
Astronomy & Astrophysics manuscript no. output ©ESO 2024
June 21, 2024

Letter to the Editor

Magnetic braking below the cataclysmic variable period gap and
the observed dearth of period bouncers

Arnab Sarkar1, Antonio C. Rodriguez2, Sivan Ginzburg3, Lev Yungelson4 and Christopher A. Tout1

1 Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 OHA, UK
e-mail: as3158@cam.ac.uk

2 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
3 Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
4 Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya Str.,119017 Moscow, Russia

Received xx; accepted xx

ABSTRACT

Context. Period bouncers are cataclysmic variables (CVs) that have evolved past their orbital period minimum. The strong disagree-
ment between theory and observations of the relative fraction of period bouncers is a severe shortcoming in the understanding of CV
evolution.
Aims. We test the implications of the hypothesis that magnetic braking (MB), which is suggested to be an additional angular momen-
tum loss (AML) mechanism for CVs below the period gap (Porb ≲ 120 min), weakens around their period minimum.
Methods. We computed the evolution of CV donors below the period gap using the MESA code, assuming that the evolution of
the system is driven by AML due to gravitational wave radiation (GWR) and MB. We parametrised the MB strength as AMLMB =
κAMLGWR. We computed two qualitatively different sets of models, one in which κ is a constant and another in which κ depends on
stellar parameters in such a way that the value of κ decreases as the CV approaches the period minimum (Porb ≈ 80 min), beyond
which κ ≈ 0.
Results. We find that two crucial effects drive the latter set of models. (1) A decrease in κ as CVs approach the period minimum stalls
their evolution so that they spend a long time in the observed period minimum spike (80 ≲ Porb/min ≲ 86). Here, they become difficult
to distinguish from pre-bounce systems in the spike. (2) A strong decrease in the mass-transfer rate makes them virtually undetectable
as they evolve further. So, the CV stalls around the period minimum and then ‘disappears’. This reduces the number of detectable
bouncers. Physical processes, such as dynamo action, white dwarf magnetism, and dead zones, may cause such a weakening of MB
at short orbital periods.
Conclusions. The weakening MB formalism provides a possible solution to the problem of the dearth of detectable period bouncers
in CV observational surveys.
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1. Introduction

One of the most important challenges in our understanding of
the evolution of cataclysmic variables (CVs, Warner 2003) is
period bouncers. These are CVs that, according to the theory
of CV evolution, widen their orbital separation after reaching a
minimum in their orbital period, Porb, owing to an interplay be-
tween their mass-loss timescale, thermal timescale, and degen-
eracy (Paczynski & Sienkiewicz 1981). However, the predicted
fraction of period bouncers (70% by Kolb 1993, 40% by Go-
liasch & Nelson 2015) is much greater than that inferred obser-
vationally (14% by Pala et al. 2020, a few percent by Inight et al.
2023b).

Pala et al. (2020) point out that current models of CV evolu-
tion (e.g. Knigge et al. 2011) possibly do not correctly describe
their evolution.1 An important ingredient governing the evolu-
tion of such CVs is magnetic braking (MB). It is well established

1 We note that, currently, virtually all theoretical population studies of
CVs treat AML by MB, following the law that extrapolates empirically
derived time-dependence of rotational velocities of ≈10 km/s of single
stars (Skumanich 1972) to components of CVs with rotation velocities
of ≈100 km/s (Verbunt & Zwaan 1981; Rappaport et al. 1983).

now that there may be a mechanism of angular momentum loss
(AML) operating below the period gap (Pgap, 2 ≲ Porb /hr ≲ 3)
in addition to AML by gravitational wave radiation (GWR). This
is because the period minimum, Pmin ≈ 70 min, by a system
evolved solely with AMLGWR (Kalomeni et al. 2016) disagrees
with observations, which find that Pmin ≈ 80 min (Gänsicke et al.
2009). Knigge et al. (2011) suggested that the existence of an ad-
ditional AML below the period gap that is stronger by a factor of
1.47 than the AMLGWR can reproduce the Pmin of CV correctly.
However, there is no evidence that AML in short-period CVs can
be simply described by a scaling factor applied to AMLGWR or
that this scaling factor remains constant throughout the evolution
of these CVs. Changing the AML strength of CVs at short peri-
ods has strong implications not only on their evolution but also
on their detectability. The latter strongly depends on the inferred
mass-transfer rate of the system (Appendix C). The essence of
our proposed solution to the dearth of observed period bouncers
is that although period bouncers exist, they are either difficult to
distinguish from pre-bouncers, or simply not detectable.

In Sect. 2, we describe our weakening MB paradigm and
illustrate its results. In Sect. 3, we discuss the physical pro-
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cesses that can weaken MB in short-period CVs. We conclude
in Sect. 4.

2. The weakening magnetic braking paradigm

Here, we describe our approach to study the implications of an
MB strength that weakens around the CV period minimum.

2.1. Binary evolution calculation

We computed the evolution of CVs starting from a detached sys-
tem with a fully convective donor of mass M2, i = 0.2M⊙, a
WD accretor of mass M1, i = MWD, i = 0.8M⊙, and an initial
period of Porb, i = 3.18 hr using version r23.05.1 of MESA (Pax-
ton et al. 2011, 2013, 2015, 2018, 2019; Jermyn et al. 2023).
The system parameters were chosen such that Porb, i is the up-
per limit of Pgap and M2, i is the donor mass at Pgap reported by
Knigge et al. (2011). All our results were obtained by modify-
ing jdot_multiplier in project_inlist in the MESA code,
which multiplies AMLGWR by the factor jdot_multiplier.
We call this factor 1 + κ. We defined κ as a parametrised es-
timate of the strength of AMLMB. This approach is similar to
that of Knigge et al. (2011). However, here κ may also depend
on stellar parameters (Sect. 2.2). We assume fully conservative
mass transfer so that the only mechanisms of AML are GWR
and MB.

We note importantly that no unique M2,gap exists for all CVs,
as is known from observations and theoretical computations (e.g.
Knigge et al. 2011 and Sarkar & Tout 2022). This is because for
un-evolved CV donors, M2,gap and the lower end of the period
gap, at which mass transfer resumes (Pgap,−), depend on M1 and
the MB strength above the period gap. If we assume that the
initial strength of MB below the period gap depends on stellar
parameters, M2,gap and Pgap,− set the initial κ of our systems. In
the next section, we choose how κ behaves as the CV evolves.

2.2. The method

We considered two qualitatively different sets of models, one in
which κ is a constant throughout and another in which κ varies
with stellar parameters. In the first set, we computed models
evolved with κ = 0, 4, and 15 (Fig. 1). The latter two κs are
purely ad hoc and were chosen to aid understanding of an MB
that depends on stellar parameters, described later. The system
with κ = 0 evolves solely with GWR and represents the mini-
mum Porb of a given M2. Systems such as polars (AM Her sys-
tems, Li et al. 1994), in which there is no MB, follow this track.
In zero-age CVs with some degree of MB, κ > 0 initially. We
plot in Fig. 1 CVs with donor masses and periods, estimated
from superhump periods, assuming M1 = 0.75M⊙ by Knigge
(2006, their Table 1).2 There is quite a bit of scatter among these
points and they do not seem to converge on a unique evolutionary
track. This illustrates that varying strengths of MB likely operate
below the period gap.3 However, studying the significance of this
effect is beyond the scope of this Letter. The track with κ = 15
matches with the systems with the biggest Porb for a given M2 in
the catalogue of Knigge (2006). So, hereinafter, we assume that

2 These are pre-bounce CVs. The M2 for post-bounce CVs was calcu-
lated differently (Sect. 2.3).
3 We note that the scatter of the systems in the catalogue of Knigge
(2006) may be the result of other evolutionary processes which can alter
the thermal timescale of the donor.

the tracks with κ = 15 and κ = 0 exhibit, respectively, the upper
and lower limits of Porb for a given M2.

The other set of tracks, in which κ varies with stellar param-
eters, illustrates the behaviour of the system when the strength
of MB depends on stellar structure and changes as the donor
evolves. We used the result of the strong- and weak-field dy-
namo for fully convective low-mass stars proposed by Morin
et al. (2011) to model such an MB strength. They argued, based
on spectropolarimetric observations by Morin et al. (2010), that
two different magnetic field profiles exist in isolated fully con-
vective stars with similar rotation rates and masses. The first is
a strong and steady axial dipole field and the second is a weak,
multi-polar non-axisymmetric field that is changing rapidly. Be-
cause donors in short-period CVs are fully convective, it is pos-
sible that a strong-field dynamo also operates in such CV donors
in which it drives MB. So, we used the formula for the magnetic
field given by Morin et al. (2011, their Eq. (2)) to define κ (for
details on how they derive their magnetic field expression, we
urge the reader to refer to their Sect. 4.2). Other physical mech-
anisms that may lead to a stellar-dependent κ are discussed in
Sect. 3.

We defined a dimensionless quantity, B, as a proxy for the
magnetic field as4

B =
6 kG

19.5 kG

(
M2

M⊙

)1/2 (
R2

R⊙

)−1 (
L2

L⊙

)1/6 (Porb

d

)−1/2

, (1)

where R2 and L2 are the radius and the luminosity of the donor,
respectively. We computed these using MESA. The last term in
Eq. (2) of Morin et al. (2011) is (Pspin/ d)−1/2, where Pspin is
the spin period of the M-dwarf. This becomes (Porb/ d)−1/2 in
our Eq. (1) because of tidal locking. The denominator 19.5 kG
is the dipolar field at the time of the commencement of Roche
lobe overflow (RLOF). This ensures that B < 1 throughout the
evolution. We plot two tracks in which κ = 15 B2 and κ = 15 B4.
The exponents are ad hoc but highlight the varying degrees of
the dependence of MB strength on the magnetic field, and hence
the stellar structure. They also lead to the system attaining Pmin
at 86 and 80 min, respectively (Fig. 1), which are the upper and
lower limits of the observed period minimum spike reported by
Gänsicke et al. (2009). The behaviour of B can be understood
as follows. Because of RLOF and the fact that the donors are
close to thermal equilibrium, R2, L2, and Porb are functions of
M2, and so B ≡ B(M2) and Porb ∝ R3/2

2 M−1/2
2 . For our donors,

L2 ∝ Mβ2 , in which 2 ≲ β ≲ 4 depending on the mass-transfer
rate. If we define R2 ∝ Mα2 , we get B ∝ M3/4+β/6−7α/4

2 . We have
α > 0 pre-bounce and α ≲ 0 post-bounce. Choosing β = 3, α =
0.6 pre-bounce and α = 0.3 post bounce (similar to eq. (16) of
Knigge et al. 2011), we get B ∝ M0.2

2 pre-bounce and B ∝ M0.725
2

post-bounce. So, post-bounce B decreases strongly because of a
change in the M2 − R2 relation of the donor. The evolution of B
is shown in Fig. 1.

2.3. Results

We follow the evolution of the models with κ = 15B2 and
κ = 15B4 in the M2 − Porb plane. At M2 ≈ 0.2M⊙, these systems
are driven by strong MB so they follow the track with κ = 15.

4 There is an additional term (η⊙/ηref)1/2 in the expression of the mag-
netic field in Morin et al. (2011). Here ηref ≡ 1011 cm2 s−1 is the mag-
netic diffusivity and η⊙ is the reference magnetic diffusivity. Studying
how this term varies for our CVs is beyond the scope of this work. So
we set (η⊙/ηref) = 1.
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Fig. 1. Evolution of CVs below the period gap. The solid lines show the tracks on the M2 − Porb plane (lower x- and left y-axis). The dashed
tracks in the M2 − B plane (lower x- and right y-axis) show the evolution of B (Eq. (1)) for the models in which κ depends on stellar parameters.
The ticks on each solid track denote timesteps of 300 Myr. The different colors correspond to different κs. The grey points are CVs reported by
Knigge (2006, their Table 1). We also plot observed period bouncer candidates from Table B.1. Eclipsing systems are plotted as circles, while
non-eclipsing systems are plotted as triangles. The horizontal shaded region is the observed period minimum spike (80 ≲ Porb/min ≲ 86) reported
by Gänsicke et al. (2009). The squares of different colors show when the system has Ṁ2 = 10−11 M⊙ yr−1. During further evolution, the system is
presumably undetectable (see text).

However, B starts decreasing gradually at M2 ≈ 0.125M⊙ and
substantially when M2 ≲ 0.05M⊙. This leads to the weakening
of the MB strength. We note, importantly, that for all our mod-
els, the absolute value of AML decreases as the CV evolves (see
Appendix A). So, the ‘weakening’ of MB is the additional weak-
ening of the MB strength caused by B (Fig. A.1). The weaken-
ing of MB is such that the donor star always adjusts to it on
its thermal timescale. The extent of the weakening depends on
the exponent of B. Close to their respective Pmin, MB becomes
negligible. This can be understood with Eq. (1) — further evolu-
tion decreases M2 and increases R2 and, as a consequence, Porb.
These systems, now only driven by GWR, evolve further to con-
verge to the κ = 0 track. This causes their evolution timescale
to drastically increase around and beyond their Pmin. Owing to
their long evolutionary timescales, these systems stall in the pe-
riod minimum spike and spend a lot of time there compared to
systems evolved with a constant κ. Because the systems are clus-
tered around the period minimum spike, here it is very difficult
to distinguish between pre-bounce and post-bounce systems ob-
servationally (Pala et al. 2018). We highlight that the weaken-
ing MB models also reproduce the period minimum reported by
Knigge et al. (2011) but that the M2 at which Pmin is attained is
much smaller than the 0.069M⊙ reported by Knigge et al. (2011).
So, if MB weakens in near-Pmin CVs, our models suggest that
most of the period bouncer candidates in Fig. 1 are pre-bounce
CVs.

At this stage the problem is far from over. Any MB strength
below the period gap will only accelerate the evolution of short-
period CVs towards their period minimum and drive more CVs
to form period bouncers. This will lead to more period bouncers
than are predicted solely using GWR (e.g. Kolb 1993, Goliasch
& Nelson 2015), and thus exacerbate the classical problem of
the dearth of observed period bouncers. For a detectable period
bouncer we not only need Porb ≥ Pmin and M2 ≤ M2(Pmin), but

also Ṁ2 > Ṁ2, detect, where Ṁ2, detect is the detection threshold in
the mass-transfer rate, Ṁ2.

All of our candidate bouncer CVs (Table. B.1) have Ṁ2 (es-
timated by Eq. (C.1) using WD properties) about a few times
10−11M⊙ yr−1 (also see Pala et al. 2022). So, we assume an op-
timistic detection threshold of Ṁ2 = 10−11M⊙ yr−1 such that any
system below this limit is undetectable. The impact of such ob-
servational selection effects have been explored in the past (e.g.
Pretorius et al. 2007, Inight et al. 2023a). This limit is likely to
change with emerging data from optical and X-ray surveys, such
as SDSS-V (Kollmeier et al. 2017) and SRG/eROSITA (Pre-
dehl et al. 2021; Sunyaev et al. 2021), respectively. The former
has already led to the discovery of new period bouncer candi-
dates, which are optically fainter than much of the population
(Inight et al. 2023b). The latter is five to 15 times deeper than
the last all-sky X-ray survey, potentially revealing systems with
lower accretion rates; for instance, the bouncer candidate re-
ported by Galiullin et al. (2024). In Appendix C, we discuss the
effects of using Ṁ2 derived from X-ray luminosity and its limita-
tions. Later in this section we also discuss the effect of changing
Ṁ2, detect.

A complete picture of how the weakening of MB can reduce
the number of detectable period bouncers is shown in Fig. 2. We
chose Ṁ2, detect = 10−11M⊙ yr−1 (circles in each track), beyond
which the system becomes undetectable. Although Ṁ2, detect is
model-independent, how a variable MB strength drives a sys-
tem to reach this Ṁ2, detect is model-dependent. In the t − Ṁ2
plot, it can be seen that the Ṁ2 of the k = 15B4 model attains
Ṁ2, detect earlier than that of the other two models. The time evo-
lution of Porb and M2 is affected because of this. In the t − Porb
plot, the κ = 4 model bounces at 80 min and becomes unde-
tectable at 105 min at t = 0.94 Gyr. The κ = 0 model bounces
at 65 min and becomes undetectable at 78 min at t = 1.15 Gyr.
The k = 15B4 model bounces at 80 min and becomes unde-
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Fig. 2. Time evolution of Porb, M2, and Ṁ2 for three choices of κ. The
vertical black line in each subplot is the time at which the system at-
tains its period minimum (tbounce). The circles and pluses in each track
mark detection thresholds of Ṁ2 = 10−11 M⊙ yr−1 and 5 × 10−12 M⊙ yr−1

(see text). The shaded region in the top subplot is the observed period
minimum spike.

tectable at 83 min at t = 0.48 Gyr. So the weakening MB sys-
tem becomes undetectable earlier and without much change in
Porb post-bounce (there is only about a 3 min difference between
bounce and non-detection). The κ = 4 and κ = 0 models have
a large difference between the Porb in which they bounce and in
which they become undetectable. The same is true in the t − M2
plot. In the model with weakening MB, there is little change in
its M2 between bounce and non-detection, while the change is
more significant for the κ = 0 and κ = 4 models. The results do

not change qualitatively if we take Ṁ2, detect = 5 × 10−12M⊙ yr−1

(pluses in each track), the limit we expect from SRG/eROSITA
(Galiullin et al. 2024). In other words, we conclude that the
weakening of MB greatly slows down the evolution of the sys-
tem, with lesser change in M2 and Porb, from the time it bounces
to the time it becomes undetectable. However, we note that all
our tracks asymptotically tend to Ṁ2 = 10−12M⊙ yr−1. So, our
idea makes a strong testable prediction for finding many low-
luminosity bouncers aggregated at Ṁ2 ≈ 10−12M⊙ yr−1 in the
upcoming surveys (e.g. Galiullin et al. 2024). A dearth of CVs
at these Ṁ2 will easily falsify this theory, although finding such
low Ṁ2 might be difficult (see Appendix C). The evolution of
the models in the Ṁ2 − Porb plane is shown in Fig. C.1 and dis-
cussed in detail in Appendix C.

For Ṁ2, detect = 10−11M⊙ yr−1, our weakening MB model
(κ = 15B4) predicts a reduction in the time spent by a system as
a detectable bouncer by a factor of 2.35 compared to the GWR
model. Simply reducing the fraction of bouncers predicted by
solely using GWR in Kolb (1993, about 70%) and Goliasch &
Nelson (2015, about 40%) by 2.35, we get equivalent fractions
of detectable period bouncers of about 30% and 17%, respec-
tively. We note that the estimates of Kolb (1993) and Goliasch
& Nelson (2015) are the fraction of all period bouncers. The
detectable ones are a small subset of it. Additionally, a further
reduction to match the observationally inferred estimates (e.g.
Inight et al. 2023b) is possible because we show that detectable
bouncers populate the period minimum spike that is also popu-
lated by pre-bounce CVs. Here, they are difficult to distinguish
observationally (Pala et al. 2018).

We note that although Inight et al. (2023a,b) show that
bouncers make up only a few percent of the total CV population,
this population also consists of magnetic CVs, which follow a
different evolution than non-magnetic CVs (Li et al. 1994). If
we assume that bouncers remain non-magnetic throughout (al-
though see Sect. 3.2), a better estimate of the fraction of bounc-
ers amongst all non-magnetic short-period CVs can be obtained
from the top panel of fig. 33 of Inight et al. (2023a). Here, we
designate SU UMa systems as pre-bounce CVs and assume that
most WZ Sge are bouncers. These assumptions, although crude,
allow us to approximate that period bouncers make up roughly
30% of all non-magnetic CVs below the period gap in the SDSS I
to IV catalogue.

We perform a direct comparison of our results with that of
Inight et al. (2023a) using the distribution of the evolution time
spent by our systems as a function of Porb and Ṁ2 in Fig. 3. Be-
cause we make no claims on the nature of MB above the period
gap, we assume that all our models follow identical evolution till
the lower end of the period gap. So, the time spent by a system at
a given Porb and Ṁ2 interval below the gap is proportional to the
number of systems in that interval. As was expected, it is seen
that the intrinsic distribution of short-period non-magnetic CVs
is dominated by bouncers. The intrinsic fraction of bouncers is
about 74% for κ = 0, 82% for κ = 4, and 87% for κ = 15B4.
This was also expected, because in the κ = 15B4 model we in-
troduce a substantial MB at the beginning, which drives more
CVs towards becoming bouncers.

Because the κ = 4 and κ = 15B4 models have similar
Pmin, we analysed how their features may compare with obser-
vations. We calculated the number of bouncers that would have
to become invisible below a certain Ṁ2 cut-off 5 for our frac-
tion of visible period bouncers to corroborate the 30% that we
obtained from fig. 33 of Inight et al. (2023a). For κ = 15B4,

5 These need not necessarily be our previous Ṁ2,detect.
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the limit is Ṁ2 ≈ 1.2 × 10−11M⊙ yr−1, so that about 94% of
the intrinsic bouncers become invisible. For κ = 4, the cut-
off is Ṁ2 ≈ 3.2 × 10−11M⊙ yr−1, so that about 90% of the in-
trinsic bouncers become invisible. The factor of 2.7 between
the Ṁ2 cut-off in the two models may not seem dramatic, so
its significance needs to be emphasised. For an Ṁ2 cut-off of
≈ 1.2×10−11M⊙ yr−1, the fraction of bouncers in the κ = 4 model
increases to about 50%, meaning that 20% of bouncers exist for
1.2×10−11 ≲ Ṁ2/M⊙ yr−1 ≲ 3.2×10−11. In other words, for any
detection cut-off in Ṁ2, our weakening MB models will be more
affected than the constant MB ones and corroborate observations
better.

We note that there is no reason to suggest that our analy-
ses with an ad hoc power of B in an expression of MB derived
from the prescription of Morin et al. (2011) would provide a ro-
bust comparison with the detailed observational work of Inight
et al. (2023a,b). In this work, we just show that for a given ob-
servational cut-off, the number of detectable bouncers reduces
strongly if MB weakens post-period minimum. The strength of
this reduction, in turn, depends on how strongly MB weakens.
An extreme case of this is if post-minimum, MB weakens on a
dynamical timescale. In such a case, the CV detaches, as is sug-
gested by Inight et al. (2023a), and remains so for about a Gyr
(see Fig. 2) till GWR resumes RLOF.

It is important to discuss our results in the context of certain
population synthesis studies; for instance, Pretorius et al. (2007)
and Belloni et al. (2020). They find, using MB from Verbunt
& Zwaan (1981) and Rappaport et al. (1983) above the period
gap, respectively, and no MB below the gap, that the intrinsic
CV population cannot contain as large a fraction of short-period
systems, specifically period bouncers, as is predicted by theory
and that selection effects (such as our Ṁ2, detect cut-off) cannot
reconcile the predictions of CV evolution theory with observa-
tions. At first glance, these results seem to defeat the main idea in
this paper, in which our claim that there is an MB strength about
15 times as strong as AMLGWR below the period gap exacer-
bates this apparent discrepancy. However, we note that the intrin-
sic populations constructed by Pretorius et al. (2007) and Bel-
loni et al. (2020) entirely depend on their assumed MB strength
above the period gap. There is evidence to suggest that a weaker
MB possibly operates above the gap (Knigge et al. 2011). A
weaker MB above the period gap lowers the birthrate of all CVs,
which agrees with Pala et al. (2020), who find a lower space
density of CVs. Fig. 2 of Knigge et al. (2011) illustrates that the
AML strengths via MB in Verbunt & Zwaan (1981) and Rap-
paport et al. (1983) are about two orders of magnitude stronger
than GWR above the period gap. So, no matter what strength of
MB we choose below the gap, too many CVs have already been
driven below the period gap by the strong MB above the gap and
so a discrepancy between theory and observations is bound to
arise. What causes the discrepancy between theoretical predic-
tions and observations is not what one chooses as MB below the
period gap but what one chooses as MB above the period gap. In
other words, a modest initial MB strength of about 15AMLGWR
below the period gap cannot undo the accumulation of CVs al-
ready dumped there by a strong MB above the gap. Because we
make no claims about MB above the gap in this work, there is no
reason for our idea to corroborate studies in which the theoreti-
cal CV population is entirely shaped by uncertain estimates of a
strong MB above the period gap.
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Fig. 3. Distributions of the evolution time spent at each increment
of Porb and Ṁ2 for three choices of κ. The stars denote pre-bouncers
(M2 > M2(Porb = Pmin)) and triangles denote post-bouncers. Top panel:
Systems evolving from right to left as pre-bouncers (star symbols) and
from left to right (triangles) post-bounce. Bottom panel: Systems evolv-
ing from right to left.

3. Physical processes driving the weakening of
magnetic braking

We highlight a few physical processes that may cause the weak-
ening of MB in short-period CVs. We note that this list is not
exhaustive and that there can be additional mechanisms driving
such a weakening.

3.1. Dynamo action in cool stars

In Sect. 2.2, we showed that if the strong-field dynamo pro-
posed by Morin et al. (2011) operates in short-period CV donors,
Eq. (1) causes B to reduce significantly for M2 ≲ 0.07M⊙. There
is observational evidence to suggest that stars with Teff ≲ 2200 K
such as L-dwarfs have significantly lower chromospheric activ-
ity compared to M-dwarfs despite being rapid rotators (Mohanty
& Basri 2003). This means that the magnetic field strength drops
from fully convective M-dwarfs to brown dwarfs. In Sect. 2.2,
we showed that this drop may be due to the change in the mass-
radius relation of the star. The results of the α2 dynamo model
proposed by Chabrier & Küker (2006) have also shown, simi-
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larly to Morin et al. (2011), that there is a transition in the mag-
netic field structure from a steady, large-scale field in late M-
dwarfs to a toroidal, oscillatory one in brown dwarfs. In addition,
the conductivity of the atmosphere of cool objects such as brown
dwarfs decreases greatly, thereby hampering the formation of a
hot corona that would drive stellar winds. The combined effect of
weaker stellar winds and reduced magnetic field strength drives a
weaker MB in brown dwarfs (Mohanty & Basri 2003; Chabrier
& Küker 2006). In other words, if such a dynamo operates in
short-period CV donors, MB reduces significantly as the donor
enters the brown dwarf regime (M2 ≲ 0.07M⊙).

3.2. White dwarf magnetism

Isern et al. (2017) suggest that cool WDs generate strong mag-
netic fields by a crystallization-driven dynamo. Schreiber et al.
(2021) show that magnetic CVs can be explained by the rapid
rotation and crystallization of the WD accretors, which can gen-
erate fields of several MG (Ginzburg et al. 2022). Schreiber et al.
(2023) have recently proposed that such fields are generated
in the accretor of short-period CVs post-period minimum. This
field connects with that of the donor star, resulting in the de-
tachment of period bouncers for several gigayears. They argue
that this can lead to a reduction of about 60% in the number of
observed bouncers.

We illustrate a variation in their analysis in which the CV
may remain semi-detached. Schreiber et al. (2023) assume that
the diffusion timescale of the magnetic field to the WD surface
is 100 Myr (Fig. 3 of Ginzburg et al. 2022). However, recently
Blatman & Ginzburg (2024) showed that the magnetic field on
the WD surface gradually emerges on a gigayear timescale (their
bottom right subplot in Fig. 1). By consistently taking into ac-
count phase separation, they find that the magnetic diffusion time
is about 1 Gyr at the time of breakout and shortly afterwards
(this also depends on the WD mass).The donor has a thermal
timescale of around a few gigayears, depending on the mass-
transfer rate. Since the thermal timescale of the donor is compa-
rable to the diffusion timescale of the WD magnetic field, there
is a possibility that the donor adjusts to the reduction in MB
because of magnetic reconnection post-period minimum, while
continually filling its Roche lobe. In such a case, the evolution
will be similar to that presented in Sect. 2. However, such a
weakening depends on the properties of the WD accretor, such
as its mass and temperature, but is independent of the donor
star transitioning from an M-dwarf to a brown dwarf. So, such
systems would not necessarily experience an MB weakening at
M2 ≈ 0.07M⊙ but when the WD becomes magnetic (Schreiber
et al. 2023).

3.3. Dead zones

The dead zone is the region around a spinning magnetised star in
which the stellar wind is captured and forced to co-rotate along
its magnetic field lines (Mestel & Spruit 1987). This leads to a
reduction in wind mass loss and, as a consequence, the strength
of MB. Dead zones were first studied by Mestel & Spruit (1987)
who gave a simple description for isolated solar-like stars with
different rotation rates. Subsequently, several groups have im-
plemented the effects of dead zones in their calculations of MB
torque in stellar spin-down (Réville et al. 2015; Garraffo et al.
2015). Because dead zones arise through the interplay of grav-
ity, centrifugal force, and magnetism in the star, they should be
at play in every system undergoing MB. This includes the donor
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Fig. 4. Evolution of the dead zone relative to that at the beginning of
RLOF, fDZ/ fDZ, i, with M2 for the models with constant κ. The colours
denote the same models as in Figs 1 and C.1, with κ = 0 shown in blue,
κ = 4 in green, and κ = 15 in black. The line styles denote the choice
of ζd. The dead zone for each track was calculated post-evolution using
the method of Mestel & Spruit (1987).

stars in CVs. The only difference here is that, owing to tidal lock-
ing, Porb governs the behaviour of the dead zone. We calculated
the evolution of dead zones using the simple treatment of Mestel
& Spruit (1987, their Eqs (8) and (9)), adopting solar param-
eters for the coronal temperature and mean molecular weight.
The choice of these parameters does not alter the qualitative be-
haviour of our dead zone calculations.

For the expression of the ratio of the magnetic pressure and
the thermal pressure at the base of the dead zone, ζd, we can
study the behaviour of two cases: ζd = 60(Ω/Ω⊙) and ζd =
60(Ω/Ω⊙)2, from Table 1 of Mestel & Spruit (1987). Here, Ω
is the orbital angular velocity of the CV. The evolution of the
dead zone of the donor star for the models with constant κ in
Fig. 1 is shown in Fig. 4. Here, fDZ = R2/RDZ is the fraction of
field lines contributing to MB in the system, where RDZ is the
equatorial radius of the dead zone. With no dead zones, fDZ = 1.
The value fDZ, i denotes the contribution of dead zones at the time
of commencement of RLOF.6 These tracks demonstrate how the
dead zones would behave in a short-period CV. It is seen that
when ζd ∝ Ω, fDZ changes very little throughout the evolution.
However, the dead zones grow ( fDZ becomes smaller) with de-
creasing M2 when ζd ∝ Ω2, with the drop becoming steep at
M2 ≈ 0.05M⊙. A stronger dependence of ζd onΩ yields a steeper
drop in fDZ. One way in which MB affects dead zones is through
the generated magnetic field in the donor (say, by a strong-field
dynamo or an α2 dynamo) that governs the magnetic pressure
outside the star (through ζd). Dead zones work as an additional
mechanism of MB alteration that is always at play regardless of
the physical mechanism that drives MB. It can further weaken
MB if d ln ζd/ d lnΩ ≳ 2 (Fig. 4).

4. Conclusion

In this Letter, we have shown that the weakening of MB in
short-period CVs can help explain the dearth of observed pe-
riod bouncers. The main idea behind this stems from the fact
that to reproduce the correct CV period minimum there ought to

6 We note that this plot is made post-evolution so that dead zones do
not alter the MB strength of these models.
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be some additional AML mechanism below the period gap. This
need not necessarily be a constant scaling to GWR, as was em-
ployed by Knigge et al. (2011). We introduce an MB at the lower
end of the period gap that decreases as the CV approaches its
period minimum and find that such a prescription also correctly
reproduces the period minimum at about 80 min. In contrast to
the systems with constant scaling, these systems spend consid-
erable time around the observed period minimum spike between
80 and 86 min even after they have passed their minimum pe-
riod. There, they become difficult to distinguish from pre-bounce
systems. The mass-transfer rate decreases below the current de-
tection threshold during further evolution driven by GWR and
weakening MB.

A direct comparison of our results with observations of the
relative fraction of bouncers is difficult because of our ad hoc
prescription of MB weakening and an uncertain detection thresh-
old. So, we compare the constant MB models with the weaken-
ing MB ones for a range of detection thresholds and find that
the latter shows a stronger reduction in the number of observ-
able bouncers. Our models predict that the undetectable bounc-
ers accumulate around Ṁ2 ≈ 10−12M⊙ yr−1, which can be tested
with upcoming surveys that will hopefully reveal low-luminosity
bouncers.

The weakening of MB can be caused by physical processes
such as a change in the dynamo action in the donor that drives
weaker chromospheric activity, the emergence of magnetism in
the white dwarf accretor that connects with that of the donor,
and thus restricts the outflow of stellar winds, and dead zones
in the donor trapping stellar winds. Nevertheless, we admit that
the paucity of observed period bouncers may be caused by other
selection effects, too, or as-yet-unrecognised physical effects.
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Fig. A.1. Evolution of J̇ with M2 for the models in Fig. 1.

Appendix A: Evolution of angular momentum loss

In Fig. A.1, we plot the evolution of the total AML rate, J̇ ≡
AMLGWR + AMLMB, with the donor mass. We note that al-
though −J̇ decreases throughout the evolution for each model,
at M2 ≈ 0.07M⊙ it decreases more steeply for the models in
which κ depends on stellar parameters.

Appendix B: A catalogue of period bouncers

We present a catalogue of all known period bouncers in Table
B.1. While there are more such candidate systems in the liter-
ature (some 25 to 30 in total), we require there to be precise
estimates of 1) an orbital period, 2) donor mass, 3) WD mass
(and radius), and 4) WD temperature for us to include one in
our sample. If a donor mass is not available, we ensure that WD
properties are well measured and that there is spectroscopic evi-
dence for a brown dwarf donor. We also indicate the few systems
known to be eclipsing because those have, on the whole, more
precisely measured donor star parameters.

Appendix C: Computation of Ṁ2 and evolution in
the Ṁ2 − Porb plane

We computed Ṁ2 using the relation derived given in Pala et al.
(2022),

LWD = 6 × 10−3L⊙

(
Ṁ2

10−10M⊙ yr−1

) (
MWD

0.9M⊙

)0.4

(C.1)

which relates the WD mass, radius, and temperature to the ac-
cretion rate (Table B.1). It is also possible to estimate accretion
rates from the X-ray luminosity or disc luminosity. The former
requires a model of the X-ray emission mechanism, and the latter
a model of disc geometry. Both require an estimate of accretion
efficiency, which is often parametrised as η in the following ex-
pression:

L =
η

2
GMWDṀ2

RWD
, (C.2)

where RWD is the WD radius and L is the observed accretion
luminosity (either from the disc or from the boundary layer, in

X-rays). However, the range of η in CVs is a subject of cur-
rent debate (see Sect. 6.1 of Mukai 2017 for a thorough explana-
tion). As an example, one model of accretion is advective domi-
nated accretion flow (ADAF), which was first applied to explain
the hard X-ray spectra of CVs in Narayan & Popham (1993).
It was later extended in Narayan et al. (1996) to X-ray binaries
observed in a low accretion state. In this work, accretion effi-
ciencies have been shown to be very low, with η between 10−3 to
10−4. From Eq. (C.2), it is clear how failing to incorporate low
efficiencies could lead to an underestimate of the accretion rate,
given an observed luminosity. More recently, Liu et al. (2008)
applied the ADAF model to X-ray spectra of CVs and found
good agreement. Nevertheless, Mukai (2017) warns that a com-
plete analysis of accretion efficiency in CVs, which takes into
account interactions between disc annuli, is still needed.

In Fig. C.1, we describe how each model attains Ṁ2, detect in
the Ṁ2 − Porb plane. The model evolution can be explained as
follows. Variation in the MB strength changes the M2 − R2 re-
lation, and consequently the M2 − Porb relation of a CV, and so
a CV attains Pmin at a larger Porb for a stronger MB (Fig. 1).
Now, if MB stays constant post-bounce (say κ = 4), then as
CV bounces Porb increases and Ṁ2 decreases. However, for the
weakening MB model (say κ = 15B4), around the time when
the CV bounces, MB becomes negligible. The CV now has to
adjust its mass-transfer rate according to the current weak AML
strength, but it cannot increase its Porb because the Porb where the
CV bounced is too large for its AML strength. Ṁ2 has to reduce
with little change in Porb. So, the κ = 15B4 system essentially
stays at approximately 80 min after bouncing before becoming
undetectable (when Ṁ2,detect = 10−11M⊙ yr−1). The system stays
in the period minimum spike (which is also populated by pre-
bounce systems) before becoming undetectable. This is also seen
in Fig. 1 (the square in which Ṁ2, detect is attained is in the period
minimum spike). This track explains observed candidates clus-
tered at the lower end of the period minimum spike in Fig. C.1.
Similarly, the track with κ = 15B2 bounces at about 86 min but
becomes undetectable at about 90 min. This track explains ob-
served candidates clustered at the upper end of the period min-
imum spike. The system with κ = 4 emerges from the period
minimum spike with Ṁ2 > 10−11M⊙ yr−1. So, if such a constant
κ is at play post-bounce, there should be systems populating the
region with 86 ≲ Porb/min ≲ 105 and Ṁ2 ≳ 10−11 M⊙ yr−1.
These are not observed, indicating further that MB weakens
post-period minimum. If SRG/eROSITA unveils systems with
Ṁ2 ≈ 10−12M⊙ yr−1, the κ = 15B4 track indicates the existence
of a population of systems up to Porb ≈ 110 min and the κ = 15B2

track up to Porb ≈ 115 min. However, because η in Eq. (C.2) is
very uncertain and can easily be lower than even 10−4, such low-
Ṁ2 systems would have very low luminosities. This can make
finding them very difficult, even with the newer SRG/eROSITA
surveys.

Finally, we note that our accretion rate estimates, based on
WD properties (Eq. (C.1)), place the accretion rates of systems
such as EZ Lyn (Amantayeva et al. 2021) and SRGeJ0411+6853
(Galiullin et al. 2024) nearly an order of magnitude higher than
that reported by authors using X-ray or disc luminosities. Aman-
tayeva et al. (2021) estimated the accretion rate based on the
optical disc luminosity, and assumed that η = 1 in Eq. (C.2)
to obtain Ṁ2 ≈ 3 × 10−12 M⊙ yr−1 (EZ Lyn∗ in Fig. C.1). Gali-
ullin et al. (2024) incorporated a bolometric correction to the X-
ray luminosity, which assumed a thermal bremsstrahlung model
for the emission, to obtain Ṁ2 ≈ (1.7 − 7.8) × 10−12 M⊙ yr−1

(SRGeJ0411+6853∗ in Fig. C.1). However, they did not ex-
plore a range of radiative efficiencies. In both cases, the accre-
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Table B.1. Known period bouncers with either a well-measured donor mass or accretion rate.

Name Porb/ hr Ecl.? M2/M⊙ MWD/M⊙ RWD/ 0.01 R⊙ Teff,WD/K Ṁ2 /10−10M⊙ yr−1 Ref.

EZ Lyn 1.430 Yes 0.042±0.014 0.85±0.01 0.94 11250±40 0.242+0.003
−0.003 1

SDSSJ1035 + 0551 1.370 Yes 0.052±0.002 0.94±0.01 0.87±0.01 10100±200 0.12+0.005
−0.005 2

SDSSJ1057 + 2759 1.510 Yes 0.0436±0.002 0.80±0.015 1.04±0.017 13300±1100 0.54+0.14
−0.17 3

SDSSJ1433 + 1011 1.300 Yes 0.06±0.003 0.868±0.007 0.958±0.008 12800±200 0.38+0.02
−0.02 2

SDSS J1501+5501 1.364 Yes 0.053±0.003 0.80±0.03 1.04±0.04 12500±200 0.426+0.009
−0.01 2

SRGeJ0411+6853 1.625 Yes 0.84±0.07 1.0±0.09 13790±500 0.56+0.04
−0.04 4

EG Cnc 1.439 No 1.03±0.05 0.77+0.06
−0.05 12290±55 0.2+0.03

−0.03 5
GD 552 1.712 No 0.78±0.04 1.07+0.05

−0.04 10760±40 0.25+0.02
−0.03 5

1RXS J1050–1404 1.476 No 0.77±0.03 1.08+0.04
−0.03 11520±50 0.34+0.02

−0.03 5
QZ Lib 1.539 No 0.82±0.19 1.01+0.23

−0.18 11420±200 0.28+0.1
−0.2 5

SDSS J1435+2336 1.300 No 0.84±0.07 1.0+0.08
−0.09 12000±160 0.32+0.05

−0.05 5
BW Scl 1.304 No 0.051±0.006 1.007±0.01 0.8+0.014

−0.011 15145±50 0.51+0.01
−0.008 5, 6

GW Lib 1.279 No 0.83±0.12 1.03+0.15
−0.10 16166±350 1.09+0.26

−0.34 5
WZ Sge 1.360 No 0.80±0.02 1.05+0.03

−0.03 13190±115 0.53+0.01
−0.01 5

Notes. The accretion rates are derived from WD mass and temperature estimates (see Eq. C.1). Ecl. stands for eclipsing.
References. (1) Amantayeva et al. (2021); (2) Littlefair et al. (2008); (3) McAllister et al. (2017); (4) Galiullin et al. (2024); (5)
Pala et al. (2022); (6) Neustroev & Mäntynen (2023).
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Fig. C.1. Evolution of CVs below the period gap. Solid lines show evolution in the Ṁ2 − Porb plane for the same tracks as in Fig. 1. Ticks on
each track denote timesteps of 300 Myr. The dotted vertical line denotes Ṁ2 = 10−11 M⊙ yr−1. During further evolution, the system is presumably
undetectable (see text). Observed period bouncer candidates from Table B.1 are also plotted. Eclipsing systems are plotted as circles, while non-
eclipsing systems are plotted as triangles. The systems labelled and marked with stars have their Ṁ2 derived from X-ray luminosity (Eq. (C.2)),
while the others have Ṁ2 derived from WD properties (Eq. (C.1)). The horizontal shaded region is the observed period minimum spike (80 ≲
Porb/min ≲ 86) reported by Gänsicke et al. (2009).

tion rates could have been underestimated. Another reason why
these may have been underestimated is that Ṁ2 (lower end of
SRGeJ0411+6853∗) is smaller than that for the κ = 0 model.
Assuming that the CV remains semi-detached, the estimates of
the κ = 0 model set the minimum accretion rate post-bounce.
Regardless of these uncertainties, the Ṁ2 of EZ Lyn∗ is only a
factor of two smaller than that predicted by our κ = 15B4 model.

It will agree with our model if we choose η = 0.5 in Eq. (C.2) to
calculate Ṁ2. The Ṁ2 of SRGeJ0411+6853∗ is already in gen-
eral agreement with both the κ = 15B2 and κ = 15B4 models.
Our model tracks agree well with several systems in Fig. C.1,
but notably the κ = 15B4 model is in good agreement with all
the estimates of SDSSJ1501 and SDSSJ1035 — namely Porb,
M2, and Ṁ2 — while the κ = 15B2 model is in agreement with
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the Porb and M2 estimate of EZ Lyn and within a factor of two of
its Ṁ2 estimate.
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