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Abstract
I employ the Lucy rectification algorithm to recover the inclination-corrected distribution of local disk galaxies in
the plane of absolute magnitude (Mi) and H I velocity width (W20). By considering the inclination angle as a ran-
dom variable with a known probability distribution, the novel approach eliminates one major source of uncertainty
in studies of the Tully-Fisher relation: inclination angle estimation from axial ratio. Leveraging the statistical
strength derived from the entire sample of 28,264 H I-selected disk galaxies at z < 0.06 from the Arecibo Legacy
Fast ALFA (ALFALFA) survey, I show that the restored distribution follows a sharp correlation that is approxi-
mately a power law between −16>Mi > −22: Mi = M0 − 2.5β [log(W20/250km/s)], with M0 = −19.77±0.04 and
β = 4.39± 0.06. At the brighter end (Mi < −22), the slope of the correlation decreases to β ≈ 3.3, confirming
previous results. Because the method accounts for measurement errors, the intrinsic dispersion of the correlation
is directly measured: σ(logW20) ≈ 0.06 dex between −17 > Mi > −23, while σ(Mi) decreases from ∼0.8 in slow
rotators to ∼0.4 in fast rotators. The statistical rectification method holds significant potential, especially in the
studies of intermediate-to-high-redshift samples, where limited spatial resolution hinders precise measurements of
inclination angles.
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1. Introduction
In observational astronomy, a prevalent challenge involves

recovering intrinsic properties from observed ones. This
restoration is essential due to the potential alteration of intrin-
sic properties by factors like viewing angles, dust extinction,
atmospheric seeing, instrumental point spread function (PSF),
as well as statistical and instrumental noise. In general, the
transformation from the intrinsic probability distribution to the
observed one follows the law of total probability, which for
two-dimensional problems is:

ϕ(x,y) =
∫∫

ψ(ξ,η)P(x,y|ξ,η)dξdη, (1)

where (ξ,η) are the intrinsic properties, (x,y) the observed prop-
erties, ψ(ξ,η) the probability density function (PDF; or distri-
bution in short) of the intrinsic properties, ϕ(x,y) the PDF of
the observed properties, and P(x,y|ξ,η) the conditional PDF.
The definition of the conditional PDF is that P(x,y|ξ,η)dxdy
is the probability that x′ and y′ respectively fall in the interval
(x,x+dx) and (y,y+dy) when ξ′ = ξ and η′ = η. The objective is
to reverse this equation to restore ψ(ξ,η) from ϕ(x,y) given the
knowledge of P(x,y|ξ,η).

Convolution is a special case of Eq. 1 when the conditional
PDF can be expressed as a function of the differences between
intrinsic and observed properties:

ϕ(x,y) =
∫∫

ψ(ξ,η)K(x − ξ,y −η)dξdη, (2)

where K(x − ξ,y − η) is called the convolution kernel, and its
shape is invariant across the plane of ξ and η. Similar to the gen-
eral reversal problem, the goal of deconvolution is to recover
ψ(ξ,η) from ϕ(x,y) given the knowledge of K(x − ξ,y −η). One
particularly important problem is “image restoration”, that is to
recover the intrinsic surface brightness map by removing or re-
ducing of the effects of atmospheric seeing and/or instrumental

PSF due to telescope/interferometer geometry. Popular decon-
volution algorithms include RICHARDSON-LUCY (Richardson
1972; Lucy 1974), CLEAN (Högbom 1974; Cornwell 2009),
and WIENER-HUNT (Orieux et al. 2010).

Because in general the conditional PDF P(x,y|ξ,η) varies in
the plane of ξ and η, the aforementioned deconvolution algo-
rithms cannot handle the reversal of Eq. 1. But there is one
exception. The iterative rectification algorithm of Lucy (1974)
is in fact designed to reverse Eq. 1, and that is the main differ-
ence between the Lucy (1974) rectification algorithm and the
Richardson (1972) deconvolution algorithm.

In this work, I employ the Lucy rectification algorithm to
restore the Tully-Fisher relation (TFR; Tully & Fisher 1977),
which is an important scaling relation between rotation veloc-
ity and luminosity of disk galaxies. In previous studies of the
relation (e.g., Tully & Courtois 2012; Zaritsky et al. 2014; Tiley
et al. 2016; Desmond 2017; Übler et al. 2017; Topal et al. 2018;
Kourkchi et al. 2022; Ball et al. 2023), the observed luminosi-
ties and velocity widths were corrected using inclination angles
estimated from the observed axial ratios (b/a). The rectification
method implemented here replaces the individual inclination
correction with robust statistical rectification. By eliminating
the reliance on axial ratio measurements and their conversion
to inclination angles, this method removes a major source of
error in determining the TFR.

The Letter is organized as follows. First, I introduce the rec-
tification algorithm in §2. Next in §3, I describe the survey
data set (§3.1), construct the joint PDF (§3.2), restore the in-
trinsic distribution (§3.3), and compare the resulting TFR with
that from the b/a-based individual correction method (§3.4).
Finally, I summarize the work and comment on future applica-
tions of the method in §4.

2. Algorithm

1

ar
X

iv
:2

40
1.

13
73

8v
3 

 [
as

tr
o-

ph
.G

A
] 

 2
1 

Fe
b 

20
24



THE ASTROPHYSICAL JOURNAL LETTERS Fu

For simplicity, I first derive the equations of the algorithm in
one dimension (1D), then provide the equivalent iterative equa-
tions for two-dimensional (2D) problems.

The iterative rectification algorithm of Lucy (1974) is con-
structed using Bayes’ theorem. Given the law of total prob-
ability, ϕ(x) =

∫
ψ(ξ)P(x|ξ)dξ, one can define its inverse inte-

gral, ψ(ξ) =
∫
ϕ(x)Q(ξ|x)dx, with the inverse conditional PDF

Q(ξ|x). In other words, given that P(x|ξ)dx is the probability
that x′ falls in the interval (x,x + dx) under the condition that
ξ′ = ξ, Q(ξ|x)dξ is the probability that ξ′ falls in the interval
(ξ,ξ +dξ) under the condition that x′ = x. With Bayes’ theorem,
ϕ(x)Q(ξ|x) = ψ(ξ)P(x|ξ), one can replace Q(ξ|x) in the inverse
integral and obtain the following equation:

ψ(ξ) =
∫
ϕ(x)Q(ξ|x)dx

=
∫
ϕ(x)

(ψ(ξ)P(x|ξ)
ϕ(x)

)
dx

= ψ(ξ)
∫
ϕ(x)
ϕ(x)

P(x|ξ)dx (3)

At first glance, the above may seem to be trivial as the terms
cancel out and the integral of P(x|ξ) must be unity by defini-
tion. But it inspired a highly efficient algorithm that allows the
iterative solution of the intrinsic distribution function ψ(ξ) from
the observed distribution function ϕ(x), when the conditional
PDF P(x|ξ) is known. At the r-th iteration, the Lucy (1974)
algorithm is simply described by two iterative equations:

ϕr(x) =
∫
ψr(ξ)P(x|ξ)dξ (4)

ψr+1(ξ) = ψr(ξ)
∫

ϕ̃(x)
ϕr(x)

P(x|ξ)dx (5)

Evidently, Eq. 4 is the law of total probability, and Eq. 5
is the iterative version of the Bayes identity in Eq. 3. For
two-dimensional problems incorporating measurement errors
(σx,σy), the iterative equations become:

ϕr(x̃, ỹ) =
∫∫

ψr(ξ,η)P(x̃, ỹ|ξ,η,σx,σy)dξdη (6)

ψr+1(ξ,η) = ψr(ξ,η)
∫∫

ϕ̃(x̃, ỹ)
ϕr(x̃, ỹ)

P(x̃, ỹ|ξ,η,σx,σy)dx̃dỹ (7)

In Eqs. 5 & 7, the key input is ϕ̃, which is the observed dis-
tribution function of the observables. The tilde hat is used to
distinguish it from the true distribution function, which is de-
noted simply as ϕ. Similarly, I have used (x̃, ỹ) to denote the
measured values (i.e., with errors) and (x,y) to denote the true
values (i.e., without errors).

Given the iterative equations, the procedure to carry out the
iterative algorithm is to:

1. quantify the observed distribution function ϕ̃(x̃, ỹ) from
the data,

2. define the conditional PDF P(x̃, ỹ|ξ,η,σx,σy) for the par-
ticular problem,

3. prescribe an initial guess of the intrinsic distribution
function ψ0(ξ,η), and
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Figure 1. The distribution of ALFALFA-SDSS galaxies in the plane
of i-band absolute magnitude vs. H I line width. This is the input
ϕ̃(x̃, ỹ) function, which will be rectified by the Lucy algorithm to sta-
tistically remove the effects from random disk orientations and random
measurement errors. Here and in most of the subsequent figures, the
main panel shows the 2D distribution, and the side panels show the
marginalized distributions over each axis.

4. solve iteratively for the intrinsic distribution function
ψ(ξ,η) with the previous two equations.

3. Application to the TFR
In this section, I apply the iterative rectification method to

restore the TFR from the observed distribution of Arecibo H I-
selected galaxies. A Python notebook of the full analysis is
made publicly available1 . I define x̃ as the observed projected
velocity width (W20 in §3.1), ξ the edge-on velocity width, ỹ the
observed projected i-band absolute magnitude (Mi in §3.1), and
η the face-on i-band absolute magnitude. The goal is to recover
the distribution of the galaxy sample in ξ and η, ψ(ξ,η), from
the observed distribution in x̃ and ỹ, ϕ̃(x̃, ỹ). As in the previous
section, x and y are reserved for true projected velocity width
and true projected i-band absolute magnitude in the absence
of measurement errors, and they will be integrated out when
evaluating the joint PDF of x̃ and ỹ.

3.1. Data

The H I measurements are taken from the 100% complete
ALFALFA catalog (the α.100 sample; Haynes et al. 2018)
and the absolute magnitudes are from the cross-matched
ALFALFA-SDSS galaxy catalog (Durbala et al. 2020). In both
catalogs, distances to the galaxies are inferred from Hubble’s
law with H0 = 70 km s−1 Mpc−1 and a local peculiar velocity
model (for details, see §3 of Haynes et al. 2018). I merge the

1 https://github.com/fuhaiastro/TFR_Lucy
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two catalogs based on the Arecibo General Catalog (AGC) ID,
resulting in a total of 31,500 entries with 53 columns. A total
of 28,264 sources (90% of the α.100 sample) in the merged
catalog have valid velocity widths and absolute magnitudes,
and that forms the galaxy sample for this study, because no
further down-selection is necessary. The sample is at low red-
shift (z < 0.06) and covers a wide range in i-band absolute
magnitude (−13<Mi < −23).

For the H I velocity width, I start with the reported velocity
width at 20% level of each of the two peaks in the line pro-
file (Column W20), because it is expected to capture more of
the flat parts of a rotation curve than the 50% level velocity
width (W50). All reported velocity widths are corrected for in-
strumental broadening following the simulations of Springob
et al. (2005). W20 are given in observed frame instead of in rest
frame, and the rest-frame H I velocity widths (W20) are obtained
by dividing W20 by (1 + cz⊙/c), where cz⊙ is the Heliocentric
velocity of the H I profile (column Vhelio in the catalog).

For the i-band absolute magnitude, I start with the extinction
corrected i-band absolute magnitude (Column ABSMAG_I_CORR).
It is derived from SDSS i-band cmodel magnitude and has
been corrected for both foreground Galactic extinction and in-
ternal dust extinction due to inclination. For the internal correc-
tion, the authors used the r-band axial ratio (b/a) from SDSS
exponential model fits (expAB_r) and a simple logarithmic
formula for the additional dust extinction due to inclination,
Mi,corr = Mi +γi(Mi) log(b/a). Because magnitudes uncorrected
for inclination is desired for this study, I reversed the internal
extinction correction using the listed γi values in the catalog
(gamma_i) and the relation the authors used to calculate γi
from Mi: γi = −0.15Mi − 2.55 for Mi < −17. For less luminous
galaxies with Mi > −17, Mi equals Mi,corr since γi = 0. Af-
ter this process, the resulting Mi magnitudes are corrected for
foreground Galactic extinction only.

Lastly, the uncertainties of the measurements are needed to
construct the joint conditional PDF in Eq. 6 & 7. The mean un-
certainty of W50 in the catalog is 18 km s−1, which is compara-
ble to the spectral resolution of ALFA (10 km s−1 after Hanning
smoothing, for a channel spacing of 5 km s−1). The uncertainty
of W20 is not reported because they are difficult to quantify for
the adopted polynomial fitting algorithm, so I assume a con-
servative uncertainty of 20 km s−1 for W20. For the absolute
magnitude Mi, I adopt the mean of the magnitude errors listed
in ABSMAG_I_CORR_ERR, which is 0.14 mag.

Figure 1 shows the distribution of the sample in the plane of
W20 and Mi. This 2D histogram represents ϕ̃(x̃, ỹ) in Eq. 7.

3.2. Conditional Probability Density Function

Both the H I velocity width and the absolute magnitudes are
affected by the inclination angle. The true projected values and
the intrinsic values follow these simple relations:

x =
√

(ξ sin i)2 +σ2
0 (8)

y = η −γ log(cos i) (9)

where the inclination angle i is defined to be 0◦ when viewed
face-on and 90◦ when viewed edge-on.

In Eq. 8, the projected velocity width is expressed as the
quadrature sum of the line-of-sight projection of the edge-on
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Figure 2. The joint PDF P(x̃, ỹ|ξ,η,σx,σy) for ξ = 330 km s−1, η = −18,
σx = 20 km s−1, σy = 0.14, σ0 = 30 km s−1, and γ = 0.73. The intrinsic
values are indicated by the red cross, which is offset from the peak
of the PDF. The top panel shows the PDF marginalized over the ỹ-
axis (yellow). This gives the PDF of the measured values, P(x̃|ξ,σx)
per Eq. 13, which can be compared with the PDF of the true projected
values P(x|ξ) from Eq. 10 (blue) to see the effects of measurement
errors. The right panel shows the joint PDF marginalized over the x̃-
axis and P(y|η) from Eq. 11.

velocity width and the velocity width from random motions
(σ0). I set σ0 = 30 km s−1 based on the lower boundary in the
observed distribution of velocity widths shown in Figure 1.

In Eq. 9, the projected absolute magnitude follows the pa-
rameterization in Eq. 27 of Giovanelli et al. (1994), which fits
well the observed inclination dependency of M∗ (the knee of
the optical luminosity function) for low-z disk galaxies in the
five SDSS filters (Shao et al. 2007). Obviously, the extinction
coefficient γ depends on wavelength. Here I set γ = 0.73 us-
ing the result of Shao et al. (2007) for the SDSS i-band (γ2 in
their Table 4). To understand the physical meaning of γ, one
can compare the extinction term above, A = γ log(sec i), with
the plane-parallel extinction, A′ = 2.5log(e)τ0(sec i − 1), where
τ0 is the face-on optical depth of the disk. At the face-on limit
(i → 0), A → γ log(e)(sec i − 1), one sees that γ = 2.5τ0. So
γ = 0.73 implies an face-on optical depth of τ0 = 0.29, and disks
become optically thick when γ > 2.5.

Assuming the disks are randomly oriented on the sky, the
PDF of the inclination angle is P(i) = sin i. Given this and the
relations in Eqs. 8-9, the conditional PDF of x and y are:

P(x|ξ) =
x/ξ√

ξ2 − (x2 −σ2
0)

when 0 ≤ x ≤ ξ (10)

P(y|η) =
ln10
γ

10(η−y)/γ when η < y (11)

3
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Figure 3. Data vs. model. From left to right are respectively the observed ϕ̃ distribution (same as Figure 1), the model ϕr distribution after 30
iterations, and the absolute differences between the two distributions. For fair comparison, the same color scale and contrast are used in all panels.

In addition, since both x and y are related to the same inclination
angle i, the two are correlated:

y = η − 0.5γ log(1 −
x2 −σ2

0

ξ2 ) (12)

The joint conditional PDF of x and y is determined by
Eqs. 10-12 because when integrated over one axis it must re-
cover the conditional PDF of the other axis:∫

P(x,y|ξ,η)dy = P(x|ξ) =
x/ξ√

ξ2 − (x2 −σ2
0)

(13)

∫
P(x,y|ξ,η)dx = P(y|η) =

ln10
γ

10(η−y)/γ (14)

The correlation relation in Eq. 12 explains why η drops off after
the integral over y in Eq. 13 and ξ drops off in Eq. 14: Eq. 12
allows η or ξ to be expressed by the other three parameters.

All measurements have errors, and the errors scatter the mea-
sured value around the true value following a PDF that is usu-
ally assumed to be Gaussian. Because the velocity widths and
the absolute magnitudes come from two different surveys (AL-
FALFA and SDSS), and only the latter depends on the distance
to the source, we can safely assume that the measurement er-
rors in x and y are uncorrelated. As a result, the error PDF is a
2D Gaussian with major and minor axes aligned with the x and
y axes:

G(x− x̃,y− ỹ|σx,σy) =
1

2πσxσy
exp

(
−

(x̃ − x)2

2σ2
x

)
exp

(
−

(ỹ − y)2

2σ2
y

)
(15)

And the joint conditional PDF of x̃ and ỹ is then P(x,y|ξ,η)
convolved with the 2D Gaussian:

P(x̃, ỹ|ξ,η,σx,σy) =
∫∫

P(x,y|ξ,η)G(x − x̃,y − ỹ|σx,σy)dxdy

(16)
Efficient convolution algorithms based on Fast Fourier Trans-
form (FFT) can be used to evaluate P(x̃, ỹ|ξ,η,σx,σy) on the
(x̃, ỹ) plane for a grid of (ξ,η). Over the parameter ranges cov-
ered by the data, 0 < x < 650 km s−1 and −23 < y < −13, I

calculate the joint PDF on a 51×51 grid in both (x̃, ỹ) and (ξ,η)
with spacings of 13 km s−1 and 0.2 mag. The resulting 4D ar-
ray can be interpolated and used for integrations in the iterative
process (Eqs. 6 and 7).

Figure 2 shows an example of the joint PDF. As expected, the
population is dominated by more inclined disks, which show
higher velocity widths but suffer more internal dust extinction.
The correlation between x̃ and ỹ in Eq. 12 is also evident in
the plot. As described in §3.1, I estimated the mean measure-
ment errors to be σx = 20 km s−1 and σy = 0.14 mag. Note that
an accurate knowledge of the measurement errors is important
to quantify the intrinsic dispersion of the restored intrinsic rela-
tion, because if the errors were underestimated (overestimated),
the recovered intrinsic distribution would have shown a larger
(smaller) scatter.

3.3. Rectified Intrinsic Distribution

To start the iterative process, one needs to prescribe an initial
distribution for ψ(ξ,η). Usually it is recommended to prescribe
the observed distribution as the initial guess, ψ0(ξ,η) = ϕ̃(x̃, ỹ),
to speed up the convergence. But because the position of the
intrinsic position is offset from the peak of the joint PDF, as
illustrated in Figure 2, one would expect similar offsets between
ψ and ϕ. So I simply prescribed a flat distribution as the initial
guess, ψ0(ξ,η) = constant, over the parameter ranges covered
by the data.

At the end of each iteration, both the rectified distribution
ψr(ξ,η) (Eq. 7) and its corresponding projected distribution
ϕr(x̃, ỹ) (Eq. 6) are produced. The latter can be directly com-
pared with the observed distribution ϕ̃(x̃, ỹ) to assess the im-
provement of the model after each iteration. As already noted
in previous works, the Lucy algorithm is very efficient. Af-
ter just a few iterations, a narrow curved distribution begins to
emerge in ψr and the resulting ϕr starts to converge onto the
input ϕ̃. Based on the residual map (ϕ̃ −ϕr) and the expected
Poisson noise of ϕ̃, I find that the reduced χ2

ν decreases from
13.7 after the first iteration to 1.0 after 30 iterations, which is a
natural point to stop. Figure 3 shows that the model distribution
of the observables accurately reproduces the observed distribu-
tion, and there is only statistical noise left in the residual map.

4
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The following results are all based on the products after 30 it-
erations.

Figure 4 shows the rectified distribution. The main panel
shows thatψr(ξ,η) is confined to a narrow, continuous sequence
along the diagonal direction, revealing a tight correlation be-
tween the edge-on H I line width and the face-on i-band ab-
solute magnitude of H I-selected galaxies. This “ridge” is the
i-band TFR from the full sample of 28,264 H I-selected nearby
(z < 0.06) galaxies in the ALFALFA-SDSS catalog. Note that
because the full sample is used (as opposed to selecting only
high inclination disks as in previous studies), the absence of any
significant secondary trend in the intrinsic distribution shows
that the overwhelming majority of H I-selected galaxies follow
a single correlation.

The TFR is usually parameterized as a power law between
luminosity and velocity-width: L ∝Wβ . Since magnitudes are
used here, the relation translates to:

Mi,face−on = M0 − 2.5β log
(W20,edge−on

250 km/s

)
(17)

where β is the power-law slope and M0 is the absolute magni-
tude at 250 km s−1. To determine these parameters, I first mea-
sure the width of the ridge and the location of its peak at each
absolute magnitude by fitting a Gaussian function along the ve-
locity width direction, and then I find the best-fit power-law
model by minimizing the residuals along the velocity direction,
using the Gaussian σ widths as relative errors. Because the fit
utilizes errors along the axis of velocity width (as opposed to
the magnitude axis or both axes), the result is often called the
“inverse” TFR (Tully & Pierce 2000). The benefit of this ap-
proach is that it minimizes the Malmquist bias in luminosity, so
it is preferred for studies of galaxy distances (a key application
of the TFR).

The best-fit power law to the ridge in the restored distribu-
tion has β = 4.39 ± 0.06 and M0 = −19.77 ± 0.04, which is
shown as a red dashed curve in Figure 4. Nearly the same TFR
(β = 4.26±0.07 and M0 = −19.68±0.04) is obtained using the
conventional method, where individual galaxy’s velocity width
and absolute magnitude are corrected using the inclination an-
gle estimated from its axial ratio (see § 3.4). It should be noted
that the absolute calibration of the TFR requires zero-point-
calibrator galaxies that have distances from standard candles
like the Cepheid period-luminosity relation and the tip of the
red giant branch. Because the distances to the ALFALFA galax-
ies were derived from the Hubble-Lemaître law with an as-
sumed Hubble constant H0 = 70 km s−1 Mpc−1, the goal here is
not to provide an absolute calibration of the TFR, but to demon-
strate the capabilities of the statistical rectification method.

For comparison, the Cosmicflows-4 TFR in i-band has
β = 3.33 ± 0.05 and M0 = −20.01 ± 0.10 (Kourkchi et al.
2020a)2 . The discrepancies between the ALFALFA TFR and
the Cosmicflows-4 TFR are likely due to the differences in
the techniques applied to measure and adjust velocity widths,
apparent magnitudes, and distances. A proper investigation of
this issue requires using the Cosmicflows-4 calibration sample
that includes 648 slope-calibrator cluster galaxies and 94 zero-
point-calibrator galaxies. Because the small sample would lead

2 Converted from parameters Slope, ZP, and Czp listed in their Table 2.

to a noisy input distribution function ϕ̃, it might be preferable to
adopt a parameterized maximum likelihood approach similar to
that of Isbell et al. (2018)3 , rather than the non-parameterized
rectification method described here. In the parameterized ap-
proach, the inclination angle will still be treated as a random
variable with a known PDF instead of a parameter that needs to
be measured from the axial ratio. The parameters of the TFR
and their uncertainties will be constrained by maximizing the
likelihood of the data given the model with a Markov chain
Monte Carlo (MCMC) sampler. In addition, the PDF of the
inclination angle needs to be modified to account for the exclu-
sion of disk galaxies with inclination angles less than 45◦ in the
Cosmicflows-4 sample.

A closer inspection of the ridge in the rectified distribution
reveals significant deviations from a single power law at the
brighter end. As shown in the inset of Figure 4, the departure
from the best-fit power law becomes evident above −22 mag,
where the slope flattens to β ∼ 3.3. Similar curvatures in
TFRs have been reported previously: e.g., the slope of the
Cosmicflows-4 TFR in i-band also decreases above −22 mag,
where the TFR is better fit by a quadratic function of logW
than a linear function (Kourkchi et al. 2020a). The curvature
could be at least partially explained by the H I-selection bias.
Because gas-rich sub-luminous galaxies are preferentially se-
lected than gas-poor luminous galaxies, this bias steepens the
luminosity−line width correlation towards the fainter end. By
adding the “dark” gas mass to the “luminous” stellar mass, the
curvature of the correlation could be minimized, as demon-
strated in previous studies of the baryonic TFR (e.g., McGaugh
et al. 2000; McGaugh 2005; Lelli et al. 2019; Kourkchi et al.
2022).

The width of the restored distribution is a measure of the in-
trinsic scatter of the TFR. In the velocity direction, the loga-
rithmic Gaussian width is roughly constant at Mi < −17, with a
median of σ(logW20) = 0.06 dex. On the other hand, the Gaus-
sian width in the magnitude direction σ(Mi) decreases from
∼0.8 mag to ∼0.4 mag as W20 increases from ∼150 km s−1

to ∼450 km s−1; This is similar to the TFR scatter found in
Kourkchi et al. (2020a). Note that these Gaussian widths of the
ridge should be considered as the upper limits on the intrinsic
dispersion of the TFR, because there could be additional mea-
surement errors that are not included in the joint PDF built in
§ 3.2.

Finally, there are two important by-products from this ex-
ercise. Marginalized over each axis, the rectified distribu-
tion ψr(ξ,η) provides the edge-on H I velocity-width function
and the face-on i-band luminosity function of H I-selected disk
galaxies. Of course, both functions remain uncorrected for the
detection incompleteness and the luminosity-dependent volume
incompleteness. Nevertheless, the effects of inclination cor-
rection is evident when comparing the histograms in the side
panels of Figure 4. The face-on luminosity function is simply
shifted by ∼0.2 mag towards to brighter end. The changes in
the velocity-width function are more pronounced. After the rec-
tification, not only its peak shifts by ∼50 km s−1 to the higher
end, but also its slopes on both sides of the peak become steeper.

3 https://github.com/fuhaiastro/IXF18 provides a Python note-
book of the method.
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Figure 4. The rectified distribution ψr(ξ,η) after 30 iterations. This
is the restored i-band TFR. The red dashed curve in the main panel
shows the best-fit power law. The inset shows the curvature of the
relation by comparing the peak positions of the ridge (black circles)
with the same power law. The gray shaded areas show the Gaussian σ
widths of the ridge in velocity. The side panels compare the marginal-
ized distributions before and after rectification (blue and yellow, re-
spectively). They illustrates the differences between the observed H I-
velocity width function and i-band luminosity function and the recti-
fied functions. Note that selection effects such as the magnitude limit
and the volume incompleteness have not been corrected.

3.4. Comparison with conventional method

Having successfully restored the TFR through rectification,
in this subsection I compare the results with those from the tra-
ditional method of b/a-based individual inclination correction.
The procedure is straight-forward. First, one estimates sin i of
each galaxy using the following equation from Hubble (1926):

sin2 i =
1 − (b/a)2

1 − q2
0

(18)

where q0 is the assumed edge-on axial ratio of the disk. Next,
one corrects the projection effects in both the observed veloc-
ity width and the observed absolute magnitude using the esti-
mated inclination angle of each galaxy and the following rela-
tions (same as Eqs. 8 and 9):

W20,corr =
√

W 2
20 −σ2

0/sin i

Mi,corr = Mi +γ log(cos i) (19)

Finally, one generates the 2D histogram using the inclination-
corrected measurements.

For a fair comparison, I carry out the b/a-based inclination
corrections to the same ALFALFA-SDSS sample. To estimate
the inclination angles, I assume q0 = 0.15 and adopt the r-
band axial ratio from SDSS exponential model fits (Column
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Figure 5. The distribution of the ALFALFA-SDSS galaxy sample
after individual inclination angle correction based on the axial ratio
(b/a). The red dashed curve shows the best-fit power law in Figure 4.
The side panels compare the marginalized distributions before and af-
ter the inclination-angle correction.

expAB_r). When applying the corrections, I adopt σ0 = 30 km
s−1 and γ = 0.73 to be consistent with the rectification anal-
ysis. Figure 5 shows the resulting distribution using the cor-
rected velocity widths and absolute magnitudes. This figure
should be directly compared with Figure 4 to see the significant
differences between the results from the two different meth-
ods. There are substantial populations of “outlier" galaxies that
seem to be either under-corrected or over-corrected in the tradi-
tional method. Due to these outliers, the corrected TFR ap-
pears much broader than that from the rectification method,
with median Gaussian widths of σ(logW20) = 0.13 dex and
σ(Mi) = 0.74 mag. Nevertheless, similar slope and intercept are
obtained by fitting the ridge with a power law (β = 4.26±0.07
and M0 = −19.68± 0.04) and a similar curvature is seen at the
bright end.

The comparison between Figure 4 and Figure 5 shows that the
statistical rectification method produces better results than the
traditional method of individual inclination correction based on
axial ratio, when both methods are applied to the full sample
of ALFALFA galaxies. Now I briefly discuss why this is the
case. When compared with the statistical rectification method,
the main disadvantages of the traditional method include:

1. One additional measurement set, e.g., the axial ratio b/a,
must be used to estimate sin i;

2. The estimated inclination angle are not always reliable,
introducing additional errors to the data;

3. Measurement errors of the observables are not corrected
for.

6
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The first item is particularly problematic at high redshifts when
the angular sizes of galaxies are small compared to the spa-
tial resolution. The latter two items make the resulting TFR
broader, which in turn makes it more difficult to quantify the
intrinsic scatter of the relation.

Why the estimated inclination angles are unreliable? Eq. 18
was first derived by Hubble (1926), who assumed disk galax-
ies were axisymmetric oblate ellipsoids. One faces three main
problems when using this equation to estimate the inclination
angle:

1. The edge-on axial ratio, q0, is not well determined and
likely varies with morphological type and luminosity;
the literature has assumed a range of values between
0.10 ≤ q0 ≤ 0.25 (e.g., Giovanelli et al. 1994; Xilouris
et al. 1999; Übler et al. 2017).

2. Disk galaxies are not axisymmetric. Instead, they show
median ellipticity between 0.07 ≤ ϵ ≤ 0.18 (e.g., Ryden
2006).

3. Axial ratios from different methods differ (e.g., morpho-
logical fitting vs. isophotes) and are affected by observa-
tional conditions.

For these reasons, previous TFR studies have excluded galax-
ies with low inclination angles to minimize the amount of cor-
rection to the velocity widths (e.g., sin i > 0.87 when i > 60◦).
But this exclusion alone would severely reduce the sample size;
e.g., the ALFALFA-SDSS galaxy sample would be reduced by
a factor of three when I exclude galaxies with i < 60◦. This
exclusion not only reduces the statistical accuracy of the re-
sult, but also made it impossible to assess whether the excluded
sample follows the same intrinsic correlation as the included
sample.

4. Summary and Future Prospect
The TFR is an important empirical correlation between the

edge-on rotation velocity and the face-on luminosity of disk
galaxies. To determine this relation, three sets of observed
properties are typically required: galaxy-integrated line widths
(W ), absolute magnitudes (M), and the axial ratios (b/a). The
axial ratios are needed because the first two observed properties
needed to be corrected for the inclination angle (i) of the disk.
In this work, I have demonstrated a rectification method that
replaces individual inclination correction with ensemble statis-
tical correction. It determines the TFR with only two sets of ob-
servables (W and M) and utilizes the full sample of disk galax-
ies regardless of their inclination angles. The general philoso-
phy of the method is as follows. When the observed properties
can be converted from the intrinsic properties and the inclina-
tion angles with some known relations, one can predict joint
PDF of the observed properties by assuming randomly oriented
disks and random measurement errors. The recovery of the dis-
tribution of the intrinsic properties from the distribution of ob-
servables then becomes a reversal of the law of total probability
in Eq. 1 that can be tackled numerically with the iterative recti-
fication algorithm of Lucy (1974).

The statistical rectification method will be particularly use-
ful for TFR studies at high redshift, where it is difficult to

estimate the inclination angles because of limited spatial res-
olution. Here I have demonstrated the method with a low-
redshift galaxy sample because H I measurements are avail-
able and the data set allows a direct comparison with the con-
ventional method of individual inclination correction. With
28,264 H I-detected disk galaxies from the ALFALFA-SDSS
survey at z< 0.06, I show that the rectified distribution of edge-
on H I line width and face-on i-band absolute magnitude of
H I-selected disk galaxies follows a sharp power-law relation,
Mi = M0 − 2.5β [log(W20,HI/250km/s)], with β = 4.39 ± 0.06
and M0 = −19.77±0.04. The intrinsic dispersion of the TFR in
velocity width is almost constant, with σ(logW20) ≲ 0.06 dex
between −23 < Mi < −17, while the dispersion in absolute
magnitude, σ(Mi), decreases from ∼0.8 mag among slow ro-
tators to ∼0.4 mag among fast rotators. A closer examination
of the restored TFR reveals significant deviations from a sin-
gle power law at the brighter end, confirming previous studies.
The absence of any significant secondary trends in the rectified
distribution shows that essentially all H I-selected disk galax-
ies follow a single TFR. In addition, the rectified distribution
marginalized over each axis provides the inclination-corrected
H I velocity width function and the luminosity function of these
galaxies, both of which show significant changes from the un-
corrected distributions.

Moving forward, the method can be applied to investigate the
baryonic TFR of ALFALFA galaxies, by converting the avail-
able H I flux and optical photometry to gas mass and stellar
mass. To make the results comparable to the Cosmicflows-4
baryonic TFR (Kourkchi et al. 2022), special attention must
be paid to H I velocity width measurements, magnitude mea-
surements and corrections, mass-to-light ratios, molecular-to-
atomic gas ratios, and degeneracies among the suite of mod-
eled parameters. A number of important biases should also be
quantified and corrected with the help of synthetic data sets:
e.g., the residual Malmquist bias from the increasing luminos-
ity limit at greater distances, asymmetric magnitude scattering
when the number density of galaxies decreases exponentially
with luminosity, the bright-end curvature of the TFR, and the
H I flux limit that preferentially select more gas-rich galaxies
at greater distances (Kourkchi et al. 2020b, 2022). Of course,
the same biases affect the i-band TFR in this work. The re-
sulting baryonic TFR can be calibrated onto the absolute scale
using spiral galaxies with standard candle distances from the
Cepheid period-luminosity relation and the tip of the red giant
branch, and the required vertical offset would provide a con-
straint on the Hubble constant H0 (although the result is funda-
mentally limited by the systematic uncertainties of the distance
calibrators).

The method has a wide range of applicability in observational
astronomy. It can be applied to any observational problems
where (1) the observed properties can be converted from the in-
trinsic properties by a relation that involves a “hidden” parame-
ter (e.g., i) and (2) the PDF of the hidden parameter is precisely
known. For example, in future studies of disk galaxies beyond
the TFR, the method can be used to restore the distributions of
edge-on disk thickness (q0) and face-on ellipticity (ϵ) as func-
tions of face-on absolute magnitude (i.e., extending the work of
Binney & de Vaucouleurs 1981; Vincent & Ryden 2005; Ryden
2006; Roychowdhury et al. 2010). The potential of the method
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grows stronger with the increasing number of astronomical sur-
veys generating statistical datasets encompassing large samples
of galaxies near and far.

I thank the referee, Brent Tully, for providing comments that
improved the Letter. I also appreciate the discussions with my
colleagues Steve Spangler, Ken Gayley, and Kevin Hall. This
work is supported by the National Science Foundation (NSF)
grant AST-2103251.
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