prior for all planets. The derived quantities include the phase
offset of the reflected light phase curve, the amplitudes of the reflected light and thermal emission components, and the dayside and nightside
temperatures. See Section 2.10 for discussion on the uncertainties derived from these degenerate posterior distribution.

which model best describes the observations. We compare mod-
els which assume the planet is an inhomogeneous reflector and
models assuming homogeneous reflectors for each planet. The
comparison is plotted in Figure 7 which shows darker blue points
for planets more likely to be inhomogeneous reflectors. The re-
sults are also enumerated in Table 2.

The cross-validation only conclusively prefers the homoge-
neous phase curve model for TrES-2 b. The homogeneity selec-
tion is least confident about HAT-P-7 b and KOI-13 b (Table 2),
since weights near 0.5 indicate no preference for either of the
two models. We expect that the two least-certain homogeneity
inferences occur for the two closest-in and hottest planets be-
cause they produce most thermal emission, and the largest ellip-

soidal variations and Doppler beaming, all of which exacerbate
degeneracies in the phase curve shape.

Theory also suggests less confident expectations for clouds
on HAT-P-7 b and KOI-13 b. With dayside temperatures Td >
2500 K, their atmospheres are likely too hot for condensates to
persist, so we might expect them to be cloud-free, homogeneous
reflectors (see for example Marley et al. 2013).

The inhomogeneity classification for HAT-P-7 b presents an
interesting test case. With an equilibrium temperature of Teq ≈

2300 K, HAT-P-7 b resides close to the temperature above which
we do not expect condensates to form. Dayside emission spec-
troscopy of HAT-P-7 b, like that of Mansfield et al. (2018), can
be used to infer the temperature-pressure (p-T) structure for the
atmosphere, which may be greater than this condensation limit
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mogeneous model over the homogenous model (see Section 3.2), so
darker points are more likely inhomogeneous reflectors. The marker
shape corresponds to the preferred scattering phase function: squares
are Cornette-Shanks single scattering plus isotropic multiple scattering,
and circles are isotropic single plus isotropic multiple scattering. Re-
sults are also enumerated in Table 2.

(see for example Figure 8 of Christiansen et al. 2010), but we
emphasize here that these p-T profiles are typically a 1D dayside
average, and do not account for the local surface temperature
variations that we know must exist on real hot Jupiters. While
the observations in this work indicate inhomogeneity, theoreti-
cal expectations for inhomogeneity are unclear this planet.
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Fig. 8. Stability curves of selected high-temperature condensates for an
atmosphere with the metallicity of Kepler-41 b [M/H] = 0.38 (Bonomo
et al. 2015). The calculations are assuming chemical equilibrium in the
gas phase.

Kepler-7 b is perhaps one of the better known reflected light
phase curves in the literature due to its high albedo, cool equi-
librium temperature and strong reflected light asymmetry (De-
mory et al. 2013; Esteves et al. 2015; Hu et al. 2015; Anger-
hausen et al. 2015; Heng et al. 2021). As the target with the most
clearly asymmetric phase curve, it is ideal for confirming that the
model selection framework is performing correctly, and indeed
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the framework yields a strong preference for the inhomogeneous
model. This may also be an important test of the GP flexibility
– if the GP is too flexible, it could partially or entirely absorb
the asymmetry in the phase curve of Kepler-7 b. It appears that
the GP works as intended, and does not interfere with the short-
period phase curve oscillations.

The confident detection of inhomogeneity for Kepler-41 b is
in agreement with Shporer & Hu (2015), who pointed out that
such an inference could be drawn from earlier works on the sys-
tem (Santerne et al. 2011; Quintana et al. 2013). We comment
on the results for Kepler-41 b in more detail in Section 4.1.

TrES-2 b is remarkable for its very low albedo (Kipping &
Spiegel 2011). As the coolest planet in the sample, it should also
have the least contamination from thermal emission in the Ke-
pler bandpass. The 3σ upper limit on the geometric albedo is
2%. The LOO-CV analysis indicates a strong preference for in-
homogeneity.

KOI-13 A is unique among the host stars for being a hier-
archical triple, with the star the A component hosting the tran-
siting planet (Shporer et al. 2014). We adopt the dilution due to
the other components of the triple system from the analysis of
Shporer et al. (2014), described in Section 2.6.

3.4. Scattering phase functions

Heng et al. (2021) showed that the shape of the phase curve en-
codes information about the scattering phase function of the at-
mosphere. We examine here whether the phase curves contain
sufficient information to identify the scattering phase function in
each reflected light phase curve. Following Hapke (1981), Heng
et al. (2021) assumes that multiple scattering is always isotropic,
while the single-scattering component could be described by any
phase function. We thus probe two independent questions in this
subsection: (1) is isotropic multiple scattering a good assump-
tion, and (2) do the observations prefer Rayleigh or Cornette &
Shanks (1992) single scattering over isotropic?

3.4.1. Theoretical justification for isotropic multiple scattering

To test the applicability of the isotropic multiple scattering as-
sumption made by Heng et al. (2021), we perform additional nu-
merical simulations for Rayleigh and isotropic scattering phase
functions. For the numerical calculations we use the discrete or-
dinate radiative transfer model C-Disort (Hamre et al. 2013),
which is the C-version of the well-established Disort model
(Stamnes et al. 1988).

Disort provides the exact solution to the plane-parallel ra-
diative transfer equation, taking into account thermal emission,
surface scattering, and illumination by a beam source at the top
of the atmosphere. It supports general scattering phase functions,
described by the usual expansion into a Legendre series. Given
a number of computational streams (ordinates), Disort provides
the full, angular-resolved intensity field I(µ, ϕ), where µ is the
cosine of the polar and ϕ the azimuth angle.

In order to simulate a semi-infinite atmosphere (Chan-
drasekhar 1960) as done in the calculations presented in Heng
et al. (2021), we set the optical depth at the bottom of the at-
mosphere to τ = 106. The surface albedo is set to zero, but in
principle plays no role for the resulting outgoing radiation due
to the very high optical depth assumed at the lower boundary.
Since we are only interested in the reflected light phase curve,
we turn off the thermal emission term within Disort and set the
incident stellar beam as an exterior source.

Rayleigh

Isotropic

Fig. 9. Comparing two simple scattering phase functions for a single-
scattering albedo of ω = 0.5 with both single and multiple scattering
(solid curves) and with different single scattering phase functions but
forcing isotropic multiple scattering (dashed, white curves), as in Heng
et al. (2021). The difference between “full” Rayleigh scattering and
Rayleigh single plus isotropic multiple scattering is negligible.

Disort calculates the radiation field in local coordinates
rather than in the observer’s coordinate system as described in
Heng et al. (2021). We therefore use Equation (13) from Heng
et al. (2021), which is originally from Sobolev (1975), to convert
the observer-centric phase angle α, longitude Φ, and latitude Θ
to the local coordinates for a given atmospheric column. This ap-
plies in particular to the local zenith angle µ∗ of the stellar beam.
From the Disort calculations we then extract the intensity at the
polar angle µ(Φ,Θ) and azimuth angle ϕ(Φ,Θ, α) scattered into
the direction of the observer. The corresponding angles are again
obtained by using Equation (13) from Heng et al. (2021).

The radiative transfer is calculated for a range of values for
longitude, latitude, and phase angle. The resulting intensities re-
flected towards the observer as a function of α, Φ, and Θ are
transformed into the reflection coefficient ρ and then numerically
integrated over Φ and Θ to yield the Sobolev fluxes F(α), fol-
lowing Equation (5) from Heng et al. (2021), which is originally
from Sobolev (1975). Finally, these fluxes are converted into the
integral phase function

Ψ(α) =
F (α)

F (α = 0)
. (10)

In Figure 9, we compare the outcome forΨ of numerical cal-
culations performed with Disort with the analytical phase curve
description from Heng et al. (2021) for Rayleigh and isotropic
scattering phase functions. These calculations are identical to
the scenario presented in Figure 3(a) from Heng et al. (2021), as-
suming a constant single scattering albedo ofω = 0.5 throughout
the atmosphere.

The analytic phase curves of Heng et al. (2021) are in ex-
cellent agreement with the numerical results. The assumption of
isotropic multiple scattering is a good approximation for full-
Rayleigh scattering. While the Rayleigh scattering phase func-
tion shows small deviations from an isotropic behavior, this is
only important for single scattering events. When averaged over
many multiple scattering events in a semi-infinite atmosphere,
however, the phase function tends towards a more isotropic be-
havior.
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Fig. 10. Geometric albedos for four Kepler targets, measured in four
one-year segments of the Kepler light curves.

3.4.2. Single scattering phase function

For all planets, using the LOO-CV and stacking techniques de-
tailed above, the Cornette-Shanks or isotropic single scattering
phase functions are clearly preferred, with Bayesian stacking
model weights close to unity. The preference for isotropic sin-
gle scattering is rather surprising at first, since no known at-
mospheric constituent, molecules, or potential condensates are
known to produce a truly isotropic scattering phase function.

Molecules scatter radiation according to the Rayleigh scat-
tering phase function. For condensates, assuming a spherical
shape in the simplest case, Mie scattering is applicable (Mie
1908). When particles are small compared to the wavelength,
the Mie scattering phase function simplifies to the Rayleigh
one (Bohren & Huffman 1998). For example, a hypothetical
homogeneously-reflecting planet may be uniformly cloud-free,
and reflected light from cloudless giant planets should be domi-
nated by Rayleigh scattering from H2 and He, which we expect
to scatter with a Rayleigh phase function.

However, we should expect that multiple scattering is signif-
icant for several of these objects, as they have non-zero values
of the single scattering albedo ω. As shown in the previous sub-
section, even pure Rayleigh single and Rayleigh multiple scat-
tering will produce a phase curve similar to isotropic multiple
scattering. The difference between Rayleigh and isotropic single
scattering is maximal near quadrature but on the order of 10%
in amplitude. We expect such subtle features in the shape of the
phase curve to be degenerate with the other phase curve features
such as the ellipsoidal variations in the presence of photometric
noise. As a result, the preference for or against isotropic scat-
tering could be seen as a weak test of the cloudiness of an at-
mosphere, though the clear asymmetry in the phase curves of a
planet like Kepler-7 b is a much less ambiguous test of inhomo-
geneity.

In Heng et al. (2021), the Henyey-Greenstein (HG) scatter-
ing phase function was adopted for Kepler-7 b. For scattering
asymmetry parameters g → 0, the HG function approaches an
isotropic scattering phase function. The prior on g in Heng et al.
(2021) therefore enforced that the scattering phase function was
close to isotropic. This work uses a Cornette-Shanks phase func-
tion, so the strong prior g→ 0 enforces a nearly-Rayleigh phase
function.
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Fig. 11. Posterior distributions for the single scattering albedos. For
inhomogeneous atmospheres, ω is the single scattering albedo of the
more reflective region towards the limbs, and for homogeneous atmo-
spheres ω is the dayside hemisphere-averaged single scattering albedo.
For comparison, the single scattering albedos of plausible condensates
are shown in Figure 12.

3.5. Variability

The best-fit phase curves are in Figure 4 (thick red curves),
which are comprised of a combination of reflected light, ther-
mal emission, ellipsoidal variations, and Doppler beaming (thin
curves). All models are fit to the unbinned, 30-minute long ca-
dence Kepler photometry with a Gaussian process in the time
domain and CBV correction.

Figure 5 shows the CBV-corrected SAP fluxes from the Ke-
pler mission along with a sample model which has a Gaussian
process with a mean model described by the four phase curve
components: reflection, thermal emission, Doppler beaming and
ellipsoidal variations. The light curves are separated into four
segments and labeled with the year at the beginning of each year
of observations. The residuals after the phase curve and Gaus-
sian process model have been applied are plotted as a histogram
on the right of Figure 5, showing consistent, Gaussian normal
distributions.

The large-amplitude signals in the CBV-corrected SAP
fluxes in Figure 5 may have stellar origins. Kepler-41, a G2V
host, shows a consistent autocorrelated behavior in the flux resid-
uals with amplitude 2 ppt at all times during the Kepler obser-
vations. G0V star TrES-2 shows possible rotational signals in
the first and fourth year of Kepler observations. HAT-P-7 (F8V)
and KOI-13 A (A5-7V) show 250 ppm variations which may
be rotational or instrumental. In all cases, the Gaussian process
accounts for this autocorrelated signal on timescales of tens of
days, without significantly affecting phase curve signals on one-
day timescales.

The geometric albedos we infer for each planet for each year
are plotted in Figure 10 and listed in Table 3. There are no sig-
nificant departures from a constant geometric albedo for any of
the four planets.

4. Interpretation

The techniques in this work advance our ability to characterize
exoplanet atmospheres with photometry alone. In this section,
we provide interpretation of the results presented in the previ-
ous section, assisted by condensation and Mie scattering calcu-
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Geometric albedo

Planet Q1-4 Q5-8 Q9-12 Q13-16

TrES-2 b 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00

Kepler-7 b 0.23 ± 0.03 0.25 ± 0.02 0.24 ± 0.02 0.29 ± 0.02

Kepler-41 b 0.08 ± 0.02 0.13 ± 0.03 0.08 ± 0.03 0.13 ± 0.02

HAT-P-7 b 0.12 ± 0.03 0.11 ± 0.03 0.14 ± 0.01 0.14 ± 0.02

KOI-13 b 0.30 ± 0.04 0.24 ± 0.11 0.24 ± 0.05 0.22 ± 0.06

Table 3. Geometric albedos inferred independently for one-year intervals for five Kepler hot Jupiters.

lations, to interpret what species might be responsible for inho-
mogeneous scattering. We also outline the observational biases
introduced by the scattering parameters used in this work.

4.1. Identifying potential scattering species

Theoretical expectations and the observational evidence outlined
above point to inhomogeneous albedo distributions for all plan-
ets. For planets in this temperature range, we expect that dif-
ferential condensation with longitude will produce inhomoge-
neous albedo distributions. At the cooler end the sample where
Teq < 2000 K, there are several refractory species that one might
expect to condense out of regions in the dayside atmospheres
(Marley et al. 2013).

Figure 8 shows stability curves for an atmosphere with
[M/H] = 0.38. The curves indicate temperatures and pres-
sures where condensation may occur, and are calculated with the
chemical equilibrium model FastChem5 (Stock et al. 2018, 2022;
Kitzmann et al. 2023), using the JANAF tables (Chase 1998) to
derive the mass action constants for selected condensates as de-
scribed by Kitzmann et al. (2023). Some of the most stable high-
temperature condensate species across all pressures are Al2O3
(corundum), CaTiO3 (perovskite), MgAl2O4 (spinel), Mg2SiO4
(forsterite), MgSiO3 (enstatite), and Fe(s) (see e.g. Fortney 2005
or Gail & Sedlmayr 2013). Each species condenses at tempera-
tures T ≲ 2000 K at 1 bar, so they are all possible condensates
for Kepler-7 b, Kepler-41 b and TreS-2 b. We can further nar-
row the list of possible condensates and their properties with two
methods outlined below.

The first method is to predict the possible values of ω and g
for each species using Mie theory, and compare them with the
observations. Given the indices of refraction for a given species,
the wavelength of observations, and the particle size, one can
directly compute the expected value for ω and g using LX-MIE
(Kitzmann & Heng 2018b). The predictions are shown in Fig-
ure 12 for five refractory species which may condense in these
exoplanet atmospheres, as a function of particle size.

Figure 12 allows us to roughly constrain the sizes of conden-
sate particles in the exoplanet atmospheres. All inhomogeneous
planet have single scattering albedos ω ≳ 0.9. This provides a
lower limit on the particle size since all compatible albedos occur
for these scattering species when their particle radii r ≳ 0.01 µm.
Similarly, we can place a rough upper limit on the particle size
of condensates, since each phase curve can be reproduced with

5 https://github.com/exoclime/FastChem

small g, excluding large particle sizes r ≳ 0.2 µm. The Mie cal-
culations therefore weakly constrain the cloud particle radius be-
tween 10−2 − 10−1 µm.

The Mie calculations disfavor Al2O3 (corundum) and Fe
(iron) as the condensates responsible for reflection from Kepler-
41 b and Kepler-7 b. These atmospheres have single scattering
albedos ω ≳ 0.9, which is too large to be produced for Al2O3 or
Fe particles of any radius.

Figure 12 is computed for spherical particles of a single size,
and a distribution of particle sizes must be convolved with the
ω curves for estimates of a non-uniform particle size distribu-
tion. The Mie calculations for ω are also upper limits on ω, since
the true ω of a, e.g., hydrogen-dominated atmosphere containing
these species will be somewhat smaller due to gas absorption.
Thus, Mie theory can exclude some species and weakly constrain
the particle size.

Figure 13 shows another technique for identifying which
condensates best match the inhomogeneous phase curves. The
reflected light model has two free longitudinal parameters x1 and
x2, which indicate the longitudes that bound the low-albedo re-
gion of the planet. At longitudes x1 < x < x2 in the hot substellar
region of the dayside, the atmosphere is too hot for condensates
to form. These longitudes corresponding to the cloudless-to-
cloudy transition are therefore also the longitudes where the lo-
cal temperatures T (x1) and T (x2) drop below the stability curve
of the cloud species. The thermal emission phase curve model,
constructed with the hmℓ basis functions, describes the tempera-
ture of the planet at each latitude and longitude, so we may cal-
culate the local temperatures from the best-fit thermal emission
map T (x1) and T (x2), evaluated at the longitudes of the transition
from cloudless-to-cloudy regions x1 and x2 from the reflected
light distribution. We can then compare the inferred transition
longitudes and their corresponding temperatures to the stability
curves of likely condensate species. If the inferred (x1, x2) co-
ordinates from the reflected light model are consistent with a
species’ predicted starting and ending longitudes, we have iden-
tified a candidate condensate for that atmosphere.

There is at least one more under-constrained parameter to
consider in the calculation outlined above. Temperatures within
planetary atmospheres vary with latitude and longitude, as we
have encoded with the hmℓ basis, but also with altitude or pres-
sure, which we have neglected up to this point. Just as the con-
densation curves of various species are crossed as one moves
farther from the sub-stellar point, temperature decreases with
increasing altitude and therefore condensation can only occur
above some altitudes. So theoretical predictions for the start/stop
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Fig. 12. Predictions from Mie theory for the reflectance properties of several refractory species assuming spherical, monodisperse particles ob-
served in the Kepler bandpass as a function of particle radius (Kitzmann & Heng 2018b, curves above), for comparison with the posterior
distributions for the reflectance parameters from Kepler observations (histograms). The measured single scattering albedos ω of each planet (also
shown in Figure 11) have 0.7 ≲ ω ≲ 1, placing a lower limit on the particle radius r ≳ 0.01 µm. The phase curves are consistent with scattering
asymmetry parameters g < 0.2, though posterior distributions are so narrow as a result of the prior distribution. Fits consistent with near-zero
g correspond to upper limits on particle radii of r ≲ 0.1µm. The three species consistent with the phase curve observations for Kepler-7 b and
Kepler-41 b are CaTiO3 (perovskite), Mg2SiO4 (forsterite), and MgSiO3 (enstatite), given that they have ω > 0.9 and near-zero g. We compare the
condensation temperatures of each of these species with the local temperatures at the longitudes of the less reflective region in Figure 13.

longitudes of the dark region are themselves functions of pres-
sure, (x1(p), x2(p)). For each species, starting and ending longi-
tudes of the dark region are thus compatible with some range of
pressures where condensation may occur. The unknown cloud-
deck pressure is not a fitting parameter in our models, and there
are few theoretical expectations for a reasonable range, so we
evaluate a range of pressures for each species.

The three panels of Figure 13 show the joint posterior distri-
bution for the starting and ending longitudes of the dark region,
x1 and x2 in grayscale. The track of colored points joined by a
silver line show the (x1(p), x2(p)) coordinates predicted from
combining the stability curve of each species with the tempera-
ture map for Kepler-41 b. The posterior distribution for (x1, x2)
is 2σ-consistent with the theoretical predictions for perovskite,
forsterite, and enstatite clouds placed at pressures ranging from
0.08 to 0.2 bar.

In summary, theoretical considerations from Mie theory and
condensation maps yield the following key inferences: (1) two of
the five most refractory species can be ruled out by their scatter-
ing properties; (2) the plausible particle sizes for these conden-
sates is 10−2−10−1 µm; (3) the three plausible remaining species
could condense in the correct locations in the atmosphere to re-
produce the inhomogeneity observed in the phase curves; (4) the
pressure at the cloud layer may be in the range 0.08 to 0.2 bar.

4.2. Observational biases

4.2.1. Single scattering albedo

The first, trivial bias implied by parameterizing ω arises from the
intrinsic brightness of the planet. A more reflective planet with

larger ω will produce a larger signal in reflected light and can
therefore be detected more easily.

A more subtle observational bias arises from the relative con-
tributions of single and multiple scattering for different single
scattering albedos. In Figure 14, the curves represent the fraction
of the geometric albedo contributed by Cornette-Shanks single
scattering, which can be computed trivially with Equations 22
and 24 of Heng et al. (2021, see also their Figure 2a). Single
scattering accounts for more than 80% of the geometric albedo
of the planet when ω < 0.4 for g ≈ 0, and the contribution from
multiple scattering becomes non-negligible for ω > 0.4.

This suggests a slight limitation of the technique presented
here and in Heng et al. (2021), since the framework can apply
any single-scattering phase function to the reflected light phase
curve, but the multiple scattering is assumed to be isotropic. Fig-
ure 14 shows that at large single scattering albedos, a signifi-
cant fraction of the reflected light phase curve is contributed by
isotropic multiple scattering. As a result, we should expect the
shape of the phase curve to constrain the single scattering phase
function for ω < 0.4; otherwise the assumption of isotropic mul-
tiple scattering begins to affect the shape of the reflected light
phase curve. This partly explains why we found in Section 3.4.1
that the isotropic multiple scattering assumption has only a very
small effect on the reflected light phase curve shape at ω = 0.5.

It is possible that for small enough ω, the single scattering
will swamp the multiple scattering signal, but the first-mentioned
observational bias against detecting faint objects will make it
more difficult to measure the shapes of these phase curves.
Therefore, we conclude that the isotropic multiple scattering as-
sumption in the Heng et al. (2021) reflected light model likely
has a small effect on this analysis.
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Fig. 14. Relative contributions to the geometric albedo from Rayleigh
single scattering events and isotropic multiple scattering (Heng et al.
2021).

These results are in good agreement with the Monte Carlo
radiative transfer simulations of HD 189733 b by Lee et al.
(2017), who found that Rayleigh-like scattering phase functions
are necessary where single scattering dominates, and when mul-
tiple scattering dominates, isotropic phase functions are a good
approximation.

4.2.2. Scattering asymmetry parameter

Another bias affects phase curve scattering parameter inference
through the asymmetry parameter g. A value of g < 0 im-
plies a net back-scattering atmosphere while g > 0 indicates
predominantly forward scattering. A back-scattering atmosphere
will reflect more light near secondary eclipse than an atmo-
sphere which is forward scattering, and therefore the reflected
light phase curve amplitude will be larger for planets with back-
scattering atmospheres. Forward scattering may be detectable by
highly precise observations near transit (García Muñoz & Cabr-
era 2018).

To demonstrate the effect of this bias on retrieving phase
curve scattering parameters, we can inject many reflected light
phase curves into random normal noise with standard devia-
tions of 50 ppm, with no thermal emission component from the
planet. We solve for the best ω and g which fit the light curve
with the L-BFGS-B minimizer, and plot the true and best-fit val-
ues for each parameter in Figure B.1. The biases presented in
this section are each reflected in the variance of the recovered
parameters as a function of ω and g. As outlined in the previ-
ous subsection, the variance in ω is largest for small ωtrue, since
the phase curve amplitude scales with ωtrue. As g becomes more
negative, strong back-scattering amplifies the peak of the phase
curve near secondary eclipse and the best-fit g becomes more
precise. For g > 0, the forward-scattering pushes more flux into
the planet’s atmosphere, reflecting less to the observer near sec-
ondary eclipse, reducing the precision on g. The precision on g
ranges from < 1% for g < −0.1, about 3% at g = 0, and greater
than 10% for g > 0.5.

The observational bias against confident detections of g > 0
affects our ability to detect reflected light from large particles.
As shown in Figure 12, small particles (r < 0.01 µm) tend to
reflect with g → 0, regardless of species. The strong forward-
scattering nature of larger particles, which greatly reduces the
observed flux in the phase curve, implies that we are biased to-
wards detecting reflected light phase curves from planets with
clouds made of smaller particles. An interesting exception to this
trend is iron, which slightly back-scatters light when the particle
radius is near 0.1 µm.

5. Discussion

5.1. Correcting the single scattering albedo for Kepler-7 b

In comparing our results for Kepler-7 b with Heng et al. (2021),
we found that we derive similar values for each fitting parame-
ter except for the single scattering albedo of Kepler-7 b. We note
here that we have discovered a typo in the code that produced the
corner plot in Figure 4b and the table in Extended Data Figure 6
of Heng et al. (2021), which incorrectly reported the single scat-
tering albedo for the more reflective region, ω′, and its sum with
the albedo less reflective region ω ≡ ω0 + ω

′. Heng et al. (2021)
reported ω = 0.12 ± 0.05, whereas the corrected calculation is
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in fact much closer to unity, ω = 0.99 ± 0.01. The corrected val-
ues are in much better agreement with the analysis by Hu et al.
(2015) for example, whose Table 1 shows an analogous quantity
to ω0 and ω′ written as r0 and r1. We list all literature values and
our revisions for the albedo of Kepler-7 b in Table C.1.

5.2. Phase curve photometry as a cloud detector

We have presented evidence for clear and cloudy skies in ex-
oplanet atmospheres based on time-series photometry alone in
Section 3. Traditionally this inference has been done via spec-
troscopy, either in emission or transmission. For targets where
both observations are available, a combination of photometry
and spectroscopy should be used to infer cloudiness, but by pre-
cisely testing the shape of a single-band, optical phase curve we
can infer cloudiness.

The inhomogeneity inferred from a phase curve is a stronger
test of the partial cloudiness of an atmosphere when compared
with the effect of the scattering phase function on the shape of
the phase curve, as outlined in Section 3.4, because we currently
have no way of producing the inhomogeneity from a cloud-free
atmosphere. Inhomogeneity produces asymmetries in the phase
curve that are readily detected with high S/N, Kepler-like obser-
vations. Identifying the Rayleigh scattering expected for a clear
H2/He atmosphere from the phase curve shape alone is quite
challenging since the effect of different scattering phase func-
tions on the phase curve amplitude is small.

5.3. No cloudy-to-clear transition temperature

It is tempting to imagine that there is a transition in equilibrium
temperatures above which atmospheres are too hot to form con-
densates and are always clear or cloud-free. In practice, there is
likely a transition regime where condensates may form but they
do or do not based on more complicated physics than is consid-
ered in this work. As more planets are discovered and their phase
curve photometry fills in Figure 7, we may find cloud-free, ho-
mogeneous atmospheres throughout this temperature range.

5.4. Condensate species and their sizes

In Section 4.1 we propose a particle size range consistent with
the optical properties of the exoplanet atmospheres in reflected
light. Lecavelier Des Etangs et al. (2008) find a similar par-
ticle radius range for enstatite grains in the atmosphere of
HD 189733 b, and a similar size range was later invoked by
Pont et al. (2013) for the same planet. Enstatite grains have also
been invoked to fit interferometric spectroscopy of HD 206893 B
(Kammerer et al. 2021). Wakeford & Sing (2015) considered
transmission spectroscopy of cloudy planets with varying com-
positions and particle sizes, and found that the spectrum of
HD 189733 b could be adequately fit by enstatite clouds with
particle sizes ranging from 10−2 − 10−1 µm, consistent with the
interpretation of this work.

García Muñoz & Isaak (2015) produced synthetic phase
curves for Kepler-7 b as a function of ω and g, assuming a dou-
ble Henyey-Greenstein scattering phase function, and performed
a χ2 minimization to select the most-likely properties of the scat-
tering condensates. The likely species and particle sizes enumer-
ated in García Muñoz & Isaak (2015) are in good agreement with
our results from the case study on Kepler-41 b.

Webber et al. (2015) studied reflected light phase curves with
inhomogeneous cloud cover applied to Kepler-7 b. The authors

find that enstatite or forsterite condensation provides the best
match to the observed reflected light asymmetry and albedo for
Kepler-7 b. Similarly, Oreshenko et al. (2016) suggest that en-
statite or forsterite (plus iron, corundum, or titanium oxide) pro-
vide reasonable matches to the phase offset observed for Kepler-
7 b. The analysis presented in Section 4.1 can rule out some of
the species considered in these previous works based on the scat-
tering properties (ω, g) of the condensates.

Parmentier et al. (2016) used GCMs, condensation tempera-
tures, and scattering properties of candidate condensates to con-
strain ensemble cloud properties of hot Jupiters. In the equilib-
rium temperature range of planets discussed in this work, the
authors highlight silicate and perovskite clouds for cooler atmo-
spheres (Kepler-7 b and Kepler-41 b, respectively) and corun-
dum clouds for hotter atmospheres (HAT-P-7 b) as potential
scatterers consistent with phase curve observations. Their sim-
ulated planets with the highest albedos and largest reflected light
asymmetries are produced for particles with sizes near 10−1 µm,
which is consistent with the size upper limits implied by the
small scattering asymmetries in this work.

Our results are also consistent with Lee et al. (2016, 2017),
who presented 3D radiative-hydrodynamic simulations with a
kinetic, microphysical, non-equilibrium mineral cloud model for
HD 189733 b. Their condensate particle sizes are typically sub-
micron, with cloud formation at the western limb and at mid-
latitudes dominated by enstatite and forsterite.

Cloud microphysics models by Powell et al. (2019) suggest
that the west limbs of hot Jupiters with Teq = 2000 K may
have, for example, forsterite condensation with number densities
which peak near 10−2 and 1 µm (see their Figure 5). These par-
ticle sizes are consistent with the observations presented here,
in the interpretation in Section 4.1. More generally, Gao et al.
(2020) provide observational and theoretical evidence that sil-
icates are the dominant condensates in hot atmospheres with
Teq ≳ 1600 K, which includes all planets in this sample.

5.5. Variability in exoplanet atmospheres

Uncertainty in time-series detrending should inform posterior
inferences. The impact of the detrending techniques on the in-
ferred phase curve parameters is a key challenge in interpreting
reflected light phase curves in the literature. Often, conservative
detrending approaches are applied independently from the poste-
rior inference, producing, for example, phase curves that appear
highly variable with time (Armstrong et al. 2016); while more
liberal detrending risks removing signals of interest. Theoreti-
cally, there are few or no predictions for large variations in the
thermal emission components of the phase curve on year-long
timescales. Komacek & Showman (2020) used general circula-
tion models to show that the variations in eclipse depth, phase
curve amplitude, and hotspot offset should all change by a few
percent or less. High resolution pseudospectral simulations by
Y-K. Cho et al. (2021) are also in agreement with this amplitude
of variations in the thermal emission. Larger variations might be
expected in reflected light since, for example, there may be sig-
nificant albedo variations driven by partial cloud cover, as we
see on planets in the Solar System. The observations presented
in this work do not support larger than a few percent in the geo-
metric albedo of hot Jupiters on year-long timescales.

Claims of variations of exoplanet atmospheric properties
should be approached with caution. Many observations support
the theoretical expectations against significant thermal variabil-
ity: Agol et al. (2010); Kilpatrick et al. (2020) found that the
thermal flux of HD 189733 b and HD 209458 b change by less
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than a few percent between eclipses. Jones et al. (2022) found a
similar upper limit on the optical flux variations of the ultra-hot
Jupiter KELT-9 b. Recent work by Lally & Vanderburg (2022)
showed that apparent variations like those invoked for the Ke-
pler phase curve of HAT-P-7 b may be explained by uncorrected
stellar or instrumental artifacts.

6. Conclusion

– We have introduced a Bayesian inference framework for
inferring optical properties of exoplanet atmospheres from
phase curves, which includes flux contributions from re-
flected light from a potentially inhomogeneous atmosphere,
thermal emission, ellipsoidal variations, Doppler beaming,
and stellar rotation (Section 2).

– We applied this inference framework to the Kepler phase
curves of five hot Jupiters to measure atmospheric homo-
geneity and time-variability, as well as an investigation into
the scattering properties which constrain the likely conden-
sates in inhomogeneous atmospheres. We use the Leave-one-
out cross-validation technique with Bayesian stacking for
model selection (Section 3.1-3.2).

– The observations suggest an inhomogeneous albedo distri-
bution for three of the five planets (Figure 7), which we in-
terpret as asymmetric cloud distributions.

– We enumerate the phase curve parameters of each planet (Ta-
ble 2), and show the single scattering albedos for the reflec-
tive region of each planet (Figure 11)

– None of the planets exhibit significant geometric albedo vari-
ations in time (Figure 10).

– For Kepler-41 b, we have identified perovskite, forsterite,
and enstatite as possible scattering species consistent with
the reflected light phase curves using condensate stability
curves (Figure 8) and Mie theory (Figure 12). The conden-
sate particle radii may be in the range 10−2 − 10−1 µm, and
the pressure at the clouds may be in the range 0.08 − 0.2 bar
(Figure 13).

– We demonstrated that analytic phase curves with isotropic
multiple scattering are in excellent agreement with full
Rayleigh multiple scattering calculations (Figure 9).
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Appendix A: Index of symbols

Table A.1 describes the symbols used in this work and their def-
initions.

Appendix B: Biases

An illustrative battery of phase curve injection/recovery tests are
shown in Figure B.1. These exercises demonstrate the biases
which affect retrieval of the single scattering albedo ω and scat-
tering asymmetry parameter g.

Appendix C: Results for Kepler-7 b

There are many results for the geometric albedo in the literature,
which we collate in Table C.1.
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Fig. B.1. Comparison of the true (injected) single scattering albedo ω and scattering asymmetry parameter g with their best-fit values in simulated
light curves of reflected light phase curves, with no thermal emission and Gaussian noise. As ωtrue → 0, the reflected light signal diminishes,
reducing the precision in ωfit. For g > 0, the planet’s atmosphere scatters more light into the atmosphere than back at the observer, reducing the
reflected light signal, and reducing the precision on gfit. The color of each point in the g panel denotes the value of ω for that point, and vice versa.
Note that g is least precise for the smallest ω values (purple).
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Symbol Name Description
a/Rp Semimajor axis Orbital semimajor axis normalized by the planetary radius
Ag Geometric albedo
α Dimensionless fluid number From Morris et al. (2022)
αellip, αDoppler Amplitude coefficients Factors of order unity which parameterize the amplitude of ellipsoidal

variations and Doppler beaming, respectively
C11 Spherical harmonic power Power in the lowest-order spherical harmonic coefficient, which de-

scribes the day-night temperature contrast in the hmℓ basis
∆ϕ Hotspot offset This parameter approaches the longitudinal offset of the hotspot from

the substellar point in the limit that ωdrag ≫ 1, where in this work usu-
ally ωdrag = 4.5

δF Dilution Flux dilution factor due to neighboring stars within aperture
g Scattering asymmetry parameter Varies on −1 < g < 1 from pure back scattering to pure forward scatter-

ing
f Greenhouse parameter From Morris et al. (2022)
I(θ, ϕ) Stellar/planetary intensity Evaluated for a given surface location from Morris et al. (2022)
P Orbital period Planetary orbital period
Prot Rotation period Stellar orbital period
Rp/R⋆ Radius ratio Ratio of planet to stellar radius
ω Single-scattering albedo Fraction of light scattered in single scattering event (Heng et al. 2021)
ω0 Minimum single-scattering albedo Fraction of light scattered in single scattering event from the less-

reflective surface of the inhomogeneous atmosphere model (Heng et al.
2021)

ωdrag Dimensionless drag parameter From Morris et al. (2022)
θ Planetary colatitude Planetary colatitude from (0, π)
ϕ Planetary longitude Planetary latitude from (0, 2π)
ϕorb Orbital phase Normalized from (0, 1) where 0.5 is secondary eclipse
ξ Orbital phase Normalized from (−π, π) where zero is secondary eclipse
Fλ Response function Detector/filter response as a function of wavelength
Bλ Planck function Planck (1901)
λe Occultation model Agol et al. (2020) star/planet occultation model
Fp/F⋆ Observed flux ratio Ratio of planetary to stellar flux
Ψ Integral phase function From Heng et al. (2021)
q Phase integral From Heng et al. (2021)
x1 Start longitude Start longitude of the less-reflective region from Heng et al. (2021)
x2 Stop longitude Stop longitude of the less-reflective region from Heng et al. (2021)
x′1 Primed start longitude Reparameterization of the start longitude: sin(x1)
x′2 Primed stop longitude Reparameterization of the stop longitude: sin(x2)
T (θ, ϕ) Temperature map Map of the temperature as a function of latitude and longitude
Td,n Hemispheric temperature Dayside and nightside integrated hemispheric temperature
N(µ, σ) Normal distribution Gaussian with mean µ and standard deviation σ
U Uniform distribution
σGP GP std. dev. Standard deviation (amplitude) of the Gaussian process
ρGP GP timescale Typical timescale of oscillations in the Matérn 3/2 kernel

Table A.1. Definitions of symbols used in this work.
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Ag ω0 ω′

Demory et al. (2011) 0.32 ± 0.03 – –

Demory et al. (2013) 0.35 ± 0.02 – –

Esteves et al. (2015) 0.248+0.071
−0.073 – –

Hu et al. (2015) 0.28 ± 0.006 < 0.072 0.92

García Muñoz & Isaak (2015) 0.2 − 0.3 ∼ 1

Heng et al. (2021) 0.25+0.01
−0.02 0.0136+0.0132

−0.0093 0.115+0.044
−0.049

This work 0.27+0.01
−0.01 0 (fixed) 0.99+0.00

−0.01

Table C.1. Comparison of literature results on the albedo of Kepler-7 b.
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