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Abstract

One may divide the Standard Model of particle physics into two parts: quantum chromody-

namics (QCD) and the unified theory of electroweak interactions. QCD is supposed to be

the fundamental theory describing strong interactions whose basic components are gluons

and quarks. It is a Poincaré invariant quantum gauge field theory built upon the SU(3)-

colour gauge group. Fifty years of study suggest that two basic phenomena characterise

QCD, namely, colour-field confinement and dynamical chiral symmetry breaking (DCSB).

Colour confinement expresses the empirical fact that isolated gluons and quarks have not

been captured in detectors. It means that every observable system is a bound state. Hence,

a solution to QCD must rely heavily on nonperturbative methods.

This thesis describes the use of Dyson-Schwinger equations (DSEs) to study baryon

bound states in QCD. The DSEs lie within the class of continuum Schwinger function meth-

ods (CSMs) and provide a nonperturbative, symmetry-preserving, continuum approach to

solving QCD. In principle, the DSEs are a coupled system of nonlinear integral equations,

whose solution delivers results for each of the Schwinger functions (Euclidean space Green

functions) that are needed to complete a definition of the theory. In practice, this tower

of equations is truncated, so that only approximate solutions are delivered. Notwithstand-

ing that, the results deliver far-reaching insights; and with increasing sophistication in the

development of nonperturbative truncation schemes, the approximations are becoming in-

creasingly accurate.

In this work, octet baryon axial, induced pseudoscalar, and pseudoscalar form factors are

calculated using a symmetry-preserving treatment of a vector × vector contact interaction

(SCI). The baryons are considered as quark-plus-interacting-diquark bound states, whose
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structure (wave function) is obtained by solving a Poincaré-covariant Faddeev equation.

Since it preserves symmetries, all consequences of partial conservation of the axial current

are manifest. The SCI is characterised by algebraic simplicity, involves no free parameters,

and, experience shows, has good predictive power. For instance, one finds that octet baryon

axial properties are consistent with only minor violations of SU(3)-flavour symmetry. This

outcome can be interpreted as a dynamical consequence of emergent hadron mass (EHM).

Considering neutral axial currents, the SCI delivers predictions for the flavour separation

of octet baryon axial charges and, consequently, produces values for the associated SU(3)

singlet, triplet, and octet axial charges. The results indicate that, at the hadron scale ζH,

valence degrees of freedom carry approximately 50% of an octet baryon’s total spin.

This general analysis is followed by a detailed SCI study of proton spin structure, with

calculations of the rest-frame quark+diquark angular momentum decomposition of the pro-

ton wave function canonical normalisation constant and the proton axial charge. The SCI

analysis of the normalisation yields results that are consistent with more realistic studies,

e.g., its value is largely determined by quark+diquark S-wave components, albeit with signif-

icant, destructive P-wave and strong, constructive S⊗P-wave interference terms. Moreover,

the results for the angular momentum decomposition of the axial charge and its flavour sep-

aration are similar to those of the canonical normalisation constant. Interestingly, the ratios

of d and u quark contributions to the proton axial charge, gdA/g
u
A, which are computed sep-

arately from S-wave, P-wave and S ⊗ P-wave interference, are roughly the same, i.e., all

approximately −0.5.

Proton structure is one of the principal topics in hadron physics. Its study is expected

to reveal key features of both the origin of mass and strong interaction dynamics. This

work therefore extended the above analyses to an examination of in-proton parton helicity

(spin) distribution functions (DFs). Basic to its success was exploitation of the existence of

an effective charge in QCD which defines an evolution scheme for both unpolarised and po-

larised parton DFs that is all-orders exact. Using Ansätze for hadron-scale proton polarised

valence quark DFs, constrained by CSM calculations of the flavour-separated axial charges

and insights from perturbative quantum chromodynamics, predictions are delivered for all
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proton polarised DFs at the measurement scale ζ2C = 3GeV2. The pointwise behaviour of

the predicted DFs and, consequently, their moments, shows good agreement with results

inferred from data. Notably, flavour-separated singlet polarised DFs are found to be small.

On the other hand, the polarised gluon DF, ∆G(x; ζC), is large and positive. Based on

these results, one finds
∫ 1
0.05 dx∆G(x; ζC) = 0.214(4) and that experimental measurements

of the proton flavour-singlet axial charge should return a value aE0 (ζC) = 0.35(2).

Keywords: octet baryon, axial current, continuum Schwinger function methods

(CSMs), Poincaré-invariant quantum field theory, emergent hadron mass (EHM)
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Chapter 1

Introduction

Atomic and nuclear physics research spanning over a century has revealed that all matter is

made up of particles, including the atoms that make up our bodies, which in turn contain

a dense nucleus at their core. This core is made up of nucleons, i.e., protons and neutrons,

which belong to a larger group of fm-scale particles known as hadrons. In the process

of investigating hadrons, it has been discovered that they are complicated bound states

of quarks and gluons. The quarks and gluons interact with each other by strong interac-

tions which are described by a Poincaré-invariant quantum non-Abelian gauge field theory;

namely, quantum chromodynamics (QCD). While perturbation theory is a crucial tool for

studying high-energy processes in the Standard Model, QCD is fundamentally different in

that it cannot be studied with perturbation theory when it comes to observable low-energy

characteristics of hadrons. The set of experimental and theoretical approaches employed

to investigate and map the infrared domain of QCD is known as strong-QCD (sQCD) [1]

and they must deal with nonperturbative phenomena, such as dynamical chiral symmetry

breaking (DCSB) and confinement of quarks and gluons.

QCD is marked by two emergent phenomena: DCSB and confinement, which have

significant implications. These phenomena are particularly apparent in the pion, and the

properties of the pion, in turn, indicate a close relationship between confinement and DCSB.

As the pion is both a quark-antiquark bound state and a Nambu-Goldstone boson, it oc-

cupies a distinct position in Nature. Therefore, understanding the properties of the pion

is crucial for revealing some fundamental aspects of the Standard Model. As a result of
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confinement, colour-charged particles cannot exist in isolation and thus cannot be directly

observed. Instead, they combine to form colour-neutral bound states. The phenomenon

of confinement is supported by empirical evidence, but lacks a formal mathematical proof.

To address this gap, the Clay Mathematics Institute established a “Millennium Problem”

award of $1-million for a proof that the SUc(3) gauge theory is mathematically well-defined

[2]. One potential outcome of solving this problem would be a resolution of the question

of whether the confinement conjecture is correct in pure-gauge QCD. The fundamental

challenge of gluon and quark confinement is a pressing issue in modern science because it

plays a crucial role in ensuring the absolute stability of the proton. Without confinement,

isolated protons would decay, hydrogen atoms would be unstable, nucleosynthesis would be

a random occurrence without any long-lasting effects, and the Universe would lack the nec-

essary components for the formation of stars and life. Thus, the existence of the Universe

fundamentally depends on the phenomenon of confinement.

While the realisation and nature of confinement in real-world QCD is still under ex-

ploration, the other principal non-perturbative feature of QCD is DCSB, which is better

understood. DCSB leads to the generation of mass from nothing. It is essential to note

the term “dynamical” as it is different from spontaneous symmetry breaking. The latter

typically involves the introduction of a scalar field into the action of the theory under ex-

amination, while DCSB arises naturally during the process of quantisation of the classical

chromodynamics of massless gluons and quarks. Although there is no simple change of

variables in the QCD action that can display DCSB, a large mass-scale is generated by this

phenomenon. DCSB is the most significant mass generating mechanism for visible matter

in the Universe, responsible for approximately 98% of the proton’s mass.

The aim of hadron physics is to offer a quantitative understanding of the characteristics

of hadrons by solving QCD. Studying the properties and structure of hadron is the central

subject of hadron physics. It provides the opportunity to raise and address the fundamental

questions in QCD: what is confinement; what is DCSB; and how are they related? The

hadron spectrum has long been a research topic in quantum mechanics. The constituent-

quark and potential models have extensively studied this problem, see, e.g., Refs. [3–5] and
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related literature. However, they do not provide a unified physical description of light-quark

mesons and baryons [6]. The former require an accurate representation of DCSB. Although

QCD sum rules [4, 7] avoid some of these challenges, they face the issue of having an excessive

number of parameters, such as the vacuum condensates. To properly address this issue, it

is necessary to compare the inferred values of these parameters with those obtained from

realistic nonperturbative analyses of QCD or from experimental data. Recently, there has

been a vigorous attempt to combine ideas from the light-front formulation of quantum field

theory with models derived from the concept of gauge-gravity duality [4, 8, 9]. Nevertheless,

a challenge arises when attempting to connect the many parameters utilised in this approach

with the single mass-scale present in QCD.

During the past thirty years, CSMs [10–14], realised via Dyson-Schwinger equations

(DSEs), have grown into a powerful tool for the analysis of hadron physics observables. In-

deed, the DSEs have achieved marked successes, especially during the past decade [15–28],

particularly in relation to understanding the causes and various manifestations of emer-

gent hadron mass (EHM). DSEs correlate the features of meson and baryon ground- and

excited-states within a single, symmetry-preserving framework. In this context, symmetry-

preserving implies adherence to Poincaré covariance and satisfies the relevant Ward-Green-

Takahashi identities. The challenges surrounding DSE analyses revolve around the fact that

the equation for each n-point function is connected to those for higher n-point functions

[10, 11]. For instance, the gap equation for the quark 2-point function is linked with that

for the gluon 2-point function and the gluon-quark 3-point function. As a result, in order

to establish a manageable problem, truncations are required.

The principal focus of this thesis is the study of the properties and structure of octet

baryons, especially those of proton, within the DSE framework. A central aim of ongoing

theoretical and experimental efforts is to comprehend nucleon structure because the nucleon

is the simplest composite object made of three valence light quark [29]. Nucleon form factors

encode its fundamental properties, for example, expressing the charge distribution of its

charge carrying constituents.

Nucleon electromagnetic form factors are quite well known, however, much more needs
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to be understood about their axial and induced-pseudoscalar form factors, which measure

nucleon responses to probes associated with the isovector axial-vector current. Such form

factors characterise neutrino-nucleon scattering [30–33], exclusive pion electroproduction

[34–37] (e.g., e−p→ π−pν), radiative muon capture [38–40], and ordinary muon capture[41–

44].

At zero momentum transfer, the nucleon axial form factor gives the axial charge gA ≡

GA(0), which can be measured with high precision from neutron β-decay experiments [45–

48]. The nucleon induced pseudoscalar coupling, g∗P , can be determined via the ordinary

muon capture process, µ− + p → n + νµ, from the singlet state of the muonic hydrogen

atom at the muon capture point Q2 = 0.88m2
µ [43, 44, 49–51], where mµ is the muon

mass. Additionally, kindred decays of hyperons have also attracted much attention [52, 53]

because they present an opportunity to shed light on the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element |Vus|. Hyperon axial charges are also important in effective field

theory of octet baryons[54, 55] because they enter the expansions of all quantities in chiral

perturbation theory. Compared with nucleon, little empirical information is available on

hyperon axial charges.

The flavour-dependent axial charges of the octet baryons, i.e., the singlet axial charge

g
(0)
A , the isovector axial charge g

(3)
A and the SU(3) octet axial charge g

(8)
A are also fundamental

observables in hadron physics. They provide insights into the spin structure and properties

of baryons. The charge g
(0)
A should indicate the measurable total spin of a given baryon

that results from the spins of its valence degrees-of-freedom. Notably in this connection, an

angular momentum decomposition of the proton axial charge, g
(3)
Ap , exhibits contributions

to its spin that are associated with quark+diquark orbital angular momentum. It is not

zero; hence, the proton’s spin cannot be attributed solely to the sum of valence quark spins.

Indeed, as is widely known, in quantum field theory, valence quark partons are just one

of the factors that contribute to the structure of the proton and the pion. These things

highlight the importance of studying the proton’s polarised parton distribution functions

(DFs): they are an essential part of understanding proton structure.

This thesis is structured as follows. In Chapter 2, I describe the DSE formalism under

4



a symmetry-preserving treatment of a vector × vector contact interaction (SCI), including

the gap equation for the dressed quark propagator; the Bethe-Salpeter equation (BSE) de-

scribing two-body problems and the Faddeev equation relevant for the three-body bound

states. I also discuss practical calculations in this chapter. In Chapter 3, octet baryon axial,

induced pseudoscalar, and pseudoscalar form factors are computed using the SCI. Consider-

ing neutral axial currents, I describe the SCI predictions for the flavour separation of octet

baryon axial charges and, therefrom, values for the associated SU(3) singlet, triplet, and

octet axial charges. Based on the work in Chapter 3, I then elucidate the angular momentum

decomposition of the proton’s axial charges in Chapter 4. The contributions of the various

quark+diquark orbital angular momentum components to the canonical normalisation are

also obtained with a view to revealing the structure of the wave function. In Chapter 5, pre-

dictions for all polarised parton DFs are delivered. The keys to this progress are existence

of an effective charge in QCD which defines an evolution scheme for both unpolarised and

polarised parton DFs that is all-orders exact and development of well-constrained Ansätze

for the hadron scale in-proton valence quark helicity DFs. I summarise and provide an

outlook in Chapter 6.
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Chapter 2

Symmetry-preserving treatment
of a contact interaction

2.1 Introduction

The DSEs are an infinite tower of coupled integral equations relating the Schwinger functions

of a quantum field theory to each other.1 A quantum field theory is completely defined once

all its n-point Schwinger functions are known. However, it’s impossible for one to solve

infinitely many coupled integral equations. So it is unavoidable that the tower of coupled

equations must be truncated at some point. This implies that the tower of equations has

to be truncated at a certain value of n, which corresponds to the maximum number of legs

on any Schwinger function that is utilised in the self-consistent solution of the equations.

A symmetry-preserving truncation scheme applicable to hadrons was introduced in

Refs. [56, 57]. That procedure generates a BSE from the kernel of any gap equation for which

the diagrammatic content is known. In that scheme, all Ward-Green-Takahashi (WGT)

identities [58–61] are preserved, without fine-tuning, and hence, current-conservation and

the appearance of Goldstone modes in connection with DCSB are ensured. Within DSEs,

a symmetry-preserving treatment of vector × vector contact interaction has proven to be a

reliable tool in describing the properties and structure of hadron ground states. So I use it

to carry out much of the work in this thesis.

The aim of this thesis is to study the properties and structure of baryons based on DSE,

1 Schwinger functions may be called the Euclidean Green functions for a theory. In principle, they are
connected to standard Green functions via a straightforward analytic continuation in the time variable. See
Ref. [27] (Sec. 1) for additional information.
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where the one-body gap equation, two-body BSE and three-body Faddeev equation play

roles. In this chapter, I will describe them in detail. Sec. 2.2 introduces the symmetry-

preserving treatment of a vector × vector contact interaction (SCI) used in this thesis.

Sec. 2.3 provides the form of the SCI gap equation, including its regularisation scheme, and

explains how to solve it. In Sec. 2.4, I analyse the homogeneous and inhomogeneous vertex

BSEs. The Faddeev equation is discussed in Sec.2.5.

2.2 Contact interaction

In the continuum analysis of hadron bound states, the basic element is the quark + antiquark

scattering kernel. At leading order in the widely-used symmetry-preserving approximation

scheme, known as rainbow-ladder (RL) truncation [56, 57], that kernel can be written as

follows:

K α1α′
1,α2α′

2
= Gµν(k)[iγµ]α1α′

1
[iγν ]α2α′

2
, (2.1a)

Gµν(k) = G̃(k2)T k
µν , (2.1b)

where k = p1−p′1 = p′2−p2, with p1,2, p′1,2 being, respectively, the initial and final momenta

of the scatterers, and k2T k
µν = k2δµν − kµkν .

G̃ serves as the defining element; and it is currently known that, owing to the emer-

gence of a gluon mass-scale [62–64], G̃ is nonzero and finite at infrared momenta. Hence,

when considering long-wavelength hadron properties, it can reasonably be approximated as

follows:

G̃(k2) =
4παIR

m2
G

. (2.2)

In QCD [64]: mG ≈ 0.5GeV, αIR ≈ π. Following Ref.[65], this value of mG is retained

herein. Using Eq. (2.2) and exploiting the fact that a SCI cannot support relative momentum

between the constituents of a meson bound-state, the interaction in Eqs. (2.1) can be reduced

to:

K CI
α1α′

1,α2α′
2
=

4παIR

m2
G

[iγµ]α1α′
1
[iγµ]α2α′

2
. (2.3)
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The SCI expresses an elementary form of confinement by including an infrared regu-

larising scale, Λir, when defining all integral equations relevant to bound-state problems

[66]. This expedient removes momenta below Λir, thereby eliminating the thresholds for

the quark-antiquark production. The standard choice is Λir = 0.24GeV= 1/[0.82 fm] [67],

which introduces a confinement length scale roughly comparable to the proton radii [68].

Ultraviolet regularisation is necessary for all integrals in SCI bound-state equations.

This process breaks the connection between infrared and ultraviolet scales that is charac-

teristic of QCD. As a result, the associated ultraviolet mass scales, Λuv, become physical

parameters. These parameters can be interpreted as upper limits for the regions in which

distributions within the associated systems are practically momentum-independent.

2.3 Gap equation

−1

= +

=

+=

+=

−1

K

K

K

Figure 2.1: DSE for the quark propagator (gap equation). The lines with red balls are
the dressed quark propagators; the curly line with green ball represents the dressed-gluon
propagator; the blue ball is the dressed-quark-gluon vertex.

For a quark, the SCI gap equation, depicted in Fig.2.1, expressed in Euclidean space

(see Appendix A.1 for the conventions used), is written as:

S−1(p) = S−1
0 (p) + Σ(p) , (2.4a)

S−1
0 (p) = iγ · p+m, (2.4b)

Σ(p) =
16π

3

αIR

m2
G

∫
d4q

(2π)4
γµS(q)γµ . (2.4c)

where m is the quark current-mass. At zero temperature and chemical potential, the most

general Poincaré covariant solution of this gap equation involves two scalar function. There
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are three common, equivalent expressions

S(p) =
1

iγ · pA
(
p2
)
+B

(
p2
) =

Z
(
p2
)

iγ · p+M
(
p2
) = −iγ · pσV

(
p2
)
+ σS

(
p2
)
. (2.5)

In the second form, Z(p2) is called the wave-function renormalisation and M(p2) is the

dressed-quark mass function.

Introducing the first expression of the quark propagator into Eqs. (2.4), one obtains the

following

iγ · pA
(
p2
)
+B

(
p2
)
= iγ · p+m+

16π

3

αIR

m2
G

∫
d4q

(2π)4
γµ

1

iγ · qA
(
q2
)
+B

(
q2
)γµ

= iγ · p+m+
16π

3

αIR

m2
G

∫
d4q

(2π)4
γµ

−iγ · qA
(
q2
)
+B

(
q2
)

q2A2
(
q2
)
+B2

(
q2
) γµ .

(2.6)

If one then multiplies Eq. (2.6) by (−iγ · p) and subsequently evaluates a matrix trace over

Dirac indices, then one obtains

A
(
p2
)
= 1− 32π

3

αIR

m2
G

1

p2

∫
d4q

(2π)4
(p · q) A

(
q2
)

q2A2
(
q2
)
+B2

(
q2
) . (2.7)

It is straightforward to show that
∫
d4q(p · q)F

(
p2, q2

)
= 0 (Appendix A.2), and so

A
(
p2
)
= 1 . (2.8)

On the other hand, multiplying Eq. (2.6) by ID and evaluating a trace over Dirac indices,

then

B
(
p2
)
= m+

64π

3

αIR

m2
G

∫
d4q

(2π)4
B
(
q2
)

q2A2
(
q2
)
+B2

(
q2
) . (2.9)

Using the result in Eq. (2.8), one finds

B
(
p2
)
= m+

64π

3

αIR

m2
G

∫
d4q

(2π)4
B
(
q2
)

q2 +B2
(
q2
) . (2.10)

Since the integral here is p2−independent, a p2−independent solution must be obtained.

Thus, any nonzero solution must be of the form

B
(
p2
)
= constant =M . (2.11)
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Inserting Eq. (2.11) into Eq. (2.10), one obtains

M = m+M
64π

3

αIR

m2
G

∫
d4q

(2π)4
1

q2 +M2

= m+M
4

3π

αIR

m2
G

∫ ∞

0
dss

1

s+M2
,

(2.12)

where d4q = q3 sin2 θ1 sin θ2dqdθ1dθ2dϕ and s = q2 with ds = 2qdq.

A heat-kernel-like regularisation procedure is useful in formulating the SCI, viz. one

writes

1

s+M2
=

∫ ∞

0
dτe−τ(s+M2) →

∫ τ2ir

τ2uv

dτe−τ(s+M2) =
e−τ2uv(s+M2) − e−τ2ir(s+M2)

s+M2
, (2.13)

where τir,uv are, respectively, infrared and ultraviolet regulators, i.e. τuv = 1/Λuv, τir =

1/Λir. Using Eq. (2.13), then Eq. (2.12) becomes

M = m+M
4αIR

3πm2
G

Ciu
0

(
M2
)
, (2.14)

where Ciu
0 (σ) = σ

[
Γ(−1, στ2uv)− Γ(−1, στ2ir)

]
, with Γ(s, x) being the incomplete gamma

function

Γ(s, x) =

∫ ∞

x
dt ts−1e−t . (2.15)

The “iu” superscript stresses that the function depends on both the infrared and ultraviolet

cutoffs.

In general, functions of the following form arise in solving SCI bound-state equations:

Ciu
n (σ) = Γ(n− 1, στ2uv)− Γ(n− 1, στ2ir), Ciu

n (σ) = σCiu
n (σ), n ∈ Z≥ . (2.16)

See Appendix A.2 for more details.

Finally, one obtains the SCI dressed-quark propagator:

S−1(p) = iγ · p+M (2.17)

with M , the dynamically generated dressed-quark mass, obtained by solving Eq. (2.14).

Importantly, there is a critical value of αIR/m
2
G such that, for all values of this ratio

which exceed the critical value, a M ̸= 0 solution exists even when m = 0 – see, e.g.,

10



Ref. [14] (Sec. 2.2). This is an expression of DCSB in the SCI.

2.4 Bethe-Salpeter equation

By projecting the quark-antiquark four-point Schwinger function onto a specified JP quan-

tum number channel, a vertex that satisfies an inhomogeneous BSE can be derived. When

referring to a vertex equation, one inevitably needs to discuss Ward-Green-Takahashi iden-

tities (WGTI), which are basic to preserving symmetries in quantum field theory. A meson,

characterised by two valence-quarks, with specific JP quantum numbers, appears as a pole

in the corresponding projected vertex. By equating the residues on both sides of the in-

homogeneous BSE, one finds the meson Bethe-Salpeter amplitude by solving the resulting

homogeneous BSE. It is important to observe that, as a consequence of EHM, any inter-

action capable of creating mesons as bound states of a quark and antiquark can generate

strong colour-antitriplet correlations between any two dressed quarks contained within a

hadron. These are the so-called diquark correlations. (See the discussion of Eq. (2.45).)

2.4.1 Meson and diquark−1

= +

=

+=

+=

−1

K

K

K

Figure 2.2: Homogeneous Bethe-Salpeter equation for a quark+antiquark-meson amplitude.
Blue ball - the bound state amplitude; and the line with red ball - dressed quark propagator.
K is the two-particle irreducible quark+antiquark scattering kernel.

In QCD, mesons emerge as bound states seeded by a valence quark + valence antiquark.

A study of their properties may begin with the solution of a homogeneous BSE, such as

11



that depicted in Fig. 2.2 and represented mathematically as follows:

[Γ(p;P )]tu =

∫
d4t

(2π)4
[χ(t;P )]srK

rs
tu (t, p;P ) , (2.18)

where Γ is the bound-state’s Bethe-Salpeter amplitude (BSA) and χ(t;P ) = S(t+P )ΓS(t)

is its Bethe-Salpeter wave-function, where S is the dressed-quark propagator. The t, u, s and

r represent colour, flavour and spinor indices, and K is the relevant two-particle irreducible

quark+antiquark scattering kernel. This equation possesses solutions for that discrete set

of P 2-values which correspond to the masses-squared of the bound states.

In rainbow-ladder truncation and with the interaction in Eq. (2.3), the homogeneous

BSE for a meson with specific JP quantum numbers, composed of quarks with flavours f

and ḡ, with {f, g = u, d, s}, i.e., lying within SU(3) flavour, can be written as

0ΓJP

fḡ (p;P ) = −4παIR

m2
G

∫
d4t

(2π)4
γµ
λa

2
Sf (t+ P )0ΓJP

fḡ (t;P )Sg(t)
λa

2
γµ . (2.19)

This equation has a solution for P 2 = −m2
fḡ.

The BSA of such a meson, written with full colour, flavour, and spinor structure, takes

the form:

0ΓJP

fḡ (p;P ) = λ0c ⊗ tefḡ ⊗ ΓJP

fḡ (p;P ) , (2.20)

where the the colour-singlet character is expressed in λ0c = diag{1, 1, 1} and the flavour

matrices are given by

12



t+
ud̄

=


0

√
2 0

0 0 0

0 0 0

 , t−dū =


0 0 0
√
2 0 0

0 0 0

 , t0
uū−dd̄

=


1 0 0

0 −1 0

0 0 0

 ,

t+us̄ =


0 0

√
2

0 0 0

0 0 0

 , t−sū =


0 0 0

0 0 0
√
2 0 0

 , t0
uū+dd̄−2ss̄

= 1√
3


1 0 0

0 1 0

0 0 −2

 ,

t0ds̄ =


0 0 0

0 0
√
2

0 0 0

 , t0
sd̄

=


0 0 0

0 0 0

0
√
2 0

 , t0
uū+dd̄+ss̄

= 1√
3


√
2 0 0

0
√
2 0

0 0
√
2

 .
(2.21)

Using
∑8

a=1

(
λa

2
λa

2

)
= CF1 = 4

31, one can obtain

ΓJP

fḡ (p;P ) = −16παIR

3m2
G

∫
d4t

(2π)4
γµSf (t+ P )ΓJP

fḡ (t;P )Sg(t)γµ. (2.22)

Since the integrand does not depend on the external relative momentum, p, a symmetry

preserving regularisation of Eq. (2.22) results in solutions that are independent of p. Here

I demonstrate the nature of the BSE through two relevant examples, viz. the pseudoscalar

meson (JP = 0−) and the vector meson (JP = 1−).

The solution for a pseudoscalar meson can be written as

Γ0−
fḡ (P ) = γ5[iE[fḡ](P ) +

γ · P
2Mfḡ

F[fḡ](P )] , (2.23)

where Mfḡ = MfMg/
[
Mf +Mg

]
. If one inserts Eq. (2.23) into Eq. (2.22) and employs

the symmetry-preserving regularisation of the contact interaction explained below – see

Eqs. (2.52) – one obtains the following explicit form of the homogeneous BSE: E[fḡ]

(
P 2
)

F[fḡ]

(
P 2
)
 =

4αIR

3πm2
G

 K[fḡ]
EE K[fḡ]

EF

K[fḡ]
FE K[fḡ]

FF


 E[fḡ]

(
P 2
)

F[fḡ]

(
P 2
)
 , (2.24)
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with

K[fḡ]
EE =

3πm2
G

4αIR
(1− mf +mg

Mf +Mg
)−

∫ 1

0
dαQ2 α̂Mf + αMg

Mf +Mg
C̄iu
1

(
ωfḡ

(
α, P 2

))
, (2.25a)

K[fḡ]
EF =

P 2

2Mfḡ

∫ 1

0
dα
[
α̂Mf + αMg

]
C̄iu
1

(
ωfḡ

(
α, P 2

))
, (2.25b)

K[fḡ]
FE =

2M2
fḡ

P 2
K[fḡ]

EF , (2.25c)

K[fḡ]
FF = −1

2

∫ 1

0
dα
[
MfMg + α̂M2

f + αM2
g

]
C̄iu
1

(
ωfḡ

(
α, P 2

))
, (2.25d)

where wfḡ(α, P ) = α̂M2
f + αM2

g + αα̂P 2(α̂ = 1− α). Eq.(2.24) is a eigenvalue problem: it

has a solution at a single value of P 2 = −m2
fḡ < 0, at which point the eigenvector describes

the meson’s Bethe-Salpeter amplitude.

In the computation of observables, one must use the canonically-normalised Bethe-

Salpeter amplitude, i.e., the amplitude Γ0−
fḡ is rescaled so that

Pµ = Nc trD

∫
d4t

(2π)4
Γ̄0−
fḡ (−P )

∂

∂Pµ
Sf (t+ P )Γ0−

fḡ (P )Sg(t) , (2.26)

where Nc = 3 and Γ̄fḡ(P ) = C†Γfḡ(P )
TC. Using ∂

∂Pµ
= 2Pµ

d
dP 2 , one has

1 =

[
d

dP 2
Π(K,P )

]
K=P

, (2.27a)

Π(K,P ) = 6 trD

∫
d4t

(2π)4
Γ̄fḡ(−K)Sf (t+ P )Γ0−

fḡ (K)Sg(t) . (2.27b)

With of the canonically normalised Bethe-Salpeter in hand, the leptonic decay of a

pseudoscalar meson is described by the following matrix element:〈
0
∣∣q̄gγµγ5qf ∣∣P fḡ(P )

〉
: = f0

−
fḡ Pµ

= Nc

∫
d4t

(2π)4
trD

[
γ5γµSf (t+ P )Γ0−

fḡ (P )Sg(t)
]
.

(2.28)

Straightforward algebra now yields the following result:

f0
−

fḡ =
Nc

4π2
1

Mfḡ

[
K[fḡ]

FEE[fḡ] +K[fḡ]
FF F[fḡ]

]
. (2.29)

In the same manner, for a vector meson, one has

Γ1−

µ(fḡ)(P ) = γ⊥µ E{fḡ}(P ) , (2.30)
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where

γ⊥µ = γµ − γ · P
P 2

Pµ (2.31a)

γ∥µ =
γ · P
P 2

Pµ , (2.31b)

and γ⊥µ + γ
∥
µ = γµ, so Pµγ

⊥
µ = 0 and Pµγ

∥
µ = γ · P . Using steps similar to those above, one

arrives at the vector meson mass equation

1−K{fḡ}
(
−m2

(fḡ,1−)

)
= 0 , (2.32)

where

K{fḡ}
(
P 2
)
=

2αIR

3πm2
G

∫ 1

0
dα
[
MfMg − α̂M2

f − αM2
g − 2αα̂P 2

]
C̄iu
1

(
ωfḡ

)
. (2.33)

In this case the canonical normalisation condition can be written

Tαβ(P )Pµ = Nc trD

∫
d4t

(2π)4
Γ̄1−

α(fḡ)(−P )
∂

∂Pµ
Sf (t+ P )Γ1−

β(fḡ)(P )Sg(t) . (2.34)

Summing over the Lorentz indices, Eq. (2.34) can be rewritten in the form

Pµ =
1

3

∂

∂Pµ

[
Nc trD

∫
d4t

(2π)4
Γ̄1−

α(fḡ)(−K)Sf (t+ P )Γ1−

α(fḡ)(K)Sg(t)

]
K=P

. (2.35)

So, the canonical normalisation condition is readily expressed as follows:

1

E2
{fḡ}

= − 9
m2

G

4παIR

d

dP 2
K{fḡ}

(
P 2
)∣∣∣∣∣

P 2=−m2

(fḡ,1−)

, (2.36)

where m
(fḡ1−)

2 is the solution of Eq. (2.32).

The leptonic decay of a vector meson with total momentum P and polarisation λ is

described by〈
0
∣∣q̄gγµqf ∣∣V fḡ(P, λ)

〉
: = f(fḡ,1−)m(fḡ,1−)ϵ

λ
µ

= Nc

∫
d4t

(2π)4
trD

[
γµSf (t+ P )ϵλ · Γ1−

fḡ (P )Sg(t)
]
,

(2.37)

where {ϵλµ|λ = −, 0,+} are the three possible polarisation vectors. Contracting with ϵλµ and
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using standard properties of such vectors, Eq. (2.37) can be written in the form

f(fḡ,1−)m(fḡ,1−) =
Nc

3

∫
d4t

(2π)4
trD

[
γµSf (t+ P )Γ1−

µ(fḡ)(P )Sg(t)
]
. (2.38)

Then, one readily obtains the following result

f(fḡ,1−)m(fḡ,1−) =
3Ncm

2
G

8παIR
K{fḡ}

(
P 2
)
E{fḡ} . (2.39)

Based on the SCI analysis of pseudoscalar mesons in Ref. [65], the SCI analysis in

Ref. [69] is improved by keeping all light-quark parameter values but fixing the s-quark

current mass ms, and K-meson ultraviolet cutoff, ΛK
uv, through a least-squares fit to mea-

sured values of mK , fK , whilst imposing the following relation:

αIR(Λ
K
uv)[Λ

K
uv]

2 ln
ΛK
uv

Λir
= αIR(Λ

π
uv)[Λ

π
uv]

2 ln
Λπ
uv

Λir
. (2.40)

This procedure eliminates one parameter by imposing the physical constraint that any

increase in the momentum-space extent of a hadron wave function should correspond to

a reduction in the effective coupling between the constituents. Only u/d, s quarks are

considered herein.

In Ref. [65], the procedure was also applied to the c-quark/D-meson and b̄-quark/B-

meson. The complete set of results is reproduced in Table 2.1. The evolution of Λuv with

mP is described by the following interpolation (s = m2
P ):

Λuv(s) = 0.306 ln[19.2 + (s/m2
π − 1)/2.70] . (2.41)

Using the SCI, colour-antitriplet quark+quark correlations (diquarks) with spin-parity

JP , constituted from quarks with flavour f and g, are described by a homogeneous BSE

that is readily inferred from the BSE for the meson with spin-parity J−P , i.e., Eq. (2.19):

dΓJ−P

fg (Q) = −4παIR

m2
G

∫
d4t

(2π)4
γµ
λa

2
Sf (q +Q)dΓJ−P

fg (Q)[Sg(−q)]T
[
λa

2

]T [
γµ
]T

, (2.42)

where the superscript “T” indicates matrix transpose. The flipping of the sign in parity

occurs because fermions and antifermions have opposite parity.
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Table 2.1: Couplings, αIR/π, ultraviolet cutoffs, Λuv, and current-quark masses, mf , f =
u/d, s, c, b, that deliver a good description of flavoured pseudoscalar meson properties, along
with the dressed-quark masses,M , and pseudoscalar meson masses, mP , and leptonic decay
constants, fP , they produce; all obtained with mG = 0.5GeV, Λir = 0.24GeV. Empirically,
at a sensible level of precision [70]: mπ = 0.14, fπ = 0.092; mK = 0.50, fK = 0.11;
mD = 1.87, fD = 0.15; mB = 5.30, fB = 0.14. (Isospin symmetry is assumed and
dimensioned quantities are listed in GeV.)

quark αIR/π Λuv m M mP fP
π l = u/d 0.36 0.91 0.0068u/d 0.37 0.14 0.10

K s̄ 0.33 0.94 0.16s 0.53 0.50 0.11

D c 0.12 1.36 1.39c 1.57 1.87 0.15

B b̄ 0.052 1.92 4.81b 4.81 5.30 0.14

Similar to a meson, the BSA of a diquark can be written as:

dΓJ−P

fg (K) = Hd
3̄c

⊗ ΓJ−P

fg (K) = Hd
3̄c

⊗ tJfg ⊗ ΓJ−P ,C
fg (K)C , (2.43)

where: the colour-antitriplet character is expressed in {Hd
3̄c
, d = 1, 2, 3} = {iλ7,−iλ5, iλ2},

with {λk, k = 1, ..., 8} being Gell-Mann matrices, so (Hc3)c1c2 = ϵc1c2c3 with the Levi-Civita

tensor ϵc1c2c3 ; the flavour structure is expressed via

t0ud =


0 1 0

−1 0 0

0 0 0

 , t0us =


0 0 1

0 0 0

−1 0 0

 , t0ds =


0 0 0

0 0 1

0 −1 0

 ,

t1uu =


√
2 0 0

0 0 0

0 0 0

 , t1ud =


0 1 0

1 0 0

0 0 0

 , t1us =


0 0 1

0 0 0

1 0 0

 ,

t1dd =


0 0 0

0
√
2 0

0 0 0

 , t1ds =


0 0 0

0 0 1

0 1 0

 , t1ss =


0 0 0

0 0 0

0 0
√
2

 .

(2.44)

Here, C = γ2γ4 is the charge-conjugation matrix.
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Using the following properties of Dirac matrices, CγTµC
† = −γµ, and of Gell-Mann

matrices,
∑3

i=1Hi [λ
a]T [Hi]

T = −λa, then it is straightforward to show that

ΓJ−P ,C
fg (p;P ) = −1

2

16παIR

3m2
G

∫
d4t

(2π)4
γµSf (t+ P )ΓJ−P ,C

fg (t;P )Sg(t)γµ . (2.45)

This equation explains the observation that an interaction capable of binding mesons also

generates strong diquark correlations in the colour-3̄ channel. It follows, moreover, that

one may obtain the mass and Bethe Salpeter amplitude for a diquark with spin-parity J−P

from the equation for a JP -meson in which the only change is a halving of the interaction

strength.

It is now easy to obtain the masses and amplitudes of the 0+ and the 1+ diquarks:

Γ0+,C
fg (P ) = γ5

[
iE[fg](P ) +

γ · P
Mfg

F[fg](P )

]
, (2.46a)

Γ1+,C
µ(fg)(P ) = γ⊥µ E{fg}(P ) , (2.46b)

where Mfg = MfMg/
[
Mf +Mg

]
. The masses and associated amplitude functions satisfy

simply modified versions of Eqs. (2.24), and Eqs. (2.33), (2.36).

Table 2.2: Masses and canonically normalised correlation amplitudes obtained by solv-
ing the diquark BSEs. Recall that isospin-symmetry is assumed. (Masses listed in GeV.
Amplitudes are dimensionless.)

m[ud] E[ud] F[ud] m[us] E[us] F[us]

0.78 2.71 0.31 0.94 2.78 0.37

m{uu} E{uu} m{us} E{us} m{ss} E{ss}
1.06 1.39 1.22 1.16 1.33 1.10

Following the same procedures used for mesons, one can solve the diquark BSEs and

calculate the corresponding normalisation constants. As initially observed in Ref. [71], ow-

ing to similarities between their respective Bethe-Salpeter equations, one may consider a

colour-antitriplet JP diquark as the partner to a colour-singlet J−P meson. Thus, the BSEs
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for JP diquark are solved using the dressed-quark propagators and the values of Λuv asso-

ciated with the J−P mesons [72, 73]. The calculated diquark mass-scales and canonically

normalised amplitudes are listed in Table 2.2. (As explained in Appendix C of Ref. [74],

when using the SCI, a slight modification of the canonical normalisation procedure for a

given diquark correlation amplitude is necessary, resulting in a ≲ 4% recalibration, which

is already included in Table 2.2.)

2.4.2 Ward-Green-Takahashi identities

In any study of low-energy hadron observables, it is critical that the relevant WGT identities

[58–60] be satisfied. Failing this, it is impossible, e.g., to preserve the pattern of chiral

symmetry breaking in QCD and hence a veracious understanding of hadron mass splittings

is not achievable. WGT identities are also very important for preserving the conserved

vector current (CVC) and partially conserved axial-vector current (PCAC). For instance,

if one dose not ensure satisfaction of the vector WGT identity when computing the pion

elastic electromagnetic form factor, it cannot be guaranteed that the pion will have unit

charge [75].

The axial-vector WGT identity (AVWGTI), which expresses chiral symmetry and its

breaking pattern is

QµΓ
fg
5µ(Q) + i

[
mf +mg

]
Γfg
5 (Q) = S−1

f (k+) iγ5 + iγ5S
−1
g (k) , (2.47)

where Q is the incoming momentum of the vertex, and k+ and k are the quark’s outgoing

and incoming momentum. In order to focus on basics, I ignore the flavour matrix of the

vertex here.

The two vertices in Eq. (2.47) are determined by inhomogeneous BSEs, viz. in RL trun-

cation:

Γfg
5µ(Q) = γ5γµ − 16π

3

αIR

m2
G

∫
d4t

(2π)4
γαSf (t+)Γ

fg
5µ(Q)Sg(t)γα , (2.48a)

Γfg
5 (Q) = γ5 −

16π

3

αIR

m2
G

∫
d4t

(2π)4
γαSf (t+)Γ

fg
5 (Q)Sg(t)γα . (2.48b)
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One must therefore implement regularisations of these inhomogeneous BSEs that maintain

Eqs. (2.48).

To see what this entails, contract Eq. (2.48a) with Qµ and combine it with the AVWGTI

in Eq. (2.47) and the gap equation in Eq. (2.14). This yields the following two identities:

(Mf −mf ) + (Mg −mg) =
64π

3

αIR

m2
G

∫
q

[
Mg

q2 +M2
g

+
Mf

(q +Q)2 +M2
f

]
, (2.49a)

0 =

∫
q

[
Q · q

q2 +M2
g

− Q · (q +Q)

(q +Q)2 +M2
f

]
. (2.49b)

Re-expressing the integrals using Feynman parameterisation, one can arrive at

(Mf −mf ) + (Mg −mg) =
64π

3

αIR

m2
G

∫
q

∫ 1

0
dα

[
Mf +Mg[

q2 + wfg (α,Q)
]−

(α̂Mf − αMg)(M
2
f −M2

g + (α̂− α)Q2)[
q2 + wfg (α,Q)

]2
 , (2.50)

and

0 =

∫ Λ

q

∫ 1

0
dα

1
2q

2 + wfg(α,Q)[
q2 + wfg(α,Q)

]2 , (2.51)

where wfg(α,Q) = α̂M2
f + αM2

g + αα̂Q2. One must enforce Eqs. (2.50) and (2.51) when-

ever possible in the following. In doing so, one is defining a regularisation scheme for the

model that ensures preservation of the AVWGTI. Taking into account the expressions in

AppendixA.2, one finds that this entails

(Mf −mf ) + (Mg −mg) =
4αIR

3πm2
G

∫ 1

0
dα

[
Ciu(wfg(α,Q))− (α̂Mf − αMg)

(M2
f −M2

g + (α̂− α)Q2)C̄iu
1 (wfg(α,Q))

]
, (2.52a)

0 =

∫ 1

0
dαCiu(wfg(α,Q)) + Ciu

1 (wfg(α,Q)) . (2.52b)

With such a symmetry-preserving treatment of the contact interaction, the solutions of

Eqs.(2.48) have the general form

Γfg
5µ(Q) = γ5γ

T
µ P

fg
T (Q2) + γ5γ

L
µP

fg
1L (Q

2) + iQµγ5P
fg
2L (Q

2) , (2.53a)

iΓfg
5 (Q) = iγ5E

fg(Q2) + γ5
γ ·Q
2Mfg

F fg(Q2) , (2.53b)
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where Qµγ
T
µ = 0, γTµ + γLµ = γµ.

If one inserts Eq. (2.53b) into Eq. (2.48b) and employs the symmetry-preserving regu-

larisation explained in Eqs.(2.52), then one arrives at the following algebraic equation for

the two terms in the pseudoscalar vertex: Efg
(
Q2
)

F fg
(
Q2
)
 = [I −K]−1

 1

0

 , (2.54a)

I −K =

 1 0

0 1

− 4αIR

3πm2
G

 Kfg
EE Kfg

EF

Kfg
FE Kfg

FF

 , (2.54b)

where the kernel elements are given in Eq. (2.25). (Owing to a slight notation change in

treating the inhomogeneous BSE in this subsection, one must here identify g with ḡ in

Eq. (2.25).) As promised, a straightforward calculation reveals the presence of a pole at the

lightest fḡ-pseudoscalar state (0−). From the term KEE , it is easy to obtain the following

relation: (
mf +mg

)
Efg

(
Q2 = 0

)
=Mf +Mg. (2.55)

Now, returning to the axial-vector vertex. Substituting Eq. (2.53a) into Eq. (2.48a) and

drawing on Eq. (2.47), one finds

P fg
1L

(
Q2
)
≡ 1− mf +mg

2Mfg
F fg

(
Q2
)
. (2.56)

One can determine P fg
T (Q2) by contracting Eq. (2.53a) with the transverse projection

operator γ5Tµν(Q) = γ5(δµν −QµQν/Q
2):

P fg
T

(
Q2
)
=

1

1 +Kfg
AV

(
Q2
) , (2.57a)

Kfg
AV

(
Q2
)
=

2αIR

3πm2
G

∫ 1

0
dα
[
MfMg + α̂M2

f (2.57b)

+αM2
g + 2αα̂Q2

]
C̄iu
1

(
ωfg

(
α,Q2

))
.

The transverse part of the axial-vector vertex exhibits a pole at the mass of the lightest fḡ

axial-vector state (1+).
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Only the computation of P fg
2L (Q

2) remains. This may be accomplished by, first, con-

tracting Eq. (2.53a) with iγ5Qµ and then, using Eq. (2.47) and the gap equations, one arrives

at

Q2P fg
2L (Q

2) = (Mf +Mg)− (mf +mg)E
fg(Q2) . (2.58)

According to Eq. (2.55), it is clear that limQ2→0Q
2P fg

2L

(
Q2
)
= 0. Consequently, P fg

2L

(
Q2
)

is regular at Q2 = 0.

Using Eq. (2.55) in solving Eqs. (2.54), one can obtain

F fg(Q2 = 0) = 2
Mfg

mf +mg

Kfg
FF (Q

2 = 0)

Kfg
FF (Q

2 = 0)− 1
. (2.59)

Inserting F fg(Q2 = 0) into Eq. (2.56), one finds

P fg
1L

(
Q2 = 0

)
= 1 +

Kfg
FF (Q

2 = 0)

1−Kfg
FF (Q

2 = 0)
=

1

1−Kfg
FF (Q

2 = 0)
. (2.60)

Comparing Kfg
AV

(
Q2
)
in Eq. (2.57) with Kfḡ

FF

(
Q2
)
in Eq. (2.25), one reads Kfg

AV

(
Q2 = 0

)
=

−Kfg
FF

(
Q2 = 0

)
. Thus,

P fg
T

(
Q2 = 0

)
=

1

1 +Kfg
AV

(
Q2 = 0

) = P fg
1L

(
Q2 = 0

)
. (2.61)

This establishes that the axial-vector vertex is regular at Q = 0 when the current-quark

masses are nonzero.

Evidently, a symmetry-preserving calculation of the axial-vector and pseudoscalar ver-

tices has succeeded.

Following similar procedures, one can develop a symmetry-preserving calculation of the

vector and scalar vertices. Detailed discussions are contained in Refs. [65, 74, 76].

2.5 Faddeev equation

Herein, each baryon’s dressed-quark core is described via the solution of a Poincaré-covariant

Faddeev equation, like that depicted in Fig. 2.3. The approach is built upon the quark–plus–

interacting-diquark picture of baryon structure introduced in Refs. [77–79]. An updated

perspective on this picture is provided in Refs. [80–83].
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Figure 2.3: Integral equation for the Poincaré-covariant matrix-valued function Ψ, the
Faddeev amplitude for a baryon with total momentum P = pq + pd = kq + kd constituted
from three valence quarks, two of which are always contained in a nonpointlike, interacting
diquark correlation. Ψ describes the relative momentum correlation between the dressed-
quarks and -diquarks. Legend. Shaded rectangle – Faddeev kernel; single line – dressed-
quark propagator [Section 2.3]; Γ – diquark correlation amplitude [Section 2.4.1] and double
line – diquark propagator. Ground-state J = 1/2+ baryons contain both flavour-antitriplet–
scalar and flavour-sextet–axial-vector diquarks.

The Faddeev equation is derived following the observation, mentioned above, that an

interaction which binds mesons also generates strong diquark correlations in the colour-3̄

channel. The validity of the diquark approximation in the quark-quark scattering kernel

is supported, e.g., by the explicitly three-body analyses in Ref.[84]. In the quark+diquark

approach, there are two contributions that bind three valence quarks within a baryon [85].

One part is expressed in the formation of tight (but not pointlike) quark+quark correlations.

The other is the attraction generated by the quark exchange depicted in the shaded area

of Fig. 2.3, which ensures the diquark correlations within the baryon are fully dynamical.

Namely, no quark is special because each one participates fully in all diquarks allowed by

its quantum numbers. The continual rearrangement of the quarks ensures, inter alia, that

the baryon’s dressed-quark wave function adheres to Pauli statistics.

2.5.1 General structure of the Faddeev amplitudes

The Faddeev amplitude of a spin-1/2 baryon may be represented as follows:

Ψ = Ψ1 +Ψ2 +Ψ3 , (2.62)

where the subscript identifies the bystander quark and, e.g., Ψ1,2 are obtained from Ψ3

through a cyclic permutation of all quark labels. I employ the simplest realistic representa-

23



tion of Ψ, where an octet baryon is comprised of a sum of scalar and axial-vector diquark

correlations:

Ψ3(pj , αj , φj) = N 0+

3 (pj , αj , φj) +N 1+

3 (pj , αj , φj) , (2.63)

with (pj , αj , φj) being the momentum, spin and flavour labels of the quarks constituting

the bound state, and P = p1 + p2 + p3 is the system’s total momentum.

It is plausible that pseudoscalar and vector diquarks may contribute to the Faddeev

amplitude of a ground-state octet baryon. However, they have opposite parity compared to

the ground-state baryon and hence can only appear in concert with nonzero quark angular

momentum. Given that the ground-state baryon is expected to have minimal quark or-

bital angular momentum, and considering that these diquark correlations are considerably

more massive than the scalar and axial-vector diquarks, they can safely be ignored when

computing the properties of the ground state. This is confirmed in Refs. [86–88].

The scalar diquark piece in Eq. (2.63) takes the form

N 0+

3 (pi, αi, τi) =

[
dΓ0+

i

(
1

2
p[12];K

)]τ1τ2
α1α2

∆(i,0+)(K)[ΨS,i(ℓ;P )]τ3α3
,

ΨS,i(ℓ;P ) = Si(ℓ;P )u(P ) ,

(2.64)

where: K = p1 + p2 =: p{12}, p[12] = p1 − p2, ℓ := (−p{12} + 2p3)/3;

∆(i,0+)(K) =
1

K2 +m2
(i,0+)

, (2.65)

is a propagator for the scalar diquark formed from quarks 1 and 2, with m0+ the mass-scale

associated with this 0+ diquark; dΓ0+
i is the canonically-normalised Bethe-Salpeter ampli-

tude describing the relative momentum correlation between the quarks, given in Eq. (2.43);

Si is a 4 × 4 Dirac matrix describing the relative quark-diquark momentum correlation

within the baryon, also including the colour-singlet matrix λ0c/
√
3; and the spinor satisfies

(iγ · P +MB)u(P ) = 0 = ū (iγ · P +MB) , (2.66)

with MB the mass obtained by solving the Faddeev equation. The spinor, u, is normalised
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such that ū(P )u(P ) = 2MB, and

2MBΛ+(P ) =
∑
σ=±

u(P ;σ)ū(P ;σ) =MB − iγ · P , (2.67)

where in this line I have explicitly indicated the spin label. (See Appendix A in Ref. [89] for

more details.) I note that u also possesses another column-vector degree of freedom, viz.

up =


r1 u[ud]

r2 d{uu}

r3 u{ud}

 , (2.68a)

un =


r1 d[ud]

r2 u{dd}

r3 d{ud}

 , (2.68b)

uΛ =
1√
2


r1 −

√
2s[ud]

r2 u[ds]− d[us]

r3 u{ds} − d{us}

 , (2.68c)

uΣ+ =


r1 u[us]

r2 s{uu}

r3 u{us}

 , (2.68d)

uΞ0 =


r1 s[us]

r2 s{us}

r3 u{ss}

 . (2.68e)

Since this work assumes isospin symmetry, the unlisted octet charge states may be ob-

tained from those above by applying an isospin-lowering operator. These states are mass

degenerate with those written explicitly. The colour antisymmetry of Ψ3 is implicit in dΓ0+ .
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The axial-vector part of Eq. (2.63) is

N 1+ (pi, αi, τi) =

[
dΓ1+

i,µ

(
1

2
p[12];K

)]τ1τ2
α1α2

∆(i,1+)
µν (K)

[
ΨA,i

ν (ℓ;P )
]τ3
α3

,

ΨA,i
ν (ℓ;P ) = Ai

ν(ℓ;P )u(P ) ,

(2.69)

where

∆
(i,1+)
µν (K) =

1

K2 +m2
(i,1+)

δµν + KµKν

m2
(i,1+)

 (2.70)

is a propagator for the axial-vector diquark formed from quarks 1 and 2 and the remaining

elements in Eq. (2.69) are straightforward generalisations of those in Eq. (2.64).

For completeness I note that since it is not possible to combine an isospin-0 diquark with

an isospin-1/2 diquark to obtain isospin-3/2, the spin- and isospin-3/2 decuplet baryons

contain only axial-vector diquark correlations. (Isospin-3/2 vector diquarks play practically

no role [82].) This establishes the pattern for the remaining decuplet baryons, allowing

them to be expressed via

Ψ10
3 (pi, αi, φi) = D1+

3 (pj , αj , φj) , (2.71)

with

D1+
3 (pj , αj , φj) =

[
dΓ1+

i,µ

(
1

2
p[12];K

)]τ1τ2
α1α2

∆
(i,1+)
µν (K)

[
ΨD,i

ν (ℓ;P )
]τ3
α3

,

ΨD,i
ν (ℓ;P ) = Di

νρ(ℓ;P )uρ(P ),

(2.72)

where uρ(P ) is a Rarita-Schwinger spinor and, similar to octet baryons, in constructing

the Faddeev equations one may focus on that member of each isospin multiplet which has

maximum electric charge, viz.

u∆ =

[
{uu}u

]
, uΣ∗ =

 {uu}s

{us}u

 , uΞ∗ =

 {us}s

{ss}u

 , uΩ =

[
{ss}s

]
. (2.73)

Although simple to understand visually, the flavour structure expressed in Eq. (2.68) is

not that best suited for calculations. Instead, it is more convenient to proceed by asso-

ciating a flavour-space column vector with the baryon spinor: so that, e.g., Eq. (2.68e) is
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re-expressed as follows:

ΨB=Ξ0 = [Ψ
S[us]

Ξ0 fs +Ψ
A{us}
Ξ0 fs +Ψ

A{ss}
Ξ0 fu]⊗

λ0c√
3
, (2.74)

where fu = column[1, 0, 0], fd = column[0, 1, 0] and fs = column[0, 0, 1].The column vector

that should be used is determined by the baryon, B, and the specified diquark.

The general forms of the matrices Si(ℓ;P ), Ai
ν(ℓ;P ) and Di

νρ(ℓ;P ), which characterise

the momentum-space correlation between the quark and diquark in the octet and decuplet

baryons, respectively, are described in Refs. [90–92]. The requirement that Si(ℓ;P ) represent

a positive energy baryon, i.e., an eigenfunction of Λ+(P ), entails

Si(ℓ;P ) = si1(ℓ;P )S
1(ℓ;P ) + si2(ℓ;P )S

2(ℓ;P ) , (2.75a)

S1(ℓ;P ) = ID, S
2(ℓ;P ) =

(
iγ · ℓ̂− ℓ̂ · P̂ ID

)
, (2.75b)

where (ID)rs = δrs, ℓ̂
2 = 1, P̂ 2 = −1. In the baryon rest frame, si1,2 describe, respectively,

the upper, lower component of the bound-state baryon’s spinor.

Placing the same constraint on the axial-vector component, one obtains

Ai
ν(ℓ;P ) =

6∑
n=1

pin(ℓ;P ) γ5A
n
ν (ℓ;P ) , (2.76)

where (ℓ̂⊥ν = ℓ̂ν + ℓ̂ · P̂ P̂ν , γ
⊥
ν = γν + γ · P̂ P̂ν)

A1
ν = γ · ℓ̂⊥ P̂ν , A2

ν = −iP̂ν , A3
ν = γ · ℓ̂⊥ ℓ̂⊥ ,

A4
ν = i ℓ̂⊥µ , A5

ν = γ⊥ν −A3
ν , A6

ν = iγ⊥ν γ · ℓ̂⊥ −A4
ν .

(2.77)

Finally, because Di
νρ(ℓ;P ) is also an eigenfunction of Λ+(P ), one obtains

Di
νρ(ℓ;P ) = Si(ℓ;P ) δνρ + γ5Ai

ν(ℓ;P ) ℓ
⊥
ρ , (2.78)

with Si and Ai
ν given by obvious analogues of Eqs. (2.75) and (2.76), respectively.

With detailed forms available for the dressed-quark propagators, diquark Bethe-Salpeter

amplitudes, and diquark propagators – such as those determined by the SCI – one can now

formulate Faddeev equations for the baryons. As illustrated in Fig. 2.3, the kernels of

these equations involve the breakup and reformation of diquarks through the exchange of
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a dressed-quark. Thus, the Faddeev equation for an octet baryon, satisfied by Ψ3, is Sm(k;P )u(P )

Ai
µ(k;P )u(P )

 = −4

∫
d4l

(2π)4
M(k, l;P )

 Sn(l;P )u(P )

Aj
ν(l;P )u(P )

 (2.79)

where one factor of “2” appears because Ψ3 is coupled symmetrically to Ψ1 and Ψ2, and I

have evaluated the colour factor “-2” (see AppendixA.3).

The kernel in Eq. (2.79) is

M(k, l;P ) =

 Mmn
00 (M01)

mj
ν

(M10)
in
µ (M11)

ij
µν

 (2.80)

with

Mmn
00 = Γ0+

n

(
k−l; lqq

)
ST
(
lqq − kq

)
Γ̄0+

m

(
l−k;−kqq

)
S
(
lq
)
∆(n,0+) (lqq) ,

(M01)
mj
ν = Γ1+

j,µ

(
k−l; lqq

)
ST
(
lqq − kq

)
Γ̄0+

m

(
l−k;−kqq

)
S
(
lq
)
∆
(j,1+)
µν

(
lqq
)
,

(M10)
in
µ = Γ0+

n

(
k−l; lqq

)
ST
(
lqq − kq

)
Γ̄1+

i,µ

(
l−k;−kqq

)
S
(
lq
)
∆(n,0+) (lqq) ,

(M11)
ij
µν = Γ1+

j,ρ

(
k−l; lqq

)
ST
(
lqq − kq

)
Γ̄1+

i,µ

(
l−k;−kqq

)
S
(
lq
)
∆
(j,1+)
ρν

(
lqq
)
,

(2.81)

where k−l = kq − 1
2 lqq, l−k = lq − 1

2kqq, ℓq = ℓ, kq = k, ℓqq = −ℓ + P, kqq = −k + P . The

decuplet baryons’ Faddeev equations are similar to those of the octet baryons, but simpler.

In proceeding, I follow Ref. [93] and implement a simplification; namely, in the Faddeev

equation for a baryon of type B, I represent the quark exchanged between the diquarks as

ST(k) → g2B
M

, (2.82)

where gB = g8 = 1.18 for octet baryons and gB → g10 = 1.56 for decuplet baryons [89].

This is a variant of the so-called “static approximation”, originally introduced in Ref. [94],

and since then it has been employed in studies of various nucleon properties – see, e.g.,

Refs. [72, 73, 95–100]. In conjunction with the diquark correlations produced by Eq. (2.3),

whose Bethe–Salpeter amplitudes are momentum-independent, Eq. (2.82) produces Faddeev

equation kernels that are also momentum-independent. Consequently, Eqs. (2.75) and (2.76)

simplify dramatically, containing only those terms that are independent of the relative
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momentum:

Si(ℓ;P ) → Si(P ) = si(P )ID ,

Ai
v(µ;P ) → Ai

µ(P ) = ai1(P )iγ5γµ + ai2(P )γ5P̂µ .

(2.83)

I would like to emphasise that the utilisation of Eq. (2.82) is a matter of convenience

rather than necessity. It is employed because it allows us to present algebraic formulas that

reveal qualitative characteristics of the Faddeev equation and enable reliable insights into

the mechanisms of bound-state formation and level ordering. Eliminating this simplifica-

tion introduces significant additional complexity without material gains in either insight or

quantitative agreement with observation [101].

2.5.2 Explicit example: Λ baryon

Here I illustrate the construction of the Faddeev equation by considering the Λ baryon. The

Λ baryon is an isospin-0, JP = (1/2)+ state composed of a single quark from each flavour,

resulting in a somewhat complicated spin-flavour amplitude.

Considering Eq. (2.68c), the ground-state Λ may be formed by five possible diquark

combinations:

[ud]0+s, [us]0+d, [ds]0+u, {us}1+d, {ds}1+u . (2.84)

One can immediately see that [ud]0+s has I = 0 whilst the others do not possess good

isospin. This results in a mixing effect that make it difficult to distinguish between the Λ

and Σ0 isospin-eigenstates. Consequently, constructing the flavour structure of the Faddeev

kernel becomes a complex task.

States with good isospin can be constructed in the following manner: with

V =



[ud]s

[us]d

[ds]u

{us}d

{ds}u


, O =



1 0 0 0 0

0 1√
2

− 1√
2

0 0

0 1√
2

1√
2

0 0

0 0 0 1√
2

− 1√
2

0 0 0 1√
2

1√
2


, (2.85)
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then each of the entries in the new column vector

Ṽ = OV =
1√
2



√
2[ud]s , I = 0

[us]d− [ds]u , I = 0

[us]d+ [ds]u , I = 1

{us}d− {ds}u , I = 0

{us}d+ {ds}u , I = 1


, (2.86)

has good isospin, with the isospin indicated.

According to Fig. 2.3, one can establish that the column vector V satisfies a Faddeev

equation of the form V = KudsV , which may be written explicitly as follows:

[ud]s

[us]d

[ds]u

{us}d

{ds}u


=



0 K[ud],[us] K[ud],[ds] K[ud],{us} K[ud],{ds}

K[us],[ud] 0 K[us],[ds] 0 K[us],{ds}

K[ds],[ud] K[ds],[us] 0 K[ds],{us} 0

K{us},[ud] 0 K{us},[ds] 0 K{us},{ds}

K{ds},[ud] K{ds},[us] 0 K{ds},{us} 0





[ud]s

[us]d

[ds]u

{us}d

{ds}u


,

(2.87)

where, e.g. K[ud],[us] depicts the disintegration of a [us] scalar diquark through emission

of a dressed u-quark, which subsequently combines with the d-quark to form a [ud] scalar

diquark, leaving the s-quark as a bystander. In the kernel, the repeated flavour label always

indicates the exchanged quark.

For the convenience of later statements, I introduce a new notation to represent the

flavour structure in Eq. (2.44):
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t1=[ud] =


0 1 0

−1 0 0

0 0 0

 , t2=[us] =


0 0 1

0 0 0

−1 0 0

 , t3=[ds] =


0 0 0

0 0 1

0 −1 0

 ,

t4={uu} =


√
2 0 0

0 0 0

0 0 0

 , t5={ud} =


0 1 0

1 0 0

0 0 0

 , t6={us} =


0 0 1

0 0 0

1 0 0

 ,

t7={dd} =


0 0 0

0
√
2 0

0 0 0

 , t8={ds} =


0 0 0

0 0 1

0 1 0

 , t9={ss} =


0 0 0

0 0 0

0 0
√
2

 .
(2.88)

Using the notation above, one may write

Kuds =



0 K12 K13 K16 K18

K21 0 K23 0 K28

K31 K32 0 K36 0

K61 0 K63 0 K68

K81 K82 0 K86 0


, (2.89)

where, e.g., K12 = K[ud],[us].

Calculating the flavour factor (see AppendixA.3) and using isospin symmetry, one ar-

rives at

Kuds =



0 K12 −K13 −K16 K16

K21 0 K23 0 K28

−K21 K23 0 K28 0

−K61 0 K62 0 K68

K61 K62 0 K68 0


. (2.90)

Explicit forms of the entries here are presented in Appendix B.2.

Owing to the presence of mixing in the Kuds kernel, which obscures the Λ and Σ0
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isospin-eigenstate baryons, I will proceed by utilising the matrix O in Eq. (2.85) to construct

a non-mixing kernel:

Kuds = OKudsO
T =



0
√
2K12 0 −

√
2K16 0

√
2K21 −K23 0 −K28 0

0 0 K23 0 K28

−
√
2K61 −K63 0 −K68 0

0 0 K63 0 K68


. (2.91)

According to Eq. (2.86), rows 1, 2, 4 map I = 0 into itself, whereas rows 3, 5 do the same

for (I, Iz) = (1, 0).

Focusing on the I = 0 sector, one arrives at the following Faddeev equation for the Λ

baryon: ṼΛ = KΛ
udsṼΛ, i.e., explicitly,

1√
2


√
2[ud]s

[us]d− [ds]u

{us}d− {{ds}u

 =


0

√
2K12 −

√
2K16

√
2K21 −K23 −K28

−
√
2K61 −K63 −K68


1√
2


√
2[ud]s

[us]d− [ds]u

{us}d− {ds}u

 .

(2.92)

Substituting Eqs. (2.79) and (2.83) into Eq. (2.92), the specific Faddeev equation of the

Λ-baryon can be obtained:

s1(P )

s[2,3](P )

a
[6,8]
1 (P )

a
[6,8]
2 (P )


=



0
√
2K00

12 −
√
2K01

161
−
√
2K01

162
√
2K00

21 −K00
23 −K01

281
−K01

282

−
√
2K10

611
−K10

613
−K11

6181
−K11

6182

−
√
2K10

621
−K10

623
−K11

6281
−K11

6282





s1(P )

s[2,3](P )

a
[6,8]
1 (P )

a
[6,8]
2 (P )


. (2.93)

Again, compact algebraic expressions for each of the entries in the kernel matrix are listed

in Appendix B.2.

Equation (2.93) is an algebraic eigenvalue problem, the solution to which yields the mass

of the dressed-quark-core of the Λ-resonance and the associated Faddeev amplitude. The

specific Faddeev equations of other baryons can be obtained in a similar way. They are all

algebraic and this enables, e.g., a clear understanding of the dynamical character of quark
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Table 2.3: Masses and unit normalised Faddeev amplitudes obtained by solving the octet
baryon Faddeev equations defined by Fig. 2.3.The row label superscript refers to Eqs. (2.68):
for the Λ-baryon, r2 is a scalar diquark combination; otherwise, it is axial-vector. Canoni-
cally normalised amplitudes, explained in connection with Eq. (2.94), are obtained by divid-
ing the amplitude entries in each row by the following numbers: np,n

c = 0.157, nΛ
c = 0.177,

nΣ
c = 0.190, nΞ

c = 0.201. (Masses listed in GeV. Amplitudes are dimensionless. Recall that
isospin-symmetry is assumed.)

mass sr1 sr2 ar21 ar22 ar31 ar32
p 1.15 0.88 −0.38 −0.063 0.27 0.044
n 1.15 0.88 0.38 0.063 −0.27 −0.044
Λ 1.33 0.66 0.62 −0.41 −0.084
Σ 1.38 0.85 −0.46 0.15 0.22 0.041
Ξ 1.50 0.91 −0.29 0.021 0.29 0.052

exchange in baryon bound states.

All the elements necessary to construct the baryon Faddeev kernels are now in hand. The

value of Λuv in each Faddeev equation is selected as the scale linked to the lightest diquark

in the bound state, because this is always the smallest value and, hence, the dominant

regularising influence.

Solving the Faddeev equations, one obtains the masses and amplitudes listed in Ta-

ble 2.3. The row labels in the table correspond to those identified in Eqs. (2.68). Regarding

the masses, I note that the values are deliberately 0.20(2)GeV above experiment [70] be-

cause Fig. 2.3 describes the dressed-quark core of each baryon. To obtain a complete baryon,

resonant contributions should be incorporated into the Faddeev kernel. Such “meson cloud”

effects are known to lower the mass of octet baryons by ≈ 0.2GeV [18, 82, 88, 102–104].

(Similar effects are reported in quark models [105, 106].) Their impact on baryon structure

can be estimated using dynamical coupled-channels models [4, 107–110], but that is beyond

the scope of the present Faddeev equation analyses.

Notwithstanding these considerations, the quark+diquark picture of baryon structure

yields a Σ − Λ mass splitting that aligns well with experiment. This is because the Λ

is primarily a scalar diquark system, whereas the Σ possesses more axial-vector strength:
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scalar diquarks are lighter than axial-vector diquarks.

The Faddeev amplitudes in Table 2.3 are unit normalised. When calculating observables,

one must use the canonically normalised amplitude, which is defined via the baryon’s Dirac

form factor in elastic electromagnetic scattering, F1(Q
2 = 0). To wit, for a baryon B,

with nu u valence-quarks, nd d valence-quarks and ns s valence-quarks, one decomposes the

Dirac form factor as follows:

FB
1 (Q2 = 0) = nueuF

Bu
1 (0) + ndedF

Bd
1 (0) + nsesF

Bs
1 (0) , (2.94)

where eu,d,s represent the quark electric charges, expressed in units of the positron charge.

It is subsequently straightforward to calculate the single constant factor that, when used

to rescale the unit-normalised Faddeev amplitude for B, ensures FBu
1 (0) = 1 = FBd

1 (0) =

FBs
1 (0). So long as a symmetry-preserving treatment is employed for the elastic scattering

problem, this single factor guarantees that all three flavour-separated electromagnetic form

factors are unity at Q2 = 0. Detailed examples are provided elsewhere [95].
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Chapter 3

Octet baryon axialvector and
pseudoscalar form factors

3.1 Introduction

The proton, p, is the only stable hadron and the best known bound state in the baryon

octet. Except for protons, all the other octet baryons decay. In many respects, these

baryons’ semileptonic decays are theoretically the easiest to understand because only one

strongly interacting particle is involved in the initial and final states. The neutron, n, β-

decay: n→ pe−ν̄e is the archetypal process, the study of which has a long history [111, 112].

Despite that, related decays of hyperons have also attracted much attention [52, 53], in part

because they present an opportunity to shed light on the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element |Vus| and thereby complement that provided by Kℓ3 decays (see

Sec. 12.2.2 in Ref. [70]). It is also of great importance to understand the octet baryons’

axial-vector form factors, since they provide insights into the pattern of flavour SU(3)

symmetry breaking.

Within the Standard Model, the semileptonic decay B → B′ℓ−νℓ, where B and B′ are

the initial and final octet baryons and ℓ denotes a lepton, involves a valence-quark g in B

transforming into a valence-quark f in B′. The associated axial-vector transition matrix

element are determined by two Poincaré-invariant form factors:

JB′B
5µ (K,Q) := ⟨B′(P ′)|Afg

5µ(0)|B(P )⟩ (3.1a)

= ūB′(P ′)γ5

[
γµG

B′B
A (Q2) +

iQµ

2MB′B
GB′B

P (Q2)

]
uB(P ) . (3.1b)
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Here GB′B
A (Q2) is the axial form factor and GB′B

P (Q2) is the induced pseudoscalar form

factor; P and P ′ are, respectively, the momenta of the initial- and final-state baryons,

defined such that the on-shell conditions are fulfilled, P (′) · P (′) = −m2
B,B′ , with mB,B′

being the baryon masses – again, I work with the Euclidean metric conventions explained in

Appendix A.1); MB′B = (mB′ +mB)/2; and uB,B′(P ) are the associated Euclidean spinors.

(I have suppressed the spin label. See AppendixB in Ref. [92] for details.) Furthermore,

K = (P +P ′)/2 is the average momentum of the system and Q = P ′ −P is the transferred

momentum between initial and final states:

−K2 = 1
2(m

2
B′ +m2

B) +
1
4Q

2 =: 1
2ΣB′B + 1

4Q
2 , (3.2a)

−K ·Q = 1
2(m

2
B′ −m2

B) =: 1
2∆B′B . (3.2b)

Once more, I work in the isospin symmetry limitmu = md =: ml, i.e., assume degenerate

light-quarks, and treat the s valence quark as approximately twenty-times more massive

[70], viz. ms ≈ 20ml. The overall flavour structure is described by the Gell-Mann matrices

{λj |j = 1, . . . , 8} so that the flavour-nonsinglet axial current operator can be written

Afg
5µ(x) = q̄(x)T fgγ5γµq(x) , (3.3)

where q = column[u, d, s] and T fg is the valence-quark flavour transition matrix. Hence,

for example, the s→ u transition is described by T us = (λ4 + iλ5)/2.

A related form factor, GB′B
5 (Q2), is associated with a kindred pseudoscalar current

JB′B
5 (K,Q) := ⟨B′(P ′)|Pfg

5 (0)|B(P )⟩ (3.4a)

= ūB′(P ′)γ5G5(Q
2)uB(P ) , (3.4b)

where Pfg
5 (x) = q̄(x)T fgγ5q(x) is the flavour-nonsinglet pseudoscalar current operator.

This form factor is important because, amongst other things, owing to DCSB, a corollary

of EHM [21–26], one has a partial conservation of the axial current (PCAC) relation for

each baryon transition (2mfg = mf +mg):

0 = QµJ
B′B
5µ (K,Q) + 2imfgJ

B′B
5 (K,Q) (3.5a)
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⇒ GB′B
A (Q2)− Q2

4M2
B′B

GB′B
P (Q2) =

mfg

MB′B
GB′B

5 (Q2) . (3.5b)

Note that the product mfgG
B′B
5 (Q2) is renormalisation point invariant; neither of these two

factors alone possesses this property.

It should be pointed out that PCAC is an operator relation and thus the identities in

Eqs. (3.5) are satisfied for all Q2. They state that the longitudinal component of the axial-

vector current is fully determined by the related pseudoscalar form factor and its intensity

is modulated by the ratio of the sum of current-quark masses participating in the transition

to the sum of the masses of the involved baryons. The former are determined by Higgs

boson couplings into QCD, whereas the latter are largely determined by the scale of EHM.

Therefore, this Q-divergence serves as a measure of the interplay between nature’s two

known mass-generating mechanisms.

Focusing on the case of neutron β decay, Eqs. (3.5) lead to the well-known Goldberger-

Treiman relation and establish the validity of the pion pole dominance approximation for

Gpn
P . Considering instead a prominent hyperon decay, e.g., Λ → pe−ν̄e, one recognises that

GpΛ
5 exhibits a pole at the mass of the charged kaon, i.e., when Q2+m2

K = 0. GpΛ
A is regular

in the neighbourhood of m2
K because it is tied to the transverse part of the axial current.

Then GpΛ
P also has a pole at mK . Further, one can define a KpΛ form factor as follows:

GpΛ
5 (Q2) =:

m2
K

Q2 +m2
K

2fK
mu +ms

GKpΛ(Q
2) , (3.6)

where fK is the kaon leptonic decay constant, then Eqs. (3.5) entail

GpΛ
A (0) =

2fK
mp +mΛ

GKpΛ(0) , (3.7)

providing an estimate of the KpΛ coupling in terms of the Λ → p transition’s axial-vector

form factor at the maximum recoil point. As will become apparent, this relation holds true

with an accuracy better than 1%.

The evidently diverse physics relevance of octet baryon axial-vector transitions empha-

sises the importance of calculating the associated form factors. However, despite their

being some of the simplest baryonic processes, this does not imply that their calculation
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is simple. Studies of meson semileptonic transitions [65, 74, 76, 113, 114] have shown that

delivering predictions for the required processes demands dependable calculations of the

Poincaré-covariant hadron wave functions and the related axial-vector interaction currents

and careful symmetry-preserving treatments of the involved matrix elements.

Considering their significance in understanding modern neutrino experiments [115–119],

weak interactions and parity violation experiments, the nucleon axial and pseudoscalar

form factors have recently attracted a lot of attention, in studies using continuum and lat-

tice methods, e.g., Refs. [120–125]. Regarding hyperon semileptonic decays, analyses using

an array of tools may be found, e.g., in Refs. [126–134]. Here, I use CSMs [17, 18, 20–28] to

extend this body of work on octet baryon axial-vector transitions. Namely, I construct ap-

proximations to the transition matrix elements based on solutions of a symmetry-preserving

collection of integral equations for the relevant n-point Schwinger functions, n = 2−6. This

approach has become feasible owing to the recent development of a realistic axial current

for baryons [121, 122].

In Refs. [121–123], the so-called QCD-kindred framework was used to compute all form

factors associated with the nucleon axial and pseudoscalar currents. A straightforward

thought is that one could extend it to hyperons. However, that would require significant

effort. An expeditious alternative is to simplify the analysis by using the SCI, introduced in

Refs. [67, 69, 89] and detailed above. As already remarked, this approach ensures algebraic

simplicity; moreover, very importantly, it provides for the parameter-free unification of octet

baryon axial-vector transitions with an array of other baryon properties [73, 95, 98, 101]

and studies of the semileptonic decays of pseudoscalar mesons [65, 74, 76]. By adopting

this approach, one benefits from numerous studies [72, 73, 98, 99, 101, 135–141] which

have shown that SCI predictions provide a valuable quantitative guide when interpreted

judiciously. In fact, SCI results often provide both a useful first estimate of an observable

and a means of checking the validity of algorithms used in calculations that rely (heavily)

upon high-performance computing.

In Sec. 3.2, I sketch the current which ensures preservation of all PCAC identities when

the baryons involved are described by the Faddeev equation illustrated in Fig. 2.3. The
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sketch is complemented by Appendix C, which is an extensive description of results for

elements that appear in the currents but were not mentioned in the previous chapter.

Using that information, Sec. 3.3 presents and analyses SCI predictions for the axial, induced

pseudoscalar, and pseudoscalar transition form factors of the octet baryon. This is followed

by a discussion of the flavour separation of octet baryon axial charges and their connection

to the fraction of baryon spin carried by valence degrees of freedom in Sec. 3.4. Section 3.5

provides a summary.

3.2 Baryons’ axial current

My analyses of octet baryon axial-vector transition form factors are based on solutions

of the Poincaré-covariant Faddeev equation depicted in Fig. 2.3. When inserted into the

diagrams drawn in Fig. 3.1, these solutions deliver a result for the current in Eq. (3.1),

which ensures Eqs. (3.5), and all their corollaries for each transition. Details can be found

in Refs. [121, 122]. For subsequent reference, Table 3.1 provides a useful separation of the

current in Fig. 3.1.

Table 3.1: Enumeration of terms in the current drawn in Fig. 3.1.

1. Diagram 1, two distinct terms: ⟨J⟩Sq – probe strikes dressed-quark with scalar diquark

spectator; and ⟨J⟩Aq – probe strikes dressed-quark with axial-vector diquark spectator.

2. Diagram 2: ⟨J⟩AA
qq – probe strikes axial-vector diquark with dressed-quark spectator.

3. Diagram 3: ⟨J⟩{SA}
qq – probe mediates transition between scalar and axial-vector di-

quarks, with dressed-quark spectator.

4. Diagram 4, three terms: ⟨J⟩SSex – probe strikes dressed-quark “in-flight” between one

scalar diquark correlation and another; ⟨J⟩{SA}
ex – dressed-quark “in-flight” between a

scalar diquark correlation and an axial-vector correlation; and ⟨J⟩AA
ex – dressed-quark

“in-flight” between one axial-vector correlation and another.

5. Diagrams 5 and 6 – seagull diagrams describing the probe coupling into the diquark
correlation amplitudes: ⟨J⟩sg. There is one contribution from each diagram to match
every term in Diagram 4.
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Figure 3.1: Currents that ensure PCAC for on-shell baryons which are described by the
Faddeev amplitudes produced by the equation depicted in Fig. 2.3: single line, dressed-
quark propagator; undulating line, axial or pseudoscalar current; Γ, diquark correlation
amplitude; double line, diquark propagator; and χ, seagull terms. A legend is provided in
Table 3.1 with details in AppendixC.1.

The first step in this analysis of octet baryon transitions is the SCI calculation of every

line, amplitude and vertex in Figs. 2.3 and 3.1. The calculations of dressed quark propaga-

tors, diquark correlation amplitudes and Faddeev amplitudes were described in Chapter 2.

The remaining calculations are detailed in Appendix C.2. By combining the results and

employing appropriately selected projection operators, predictions for the baryon axial and

pseudoscalar form factors in Eqs. (3.1b) and (3.4b) are readily obtained. It is worth noting

that Eq. (3.1a) entails that GB′B
A is entirely determined by the Q-transverse part of the

baryon axial current [122].

3.3 Calculated form factors

3.3.1 Axial form factors

In the isospin-symmetry limit, there are six distinct charged current semileptonic transi-

tions between octet baryons. My predictions for the corresponding GA(Q
2 = 0) values are

recorded in Table 3.2. In the Cabibbo model of such transitions, which assumes SU(3)-
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Table 3.2: SCI predictions for gB
′B

A = GB′B
A (Q2 = 0) compared with experiment [70] and

other calculations: Lorentz covariant quark model [126]; covariant baryon chiral pertur-
bation theory [127]; and a lQCD study [132], which used large pion masses (mπ = 0.55 –
1.15GeV). Quoted error estimates are primarily statistical.

n→ p Σ− → Λ Λ → p Σ− → n Ξ0 → Σ+ Ξ− → Λ

SCI 1.24 0.66 −0.82 0.34 1.19 0.23

[70] 1.28 0.57(3) −0.88(2) 0.34(2) 1.22(5) 0.31(6)
[126] 1.27 0.63 −0.89 0.26 1.25 0.33
[127] 1.27 0.60(2) −0.88(2) 0.33(2) 1.22(4) 0.21(4)
[132] 1.31(2) 0.66(1) −0.95(2) 0.34(1) 1.28(3) 0.27(1)

flavour symmetry, the couplings in Table 3.2 are described by only two distinct parameters

(see Table 1 in Ref. [53]): D and F . In these terms, one finds

D = 0.78 , F = 0.43 , F/D = 0.56 , (3.8)

via a least-squares fit to the SCI results, with a mean absolute relative error between

SCI results and Cabibbo fit of just 3(2)%. Clearly, the SCI predicts that the violation

of SU(3) symmetry in these transitions is small, which confirms the conclusion of many

studies. This is also shown in the comparison between n → p and Ξ0 → Σ+. The former

corresponds to a d→ u transition, and the latter to a s→ u transition; yet, in the Cabibbo

model, GΣ+Ξ0

A (0) = Gpn
A (0), and this identity holds true with an accuracy of 4% in the SCI

calculation. Similarly, it is observed in experimental results.

It is valuable to provide supplementary context for the results in Eq. (3.8). So I note

that a covariant baryon chiral perturbation theory analysis of semileptonic hyperon decays

yields D = 0.80(1), F = 0.47(1) and F/D = 0.59(1) [127]; and a three-degenerate-flavour

lattice QCD (lQCD) computation yields F/D = 0.61(1) [134].

When considering the empirical fact of approximate SU(3)-flavour symmetry in the val-

ues of octet baryon axial transition charges, one should note that it does not result directly

from any basic symmetry. Hence, the apparent near symmetry is actually a dynamical

outcome. The underlying source of any SU(3)-flavour symmetry breaking is the Higgs-
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boson-generated splitting between the current masses of the s and l = u, d valence quarks.

However, as mentioned earlier, ms/ml ≈ 20. Therefore, there must be something strongly

suppressing the expression of this difference in observable measurements.

The responsible agent is EHM [21–26]. For instance, leptonic weak decays of pseu-

doscalar mesons proceed via the axial current and fK/fπ ≈ 1.2. These decay constants

serve as order parameters for chiral symmetry breaking, with this effect being primarily

dynamical for Nature’s three lighter quarks (see Fig. 2.5 in Ref.[24]). Similarly, one finds

SU(3)-flavour symmetry breaking on the order of 10% [76] in the axial form factors for

semileptonic decays of heavy+light pseudoscalar mesons to light vector meson final states.

Finally, comparing the hadron-scale valence-quark distribution functions of the kaon and

pion, one learns that the u quark carries 6% less of the kaon’s light-front momentum than

does the u-quark in the pion [142, 143].

Focusing on the case in this thesis, i.e., octet baryon semileptonic transitions, ms/ml ≈

20 leads to a dressed-quark mass ratio Ms/Ml ≈ 1.4 – Table 2.1; namely, a huge suppres-

sion caused by EHM. In turn, this leads to a ∼ 14% difference in diquark masses, smaller

differences in diquark correlation amplitudes, and, consequently, differences of even smaller

magnitude (∼ 3%) between the leading scalar-diquark components of the Faddeev ampli-

tudes of the baryons involved. In addition, Tables C.1 and C.2 reveal that the s → u and

d→ u quark-level weak transitions are similar in strength. This is not surprising, since these

axial vertices are obtained by solving BSEs which are similar to those that yield the diquark

correlation amplitudes. Finally, therefore, regarding the n→ p : Ξ0 → Σ+ comparison, e.g.,

Table 3.3 reveals that the transition is dominated by the scalar diquark components; hence,

these transitions should have similar strengths.

Table 3.3 highlights a curious aspect of the quark+diquark picture; namely, the s → u

quark transition Σ− → n does not receive a contribution from Diagram 1 in Fig. 3.1 because

the only scalar diquark component in Σ− is d[ds] and the neutron does not contain a

[ds] diquark. Nevertheless, scalar diquarks continue to be the dominant contributors to

gnΣ
−

A through Diagrams 3 and 4. Additionally, it is worth recalling that axial form factors

derive solely from Q-transverse pieces of the baryon current [122], resulting in no seagull
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Table 3.3: Diagram separation of octet baryon axial transition charges, presented as a
fraction of the total listed in Table 3.2 –Row 1 and made with reference to Fig. 3.1.

⟨J⟩Sq ⟨J⟩Aq ⟨J⟩AA
qq ⟨J⟩{SA}

qq ⟨J⟩SSex ⟨J⟩{SA}
ex ⟨J⟩AA

ex

gpnA 0.29 0.013 0.072 0.35 0.19 0.051 0.028

gΛΣ
−

A 0.27 0.016 0.023 0.42 0.28 −0.008

gpΛA 0.45 0.083 0.33 0.082 0.044 0.013

gnΣ
−

A 0.13 −0.051 0.57 0.42 −0.076 0.008

gΣ
+Ξ0

A 0.41 0.011 0.064 0.36 0.12 0.020 0.013

gΛΞ
−

A 1.02 −0.072 0.12 0.12 −0.28 0.023 0.076

contributions to GB′B
A .

Despite the dominance of scalar diquark components, Table 3.3 indicates that axial-

vector correlations also play a material role in the transitions. For example, ⟨J⟩{SA}
qq is large

in all cases but would vanish if axial-vector diquarks were ignored in forming the picture of

baryon structure. Their influence is further emphasised below.

Table 3.4: Interpolation parameters for octet baryon axial transition form factors, Eq. (3.9).
(Every form factor is dimensionless; so each coefficient in Eq. (3.9) has the mass dimension
necessary to cancel that of the associated s(GeV2) factor.)

g0 g1 g2 l1 l2
Gpn

A 1.24 1.97 0.29 2.44 1.12

GΛΣ−
A 0.66 1.19 0.16 2.73 1.48

−GpΛ
A 0.82 1.00 0.074 1.80 0.68

GnΣ−
A 0.34 0.43 0.093 1.86 0.75

GΣ+Ξ0

A 1.19 3.28 0.33 3.35 1.82

GΛΞ−
A 0.23 0.90 −0.011 4.42 2.14

On t = Q2 ∈ (−m2
Pfg

, 2M2
B′B), the calculated SCI result for Gpn

A (Q2 = xm2
N ) is reliably

interpolated using the following function

GB′B
A (s) =

g0 + g1s+ g2s
2

1 + l1s+ l2s2
, (3.9)
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with the coefficients listed in Table 3.4. It is drawn in Fig. 3.2A and compared with both

the CSM prediction from Ref. [122], which is produced using QCD-kindred momentum

dependence for all elements in Figs. 2.3 and 3.1, and a dipole fit to low-Q2 data [33]. As

typically found with the SCI: the Q2 ≲ M2
l results are quantitatively sound (Ml is the

dressed-mass of the lighter quarks – Table 2.1); but the evolution of form factor with

increasing Q2 is too slow [67, 69, 89], i.e., SCI form factors are too hard at spacelike

momenta.

The full set of ground-state octet baryon axial transition form factors is depicted in

Fig. 3.2B. Interpolations of these functions are achieved using Eq. (3.9) along with the rele-

vant coefficients from Table 3.4.

Fig. 3.2C displays the curves from Fig. 3.2B renormalised to unity at x = 0 along with

the pointwise average of the renormalised functions. Introducing a dimensionless radius

squared associated with the curves drawn, viz.

(r̂B
′B

A )2 = −6MB′B
d

dQ2
[GB′B

A (Q2)/GB′B
A (0)], (3.10)

in terms of which the usual radius is rB
′B

A = r̂B
′B

A /MB′B, one can obtain the following

comparisons:

r̂ΛΣ
−

A /r̂pnA r̂pΛA /r̂pnA r̂nΣ
−

A /r̂pnA r̂Σ
+Ξ0

A /r̂pnA r̂ΛΞ
−

A /r̂pnA

1.22 0.89 0.90 1.05 1.00
, (3.11)

which provide a quantitative representation of the pattern that can be read “by eye” from

Fig. 3.2C. Evidently, removing the MB′B kinematic factor has exposed a fairly uniform

collection of axial transition form factors: the mean value of the ratio in Eq. (3.11) is

1.01(13). Considering that SCI form factors are typically hard, the individual SCI radii are

likely underestimated; nevertheless, their size relative to r̂pnA can serve as a reliable guide.

So, for a physical interpretation of these ratios, comparing the SCI result for r̂pnA with that

in Ref. [122], one has r̂pnA SCI/r̂
pn

A [122]
= 0.76 and r̂pn

A [122]
= 3.40(4). The dipole fit to data in

Fig. 3.2A yields rpn
A [33]

= 3.63(24).

Considering the x-dependence of the axial transition form factors presented in Fig. 3.2C,
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Figure 3.2: Panel A. Gpn
A (x = Q2/m2

N ): SCI result computed herein – solid red curve;
prediction from Ref. [122] – short-dashed purple curve within like-coloured band; and dipole
fit to data [33] – long-dashed gold curve within like-coloured band. Panel B. Complete array
of SCI predictions for octet baryon axial transition form factors: GB′B

A (x = Q2/M2
B′B).

Panel C. As in Panel B, but with each form factor normalised to unity at x = 0. The
thinner solid black curve is a pointwise average of the six transition form factors.
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it is noteworthy that at x = 2 the mean absolute value of the relative deviation from the

average curve is 16(8)%. Evidently, the magnitude of SU(3)-flavour symmetry breaking

increases with Q2, i.e., as details of baryon structure are probed with higher precision. This

may also be highlighted by comparing the x = 2 values of the n → p and Ξ0 → Σ+ curves

in Fig. 3.2C: at x = 2, the ratio is ≈ 1.2. In the case of SU(3)-flavour symmetry, it would

be unity.

3.3.2 Induced pseudoscalar form factors

The SCI result for the n→ p induced pseudoscalar transition form factor, GP (x), is reliably

interpolated using the following function:

GB′B
P (s) =

g0 + g1s+ g2s
2

1 + l1s+ l2s2
R(s) (3.12a)

R(s) =
m2

Pfg

s+m2
Pfg

MB′B

mfg
, (3.12b)

with the coefficients listed in Table 3.5. It is drawn in Fig. 3.3A and compared with both

the CSM prediction from Ref. [122], which is produced with QCD-kindred momentum de-

pendence for all elements in Figs. 2.3 and 3.1, and results from a numerical simulation of

lQCD [125]. Evidently, there is fair agreement between the SCI result and calculations that

have a closer connection to QCD.

Table 3.5: Interpolation parameters for octet baryon induced pseudoscalar transition form
factors, Eq. (3.12a). (Every form factor is dimensionless; so each coefficient in Eq. (3.12a)
has the mass dimension necessary to cancel that of the associated s (GeV2) factor.)

B g0 g1 g2 l1 l2
Gpn

P 2.01 4.22 0.70 2.96 1.57

GΛΣ−
P 1.25 2.09 0.24 2.59 1.25

−GpΛ
P 1.18 1.91 0.15 2.18 0.80

GnΣ−
P 0.50 0.44 0.061 1.39 0.29

GΣ+Ξ0

P 1.97 2.38 0.060 1.84 0.43

GΛΞ−
P 0.40 1.34 −0.014 3.91 1.88

46



Table 3.6: Diagram separated contributions to Q2 = 0 values of octet baryon induced
pseudoscalar transition form factors, GB′B

P , presented as a fraction of the total listed in
Table 3.5 –Column 1 and made with reference to Fig. 3.1.

⟨J⟩Sq ⟨J⟩Aq ⟨J⟩AA
qq ⟨J⟩{SA}

qq ⟨J⟩ex ⟨J⟩sg
gpnP 0.54 0.051 0.072 0.35 0.018 −0.039

gΛΣ
−

P 0.43 0.054 0.023 0.42 0.023 0.051

gpΛP 0.81 0.073 0.32 −0.064 −0.14

gnΣ
−

P 0.46 −0.047 0.56 −0.19 0.22

gΣ
+Ξ0

P 0.66 0.036 0.061 0.33 −0.048 −0.033

gΛΞ
−

P 1.57 −0.23 0.10 0.091 0.13 −0.66

The induced pseudoscalar charge can be determined by muon capture experiments,

µ + p → νµ + n:

g∗p =
mµ

2mN
Gp(Q

2 = 0.88m2
µ) , (3.13)

where mµ is the muon mass. The SCI yields g∗p = 10.3. For comparison, I record that

Ref. [122] predicts g∗p = 8.80(23), the MuCap Collaboration reports g∗p = 8.06(55) [43, 44],

and the world average value is g∗p = 8.79(1.92) [144]. Consequently, one might infer that

the SCI result is possibly overestimated by around 15%. When evaluating this outcome, it

is worth recalling that our SCI analysis is largely algebraic and parameter-free.

Referring to Fig. 3.1, a diagram breakdown of GB′B
P (0) is presented in Table 3.6. Once

again, it is evident that scalar-diquark correlations and 0+ ↔ 1+ transitions play a dominant

role in forming the induced pseudoscalar transition charges. In these cases, however, each

form factor also receives seagull contributions. They are largest in the case of Ξ− → Λ, where

the final state has all three possible types of scalar-diquark correlation. Here, the seagull

terms must offset the large contribution from Diagram 1. Significant seagull contributions

are also observed in Λ → p and Σ− → n: in the former transition, they exhibit constructive

interference with Diagram 4 to compensate for a large contribution from Diagram 1; in the

latter, they interfere destructively with Diagram 4. These effects are required by PCAC

and guaranteed by our SCI analysis.

The full set of induced pseudoscalar transition form factors for ground-state octet
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Figure 3.3: Panel A. (ml/MN )Gpn
P (x = Q2/m2

N ): SCI result computed herein – solid red
curve; prediction from Ref. [122] – short-dashed purple curve within like-coloured band; and
lQCD results [125] – green points. Panel B. Complete array of SCI predictions for octet
baryon axial transition form factors: GB′B

P (x = Q2/M2
B′B)/R(x), Eqs. (3.12). Panel C. As

in Panel B, but with each form factor normalised to unity at x = 0. The thinner solid black
curve is a pointwise average of the other six curves.
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baryons is plotted in Fig. 3.3B. Division by the factor R(x), defined in Eq. (3.12b), removes

kinematic differences associated with quark and baryon masses and pseudoscalar meson

poles. Interpolations of these functions are provided by Eq. (3.12a) with the appropriate

coefficients from Table 3.5. Fig. 3.3C redraws these curves renormalised to unity at x = 0

along with the pointwise average of the rescaled functions. Within the displayed range, the

average is similar to the n→ p curve; and at x = 2, the mean absolute value of the relative

deviation from the average curve is 20(14)%. Once again, these panels reveal that the size

of SU(3)-flavour symmetry breaking increases with Q2. In this case, comparing the x = 2

values of the n → p and Ξ0 → Σ+ curves in Fig. 3.3C, the ratio is ≈ 1.2, which is alike in

size with that for the axial transition form factors.

3.3.3 Pseudoscalar form factors

Similar to Eq. (3.6), the πNN form factor is defined via the pseudoscalar current in Eq. (3.4):

GπNN (Q2)
fπ
mN

m2
π

Q2 +m2
π

=
ml

mN
Gpn

5 (Q2) . (3.14)

In this context, the Goldberger-Treiman relation reads:

Gpn
A (0) =

ml

mN
Gpn

5 (0) . (3.15)

Reviewing Eqs. (3.5) and Table 3.4, it becomes evident that the relation is satisfied in the

SCI. Furthermore, one can obtain the value of the πNN coupling constant from the residue

of Gpn
5 (Q2) at Q2 +m2

π = 0:

gπNN
fπ
mN

= lim
Q2+m2

π→0
(1 +Q2/m2

π)
ml

mN
Gpn

5 (Q2) (3.16a)

SCI
= 1.24 . (3.16b)

The SCI prediction is in fair agreement with the results obtained using QCD-kindred mo-

mentum dependence for all elements in Figs. 2.3 and 3.1, viz. 1.29(3) [122]; extracted from

pion-nucleon scattering data [145], 1.29(1); inferred from the Granada 2013 np and pp scat-

tering database [146], 1.30; and determined in a recent analysis of nucleon-nucleon scattering
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Table 3.7: Row 1. Pseudoscalar transition couplings defined by analogy with Eq. (3.16a).
Row 2. Value of this quantity at t = 0 instead of at t = −m2

Pfg
. Row 3. Relative difference

between Rows 1 and 2.

πpn πΛΣ KpΛ KnΣ KΣΞ KΛΞ

gPfgB′B
fPfg

MB′B
1.24 0.66 −0.83 0.34 1.21 0.25

t = 0 1.24 0.66 −0.82 0.34 1.19 0.23

% difference 0.16 0.15 1.5 1.8 1.7 9.1

Table 3.8: Diagram separated contributions to Q2 = 0 values of octet baryon pseudoscalar
transition form factors, presented as a fraction of the total listed in Table 3.9 –Column 1
and made with reference to Fig. 3.1.

⟨J⟩Sq ⟨J⟩Aq ⟨J⟩AA
qq ⟨J⟩{SA}

qq ⟨J⟩ex ⟨J⟩sg
gpn5 0.51 0.048 0.083 0.38 0.017 −0.039

gΣ
−Λ

5 0.40 0.050 0.025 0.44 0.039 0.048

gpΛ5 0.71 0.094 0.35 −0.032 −0.12

gnΣ
−

5 0.36 −0.057 0.59 −0.068 0.18

gΣ
+Ξ0

5 0.57 0.028 0.073 0.38 −0.015 −0.028

gΛΞ
−

5 1.49 −0.20 0.14 0.13 0.040 −0.60

using effective field theory and related tools [147], 1.30.

Couplings for all pseudoscalar transitions, defined analogously to Eq. (3.16a), are listed

in Table 3.7. Clearly, GPfgB′B(0)(fPfg
/MB′B) serves as a good approximation to the on-

shell value of the coupling in all cases except the ΛΞ− transition, which is somewhat special

owing to the spin-flavour structure of the Λ, Eq. (2.68c). This was emphasised in relation

to Table 3.6. Nevertheless, even in this case, the t = 0 value provides a reasonable guide.

The values presented in Table 3.7 can be compared with the results from the quark-

soliton model (see Table 3 in [130]). Converted using empirical baryon masses and meson

decay constants, the mean value of δgr := {|gSCI
PfgB′B/g

[130]
PfgB′B − 1|} is 0.18(17).

Similar comparisons can be made with the couplings used in phenomenological hy-

peron+nucleon potentials [148, 149], obtaining δgr = 0.21(17) and 0.15(14), respectively.
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The dynamical coupled channels study of nucleon resonances in Ref. [110] uses SU(3)-flavour

symmetry to express hyperon+nucleon couplings in terms of gπNN . Compared to those cou-

plings, one finds δgr = 0.17(15). Rescaling the value of gπNN used therein to match the SCI

prediction, then δgr = 0.16(14). In this last case, the non-zero difference is an indication of

the size of SU(3)-flavour symmetry violation in {gPfgB′B}. These comparisons with phe-

nomenological potentials indicate that the SCI predictions for the couplings in Table 3.7

could serve as useful constraints in refining such models.

Referring to Fig. 3.1, a diagram breakdown of GB′B
5 (0) is presented in Table 3.8. Once

again, it will be observed that scalar diquark correlations are predominant and 0+ ↔ 1+

transitions play a significant role in building the pseudoscalar transition charges. Moreover,

the pattern of diagram contributions is similar to what is observed in GB′B
P (0), again largely

as a consequence of Eq. (3.5): recall, seagulls play no role in GB′B
A (0).

Table 3.9: Interpolation parameters for octet baryon pseudoscalar transition form factors,
Eq. (3.17). (Every form factor is dimensionless; so each coefficient in Eq. (3.17) has the mass
dimension necessary to cancel that of the associated s (GeV2) factor.)

C g0 g1 g2 l1 l2
Gpn

5 1.24 0.13 0.12 0.19 0.13

GΛΣ−
5 0.66 0.19 0.075 0.36 0.18

−GpΛ
A 0.82 0.26 0.14 0.39 0.25

GnΣ−
5 0.34 −0.13 0.019 −0.30 0.050

GΣ+Ξ0

5 1.19 1.10 0.26 1.03 0.42

GΛΞ−
5 0.23 0.097 −0.014 0.73 −0.12

The SCI result for the n → p pseudoscalar transition form factor, G5(x), is reliably

interpolated using the following function:

GB′B
5 (s) =

g0 + g1s+ g2s
2

1 + l1s+ l2s2
R(s), (3.17)

with R(s) given in Eq. (3.12b) and the coefficients listed in Table 3.9. It is plotted in

Fig. 3.4A and compared with both the CSM prediction from Ref. [122], which is obtained
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Figure 3.4: Panel A. (ml/MN )Gpn
5 (x = Q2/m2

N ): SCI result – solid red curve; prediction
from Ref. [122] – short-dashed purple curve within like-coloured band; and lQCD results
[125] – green points. Panel B. Complete array of SCI predictions for octet baryon axial
transition form factors: GB′B

P (x = Q2/M2
B′B)/R(x), Eqs. (3.12). Panel C. As in Panel B,

but with each form factor normalised to unity at x = 0. The thinner solid black curve is a
pointwise average of the other six curves.
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by using QCD-kindred momentum dependence for all elements in Figs. 2.3 and 3.1, and

results from a numerical simulation of lQCD [125]. The SCI prediction is in fair agreement

with that from a numerical simulation of lQCD. The SCI result is harder than the CSM

prediction in Ref. [122], which should be closer to reality. Therefore, it is worth considering

the possibility that the lQCD result may also be too hard.

Figure 3.4B illustrates the complete set of pseudoscalar transition form factors for

ground-state octet baryons, each divided by the factor R(x) to remove kinematic differences

associated with pseudoscalar meson poles and masses. Interpolations of these functions are

indicated by Eq. (3.17) with the appropriate coefficients listed in Table 3.9. In Fig. 3.4C,

I present each of the curves from Fig. 3.4B after renormalising them to unity at x = 0

alongside the pointwise average of the renormalised functions. At x = 2, the mean absolute

value of the relative deviation from the average curve is 7(5)%. Focusing on the Ξ0 → Σ+

curves in Fig. 3.4C: at x = 2, the ratio is ≈ 1.2, similar to that observed with GΣ+Ξ0

A,P . It is

worth mentioning that although GΛΞ−
5 (x)/R(x) does not exhibit a strictly decreasing trend

with increasing x within the displayed domain, GΛΞ−
5 (x) itself does.

3.4 Valence spin fraction

The axial-vector current considered above involves three distinct isospin multiplets and a

singlet, which in the isospin symmetry limit may be characterized by the following four

baryons: p, Σ+, Ξ− and Λ. Following Ref. [123], I consider neutral-current processes and

carry out a flavour separation of GB
A in each case. The obtained results at Q2 = 0 define a

flavour separation of octet baryon axial charges:

gpA = gpAu − gpAd , (3.18a)

gΣ
+

A = gΣ
+

Au − gΣ
+

As , (3.18b)

gΞ
−

A = −gΞ−
Ad − gΞ

−
As , (3.18c)

gΛA = gΛAu + gΛAd − gΛAs . (3.18d)

The flavour-separated charges are of particular interest because gBAh measures the con-
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tribution of the valence-h-quark to the light-front helicity of baryon B, i.e., the difference

between the light-front number density of h quarks with helicity parallel to that of the

baryon and the corresponding density with helicity antiparallel. Subsequently, one can

define the singlet, triplet, and octet axial charges for each baryon, respectively:

aB0 = gBAu + gBAd + gBAs , (3.19a)

aB3 = gBAu − gBAd , (3.19b)

aB8 = gBAu + gBAd − 2gBAs . (3.19c)

aB0 indicates the spin of baryon B arising from the spin of the valence quarks [150]. Com-

puted within the SCI framework, this quantity is associated with the hadron scale, ζH =

0.33GeV [142, 143, 151, 152], whereat all properties of the hadron are carried by valence

degrees of freedom. Consequently, any difference between the SCI value of aB0 and unity

should measure the fraction of the baryon’s spin attributed to quark+diquark orbital an-

gular momentum.

The information presented in Appendix C.2 is sufficient to complete the calculation

of the charges in Eq. (3.18). Table 3.10 reports the contributions to each charge from

the diagrams in Fig. 3.1. Qualitatively, the results are easily understood using the legend

in Table 3.1, the spin-flavour structure of each baryon specified in Eqs. (2.68), and the

Faddeev amplitudes in Table 2.3. For example, regarding the s-quark in the Λ: the s[ud]

quark+diquark combination is strong in the Faddeev amplitude, so gΛAs receives a dominant

contribution from Diagram 1 scalar diquark bystander; the valence s quark is never isolated

alongside an axial-vector diquark, hence ⟨J⟩As ≡ 0; and Diagram 3 provides the other

leading contribution, which is fed by the strong u[ds] − d[us] combination transforming

into u{ds} − d{us}. Concerning u and d quarks in the Λ: the u ↔ d antisymmetry of the

amplitude’s spin-flavour structure entails that whatever contribution gΛAu receives, −gΛAd will

be of the same size with opposite sign (weak charges of the u and d quarks are equal and

opposite); and diagrams involving scalar diquarks must dominate because such diquarks

are the most prominent components in the Faddeev amplitude.
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Table 3.10: With reference to Fig. 3.1, diagram contributions to flavour separated octet
baryon axial charges, Eq. (3.18). “0” entries are omitted. Naturally, in the isospin-symmetry
limit, the results for Σ− are obtained by making the replacement gΣ

+

Au → gΣ
−

Ad ; and for the

Ξ0, via gΞ
−

Ad → gΞ
0

Au.

⟨J⟩Sq ⟨J⟩Aq ⟨J⟩AA
qq ⟨J⟩{SA}

qq ⟨J⟩SSex ⟨J⟩{SA}
ex ⟨J⟩AA

ex

gpAu 0.36 −0.016 0.11 0.22 0.13 0.028
−gpAd 0.031 −0.022 0.22 0.24 −0.064 0.007

gΣ
+

Au 0.40 −0.008 0.15 0.14 0.15 0.023

−gΣ+

As 0.064 −0.014 0.17 0.085 −0.014 0.001

−gΞ−
Ad 0.013 −0.020 0.20 0.24 −0.044 0.005

−gΞ−
As −0.61 0.019 −0.066 −0.24 −0.026 −0.005

gΛAu 0.086 −0.014 0.019 −0.087 −0.17 0.035
−gΛAd −0.086 0.014 −0.019 0.087 0.17 −0.035
−gΛAs −0.36 −0.044 −0.21 −0.038 −0.016 −0.003

Notwithstanding the dominance of scalar diquark contributions in all cases, axial-vector

diquarks also play a significant role. I highlighted this with the importance of u[ds]−d[us] ↔

u{ds} − d{us} in the Λ; and it is also worth emphasising the size of the ⟨J⟩Aq contribution,

which for singly represented valence quarks in p, Σ+ is much larger in magnitude and has

the opposite sign to that connected with the doubly-represented quark.

The summed results for each gBAf and the corresponding singlet, triplet, and octet axial

charges are listed in Table 3.11: the pattern of the SCI predictions is similar to that in a

range of other studies (see Table III in Ref. [131]). Based on this information, I first present

the following axial charge ratios for each baryon:

gpAd/g
p
Au gΣ

+

As /g
Σ+

Au gΞ
−

Ad /g
Ξ−
As gΛA(u+d)/g

Λ
As

−0.50 −0.34 −0.43 −0.40
. (3.20)

Evidently, if one considers u + d as effectively the singly represented quark in the Λ, the

ratio of axial charges for singly and doubly represented valence quarks is roughly the same

in each baryon, viz. −0.42(7). Further, the magnitude of the ratio is smallest when the

singly represented quark is heavier than the doubly represented quark.

It is also worth recalling that the SCI yields results that are in agreement with only
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Table 3.11: Net flavour separated and SU(3) baryon axial charges obtained by combining
the entries in Table 3.10 according to Eqs. (3.18), (3.19). “0” entries are omitted. Recall
that these results are for the elastic/neutral processes; hence, the aB3 entries need not exactly
match those in Row 1 of Table 3.2.

B gBAu gBAd gBAs aB0 aB3 aB8
p 0.83 −0.41 0.42 1.24 0.42
Σ+ 0.85 −0.29 0.56 0.85 1.42
Ξ− −0.40 0.93 0.53 0.40 −2.26
Λ −0.13 −0.13 0.67 0.41 −1.61

small violations of SU(3)-flavour symmetry, Eq. (3.8). Thus, one may compare the proton

results in Table 3.11 with the following flavour-symmetry predictions:

gpAd

gpAu

=
F −D

2F
= −0.39 , ap8 =

3F −D

F +D
= 0.43 . (3.21)

There is a reasonable degree of consistency.

Such agreement is significant as textbook-level analyses yield gpAd/g
p
Au = −1/4 in non-

relativistic quark models with uncorrelated wave functions. The enhanced magnitude of the

SCI result can be attributed to the presence of axial-vector diquarks in the proton. Namely,

the fact that the Fig. 3.1 –Diagram 1 contribution arising from the {uu} correlation, in

which the probe strikes the valence d quark, is twice as strong as that from the {ud}, in

which the probe strikes the valence u quark. The relative negative sign means this increases

|gdA| at a cost to guA. Consequently, the highly correlated proton wave function, obtained as

a solution of the Faddeev equation in Fig. 2.3, lodges a significantly larger fraction of the

proton’s light-front helicity with the valence d quark.

The enhancement remains when all elements in Figs. 2.3 and 3.1 exhibit QCD-kindred

momentum dependence, but with a diminished magnitude [122]: gpAd/g
u
Au = −0.32(2).

Compared to that analysis, the larger size of the SCI result is likely attributable to the

momentum independence of the Bethe-Salpeter and Faddeev amplitudes it generates. This

limits the suppression of would-be soft contributions, e.g., the two-loop ⟨J⟩SSex contribution

in row 2 of Table 3.10 is roughly five-times larger than the analogous term in Ref. [122],
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significantly enhancing the magnitude of gpAd.

Referring to Table 3.11, aB3 and aB8 are conserved charges, i.e., they are the same at

all resolving scales, ζ. This does not hold for the individual terms in their definitions,

Eqs. (3.19b) and (3.19c): the flavour-separated valence quark charges gBAu, g
B
Ad and gBAs

evolve with ζ [150]. Consequently, the value of aB0 , which is identified with the quark spin

contribution to the baryon’s total J = 1/2, changes with scale – it diminishes slowly with

increasing ζ; and as noted above, the SCI predictions in Table 3.11 are made with respect

to the hadron scale ζ = ζH = 0.33GeV [142, 143, 151, 152].

Textbook-level analyses yield aB0 = 1 in nonrelativistic quark models with uncorrelated

wave functions. Thus, in such pictures, all the baryon’s spin entirely originates from that

of its constituent valence quarks. Herein, on the other hand, considering the hadron scale,

then the valence degrees-of-freedom in octet baryons carry roughly one-half the total spin.

The mean is

āB0 = 0.50(7) . (3.22)

Given that there are no other degrees-of-freedom at this scale and considering that the

Poincaré-covariant baryon wave function derived from the Faddeev amplitude discussed in

Section 2.5 properly describes a J = 1/2 system, the remainder of the total-J must reside

in the quark+diquark orbital angular momentum. In keeping with such a picture, this

remainder is largest in systems with the lightest valence degrees-of-freedom: ap0 ≈ aΛ0 <

aΣ0 ≈ aΞ0 .

3.5 Summary

The SCI was used to make predictions for the axial, induced-pseudoscalar, and pseudoscalar

transition form factors of ground-state octet baryons. This advance contributes to the

ongoing efforts of unifying an array of baryon properties [72, 73, 95–100] with analogous

treatments of semileptonic decays of heavy+heavy and heavy+light pseudoscalar mesons to

both pseudoscalar and vector meson final states [65, 76]. The study required an extensive

set of calculations, involving the solution of a collection of integral equations for an array
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of relevant n = 2-6–point Schwinger functions, e.g., gap, Bethe-Salpeter, and, of special

importance, Faddeev equations, which describe octet baryons as quark-plus-interacting-

diquark bound-states. Naturally, owing to its symmetry-preserving nature, all mathematical

and physical expressions of PCAC are manifest.

Our implementation of the SCI has four parameters, viz. the values of a mass-dependent

quark+antiquark coupling strength chosen at the current-masses of the u/d, s, c, b quarks.

Since their values were fixed elsewhere [65], the predictions for octet baryons presented

herein are parameter-free. The SCI possesses several merits, including its algebraic sim-

plicity, paucity of parameters, simultaneous applicability to a wide variety of systems and

processes, and potential to provide insights that connect and explain numerous phenomena.

Regarding the axial transition form factors of octet baryons, GA, SCI results exhibit

agreement with a small violation of SU(3)-flavour symmetry [Sec. 3.3.1]; and our analysis

revealed that this outcome arises as a dynamical consequence of EHM. Namely, the gen-

eration of a nuclear size mass scale in the strong interaction sector of the Standard Model

serves to mask the impact of Higgs-boson generated differences between the current masses

of lighter quarks. Moreover, the spin-flavour structure of the Poincaré-covariant baryon

wave functions, described in the presence of both flavour-antitriplet scalar diquarks and

flavour-sextet axial-vector diquarks, plays a key role in determining the axial charges and

form factors. Significantly, although scalar diquark contributions are dominant, axial-vector

diquarks still play a material role, particularly evident in the values of the flavour-separated

charges. Therefore, as observed with numerous other quantities [81, 153, 154], a sound

description of observables requires the inclusion of axial-vector correlations in the wave

functions of ground-state octet baryons.

The SCI also provides a satisfactory description of the induced-pseudoscalar transition

form factors, GP , for octet baryon [Sec. 3.3.2]. Qualitatively, similar formative elements

are involved in both GP and GA. The material difference lies in the contribution of seagull

terms to the current [Fig. 3.1]. GA is associated with the transverse component of the baryon

axial current and thus does not receive any seagull contributions. Conversely, seagull terms

play a role in all calculated induced pseudoscalar form factors, being particularly significant
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for Ξ− → Λ, Λ → p and Σ− → n. Each GP (Q
2) displays a pole at Q2 = −m2

P , where

mP = mπ,mK , the pion or kaon mass, depending on whether the underlying weak quark

transition is d→ u or s→ u.

Owing to the partial conservation of the axial current, which entails that the longitudinal

part of the axial-vector current is entirely determined by the corresponding pseudoscalar

form factor, there exists an intimate connection between the induced pseudoscalar and

pseudoscalar transition form factors, GP,5, in every case. Therefore, viewed from the correct

perspective, all that is mentioned about GP applies equally to G5. A new feature is the

correlation between G5 and various meson+baryon couplings, which can be inferred from

the residue of G5 at Q2+m2
P = 0 [Table 3.7]. As computed, the SCI prediction for the πpn

coupling aligns reasonably well with other calculations and phenomenology.

Working with neutral axial currents, SCI predictions were obtained for the flavour sep-

aration of octet baryon axial charges and, consequently, values for the associated SU(3)-

flavour singlet, triplet and octet axial charges [Sec. 3.4]. The singlet charge corresponds to

the fraction of a baryon’s total angular momentum carried by its valence quarks. The SCI

predicts that, at the hadron scale, ζH = 0.33GeV, this fraction of proton is approximately

42%. As there are no other degrees of freedom at ζH, the remainder can be attributed to

quark+diquark orbital angular momentum.

Numerous analyses have consistently demonstrated that, when viewed prudently, SCI

results serve as a valuable quantitative guideline. Notwithstanding this, it is worth verifying

the predictions described herein by employing the QCD-kindred framework, which has

been employed widely in studying properties of the nucleon, ∆-baryon, and their low-lying

excitations [82, 121–123, 155–157]. This holds particularly true for the results concerning

octet baryon spin structure. Furthermore, with continuing progress in the development of

the ab initio Poincaré-covariant three-body Faddeev equation approach to baryon structure

[158–161], it is expected that octet baryon axial and pseudoscalar current form factors can

soon be delivered independently of the quark+diquark scheme. Comparisons between the

results obtained from the various frameworks can contribute to the improvement of both

approaches. Additionally, it would be valuable to extend the analyses herein to baryons
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containing one or more heavy quarks; especially, e.g., given the role that Λb → Λce
−ν̄e may

play in testing lepton flavour universality [162].
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Chapter 4

Angular momentum
decomposition of proton axial

charge

4.1 Introduction

Questions concerning the composition of baryons have been a subject of inquiry for ap-

proximately a century. The (constituent) quark model [163], along with its subsequent

three-body potential models [3, 5, 83, 164, 165], has provided answers that exhibit an ap-

pealing simplicity within the framework of quantum mechanics. In these models, baryons,

formed from combinations of u, d, s valence quark flavours, can be categorised into multi-

plets of SU(6)⊗O(3), labelled by their flavour content, spin, and orbital angular momentum.

From this perspective, the proton, constituted from two u valence quarks and a d valence

quark, is viewed as an S-wave ground-state.

Quark models have widespread practical applications; however, when it comes to spec-

tra, they typically yield masses for radial excitations of the ground state that are notably

higher compared to the lowest-mass orbital angular momentum excitation, see Sec. 15 in

Ref. [70]. The best-known example is the Roper resonance, N(1440)12
+
, discussed elsewhere

[18], which is predicted to lie above the nucleon’s parity partner, N(1535)12
−
, contrary to

experimental observations. Potential models face challenges from quantum chromodynam-

ics, which demands a Poincaré covariant depiction of baryon structure, leading to a Poincaré

invariant explanation of their properties [166]. Additionally, while the total angular mo-

61



mentum of a bound state remains Poincaré-invariant, any separation into spin and orbital

angular momentum components carried by the system’s identified constituents is not [167].

Consequently, potential model wave functions may only offer a basic reference for baryon

structure, particularly evident when it comes to assignments to SU(6)⊗O(3) multiplets.

CSMs provide a good alternative for studies of baryon composition [15–28]. As seen

above, in this framework a baryon is described by using a Poincaré-covariant three-body

Faddeev equation, whose solution provides the mass and bound state amplitudes. It is worth

noting here that baryon properties have been calculated [84, 158, 160, 161] at leading-order

using a systematic, symmetry-preserving truncation scheme [168–170]; and ongoing efforts

aim to implement more sophisticated truncations [171].

Meanwhile, the simplified quark-plus-interacting-diquark picture of baryons continues

to be successfully employed, As described in Chapter 2, the approximation is efficacious be-

cause any interaction capable of forming mesons as dressed-quark + antiquark bound states

must also lead to strong colour-antitriplet correlations between any two dressed quarks

within a hadron. It is worth reiterating that the diquark correlations discussed herein are

completely dynamical, appearing in a Faddeev kernel that necessitates their continuous

breakup and reformation. Therefore, they are fundamentally distinct from the point-like,

static diquarks introduced over fifty years ago [172] to address the so-called “missing reso-

nance” problem [173]. The highly active nature of valence quarks within diquarks entails

that the spectrum produced by Fig. 2.3 exhibits a richness beyond the explanation of two-

body models, something also observed in numerical simulations of lattice-regularised QCD

[174].

A quark+diquark Faddeev equation analysis of the four lowest-lying (I = 1
2 , J

P = 1
2

±
)

baryons, where, as usual, I is isospin and JP is spin-parity, is presented in the Ref. [88].

These states included the nucleon and its lightest excitations. It was found that, projected

into the rest frame, the nucleon wave functions have significant S-wave components; yet they

also contain material P-wave structures and the canonical normalisation receives measurable

S ⊗ P-wave interference contributions. This result is consistent with that in the previous

chapter: the quark+diquark orbital angular momentum must contribute to its spin. So, in
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this chapter, using the SCI, I study the angular moment decomposition of proton’s axial

charge as a continuation and supplement to the work in Chapter 3. The analysis sheds

light on the amount of the proton’s spin that may be attributed to quark+diquark orbital

angular momentum.

The procedure for a partial wave decomposition of (12 ,
1
2

+
)-baryon bound-state wave

functions is outlined in Sec.4.2. Solutions for contributions from the various quark+diquark

orbital angular momentum components to the canonical normalisation of the Poincaré-

covariant proton wave function and the proton axial charges are described and analysed in

Sec.4.3. Section 4.4 provides a summary.

4.2 Partial wave decomposition

In Sec.2.5, I provided a detailed introduction to the baryon Faddeev equation. The Fad-

deev amplitudes, ΨJP
, can be obtained by solving the Faddeev equation, i.e., Eq.(2.79).

Then, crucially for what follows in connection with angular momentum decompositions

of baryon properties, the (unamputated) Faddeev wave function, ΦJP
, can be computed

from the amplitude ΨJP
simply by attaching the appropriate dressed-quark and -diquark

propagators.

Adapting Eqs. (2.64), (2.69), the wave function of a JP = 1
2

+
state can be expressed in

terms of the following matrix-valued functions:

Φ0+(ℓ;P ) = S(ℓ+ P/3)∆0+(2P/3− ℓ)ΨS=0+(ℓ;P )

=
2∑

k=1

s̃k

(
ℓ2, ℓ · P

)
Sk(ℓ;P )u(P ) , (4.1a)

Φ1+

µ (ℓ;P ) = S(ℓ+ P/3)∆1+

µν (2P/3− ℓ)ΨA=1+

ν (ℓ;P )

=

6∑
k=1

ãk

(
ℓ2, ℓ · P

)
γ5A

k
µ(ℓ;P )u(P ) , (4.1b)

where the forms of Sk and Ak
ν have been exhibited in Eqs.(2.75b) and (2.77). It is only

when working with the wave function that meaningful angular momentum decompositions

become available. No information on bound state angular momentum is directly available
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from a bound state amplitude.

According to Ref. [90], the rest frame orbital angular momentum operator is given by

Li =
1

2
ϵijkL

jk , (4.2)

whose square characterises the orbital angular momentum,

L2Φ = L(L+ 1)Φ . (4.3)

Here, Φ is the spinor wave function with positive parity and positive energy and the tensor

Ljk reads

Ljk =

3∑
a=1

(−i)
(
pja

∂

∂pka
− pka

∂

∂pja

)
, (4.4)

where a = 1, 2, 3 runs over the three valence quark degrees-of-freedom.

In the wave function of Eqs. (4.1), the only relative momentum is that between the quark

and diquark, ℓ. Hence, the operator L2 now takes the form

L2 =

(
2ℓi

∂

∂ℓi
− ℓ2∇2

ℓ + ℓiℓj
∂

∂ℓi
∂

∂ℓj

)
. (4.5)

By applying the operator L2 to the basic Dirac components of the functions in Eqs. (4.1),

one obtains the orbital angular momentum of each component.

Here, in order to enable comparisons with typical formulations of constituent quark

models, I list the set of baryon rest-frame quark+diquark angular momentum identifications:

S : S1, A2
ν , B

1
ν =

(
A3

ν +A5
ν

)
, (4.6a)

P : S2, A1
ν , B

2
ν =

(
A4

ν +A6
ν

)
, C2

ν =
(
2A4

ν −A6
ν

)
/3 , (4.6b)

D : C1
ν =

(
2A3

ν −A5
ν

)
/3 ; (4.6c)

viz. the scalar functions associated with these combinations of Dirac matrices in a Faddeev

wave function possess the identified angular momentum correlation between the quark and
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Figure 4.1: Legend for interpretation of Figs. 4.2 –4.4, identifying interference between the
various identified orbital angular momentum basis components in the baryon rest frame.

diquark. Those functions are:

S : s̃1, ã2, (ã3 + 2ã5) /3 ; (4.7a)

P : s̃2, ã1, (ã4 + 2ã6) /3, (ã4 − ã6) ; (4.7b)

D : (ã3 − ã5) . (4.7c)

4.3 Solutions and their features

4.3.1 Canonical normalisation

Using the assignments in Fig. 4.1, the distinct contributions from each partial wave to

the proton’s canonical normalisation constant are depicted in Fig. 4.2. (Recall that the

canonical normalisation constant is related to the Q2 = 0 value of the charge form factors
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Figure 4.2: Contributions of the various quark+diquark orbital angular momentum com-
ponents to the canonical normalisation of the Poincaré-covariant proton wave function after
rest-frame projection. The values drawn are listed in Table D.1.

linked to the electrically charged members of a given hadron multiplet: in this case, that

is the proton Dirac form factor.) From Fig. 4.2, in the rest frame, one observes that the

proton canonical normalisation is largely determined by S-wave components, but there

are significant, destructive P-wave contributions and also strong, constructive S ⊗ P-wave

interference terms. There is no contribution from D-wave. These results are consistent with

those obtained in the QCD-kindred framework whose interaction is momentum-dependent

[82].

Working with the results in Table D.1, one arrives at SCI prediction for the contributions

of the various diquark components to the canonical normalisation. They are listed in Table

4.1. While the [ud]0+ scalar diquark (SC) is dominant, material contributions also owe

to the {ud}1+, {uu}1+ axial-vector diquarks (AV): roughly 74% of the proton’s canonical

normalisation constant is provided by the scalar diquark and the remainder owes to the

axial-vector diquark. The QCD-kindred framework gives similar results [82]. It is notable
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Table 4.1: Contributions of the various diquark components to the canonical normalisation
.

SC AV

SC 0.74 0

AV 0 0.26

that, unlike the results predicted by the QCD-kindred framework, SC ⊗ AV interference

contribution are absent because there are no contributions arising from the photon coupling

to the exchange quark in the SCI case [95].

4.3.2 Axial charges

12121221

1 2 1 2 1 2 2 1

0.05

0.00

0.05

0.10

0.15

S P
D

S P
D

Figure 4.3: Contributions of the various quark+diquark orbital angular momentum com-

ponents to g
(0)
A after rest-frame projection. The values drawn are listed in Table D.2.

In Sec. 3.4, I provided SCI predictions for the proton’s axial charge along with their
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Table 4.2: Contributions of the various diquark components to the axial charge g
(0)
A = 0.42

– see Table 3.11.

SC AV

SC 0.12 0.09

AV 0.09 0.12

flavour separation at Q2 = 0. Here, I will dissect the SCI predictions in order to expose

the various quark+diquark orbital angular momentum contributions to these quantities,

following the scheme employed for the canonical normalisation.

The contributions of various quark+diquark orbital angular momentum components to

g
(0)
A are depicted in Fig. 4.3. Comparing with Fig. 4.2, the axial charge g

(0)
A results share a

similar pattern: the contributions from S-wave components dominate, but there are signifi-

cant, destructive P-wave contributions, as well as strong, constructive S⊗P-wave interference

terms. From the results listed in Table D.2, one can see that, if only S-wave components

are considered, the value of g
(0)
A is underestimated: g

(0)
A⊃S/g

(0)
A = 0.74, where g

(0)
A⊃S is the

value of g
(0)
A obtained by including only S-wave components.

Similar to the case of the canonical normalisation, drawing on the results in Table D.2,

I obtain predictions for the contributions of the various diquark components to the axial

charge g
(0)
A , as shown in Table 4.2. It will be observed that with this formulation of the

SCI the contribution of the scalar diquark (0.118) is approximately equal to that of the

axial-vector diquark (0.123). I am currently working to understand whether this outcome

is accidental or a special feature of the SCI. As shown by a comparison between Ref. [123]

(Table 1) and Table 3.10 herein, it is not true in general.

In contrast to the results for the canonical normalisation, which measures the electric

current, there is a large contribution arising from SC ⊗ AV interference when the axial

current is used instead.

The contributions of various quark+diquark orbital angular momentum components to

the flavour-separated charges guA and −gdA are depicted in Figs.4.4. The results of guA and
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Figure 4.4: Panel A. Contributions of the various quark+diquark orbital angular momen-
tum components to guA after rest-frame projection. Panel B. Contributions of the various
quark+diquark orbital angular momentum components to −gdA after rest-frame projection.
The values drawn are listed in Table D.2.
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Table 4.3: guA and gdA contributions broken into rest-frame quark+diquark orbital angular
momentum components.

guA S P D

S 0.60 0.28 0.00

P 0.28 -0.33 0.00

D 0.00 0.00 0.00

gdA S P D

S -0.29 -0.15 0.00

P -0.15 0.18 0.00

D 0.00 0.00 0.00

−gdA are similar to those of g
(0)
A . When summing over the same set of orbital angular

momentum components, one can derive the results presented in Table 4.3. It is interesting

that the ratios of gdA to guA for each pair of results in Table 4.3 are roughly the same, viz.

all approximately equal to the final result listed in Eq. (3.20):

gdA/g
u
A = −0.50. (4.8)

At present, I am working to uncover which particular aspects of the SCI lead to this outcome.

4.4 Summary

As a continuation and complement to the findings presented in Chapter 3, I calculated the

angular momentum decomposition of the canonical normalisation and axial charge of the

proton.

The SCI predictions for the proton’s canonical normalisation are, in many ways, similar

to the results obtained with the QCD-kindred framework, whose interaction is momentum-

dependent: the proton canonical normalisation constant is dominated by S-wave contribu-

tions, there are significant destructive P-wave contributions, and strong S⊗P-wave construc-

tive interference terms. The SCI also predicts that roughly 74% of the proton’s canonical

normalisation constant is provided by the scalar diquark and 26% by axial-vector diquark.
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However, SC⊗AV interference does not contribute to the SCI canonical normalisation, an

outcome which differs from the prediction of the QCD-kindred framework.

The results for contributions from the various quark+diquark orbital angular momentum

components to the proton’s axial charge g
(0)
A and its flavour separation into guA and −gdA

pieces are typically similar to those of canonical normalisation. It is interesting that the

ratios of gdA to guA, computed from S-wave, P-wave and S ⊗ P-wave interference, are the

similar and all roughly equal to the net result, gdA/g
u
A≈ = −0.50.
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Chapter 5

Polarised parton distribution
functions and proton spin

5.1 Introduction

It is worth highlighting that the proton is the most fundamental bound-state in Nature. In

isolation, it is stable; at least, the lower limit on its lifetime is many orders-of-magnitude

greater than the ∼ 14-billion-year age of the Universe. Moreover, the proton is characterised

by two fundamental Poincaré invariant quantities: mass squared, m2
p; and total angular

momentum squared, J2 = J(J + 1) = 3/4. One can also incorporate parity, P = +1, in

which case the proton is identified as a JP = 1
2

+
state.

As discussed above, according to contemporary theory, the proton is composed of three

valence quarks: u + u + d, which interact based on the rules described by the Lagrangian

density of quantum chromodynamics. QCD itself is a Poincaré-invariant quantum non-

Abelian gauge field theory. It is worth emphasising that P is a Poincaré invariant quantum

number. On the other hand, every separation of J into a sum of orbital angular momentum

(L) and spin (S), L+ S, is observer dependent. Therefore, there is no correlation between

P and L in QCD and no objective (Poincaré-invariant) significance for L and S individually

[166].

Assuming isospin symmetry, as I have done throughout, so that u and d quarks are

mass-degenerate, then the full wave function of the JP = 1
2

+
proton can be described

by a Poincaré-covariant four-component spinor whose complete form involves 128 distinct
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scalar (Poincaré-invariant) functions [158, 160]. It follows that in any observer-dependent

reference frame, this wave function includes S-, P- and D-wave orbital angular momentum

components. The nature of the angular momentum represented by these components relies

on the degrees-of-freedom (dof) employed to solve the proton bound-state problem. Typi-

cally, these dof vary with the resolving scale of any probe utilised to measure the property

of the proton. In QCD, there is no specific scale at which the proton J = 1
2 can be regarded

simply as the sum of the spins of its valence dof [175]. Similar observations can be made

about m2
p; namely, the distribution of proton mass among its constituents depends upon

the choices of variables and frame made when solving the bound-state problem. Either or

both of these may rely on the resolving scale employed to specify the problem.

As evident from the discussions in previous chapters, these remarks highlight again

that there is no objective meaning to any decomposition of the proton’s J = 1
2 into sub-

components of any kind. Such a decomposition is contextual and only attains significance

once choices of variables and frame are established. A convenient approach is to project

Poincaré-covariant wave functions onto the light-front because the wave functions obtained

thereby are the probability amplitudes associated with parton distribution functions (DFs)

[176–178].

The selection of variables is more complex. Herein I adopt a perspective characteristic

of CSMs. Namely, at the hadron scale, ζH < mp, QCD bound-state problems are most

efficiently solved by employing dressed-parton dof: dressed-gluons and -quarks, each of

which possesses a momentum-dependent mass. As explained above, this approach is firmly

founded in QCD theory and has been widely employed with phenomenological success - see,

e.g., Refs. [24–28, 179–181] for discussions of both facets. Notably, ζH represents the scale

at which all properties of a given hadron are determined by its valence quasiparticle dof

[142, 143, 182].
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Table 5.1: Gegenbauer coefficients that define the hadron-scale valence quark DFs in
Eq. (5.1). Each entry should be divided by 103.

au
n

1 2 3 4 5
403 112 7.31 −10.4 −4.90

6 7 8 9 10
−0.0474 1.15 0.828 0.334 0.0635

ad
n

1 2 3 4 5
482 161 20.8 −11.5 −7.11

6 7 8 9 10
−0.430 1.50 1.03 0.349 0.0543

5.2 Results based on Faddeev equation

As I have repeatedly highlighted, EHM is an essential characteristic of strong interac-

tions. In the absence of Higgs boson couplings into QCD, it entails the dynamical gener-

ation of a nuclear-scale mass for the proton, mp ≈ 1GeV, accompanied by the formation

of massless pseudoscalar Nambu-Goldstone bosons [183]. As a consequence of EHM, any

quark+antiquark interaction that accurately describes meson properties also generates non-

pointlike diquark correlations in multiquark systems, something which Sec. 2.4 discussed in

detail. This justifies the use of the quark+diquark Faddeev equation (Fig. 2.3) in describing

proton properties. Working with this simplification offers the advantage that at most 16

(instead of 128) scalar functions are sufficient to fully express the Poincaré-covariant proton

wave function.

In proceeding to a discussion of proton helicity DFs, the following predictions from the

quark+diquark Faddeev equation at the hadron scale are important.

(i) The proton consists of both isoscalar-scalar (SC) and isovector-axial-vector (AV) di-

quark correlations, with the AV correlations being responsible for ≈ 35% of the wave

function canonical normalisation [184]. (This is the result of the QCD-kindred ap-

proach.)
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(ii) In the rest frame, the quark+diquark Faddeev wave function of the proton contains

S-, P- and D-wave orbital angular momentum components – see Fig. 3a in Ref.[82],

which, in using the QCD-kindred approach, improves upon Fig. 4.2 above.

(iii) Calculated unpolarised valence quark DFs in a proton with the preceding two features

are reliably interpolated using a finite sum of Gegenbauer polynomials [154]:

q(x; ζH) = nq140x
3(1− x)3

1 + 10∑
n=1

a
q
nC

7/2
n (1− 2x)

 , (5.1)

nu = 2nd = 2, where the coefficients are listed in Table 5.1.

(iv) Consistent with experiment [70], the predicted proton axial charge is gA = 1.25(3)

[123], where the uncertainty arises from that on the masses of the SC and AV diquarks:

mSC ≈ 0.8GeV;mAV ≈ 0.9GeV. Furthermore, the u quark fraction of the axial charge

is guA/gA = 0.76(1); that of the d quark is gdA/gA = −0.24(1); and gdA/g
u
A = −0.32(2).

(v) The singlet axial charge of the proton is Ref.[27] (Sec. 9):

a0 = 0.65(2) . (5.2)

At ζH the remainder of the proton spin is lodged with quark+diquark orbital angular

momentum, as was illustrated in Chapter 3, using the SCI.

I stress here that because results obtained with the QCD-kindred framework are more

realistic [123], they are used in this analysis of proton helicity DFs instead of those obtained

with the SCI in Chapter 3.

5.3 Polarised valence quark distributions at ζH

In order to deliver a Faddeev equation based prediction for the polarised valence quark

DFs at the hadron scale, it is necessary to extend the methods used for the unpolarised

DFs in Ref. [154], centred on the vector current, to the axial current case. Recently, a

symmetry-preserving axial current suitable for use with a solution of the quark+diquark
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Faddeev equation has been derived [121, 122]; but additional time will be necessary before

it can be applied to the calculation of polarised valence quark DFs.

In the meantime, I employ a phenomenological approach to address the issue, similar

to those used, e.g., in Refs. [185, 186]. I also utilise constraints suggested by perturbative

QCD analyses [187] to formulate straightforward Ansätze for the polarised DFs. It is worth

enumerating the constraints imposed.

(a) At low-x, there is no correlation between the helicity of the struck quark and the

helicity of the parent proton. Therefore, the ratio of polarised to unpolarised DFs must

approach zero: as x→ 0, ∆q(x; ζH)/q(x; ζH) → 0. Drawing on Regge phenomenology,

I implement this by expressing ∆q(x; ζH) ∝ xδαRq(x; ζH), where δαR = 1
2 represents

the difference between the intercepts of the vector and axial-vector meson Regge

trajectories [188].

(b) At high-x, both the polarised and unpolarised valence quark distributions exhibit the

same power-law behaviour, viz. ∆q(x)/q(x) → constant ̸= 0 as x→ 1.

These constraints are implemented using four distinct mappings: ∆q(x; ζH) =

sqri(x, γ
q
i )q(x; ζH), with su =1=−sd ,

r1(x, γ) =
√
x/[1 + γ

√
x] , r2(x, γ) =

√
x/[γ +

√
x] , (5.3a)

r3(x, γ) =
√
x/[1 + γx] , r4(x, γ) =

√
x/[γ + x] . (5.3b)

In each case, γ
q
i is fixed by requiring

∫ 1
0 dx∆q(x; ζH) = g

q
A. Referring to Sec. 5.2-item (iv),

this yields the values listed in Table 5.2. Note that these profiles are in agreement with

results obtained from basis light-front quantisation applied to solve a model Hamiltonian

for the proton [189], as well as with ongoing studies of proton DFs using a Faddeev equation

with a contact interaction [100].

The resulting Ansätze for the hadron-scale polarised valence quark DFs are illustrated

in Fig. 5.1, wherein they are compared with the corresponding unpolarised DFs calculated

in Ref. [154] – reproduced by Eq. (5.1) with the coefficients listed in Table 5.1.

At this point, considering that the x = 1 value of any ratio of valence quark DFs is
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Table 5.2: Referring to Eq. (5.3), central values of the mapping parameters, γq , that
reproduce the given quark’s contribution to the proton axial charge.

i 1 2 3 4

γu
i 0.350 0.621 0.575 0.853

γd
i 1.47 1.26 2.62 1.60

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

x

xΔ
q(
x;
ζ H

)

Figure 5.1: Hadron scale polarised valence quark distributions: solid red curves – u quark;
and dashed blue curves – d quark. In each case, there are five curves, viz. the four produced
by the mapping functions in Eq. (5.3), with the coefficient values in Table 5.2, and the
average of these curves. Context is provided by the unpolarised valence quark distributions:
xu(x; ζH)/2 – dot-dashed red curve; and [−xd (x; ζH)/2] – dotted blue curve.

independent of the scale [190], one can present an updated version of Table 1 in Ref. [191]

– see Table 5.3. The general agreement between my results based on the Faddeev equation

and those in the “Faddeev” column demonstrates that reliable estimates are provided by the

simple formulae introduced in Ref. [191] for use in analysing nucleon Faddeev wave functions

to obtain x → 1 values of DF ratios without the necessity of calculating the x-dependence

of any DF. Viewed alternately, the agreement lends support to our proposed Ansätze for

the polarised valence quark DF.

Now it is pertinent to discuss the matter of helicity retention in hard scattering processes

[187, 194]. If this notion holds true, then ∆d /d = 1 = ∆u/u on x ≃ 1 – see Table 5.3-
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herein Faddeev SC only SU(4) pQCD
Fn
2

F p
2

0.45(5) 0.49 1
4

2
3

3
7

d
u 0.23(6) 0.28 0 1

2
1
5

∆d
∆u −0.14(3) −0.11 0 −1

4
1
5

∆u
u 0.63(8) 0.65 1 2

3 1

∆d
d −0.38(7) −0.26 0 −1

3 1

An
1 0.15(5) 0.17 1 0 1

Ap
1 0.58(8) 0.59 1 5

9 1

Table 5.3: Predictions for x = 1 value of the indicated quantities. Column “herein” collects
predictions from Ref. [154] and those obtained using the polarised DFs in Fig. 5.1. “Fad-
deev” reproduces the DSE-1/realistic results in Ref. [191], obtained using simple formulae,
expressed in terms of diquark appearance and mixing probabilities. The next two columns
are, respectively, results drawn from Ref. [192] – proton modelled as being built using an el-
ementary scalar diquark (no AV); and Ref. [193] – proton described by a SU(4) spin-flavour
wave function. The last column, labelled “pQCD,” lists predictions made in Refs. [187, 194],
which assume an SU(4) spin-flavour wave function for the proton’s valence-quarks and that
a hard photon may interact only with a quark that possesses the same helicity as the target.
(3/7 ≈ 0.43.)

column 5. However, these ratios remain invariant under QCD evolution (DGLAP [195–

198]); such evolution cannot result in a zero in a valence quark DF; and
∫ 1
0 dx∆d (x; ζH) =

gdA < 0. As a result, helicity retention necessitates the presence of a zero in ∆d (x; ζH).

Current precision data indicate that if such a zero exists, then it must occur at x ≳ 0.6

[199–207].

Since I have modelled the polarised valence quark distributions, I cannot provide a

CSM argument either supporting or contradicting helicity retention. In fact, there are

currently no calculations of the polarised valence quark distributions available within any

nonperturbative framework that can be directly linked to QCD. Nevertheless, the mappings

in Eq. (5.3) exclude the possibility of a zero in ∆d (x; ζH). This choice is motivated by the

observations that no viable direct calculation of ∆d (x; ζH) yields a result with a zero on the

valence quark domain – see, e.g, Refs. [150, 189, 208], and phenomenological DF global fits

do not provide any strong evidence for the existence of such a zero ∆d (x) [209]. However, a
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zero in ∆d (x; ζH) is engineered in the model of Ref. [185]. It can be affirmed with certainty

that QCD-connected calculations of the polarised valence quark distributions are highly

desirable, along with the related data on x ≳ 0.6. The latter have been obtained by the

CLAS RGC Collaboration [210] and the E12-06-110 Collaboration [211], and completed

analyses can reasonably be expected within a few years.

A related matter pertains to the d /u (equivalently Fn
2 /F

p
2 ) ratio in Table 5.3. Columns

“herein”, “Faddeev” and “pQCD” agree, within uncertainties. The first two are derived

from calculations of the proton’s Poincaré-covariant wave function, which incorporates

scalar and axial-vector diquarks with dynamically prescribed relative strengths, as described

in Sec. 5.2-item (i). This wave function corresponds to a structured leading-twist hadron-

scale proton distribution amplitude (DA) [184, 212]. However, as the scale increases, it is

anticipated that all such structure is eliminated as the DA approaches its asymptotic form

and the wave function begins to exhibit SU(4) spin-flavour symmetry [213]. In this case,

since d /u(x = 1) is invariant under evolution, the “pQCD” prediction can be interpreted as

a constraint on the relative strength of SC and AV correlations in the hadron-scale proton

wave function; and that constraint is satisfied if, and only if, the Faddeev wave function

possesses the properties described in Sec. 5.2-item (i). Notably, this relative strength also

offers an explanation [81, 154] for modern data on Fn
2 (x)/F

p
2 (x) [214] and its extrapolation

[153]: on x ≃ 1, Fn
2 /F

p
2 = 0.437(85).

Caveat 1. Before proceeding further, it is important to note that all polarisation “data”

reproduced herein were derived from analyses of experiments that employ one or another

set of the available global DF fits to another body of experiments. Consequently, the

“data” values and uncertainties are dependent on the reliability of the chosen global fit.

Furthermore, there is no assurance of consistency between the newly provided experiment

and the body used to produce the existing global fit. As a result, the reported “data” are

not objective. In contrast, as I now explain, the predictions presented herein arise from an

internally consistent, unified treatment of all DFs.
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5.4 Polarised quark distributions at ζ2 = 3GeV2

Given that ζH is the scale at which the dressed valence quark dof carry all the properties of

the proton, the all-orders extension of QCD evolution, as described in Refs. [151, 152, 215,

216], can be used to determine all proton DFs at any scale ζ > ζH. This approach has been

successfully used to predict proton and pion unpolarised DFs [81]. More recently, it has

also been successfully used to extract the pion mass distribution from available data [217].

Herein, I use it to provide predictions for proton polarised DFs.

This all-orders evolution scheme is based on a single proposition [216]:

P1 – In the context of Refs. [218, 219], there exists at least one effective charge, α1ℓ(k
2),

which, when used to integrate the leading-order perturbative DGLAP equations, defines

an evolution scheme for parton DFs that is all-orders exact.

Such charges are not necessarily process-independent (PI); hence, not unique. Nevertheless,

the possibility of a PI effective charge is not ruled out. The charge, denoted α̂, discussed in

Refs. [64, 143, 215], has proved suitable and I adopt it herein. Using α̂, one can predict ζH =

0.331(2)GeV. Further details on its connection with experiment and other nonperturbative

extensions of QCD’s running coupling can be found in Refs. [220–222].

Using the method described in Ref. [81] and applying it to the polarised valence DFs

shown in Fig. 5.1, one obtains the ζC =
√
3GeV polarised quark DFs drawn in Fig. 5.2,

wherein they are compared with data inferred from experiments HERMES [199], COM-

PASS [200], CLAS EG1 [201–204], E06-014 [205] and E99-117 [206, 207]: there is agreement

on the valence quark domain for x ≳ 0.2.

Referring to the COMPASS results, lying on x ≲ 0.2, the collaboration’s extrapolations

yield gdA = −0.34(5), guA = 0.71(4), gA = guA − gdA = 1.05(6). Comparing this with Sec. 5.2-

item (iv), reveals agreement with the CSM value of gdA. This agreement is consistent with

the match between data and my prediction for ∆d (x; ζC). On the other hand, the data

tend to fall below my prediction for ∆u(x; ζC). This aligns with the observations that the

COMPASS results yield a value for guA − gdA that is 0.83(5)-times the value determined

from neutron β-decay. This outcome can be attributed to the low value of guA, which is only
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Figure 5.2: Polarised quark DFs: ∆u(x; ζC) – solid red curves; and ∆d (x; ζC) – dashed blue
curves. Data: HERMES [199] – circles; COMPASS [200] – diamonds; filled down-triangles
– CLAS EG1 [201–204]; five-pointed stars – E06-014 [205]; filled up-triangles –E99-117
[206, 207].

0.75(3)-times the CSM prediction. (These statements can be made because of the negligible

contribution of polarised antiquark DFs at this scale – see Figs. 5.3 and 5.4.)

The polarised antiquark distributions are depicted in Fig. 5.3a together with values from

Ref. [200]. Given the scale of this image, which is set by the magnitudes of my predictions,

the data exhibit large uncertainties. Consequently, they can only be used to establish

reasonable boundaries for the size of these distributions.

The difference x[∆d̄ (x; ζC)−∆ū(x; ζC)] is illustrated in Fig. 5.3b and compared to the

corresponding result for x[d̄ (x; ζC) − ū(x; ζC)] from Refs. [81, 154], which reproduce the

proton antimatter asymmetry reported in Ref. [223]. (This was achieved via a modest Pauli

blocking factor in the gluon splitting function.) Notably, both differences exhibit the same

magnitude and their trend remains similar for x ≳ 0.01: they are related by using P1.

In this case, owing to the considerable uncertainties on the available results [199, 200], a

meaningful comparison with the data cannot be reported.

Figure 5.4 illustrates my predictions for all polarised sea quark DFs. Following the

implementation of all-orders evolution in Ref. [81], one has thresholds at which the influence

of heavier quarks becomes significant in evolution. This accounts for the flavour-separation
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Figure 5.3: (a) Polarised antiquark DFs: ∆ū(x; ζC) – solid red curves; and ∆d̄ (x; ζC) –
dashed blue curves. Data from COMPASS [200]: ū – red diamonds; and d̄ – purple squares.
(b) x[∆d̄ (x; ζC) −∆ū(x; ζC)] – solid red curves. For comparison: x[d̄ (x; ζC) − ū(x; ζC)] –
dotted green curve.

amongst the polarised sea DFs. The figure includes results on 2x∆s(x; ζC) inferred from

data in Ref. [200]. In general, the magnitude aligns with my prediction for this DF; but,

again, the data uncertainties are large. The prediction
∫ 0.3
0.004 dx∆sS(x; ζC) = 0.0072(1) is

in agreement with the inferred empirical value [200]: −0.01± 0.01± 0.01.

In Fig. 5.5, I present predictions for nucleon longitudinal spin asymmetries, which are

defined, for example, as in Chapter 4.7 of Ref. [237]. (The contribution of c quarks is practi-

cally negligible at this scale.) For context, I also present results inferred from data collected

within the past vicennium [201–207, 224], along with selected earlier results [225–236]. The

discrepancy observed between my prediction and inferences at low-x may reflect known

discrepancies between CSM predictions for sea quark DFs and those obtained through phe-
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Figure 5.4: Polarised sea quark distributions at ζC. Solid red curves: x[∆u + ∆ū]S ;
dashed blue curves: x[∆d + ∆d̄ ]S ; x[∆s + ∆s̄ ]S : dot-dashed green curves; x[∆c + ∆c̄]S :
dotted orange curves. Context is provided by values of 2x∆s(x; ζC) from Ref. [200], wherein
x∆s(x; ζC) ≈ x∆s̄(x; ζC).

nomenological fits [81, 143]. On the other hand, there is general agreement between my

predictions and data on x ≳ 0.2. It is highly desirable to have new experiments that can

provide DF information on x ≳ 0.6; particularly in relation to the previously discussed

question of helicity retention. Therefore, the analyses of recently collected data obtained

by the CLAS RGC Collaboration and the E12-06-110 Collaboration are much anticipated.

5.5 Polarised gluon distribution at ζ2 = 3GeV2

Starting with the hadron-scale DFs depicted in Fig. 5.1, the all-orders evolution scheme

provides the polarised and unpolarised gluon DFs at any scale ζ > ζH. My predictions for

ζC are shown in Fig. 5.6.

Regarding phenomenological DF fits, ∆G(x) is very poorly constrained. This is depicted

by the grey band in Fig. 5.6a, taken from Ref. [238] at ζ = 10GeV. At this scale, my central

result is represented by the dot-dashed (blue) curve. Clearly, similar to unpolarised DFs, on

x ≲ 0.05, my internally consistent predictions for glue (and sea) DFs have larger magnitudes

compared to those derived from phenomenological fits [81, 143]. Notwithstanding this, on
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Figure 5.5: Predictions for proton (solid red) and neutron (dashed blue) longitudinal spin
asymmetries at ζC. In each case, the associated band expresses the uncertainty deriving
from Eq. (5.3). Data. Ap

1: red squares – CLAS EG1 [201–204]; pink circles – Ref. [224]; grey
up-triangles – Refs. [225–232]. An

1 : turquoise diamonds – E06-014 [205]; aqua five-pointed
stars – E99-117 [206, 207]; grey down-triangles – Refs. [233–236].

the complementary domain I obtain∫ 1

0.05
dx∆G(x; ζ = 10GeV) = 0.199(3) , (5.4)

in contrast to 0.19(6) reported in Ref. [238].

My prediction for the ratio ∆G(x; ζC)/G(x; ζC) is shown in Fig. 5.6b. It exhibits excel-

lent agreement with the results presented in Ref. [239]. This is highlighted, for instance, by

comparing the mean value of my result on the domain covered by measurements, which is

0.167(3), to the value 0.113± 0.038± 0.036 reported in Ref. [239].

5.6 Proton spin

It is now pertinent to recall Eq. (5.2), which records that ≈ 65% of the proton spin is at-

tributed to valence quark quasiparticle degrees of freedom at the hadron scale. Importantly,

this value remains scale-independent under P1 [216].

On the other hand, measurements of the proton spin are sensitive to the non-Abelian
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Figure 5.6: (a) Polarised gluon DF: ∆G(x; ζC) – solid purple curves. Gray dashed curve and
band: typical result from phenomenological global fit [238] reported at ζ = 10GeV. Evolved
to this scale, my central prediction is the blue dot-dashed curve. (b) Polarised/unpolarised
DF ratio ∆G(x; ζC)/G(x; ζC). The associated band expresses the uncertainty deriving from
Eq. (5.3). For context, I depict values reported in Ref. [239].

anomaly corrected combination [240]

aE0 (ζ) = a0 − nf
α̂(ζ)

2π

∫ 1

0
dx∆G(x; ζ) =: a0 − nf

α̂(ζ)

2π
∆G(ζ) , (5.5)

where nf represents the number of active quark flavours: herein, α̂ and P1 evolution are

defined using nf = 4.

By utilising the result for ∆G(x; ζC) from Fig. 5.6 to compute the right-hand side of

Eq. (5.5), I predict

aE0 (ζC) = 0.35(2) . (5.6)
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This value demonstrates good agreement with that reported in Ref. [241]: 0.32(7).

Notwithstanding the remarks in Chapter 5.1, it is common to present a light-front

breakdown of the proton spin into contributions from quark and gluon spin and angular

momenta:

1

2
=

1

2
a0 + Lq(ζ) + ∆G(ζ) + Lg(ζ) . (5.7)

This can be achieved unambiguously by exploiting the nature of the hadron scale, viz.

Lq(ζH) =
1

2
− 1

2
a0 = 0.175 , ∆G(ζH) = 0 = Lg(ζH) , (5.8)

and subsequently applying P1 evolution, which is implemented with minor modifications of

Eqs. (32) in Ref. [150]. In this manner, I obtain the following central values:

Lq(ζC) = −0.027 , ∆G(ζC) = 1.31 , Lg(ζC) = −1.11 . (5.9)

Clearly, while it starts with a positive value, the fraction of light-front quark angular mo-

mentum decreases steadily with increasing scale, reversing sign at a modest value of the

resolving scale. Meanwhile, the increasing gluon helicity is compensated by a growth in

magnitude of the light-front gluon angular momentum fraction. The asymptotic (ζ → ∞)

limits are discussed elsewhere [242, 243].

5.7 Summary

Starting with Ansätze for hadron-scale proton polarised valence quark distribution func-

tions, which were developed by using insights from perturbative QCD and constrained by

solutions of a quark+diquark Faddeev equation, and supposing the existence of an effective

charge which defines an evolution scheme for parton DFs (both unpolarised and polarised)

that is all-orders exact, I have provided parameter-free predictions for all proton polarised

DFs at the scale ζ2C = 3GeV2. In doing so, I achieved a unification of proton and pion

DFs. All predictions, both pointwise behaviour and moments, show favorable agreement

with results derived from data. This is exemplified by the results for polarised quark DFs

[Fig. 5.2] and nucleon longitudinal spin asymmetries [Fig. 5.5].
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Of particular significance is the discovery that the proton’s polarised gluon DF,

∆G(x; ζC), is positive and large [Fig. 5.6]. This prediction can be tested through experi-

ments at next-generation QCD facilities [244, 245]. Moreover, the ∆G(x; ζC) result allows

me to predict that measurements of the proton singlet axial charge should yield a value

aE0 (ζC) = 0.35(2). This result aligns well with current data.

In the future, this analysis can be put to the test and improved by using a recently devel-

oped symmetry-preserving axial current, which is suitable for a proton described as a bound

state of dressed-quark and fully interacting nonpointlike diquark degrees-of-freedom, to cal-

culate the proton’s hadron-scale polarised valence quark DFs. A first step in this direction is

already in progress, using a careful treatment of a momentum-independent quark+quark in-

teraction. The subsequent natural progression involves extending it to a study of the proton

using QCD-connected Schwinger functions. Longer term objectives encompass analogous

calculations that initiate with a Poincaré-covariant three-body treatment of the nucleon

bound state problem [158, 160].
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Chapter 6

Conclusions and outlook

6.1 Key results

The Standard Model (SM) has one known source of mass, i.e., the Higgs boson (HB),

providing critical contributions to the evolution of the Universe. However, it is now plain

that the Higgs boson is only responsible for 9 MeV out of the proton’s total mass of 939

MeV, accounting for merely 1% of the mass of visible material in the Universe. Plainly,

Nature has another highly effective mechanism for generating mass, which has come to

be known as EHM. EHM single-handedly accounts for 94% of the proton’s mass, with

the remaining 5% arising from constructive EHM + HB interference. The past decade of

progress using CSMs has revealed the three pillars that support the EHM edifice; namely, a

large dynamically generated gluon mass-scale, a process-independent effective charge, and

dressed-quarks whose running masses reach a constituent-like scale at infrared momenta.

Currently, theoretical efforts are underway to reveal the manifold and diverse manifestations

of these pillars in hadron observables. Moreover, these efforts aim to emphasise the various

types of measurements that can be conducted to validate the EHM paradigm. In this thesis,

I exposed some of the roles played by EHM in forming the structure of the baryon octet,

especially the proton, based on continuum Schwinger function methods (CSMs), especially

the Dyson-Schwinger equations (DSEs).

In this thesis, I first introduced the DSEs via a symmetry-preserving treatment of a vec-

tor × vector contact interaction (SCI), explaining: the gap equation for a dressed quark; the

Bethe-Salpeter equation (BSE) that describes two-body scattering and bound-state prob-
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lems; and the Faddeev equation appropriate for baryons treated as quark-plus-interacting-

diquark bound states. These are the basic elements for studying baryon structure.

Subsequently, using the SCI, predictions were delivered for octet baryon axial, induced

pseudoscalar, and pseudoscalar form factors, thereby furthering progress toward a goal of

unifying an array of baryon properties with analogous treatments of semileptonic decays of

heavy+heavy and heavy+light pseudoscalar mesons to both pseudoscalar and vector meson

final states. Since the approach is symmetry preserving, all mathematical and physical

expressions of partial conservation of the axial current are manifest.

The SCI results for the axial form factor, GA, indicate a remarkable degree of agreement

with notions deriving from SU(3)-flavour symmetry, an outcome which can be identified

as a dynamical consequence of EHM. Moreover, the spin-flavour structure of the Poincaré-

covariant baryon wave functions, formulated in the presence of both flavour-antitriplet scalar

diquarks and flavour-sextet axial-vector diquarks, plays a crucial role in determining all form

factors. Taking neutral axial currents into account, SCI makes predictions for the flavour

decomposition of octet baryon axial charges, which yield values for the associated SU(3)

singlet, triplet, and octet axial charges. The findings reveal that, at the hadron scale,

ζH, approximately 40% of the proton’s total spin is carried by valence degrees of freedom.

Given that no other degrees of freedom exist at ζH, the remaining spin can be attributed

to quark+diquark orbital angular momentum.

As a continuation of the work on the proton’s axial charge, I calculated the angular

momentum decomposition of the proton’s canonical normalisation and axial charge. The

SCI predictions for the proton’s canonical normalisation are in agreement with the results

obtained using the QCD-kindred framework: the proton’s canonical normalisation constant

is dominated by S-wave components; yet, there are also destructive P-wave contributions

and strong, constructive S⊗P-wave interference terms. The results for contributions of the

various quark+diquark orbital angular momentum components to the proton’s singlet axial

charge, g
(0)
A , and its flavour separation guA and −gdA are similar to those of the canonical

normalisation. It is interesting that the ratios of gdA to guA for the various quark+diquark

orbital angular momentum components are the roughly the same, all being ≈ −0.50.
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Continuing by formulating Ansätze for proton hadron-scale polarised valence quark dis-

tribution functions (DFs), developed using insights from perturbative QCD and constrained

by solutions of a quark+diquark Faddeev equation, and supposing the existence of an ef-

fective charge which defines an evolution scheme for parton DFs -– both unpolarised and

polarised — that is all-orders exact, predictions were delivered for all proton polarised DFs

at the scale ζ2C = 3GeV2. The predicted DFs, both in terms of pointwise behaviour and

their moments, agree favourably with results inferred from data. Of particular significance is

my finding that the polarised gluon DF, ∆G(x; ζC), in the proton is positive and large. This

prediction can be tested through experiments at next-generation QCD facilities [244, 245].

Meanwhile, based on my result for ∆G(x; ζC), I was able to predict that measurements of

the proton singlet axial charge should return a value aE0 (ζC) = 0.35(2). This result is in

accord with contemporary data.

6.2 Outlook

6.2.1 Nucleon Resonance Electroexcitation

In the past decades, the CLAS Collaboration at Jefferson Laboratory in the USA

have obtained a great deal of data on the electroexcitation amplitudes of nucleon

resonances, including ∆(1232)3/2+, N(1440)1/2+, N(1520)3/2−, N(1535)1/2−,

N(1675)5/2− and ∆(1600)3/2+. These data “demand” a comparison with sound

theory predictions. The QCD-kindred framework has achieved a successful description of

∆(1232)3/2+, N(1440)1/2+ and ∆(1600)3/2+ electroexcitation form factors. A unified

description of the others using this framework would offer new opportunities for charting

the momentum dependence of the dressed quark mass, which is one of the three pillars

of EHM. So, it would play a very important role in understanding the strong interaction

dynamics that govern the emergence of hadron mass. These things are highlighted

elsewhere [181].
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6.2.2 Semileptonic decay of heavy baryons

An extension of the analyses in Chapter.3 to baryons containing one or more heavy quarks

would be valuable. CP violation (CPV) has been established in the K, B and D meson

systems, but not yet in analogous baryon systems. Therefore, exploring baryon CPV is one

of the most important missions in both experimental and theoretical flavour physics. The

semileptonic decay of heavy baryons can shed light on CPV. In addition, Λb → Λce
−ν̄e may

play an important role in testing lepton flavour universality.

6.2.3 Distribution functions (DFs) of proton

The proton’s polarised DFs can help understand its spin structure, i.e., resolve the proton

spin crisis. This thesis has made an important contribution, but it can be improved. I

provided an analysis of the proton’s polarised DFs based on Ansätze. Direct calculation

of proton polarised DFs using wave functions calculated from the Faddeev equation is a

necessary next step.

Plainly, proton DFs provide key information on proton structure, and proton one-

dimensional DFs have been the focus of experiment and theory for more than fifty years.

However, little is known about proton three-dimensional DFs. So, drawing a three-

dimensional image of the proton is a principal focus of many experimental programmes

worldwide, such as the USA electron-ion collider (EIC) and the electron-ion collider in

China (EicC). The analyses in this thesis can readily be extended to tackle the associated

theory challenge.
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Appendix A

Conventions and techniques

A.1 Euclidean metric

Throughout this thesis, all the work is discussed in Euclidean space. There are deep theo-

retical reasons for adopting this approach. In fact, it is probable that interacting quantum

field theories can only be rigorously defined in Euclidean space. This is discussed, e.g., in

Ref. [27] (Sec. 1).

The metric tensor in the Euclidean conventions are

a · b = δµνaµbν =
4∑

µ=1

aµbµ , (A.1)

where δµν is the Kronecker delta. Hence, a space-like Qµ has Q2 > 0.

The Dirac matrices are hermitian, γ†µ = γµ, and satisfy the algebra

{
γµ, γν

}
= 2δµν . (A.2)

I define

σµν =
i

2

[
γµ, γν

]
, γ5 = −γ1γ2γ3γ4 , (A.3)

so that

tr
[
γ5γµγνγργσ

]
= −4εµνρσ , ϵ1234 = 1 , (A.4)

where εµνρσ is the completely antisymmetric Levi-Civita tensor in d = 4 dimensions.
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A Dirac-like representation of these matrices is used herein (chiral representation)

γ⃗ = −iγ⃗M =

 0 −iσ⃗

iσ⃗ 0

 , γ4 = γ0M =

 σ0 0

0 −σ0

 , (A.5)

where the 2× 2 Pauli matrices are

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (A.6)

I use

γ5 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


. (A.7)

As explained in Ref. [10] (Sec. 2.3), one may obtain the Euclidean version of any

Minkowski space expression by using the following transcription rules:

Configuration space Momentum space

(1)
∫M

d4xM → −i
∫ E

d4xE (1)
∫M

d4kM → i
∫ E

d4kE

(2)/∂ → iγE · ∂E (2)/k → −iγE · kE

(3) /A→ −iγE ·AE (3) /A→ −iγE ·AE

(4)AµB
µ → −AE ·BE (4)kµq

µ → −kE · qE

(5)xµ∂µ → xE · ∂E (5)kµx
µ → −kE · xE

(A.8)

where /A represents gµνγ
µ
MA

ν
M . These transcription rules can be used as a blind implemen-

tation of an analytic continuation in the time variable, x : x0 → −ix4 with x⃗M → x⃗E and

the same for the momentum k. One also obtain gµν → −δµν .

A.2 Relevant expressions and relations

Here I record some of the most relevant relations used to derive SCI results and identities.
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There are some useful expressions used in this thesis:∫
d4q

(2π)4
1

q2 + ω
=

1

16π2
Ciu(ω) , (A.9a)∫

d4q

(2π)4
ω(

q2 + ω
)2 =

1

16π2
Ciu
1 (ω) , (A.9b)∫

d4q

(2π)4
1(

q2 + ω
)2 =

1

16π2
Ciu
1 (ω) . (A.9c)

Some useful integrals are listed here:

1

(n− 1)!

∫ ∞

0
dττn−1 exp(−τX) =

1

Xn
, (A.10a)∫

d4q

(2π)4
(q · P )F

(
q2, P 2

)
= 0 , (A.10b)∫

d4q

(2π)4
qαqβF

(
q2
)
=

1

4

∫
d4q

(2π)4
q2δαβ F

(
q2
)
, (A.10c)∫

d4q

(2π)4
qαqβqµqνF

(
q2
)
=

1

24

∫
d4q

(2π)4
q4
(
δαβδµν (A.10d)

+δαµδβν + δανδβµ
)
F
(
q2
)
.

Feynman parametrisations used in this thesis are

1

D1D2
=

∫ 1

0
dα

1[
(1− α)D1 + αD2

]2 , (A.11a)

1

D1D2D3
=

∫ 1

0
dα

∫ 1

0
dβ

2α[
(1− α)D1 + α(1− β)D2 + αβD3

]3 . (A.11b)

A.3 colour and flavour coefficients

The baryon Faddeev equations need to be augmented with appropriate colour and flavour

coefficients. Using the colour and flavour matrices of the diquark amplitudes, Eqs.(2.43),

and the quark+diquark amplitudes, Eqs. (2.74), one can calculate the colour and flavour

coefficients that appear in the Faddeev equation, i.e. Eq.(2.79).

The colour coefficients can be obtained by

(λ0c)BA√
3

(HD
c )AE(H

B
c )T EC

(λ0c)CD√
3

=
δBA√

3
ϵAEDϵCEB

δCD√
3

= −2 . (A.12)
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For the flavour coefficients, I take the calculation of the flavour coefficient of K12 in

Eq.(2.89) as an example:

fTs t
2=[us](t1=[ud])T fd =

(
0 0 1

)


0 0 1

0 0 0

−1 0 0




0 1 0

−1 0 0

0 0 0


T 

0

1

0

 = 1 .

(A.13)

Others can be obtained in a similar way.
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Appendix B

Selected octet baryons Faddeev
equations

For notational convenience, I define

cfB =
g28

4π2Mf
, (B.1a)

σf,iB = (1− α)M2
f + αm2

i − α(1− α)m2
B. (B.1b)

where g8 is defined in connection with Eq. (2.82), f labels a quark flavour,mB is the baryon’s

mass, and i is the diquark label associated with Eq.(2.88), so that mi is the mass of the

associated correlation. Here I should note that this result is a modification of the results

from Ref. [89], which returns my result in the SU(3)-flavour symmetry limit.

B.1 Proton

As previously noted, the proton’s Faddeev amplitude simplifies to the form in Eqs. (2.83)

by using Eq.(2.82), i.e.

SP (P ) = s1P (P )ID, APi
µ (P ) = aiP1(P )iγ5γµ + aiP2(P )γ5P̂µ, i = 4, 5 , (B.2)

where the superscripts are diquark enumeration labels associated with Eq.(2.88).
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Similar to the analysis in Sec.2.5.2, the proton’s Faddeev equation is written

sP1 (P )

a4P1(P )

a5P1(P )

a4P2(P )

a5P2(P )


=



KP
11 −

√
2KP

141
KP

141
−
√
2KP

142
KP

142

−
√
2KP

411
0

√
2KP

4141
0

√
2KP

4142

KP
411

√
2KP

4141
KP

4141

√
2KP

4142
KP

4142

−
√
2KP

421
0

√
2KP

4241
0

√
2KP

4242

KP
421

√
2KP

4241
KP

4241

√
2KP

4242
KP

4242





sP1 (P )

a4P1(P )

a5P1(P )

a4P2(P )

a5P2(P )


,

(B.3)

where isospin symmetry has been used, so that the Bethe–Salpeter amplitudes for the

{uu}1+ and {ud}1+ correlations are identical.

Here it is necessary to explain the subscripts of K: e.g., in KP
4241

, the label 4 is the

diquark label of proton flavour structure associated with Eq. (2.88), and the label 1 (2) of

41 (42) corresponds to the first (second) term of the axial-vector component, i.e. a4P1 (a4P2).

Using isospin symmetry, it is straightforward to show that

a4Pj(P ) = −
√
2a5Pj(P ), j = 1, 2 . (B.4)

Hence, Eq. (B.3) can be reduced to
sP1 (P )

a5P1(P )

a5P2(P )

 =


KP

11 3KP
141

3KP
142

KP
411

−KP
4141

−KP
4142

KP
421

−KP
4241

−KP
4242




sP1 (P )

a5P1(P )

a5P2(P )

 . (B.5)

The entries in the proton’s Faddeev kernel can be expressed as follows:

KP
11 = cuP

∫ 1

0
dαC1

(
σu,1P

)
(αmP +Mu) (E1 − (1− α)

mP

Mu
F1)

2 , (B.6a)

KP
141 = cuP

E4

m2
4

∫ 1

0
dαC1

(
σu,4P

)[(
(3Mu + αmP )m

2
4 + 2α(1− α)2m3

P

)
E1 (B.6b)

−(1− α)
(
(Mu + 3αmP )m

2
4 + 2(1− α)2Mum

2
P

) mP

Mu
F1

]
,

KP
142 = cuP

E4

m2
4

∫ 1

0
dαC1

(
σu,4P

)
(αmP −Mu)

[
(1− α)2m2

P −m2
4

]
(B.6c)

×
[
E1 + (1− α)

mP

Mu
F1

]
,
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KP
411 = cuP

E4

3m2
4

∫ 1

0
dαC1

(
σu,1P

)
(αmP +Mu)

[
2m2

4 + (1− α)2m2
P

]
(B.6d)

×
[
E1 − (1− α)

mP

Mu
F1

]
,

KP
421 = cuP

E4

3m2
4

∫ 1

0
dαC1

(
σu,1P

)
(αmP +Mu)

[(
m2

4 − 4(1− α)2m2
P

)
E1 (B.6e)

+(1− α)
(
5m2

4 − 2(1− α)2m2
P

) mP

Mu
F1

]
,

KP
4141 = −cuP

E2
4

3m4
4

∫ 1

0
dαC1

(
σu,4P

)[(
4m2

4 − (1− α)2m2
P

)
Mum

2
4 (B.6f)

+α(1− α)2
(
m2

4 + 2(1− α)2m2
P

)
m3

P

]
,

KP
4142 = −cuP

E2
4

3m4
4

∫ 1

0
dαC1

(
σu,4P

) [
(1− α)4m4

P + (1− α)2m2
4m

2
P − 2m4

4

]
(B.6g)

× (αmP −Mu) ,

KP
4241 = cuP

E2
4

3m4
4

∫ 1

0
dαC1

(
σu,4P

)[
Mu

(
m4

4 − 4(1− α)2m2
4m

2
P (B.6h)

+6(1− α)4m4
P

)
+ αmP

(
−9m4

4 + 10(1− α)2m2
4m

2
P + 2(1− α)4m4

P

)]
,

KP
4242 = −cuN

E2
4

3m4
4

∫ 1

0
dαC1

(
σu,4P

) [
5m4

4 − 7(1− α)2m2
4m

2
P (B.6i)

+2(1− α)4m4
P

]
(αmP −Mu) ,

with E1, F1, E4 being canonically normalised Bethe-Salpeter amplitudes for diquarks cor-

responding to enumeration labels i = 1, 4 in Eq. (2.88).

Introducing a parameter λ on the right-hand side of Eq. (B.5), one obtains an eigenvalue

equation of the form K(P 2)V (P 2) = λ(P 2)V (P 2). One repeatedly solves this equation for

increasing values of −P 2 to obtain the function λ(P 2). The desired Faddeev amplitude is

obtained at that lowest-magnitude value of P 2 for which λ(P 2) = 1. This value of P 2 is

the baryon’s mass: {m2
B = −P 2 |λ(P 2) = 1}. (The first excited state in the given channel

is found at the next value of −P 2 for which the eigenvalue is unity [246], and so on.)
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B.2 Kernel for the Λ baryon

Here I explicitly specify each entry in the Faddeev equation kernel for the Λ-baryon,

Eq.(2.93):

KΛ
12 =

cuΛ
2MuMus

∫ 1

0
dαC1

(
σu,2Λ

)
[αmΛ +Mu]

[
MuE1 − (1− α)mΛF1

]
(B.7a)

×
[
2MusE2 − (1− α)mΛF2

]
,

KΛ
161 =

cuΛE6

Mum2
6

∫ 1

0
dαC1

(
σu,6Λ

)[(
3Mum

2
6 + αmΛ

(
m2

6 + 2(1− α)2m2
Λ

))
(B.7b)

×MuE1 − (1− α)
(
(m2

6 + 2(1− α)2m2
Λ)Mu + 3αm2

6mΛ

)
mΛF1

]
,

KΛ
162 =

cuΛE6

Mum2
6

∫ 1

0
dαC1

(
σu,6Λ

)
[αmλ −Mu]

[
MuE1 + (1− α)mΛF1

]
(B.7c)

×
[
(1− α)2m2

Λ −m2
6

]
,

KΛ
21 =

cuΛ
2MuMus

∫ 1

0
dαC1

(
σs,1Λ

)
[αmΛ +Ms]

[
MuE1 − (1− α)mΛF1

]
(B.7d)

×
[
2MusE2 − (1− α)mΛF2

]
,

KΛ
23 =

csΛ
4M2

us

∫ 1

0
dαC1

(
σu,2Λ

) [
2MusE2 − (1− α)mΛF2

]2
[αmΛ +Mu] , (B.7e)

KΛ
281 =

csΛE6

2Musm2
6

∫ 1

0
dαC1

(
σu,6Λ

)[
2Mus

(
αmΛ

(
m2

6 + 2(1− α)2m2
Λ

)
(B.7f)

+3Mum
2
6

)
E2 − (1− α)mΛ

(
Mu

(
m2

6 + 2(1− α)2m2
Λ

)
+ 3αm2

6mΛ

)
F2

]
,

KΛ
282 =

csΛE6

2Musm2
6

∫ 1

0
dαC1

(
σu,6Λ

)
[αmΛ −Mu]

[
2MusE2 + (1− α)mΛF2

]
(B.7g)

×
[
(1− α)2m2

Λ −m2
6

]
,

KΛ
611 =

cuΛE6

3Mum2
6

∫ 1

0
dαC1

(
σs,1Λ

)
[αmΛ +Ms]

[
MuE1 − (1− α)mΛF1

]
(B.7h)

×
[
2m2

6 + (1− α)2m2
Λ

]
,

KΛ
621 =

cuΛE6

3Mum2
6

∫ 1

0
dαC1

(
σs,1Λ

)
[αmΛ +Ms]

[
Mu

(
m2

6 − 4(1− α)2m2
Λ

)
E1 (B.7i)

+(1− α)mΛ

(
5m2

6 − 2(1− α)2m2
Λ

)
F1

]
,
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KΛ
613 =

csΛE6

6Musm2
6

∫ 1

0
dαC1

(
σu,2Λ

)
[αmΛ +Mu]

[
2MusE2 − (1− α)mΛF2

]
(B.7j)

×
[
2m2

6 + (1− α)2m2
Λ

]
,

KΛ
623 =

csΛE6

6Musm2
6

∫ 1

0
dαC1

(
σu,2Λ

)[
2Mus

(
m2

6 − 4(1− α)2m2
Λ

)
E2 (B.7k)

+(1− α)mΛ

(
5m2

6 − 2(1− α)2m2
Λ

)
F2

]
[αmΛ +Mu] ,

KΛ
6181 = −c

s
ΛE

2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Λ

)[
Mum

2
6

(
4m2

6 − (1− α)2m2
Λ

)
(B.7l)

+α(1− α)2m3
Λ

(
m2

6 + 2(1− α)2m2
Λ

)]
,

KΛ
6182 =

csΛE
2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Λ

) [
2m4

6 − (1− α)2m2
6m

2
Λ − (1− α)4m4

Λ

]
(B.7m)

× [αmΛ −Mu] ,

KΛ
6281 =

csΛE
2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Λ

)[
Mu

(
m4

6 − 4(1− α)2m2
6m

2
Λ (B.7n)

+6(1− α)4m4
Λ

)
+ αmΛ

(
−9m4

6 + 10(1− α)2m2
6m

2
Λ + 2(1− α)4m4

Λ

)]
,

KΛ
6282 = −c

s
ΛE

2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Λ

) [
5m4

6 − 7(1− α)2m2
6m

2
Λ + 2(1− α)4m4

Λ

]
(B.7o)

× [αmΛ −Mu] ,

with Mus = (MuMs)/(Mu + Ms) and E1(2), F1(2), E6 being canonically normalised

Bethe-Salpeter amplitudes for diquarks corresponding to enumeration labels i = 1, 2, 6 in

Eq.(2.88).

The subscripts on K have similar meanings to those in Appendix B.3, e.g., in KΛ
6182

, the

labels 6 and 8 are the diquark labels of the Λ flavour structure associated with Eq. (2.88),

and the label 1 (2) of 61 (82) corresponds to the first (second) term of the axial-vector

component, a6Λ1 (a8Λ2).

B.3 Σ+

According to the flavour structure of the Σ+ in Eq. (2.68d), one can derive its Faddeev equa-

tion directly from that of the proton by simply making the replacement d → s. However,

since I assumed isospin symmetry in writing the proton’s Faddeev equation, this replace-
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ment is not straightforward. Hence, I provide the complete structure here.

The Faddeev amplitude for the Σ+ baryon is expressed in terms of

SΣ = s2Σ(P )ID, AΣi
µ = aiΣ1(P )iγ5γµ + aiΣ2(P )γ5P̂µ, i = 4, 6 , (B.8)

where the superscripts are diquark enumeration labels, Eq. (2.88). The associated Faddeev

equation is

s2Σ(P )

a4Σ1(P )

a6Σ1(P )

a4Σ2(P )

a6Σ2(P )


=



KΣ
22 −

√
2KΣ

241
KΣ

261
−
√
2KΣ

242
KΣ

262

−
√
2KΣ

412
0

√
2KΣ

4161
0

√
2KΣ

4162

KΣ
612

√
2KΣ

6141
KΣ

6161

√
2KΣ

6142
KΣ

6162

−
√
2KΣ

422
0

√
2KΣ

4261
0

√
2KΣ

4262

KΣ
622

√
2KΣ

6241
KΣ

6261

√
2KΣ

6242
KΣ

6262





s2Σ(P )

a4Σ1(P )

a6Σ1(P )

a4Σ2(P )

a6Σ2(P )


.

(B.9)

Regarding the subscripts of K, e.g., in KΣ
4162

, the labels 4 and 6 are the diquark labels of the

Σ flavour structure associated with Eq. (2.88), and the label 1 (2) of 41 (62) corresponds to

the first (second) term of the axial-vector component, i.e., a4Σ1 (a6Σ2).

The entries in the Faddeev kernel can be expressed as follows:

KΣ
22 = csΣ

∫ 1

0
dαC1

(
σu,2Σ

)
(αmΣ +Mu)

[
E2 − (1− α)

mΣ

2Mus
F2

]2
, (B.10a)

KΣ
241 = cuΣ

E4

m2
4

∫ 1

0
dαC1

(
σs,4Σ

)[(
3Msm

2
4 + αmΣ(m

2
4 + 2(1− α)2m2

Σ)
)
E2 (B.10b)

−(1− α)
mΣ

2Mus

(
3αmΣm

2
4 +Ms(m

2
4 + 2(1− α)2m2

Σ)
)
F2

]
,

KΣ
242 = cuΣ

E4

m2
4

∫ 1

0
dαC1

(
σs,4Σ

)
(αmΣ −Ms)

[
(1− α)2m2

Σ −m2
4

]
(B.10c)

×
[
E2 + (1− α)

mΣ

2Mus
F2

]
,

KΣ
261 = csΣ

E6

m2
6

∫ 1

0
dαC1

(
σu,6Σ

)[(
3Mum

2
6 + αmΣ(m

2
6 + 2(1− α)2m2

Σ)
)
E2 (B.10d)

−(1− α)
mΣ

2Mus

(
3αmΣm

2
6 +Mu(m

2
6 + 2(1− α)2m2

Σ)
)
F2

]
,

KΣ
262 = csΣ

E6

m2
6

∫ 1

0
dαC1

(
σu,6Σ

)
(αmΣ −Mu)

[
(1− α)2m2

Σ −m2
6

]
(B.10e)
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×
[
E2 + (1− α)

mΣ

2Mus
F2

]
,

KΣ
412 = cuΣ

E4

3m2
4

∫ 1

0
dαC1

(
σu,2Σ

)
(αmΣ +Mu)

[
2m2

4 + (1− α)2m2
Σ

]
(B.10f)

×
[
E2 − (1− α)

mΣ

2Mus
F2

]
,

KΣ
422 = cuΣ

E4

3m2
4

∫ 1

0
dαC1

(
σu,2Σ

)
(αmΣ +Mu)

[(
m2

4 − 4(1− α)2m2
Σ

)
E2 (B.10g)

+(1− α)
mΣ

2Mus

(
5m2

4 − 2(1− α)2m2
Σ

)
F2

]
,

KΣ
612 = csΣ

E6

3m2
6

∫ 1

0
dαC1

(
σu,2Σ

)
(αmΣ +Mu)

[
2m2

6 + (1− α)2m2
Σ

]
(B.10h)

×
[
E2 − (1− α)

mΣ

2Mus
F2

]
,

KΣ
622 = csΣ

E6

3m2
6

∫ 1

0
dαC1

(
σu,2Σ

)
(αmΣ +Mu)

[(
m2

6 − 4(1− α)2m2
Σ

)
E2 (B.10i)

+(1− α)
mΣ

2Mus

(
5m2

6 − 2(1− α)2m2
Σ

)
F2

]
,

KΣ
4161 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σu,6Σ

)[
Mu

(
m2

4

(
4m2

6 − 2(1− α)2m2
Σ

)
(B.10j)

+(1− α)2m2
6m

2
Σ

)
+ α(1− α)2m3

Σ

(
2m2

4 −m2
6 + 2(1− α)2m2

Σ

)]
,

KΣ
4162 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σu,6Σ

)
(αmΣ −Mu)

[
(1− α)2m2

Σ −m2
6

]
(B.10k)

×
[
(1− α)2m2

Σ + 2m2
4

]
,

KΣ
4261 = cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σu,6Σ

)[
Mu

(
m2

4(m
2
6 − 8(1− α)2m2

Σ) (B.10l)

+2(1− α)2m2
Σ(2m

2
6 + 3(1− α)2m2

Σ)
)
+ αmΣ

(
m2

4(2(1− α)2m2
Σ − 9m2

6)

+2(1− α)2m2
Σ(4m

2
6 + (1− α)2m2

Σ)
)]

,

KΣ
4262 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σu,6Σ

) [
5m2

4 − 2(1− α)2m2
Σ

]
(B.10m)

×
[
m2

6 − (1− α)2m2
Σ

]
(αmΣ −Mu) ,

KΣ
6141 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σs,4Σ

)[
Ms

(
m2

4

(
4m2

6 + (1− α)2m2
Σ

)
(B.10n)

−2(1− α)2m2
6m

2
Σ

)
+ α(1− α)2m3

Σ

(
2m2

6 −m2
4 + 2(1− α)2m2

Σ

)]
,
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KΣ
6142 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σs,4Σ

) [
(1− α)2m2

Σ −m2
4

]
(B.10o)

×
[
(1− α)2m2

Σ + 2m2
6

]
(αmΣ −Ms) ,

KΣ
6241 = cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σs,4Σ

)[
Ms

(
m2

4(m
2
6 + 4(1− α)2m2

Σ) (B.10p)

+2(1− α)2m2
Σ(3(1− α)2m2

Σ − 4m2
6)
)
+ αmΣ

(
m2

4(8(1− α)2m2
Σ − 9m2

6)

+2(1− α)2m2
Σ(m

2
6 + (1− α)2m2

Σ)
)]

,

KΣ
6242 = −cuΣ

E4E6

3m2
4m

2
6

∫ 1

0
dαC1

(
σs,4Σ

) [
5m2

6 − 2(1− α)2m2
Σ

]
(B.10q)

×
[
m2

4 − (1− α)2m2
Σ

]
(αmΣ −Mu) ,

KΣ
6161 = −csΣ

E2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Σ

)[
Mum

2
6

(
4m2

6 − (1− α)2m2
Σ

)
(B.10r)

+α(1− α)2m3
Σ

(
m2

6 + 2(1− α)2m2
Σ

)]
,

KΣ
6162 = −csΣ

E2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Σ

) [
(1− α)4m4

Σ + (1− α)2m2
6m

2
Σ − 2m4

6

]
(B.10s)

× (αmΣ −Mu) ,

KΣ
6261 = csΣ

E2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Σ

)[(
m4

6 − 4(1− α)2m2
6m

2
Σ + 6(1− α)4m4

Σ

)
(B.10t)

×Mu + αmΣ

(
−9m4

6 + 10(1− α)2m2
6m

2
Σ + 2(1− α)4m4

Σ

)]
,

KΣ
6262 = −csΣ

E2
6

3m4
6

∫ 1

0
dαC1

(
σu,6Σ

) [
5m4

6 − 7(1− α)2m2
6m

2
Σ + 2(1− α)4m4

Σ

]
(B.10u)

× (αmΣ −Mu) ,

with E2, F2, E4(6) being canonically normalised Bethe-Salpeter amplitudes for diquarks

corresponding to enumeration labels i = 2, 4, 6 in Eq. (2.88).
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Appendix C

Hadron currents

C.1 Baryon currents

Using the propagators and amplitudes described above, one can derive the explicit expres-

sion for the baryon current drawn in Fig. 3.1. For convenience of reference, I recall the

expression in Eq. (2.74):

ΨΞ0 = Ψ
S[us]

Ξ0 fs +Ψ
A{us}
Ξ0 fs +Ψ

A{ss}
Ξ0 fu , (C.1)

where the colour matrix is omitted and fu = column[1, 0, 0], fd = column[0, 1, 0], fs =

column[0, 0, 1]. The column vector is determined by B and the specified diquark. I denote

the corresponding row-vector by f̄h, h = u, d, s and also define

S = diagonal[Su, Sd, Ss] , (C.2)

where the quark propagators are derived from Sec. 2.3,

C.1.1 Diagram 1

Probe couples directly to the bystander quark, Table 3.1, including two contributions:

J1
5(µ)(K,Q) = JqS

5(µ)(K,Q) + JqA
5(µ)(K,Q) . (C.3)

Using the notation mentioned above,

JqS
5(µ) =

∫
ℓ
Ψ̄S

B′(P ′)f̄fS(ℓ′+)Γ
fg
5(µ)(Q)S(ℓ+)∆

0+(−ℓ)fgΨS
B(P ), (C.4a)
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JqA
5(µ) =

∫
ℓ
Ψ̄A

B′α(P
′)f̄fS(ℓ′+)Γ

fg
5(µ)(Q)S(ℓ+)∆

1+

αβ(−ℓ)fgΨA
Bβ(P ), (C.4b)

where ℓ
(′)
± = ℓ ± P (′), the diquark propagators are given in Eqs. (2.65) and (2.70), and∫

ℓ denotes the regularised four-dimensional momentum-space integral with, matching the

Faddeev equation procedure, Λuv selected as the ultraviolet cutoff linked to the lightest

diquark in the B
g→f→ B′ process.

The remaining elements in Eqs. (C.4) are Γfg
5 := T fgΓfg

5 , Γfg
5µ := T fgΓfg

5µ, viz. the

dressed-quark+pseudoscalar, -quark+axial-vector vertices that express the g → f quark

transition. Their calculation is explained in Section2.4.2 and I adapt the results to all

g → f transitions considered in this thesis. Notably, my implementation of the SCI

guarantees the following (and other) Ward-Green-Takahashi identities (k+ = k + Q, m =

diagonal[mu,md,ms]):

QµΓ
fg
5µ(k+, k) + im Γfg

5 (k+, k) + iΓfg
5 (k+, k)m

= S−1(k+)iγ5T fg + iγ5T fgS−1(k) . (C.5)

C.1.2 Diagram 2

There is only one term in this case, i.e., probe strikes axial-vector diquark with dressed-

quark spectator:

J2
5(µ)(K,Q) = JA′A

5(µ)(K,Q)

=

∫
ℓ
Ψ̄A′

B′α(P
′)f̄hS(ℓ)∆1+

αρ(−ℓ′−)ΓA′A
5(µ),ρσ(−ℓ′−,−ℓ−)∆1+

σβ(−ℓ−)fhΨA
Bβ(P ),

(C.6)

where ΓA′A
5(µ),ρσ is the axial-vector diquark pseudoscalar (axial-vector) vertex. The associated

form factors need to be calculated; and for that purpose, I employed the procedure detailed

in Ref. [122]. The results are collected in Appendix C.2, with those relevant here given in

Eq. (C.13).
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C.1.3 Diagram 3

In this case, there are two terms, i.e., in the presence of a dressed-quark spectator, the

probe strikes an axial-vector (scalar) diquark, inducing a transition to a scalar (axial-vector)

diquark. Writing the former explicitly:

J3
5(µ)(K,Q) = JSA

5(µ)(K,Q)

=

∫
ℓ
Ψ̄S

B′(P ′)f̄h S(ℓ)∆0+(−ℓ′−)ΓSA
5(µ),σ(−ℓ′−,−ℓ−)∆1+

σβ(−ℓ−)fhΨA
Bβ(P ),

(C.7)

where ΓSA
5(µ),σ is the axial-vector→ scalar diquark transition vertex. Again, it is necessary

to calculate the associated form factors, which I accomplished by following the procedure

outlined in Ref. [122]. The results are collected in Appendix C.2, with those relevant here

given in Eq. (C.14). Naturally, ΓAS
5(µ),σ(ℓ

′, ℓ) = ΓSA
5(µ),σ(ℓ, ℓ

′).

C.1.4 Diagram 4

Here the probe strikes the dressed-quark that is exchanged as one diquark breaks up and

another is formed:

J4
5(µ)(K,Q) =

∑
J
P1
1 ,J

P2
2 =S,A

∫
ℓ

∫
k
Ψ̄

J
P2
2

B′ (P ′)f̄h′∆J
P2
2 (kqq)S(k)Γ

J
P1
1 (ℓqq)

×
[
S(kqq − ℓ)Γfg

5(µ)(Q)S(ℓqq − k)
]T

Γ̄
J
P2
2 (−kqq)S(ℓ)∆J

P1
1 (ℓqq)fhΨ

J
P1
1

B (P ) ,

(C.8)

where (·)T denotes matrix transpose, Γ̄(K) = C†Γ(K)TC, and ℓqq = −ℓ+P , kqq = −k+P ′.

I have omitted Lorentz indices, which can easily be reinstated once the specific transition

is indicated.

Eq. (C.8) contains four terms; but as exploited in the enumeration of Table 3.1, symme-

try relates SA to AS; namely, there are only three distinct contributions.

It is worth highlighting here that in emulation of the SCI formulation of the Faddeev

equation in Section 2.5.1, I have employed a variant of the so-called “static approximation”.

Consistency with this simplification is achieved by writing

S(kqq − ℓ)Γfg
5(µ)(Q)S(ℓqq − k)
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→ Γfg
5(µ)(Q)g2B

[
1

Mf
+

1

Mg

]
iγ ·Q+Mf +Mg

Q2 + (Mf +Mg)2
. (C.9)

C.1.5 Diagrams 5 and 6

In a quark–plus–interacting-diquark picture of baryons, it is typically necessary to incorpo-

rate “seagull terms” to guarantee the fulfillment of relevant Ward-Green-Takahashi iden-

tities [247]. Those relevant to the currents in Eqs. (3.1) and (3.4) are given in Ref. [122].

Adapted to the SCI, they read

J5
5(µ)(K,Q) =

∑
J
P1
1 ,J

P2
2 =S,A

∫
ℓ

∫
k
Ψ̄

J
P2
2

B′ (P ′)f̄h′∆J
P2
2 (kqq)S(k)χ

J
P1
1 fg

5(µ) (ℓqq)

× S(kqq − ℓ)TΓ̄
J
P2
2 (−kqq)S(ℓ)∆J

P1
1 (ℓqq)fhΨ

J
P1
1

B (P ) , (C.10a)

J6
5(µ)(K,Q) =

∑
J
P1
1 ,J

P2
2 =S,A

∫
ℓ

∫
k
Ψ̄

J
P2
2

B′ (P ′)f̄h′∆J
P2
2 (kqq)S(k)Γ

J
P1
1 (ℓqq)

× S(ℓqq − k)Tχ̄
J
P2
2 fg

5(µ) (−kqq)S(ℓ)∆J
P1
1 (ℓqq)fhΨ

J
P1
1

B (P ) , (C.10b)

where, with mPfg
denoting the mass of the fḡ pseudoscalar meson,

χJP fg
5µ (Q) = − iQµ

Q2 +m2
Pfg

[
γ5T fgΓJP

(Q) + ΓJP
(Q)

(
γ5T fg

)T]
, (C.11a)

iχJP fg
5 (Q) = − 1

2mfg

im2
Pfg

Q2 +m2
Pfg

[
γ5T fgΓJP

(Q) + ΓJP
(Q)

(
γ5T fg

)T]
, (C.11b)

χ̄JP fg
5µ (Q) = − iQµ

Q2 +m2
Pfg

[
Γ̄JP

(Q)γ5T fg +
(
γ5T fg

)T
Γ̄JP

(Q)

]
, (C.11c)

iχ̄JP fg
5 (Q) = − 1

2mfg

im2
Pfg

Q2 +m2
Pfg

[
Γ̄JP

(Q)γ5T fg +
(
γ5T fg

)T
Γ̄JP

(Q)

]
. (C.11d)

It is worth noting the following identity:

Qµχ
JP fg
5µ (Q) + 2imfgχ

JP fg
5 (Q) = −iγ5T fgΓJP

(Q)− ΓJP
(Q)

(
iγ5T fg

)T
; (C.12)

and the kindred relation for the conjugate seagulls.
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Figure C.1: Interaction vertex for the JP1
1 → JP2

2 diquark+probe interaction (ℓ′ = ℓ+Q):
single line, quark propagator; undulating line, pseudoscalar or axial current; Γ, diquark
correlation amplitude; double line, diquark propagator; and χ, seagull interaction.

C.2 Diquark currents

In Appendix C.1, it was demonstrated that any study of baryon axial and pseudoscalar

currents utilising the quark+diquark framework of baryon structure requires knowledge of

probe+diquark form factors. I calculated these form factors following the procedure detailed

in Sec. III.C.4 in Ref. [122], which employs the current illustrated in Fig. C.1. Taking into

account the systems involved, there are two form factors associated with each probe: axial-

vector↔ axial-vector and axial-vector↔pseudoscalar.

C.2.1 Axial-vector diquark transition form factors

Using the SCI and considering a {hg} → {hf} transition, the four diagrams depicted in

Fig. C.1 can be expressed as follows:

ΓAA
5(µ),ρσ(ℓ

′, ℓ) = N 3̄
c trDF

∫
t

{
iΓ̄

{hf}
ρ (−ℓ′)S(t′+)Γfg

5(µ)(Q)S(t+)iΓ
{gh}
σ (ℓ)S(−t)T

+ iΓ̄
{hf}
ρ (−ℓ′)S(t)iΓ{gh}

σ (ℓ)
[
S(−t′−)Γfg

5(µ)(Q)S(−t−)
]T

− Γ̄
{hf}
ρ (−ℓ′)S(t′+)χ{gh}fg

5(µ),σ (ℓ)S(−t)T

−χ̄{hf}fg
5(µ),ρ (−ℓ′)S(t+)Γ{gh}

σ (ℓ)S(−t)T
}
, (C.13)

where I have made the Lorentz indices explicit, writing with reference to Eq. (2.43), e.g.,

Γ1+

gh = Γ
{gh}
σ ; N 3̄

c = 2 and the trace is over Dirac and flavour structure; and Q = ℓ′ − ℓ,

t
(′)
± = t± ℓ(′).
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C.2.2 Axial-vector-scalar diquark transition form factors

Similarly, for the {hg} → [hf ] transition, the process described in Appendix C.1.3 can be

represented by the following expression:

ΓSA
5(µ),σ(ℓ

′, ℓ) = N 3̄
c trDF

∫
t

{
iΓ̄

[hf ]
(−ℓ′)S(ℓ′+)Γfg

5(µ)(Q)S(t+)iΓ
{gh}
σ (ℓ)S(−t)T

+ iΓ̄
[hf ]

(−ℓ′)S(t)iΓ{gh}
σ (ℓ)

[
S(−t′−)Γfg

5(µ)(Q)S(−t−)
]T

− Γ̄
[hf ]

(−ℓ′)S(t′+)χ{gh}fg
5(µ),σ (ℓ)S(−t)T

−χ̄[hf ]fg
5(µ),ρ (−ℓ

′)S(t+)Γ
{gh}
σ (ℓ)S(−t)T

}
. (C.14)

As noted above, ΓAS
5(µ),σ(ℓ

′, ℓ) = ΓSA
5(µ),σ(ℓ, ℓ

′).

C.2.3 Ward-Green-Takahashi identities for diquark currents

It is worth remarking here that, by utilising Eqs. (C.5), (C.12) and kindred relations, one

can readily verify the following results:

0 = QµΓ
AA
5µ,ρσ(ℓ

′, ℓ) + i2mfgΓ
AA
5,ρσ(ℓ

′, ℓ) , (C.15a)

0 = QµΓ
SA
5µ,ρ(ℓ

′, ℓ) + i2mfgΓ
SA
5,ρ (ℓ

′, ℓ) . (C.15b)

These identities were established elsewhere [122]. Being general, they can be used to con-

strain Ansätze for the vertices involved. Nevertheless, herein, I directly calculate the SCI

results.

C.2.4 Probe-diquark form factors

The expression in Eq. (C.13) yields the following explicit results:

iΓAA
5,ρσ(ℓ

′, ℓ) = − 1

2mfg

m2
Pfg

Q2 +m2
Pfg

εαβγδ ℓ̄γQδκ
AA
pfg(Q

2)T ℓ′
ραT

ℓ
σβ (C.16a)

ΓAA
5µ,ρσ(ℓ

′, ℓ) = −
[
εαβγδ ℓ̄γQδ

Qµ

Q2 +m2
Pfg

κAA
a1fg(Q

2)

+ εµαβγ [ℓ̄γκ
AA
a2fg(Q

2) +Qγκ
AA
a3fg(Q

2)]

]
T ℓ′
ραT

ℓ
σβ , (C.16b)
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Table C.1: Probe-diquark form factors for d→ u transitions, which for practical purposes
can be interpolated using Eq. (C.17) with the coefficients listed here. Where written, f =
d, u because I assume isospin symmetry; and the absence of an entry means the coefficient is
zero. (Every κ(s) is dimensionless; so each coefficient in Eq. (C.17) has the mass dimension
necessary to cancel that of the associated s (GeV2) factor.)

{fd} → {fu} a0 a1 b1 b2
κAA

p 0.470 0.173 0.598

κAA
a1 0.467 0.023 0.598
κAA

a2 0.470 0.023 0.598
κAA

a3
{ds} → {us} a0 a1 b1 b2
κAA

p 0.492 0.137 0.567

κAA
a1 0.489 −0.095 0.444 −0.129
κAA

a2 0.492 −0.096 0.444 −0.129
κAA

a3
{ff} ↔ [ud] a0 a1 b1 b2
κSAp 0.649 0.094 0.182

κSAa1 0.587 0.335 0.781 −0.037
κSAa2 0.646 0.327 0.751 −0.035
κSAa3 0.062 0.006 0.703

{(u, d)s} ↔ [(d, u)s] a0 a1 b1 b2
κSAp 0.641 0.152 0.327

κSAa1 0.571 0.255 0.686 −0.031
κSAa2 0.638 0.254 0.679 −0.031
κSAa3 0.070 0.005 0.728
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Table C.2: Probe-diquark form factors for s → u transitions, which can be interpolated
using Eq. (C.17) with the coefficients listed here. Where written, f = d, u because I assume
isospin symmetry; and the absence of an entry means the coefficient is zero. (Every κ(s) is
dimensionless; so each coefficient in Eq. (C.17) has the mass dimension necessary to cancel
that of the associated s (GeV2) factor.)

{fs} → {fu} a0 a1 b1 b2
κAA

p 0.516 0.131 0.482

κAA
a1 0.480 −0.087 0.318 −0.096
κAA

a2 0.516 −0.093 0.325 −0.095
κAA

a3 0.128 −0.019 0.416 −0.089

{ss} → {us} a0 a1 b1 b2
κAA

p 0.519 0.113 0.496

κAA
a1 0.481 1.807 4.328 2.142
κAA

a2 0.519 1.877 4.188 2.083
κAA

a3 0.076 0.183 3.090 1.657

{ds} → [ud] a0 a1 b1 b2
κSAp 0.742 0.173 0.304

κSAa1 0.633 0.251 0.578 −0.024
κSAa2 0.712 0.246 0.552 −0.023
κSAa3 0.109 0.006 0.590

{ss} → [us] a0 a1 b1 b2
κSAp 0.691 0.179 0.376

κSAa1 0.594 0.199 0.543 −0.023
κSAa2 0.666 0.195 0.527 −0.023
κSAa3 0.097 0.004 0.616

{fs} → [uf ] a0 a1 b1 b2
κSAp 0.651 0.144 0.301

κSAa1 0.626 0.243 0.580 −0.025
κSAa2 0.630 0.238 0.556 −0.023
κSAa3 0.024 0.002 0.556
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where ℓ̄ = ℓ′ + ℓ and, on the domain Q2 ∈ (−m2
Pfg

, 2M2
B′B) the computed form factors

κAA
ifg(Q

2), i = p, a1, a2, a3, are reliably interpolated using the following function:

κ(s = Q2) =
a0 + a1s

1 + b1s+ b2s2
, (C.17)

with the coefficients listed in Tables C.1 and C.2 (charged currents) and Table C.3 (neutral

currents). Note that, owing to the identities in Eqs. (C.15), κAA
p (0) = κAA

a2 (0). Moreover, in

the isospin symmetry limit, m{fd} = m{fu}, f = d, u; consequently, κAA
a3ud ≡ 0. Furthermore,

in no case considered herein does κAA
a3 ̸= 0 contribute more than 1% to any reported quantity.

Turning to Eq. (C.14), one finds:

ΓSA
5,ρ (ℓ

′, ℓ) = T ℓ
ραQα

m2
Pfg

Q2 +m2
Pfg

m[hf ] +m{gh}

2mfg
κSApfg(Q

2) , (C.18a)

iΓSA
5µ,ρ(ℓ

′, ℓ) = T ℓ
ρα[m[hf ] +m{gh}]

[
δαµκ

SA
a1fg(Q

2)− QµQα

Q2 +m2
Pfg

κSAa2fg(Q
2) (C.18b)

+ ℓ̄µQα
1

m2
{gh} −m2

[hf ]

κSAa3fg(Q
2)

]
,

where the form factors can again be interpolated using Eq. (C.17) with the coefficients listed

in Tables C.1 –C.3.

112



Table C.3: Probe-diquark form factors for g → g, g = u, d, s, neutral current transitions,
which can be interpolated using Eq. (C.17) with the coefficients listed here. Where written,
f = d, u because I assume isospin symmetry; and the absence of an entry means the
coefficient is zero. Note that κAA

a3 ≡ 0 in this case. (Every κ(s) is dimensionless; so each
coefficient in Eq. (C.17) has the mass dimension necessary to cancel that of the associated
s (GeV2) factor.)

{ff} → {ff} a0 a1 b1 b2
κAA

p 0.470 0.173 0.598

κAA
a1 0.467 0.023 0.598
κAA

a2 0.470 0.023 0.598

{ss} → {ss} a0 a1 b1 b2
κAA

p 0.547 0.094 0.435

κAA
a1 0.475 0.643 1.878 0.723
κAA

a2 0.547 0.654 1.722 0.649

{fs} → {fs} a0 a1 b1 b2
κAA

pff 0.492 0.137 0.567

κAA
a1ff 0.489 −0.095 0.444 −0.129

κAA
a2ff 0.492 −0.096 0.444 −0.129

κAA
pss 0.564 0.106 0.416

κAA
a1ss 0.494 0.462
κAA

a2ss 0.564 0.469

{ud} ↔ [ud] a0 a1 b1 b2
κSAp 0.649 0.094 0.182

κSAa1 0.587 0.335 0.781 −0.037
κSAa2 0.646 0.327 0.751 −0.035
κSAa3 0.062 0.006 0.703

{fs} ↔ [fs] a0 a1 b1 b2
κSApff 0.641 0.152 0.327

κSAa1ff 0.571 0.255 0.686 −0.031

κSAa2ff 0.638 0.254 0.679 −0.031

κSAa3ff 0.070 0.005 0.728

κSApss 0.742 0.160 0.310

κSAa1ss 0.678 0.189 0.459 −0.018
κSAa2ss 0.701 0.185 0.434 −0.017
κSAa3ss 0.064 0.002 0.484
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Appendix D

Angular momentum
decomposition

Table D.1: Proton-canonical normalisation contributions broken into rest-frame
quark+diquark orbital angular momentum components, defined with reference to Eqs. (4.6).

S1 A2 B1 S2 A1 B2 C2 C1
S1 0.30 0.00 0.00 0.27 0.00 0.00 0.00 0.00

A2 0.00 0.03 -0.02 0.00 -0.01 0.01 0.06 0.00

B1 0.00 -0.02 0.04 0.00 0.00 0.01 0.16 0.00

S2 0.27 0.00 0.00 -0.10 0.00 0.00 0.00 0.00

A1 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

B2 0.00 0.01 0.01 0.00 0.00 -0.02 0.01 -0.02

C2 0.00 0.06 0.16 0.00 0.00 0.01 -0.17 -0.01

C1 0.00 0.00 0.00 0.00 0.00 -0.02 -0.01 0.00

Using the computed solutions of the Faddeev equations for the Poincaré-covariant

baryon wave functions, evaluated in the rest frame, I computed the contributions of

various quark+diquark orbital angular momentum components to the proton’s canonical

normalisation constant. The results are recorded in Table D.1. It is from this table that

the image in Fig. 4.2 is drawn. I also calculated the kindred contributions to the proton’s

axial charge and its flavour separation. The results are recorded in Table D.2.
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Table D.2: Proton axial charge contributions broken into rest-frame quark+diquark orbital
angular momentum components, defined with reference to Eqs.(4.6).

guA S1 A2 B1 S2 A1 B2 C2 C1
S1 0.44 -0.01 0.07 0.00 0.00 0.00 0.09 0.00

A2 -0.01 0.00 0.00 0.00 0.00 -0.01 0.01 0.00

B1 0.07 0.00 0.04 0.10 0.00 0.01 0.08 0.00

S2 0.00 0.00 0.10 -0.08 0.00 -0.01 -0.08 0.00

A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B2 0.00 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00

C2 0.09 0.01 0.08 -0.08 0.00 0.00 -0.07 0.00

C1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

gdA S1 A2 B1 S2 A1 B2 C2 C1
S1 -0.26 0.00 0.00 0.01 0.00 -0.01 -0.07 0.00

A2 0.00 0.01 0.00 0.00 0.00 -0.01 0.00 0.00

B1 0.00 0.00 -0.04 -0.09 0.00 0.00 0.02 0.00

S2 0.01 0.00 -0.09 0.00 0.00 0.01 0.08 0.00

A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B2 -0.01 -0.01 0.00 0.01 0.00 0.00 0.00 0.00

C2 -0.07 0.00 0.02 0.08 0.00 0.00 0.00 0.00

C1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

g
(0)
A S1 A2 B1 S2 A1 B2 C2 C1
S1 0.18 -0.01 0.07 0.01 0.00 0.01 0.02 0.00

A2 -0.01 0.01 0.00 0.00 0.00 -0.02 0.01 0.00

B1 0.07 0.00 0.00 0.01 0.00 0.01 0.10 0.00

S2 0.01 0.00 0.01 -0.08 0.00 0.00 0.00 0.00

A1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B2 -0.01 -0.02 0.01 0.00 0.00 0.00 0.00 0.00

C2 0.02 0.01 0.10 0.00 0.00 0.00 -0.07 0.00

C1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Determination of the Pion Mass Distribution. Chin. Phys. Lett. Express, 40:041201,

2023.

135



[218] D. Aston et al. Observation of an ωπ0 State of Mass 1.25-GeV Produced by Photons

of Energy 20-GeV - 70-GeV. Phys. Lett. B, 92:211, 1980. [Erratum: Phys.Lett.B 95,

461 (1980)].

[219] G. Grunberg. Renormalization Scheme Independent QCD and QED: The Method of

Effective Charges. Phys. Rev. D, 29:2315, 1984.

[220] A. Deur, S. J. Brodsky, and G. F. de Teramond. The QCD Running Coupling. Nucl.

Phys., 90:1, 2016.

[221] A. Deur, V. Burkert, J. P. Chen, and W. Korsch. Experimental determination of the

QCD effective charge αg1(Q). Particles, 5:171, 2022.

[222] A. Deur, S. J. Brodsky, and C. D. Roberts. QCD Running Couplings and Effective

Charges. arXiv: 2303.00723, 2023.

[223] J. Dove et al. The asymmetry of antimatter in the proton. Nature, 590:561, 2021.

[Erratum: Nature 604, E26 (2022)].

[224] Y. Prok et al. Precision measurements of g1 of the proton and the deuteron with 6

GeV electrons. Phys. Rev. C, 90:025212, 2014.

[225] P. L. Anthony et al. Measurement of the deuteron spin structure function g1(d)(x)

for 1-(GeV/c)**2 < Q**2 < 40-(GeV/c)**2. Phys. Lett. B, 463:339, 1999.

[226] P. L Anthony et al. Measurements of the Q**2 dependence of the proton and neutron

spin structure functions g(1)**p and g(1)**n. Phys. Lett. B, 493:19, 2000.

[227] A. Airapetian et al. Measurement of the proton spin structure function g1(p) with a

pure hydrogen target. Phys. Lett. B, 442:484, 1998.

[228] K. Abe et al. Measurements of the Q**2 dependence of the proton and deuteron spin

structure functions g1(p) and g1(d). Phys. Lett. B, 364:61, 1995.

[229] K. Abe et al. Measurements of the proton and deuteron spin structure function g1 in

the resonance region. Phys. Rev. Lett., 78:815, 1997.

136



[230] K. Abe et al. Measurements of the proton and deuteron spin structure functions g(1)

and g(2). Phys. Rev. D, 58:112003, 1998.

[231] D. Adams et al. Measurement of the spin dependent structure function g1(x) of the

proton. Phys. Lett. B, 329:399, 1994. [Erratum: Phys.Lett.B 339, 332–333 (1994)].

[232] D. Adams et al. Spin structure of the proton from polarized inclusive deep inelastic

muon - proton scattering. Phys. Rev. D, 56:5330, 1997.

[233] K. Ackerstaff et al. Measurement of the neutron spin structure function g1(n) with a

polarized He-3 internal target. Phys. Lett. B, 404:383, 1997.

[234] K. Abe et al. Precision determination of the neutron spin structure function g1(n).

Phys. Rev. Lett., 79:26, 1997.

[235] K. Abe et al. Next-to-leading order QCD analysis of polarized deep inelastic scattering

data. Phys. Lett. B, 405:180, 1997.

[236] P. L. Anthony et al. Deep inelastic scattering of polarized electrons by polarized He-3

and the study of the neutron spin structure. Phys. Rev. D, 54:6620, 1996.

[237] R. K. Ellis, W. J. Stirling, and B. R. Webber. QCD and collider physics, volume 8.

Cambridge University Press, 2011.

[238] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang. Evidence for polarization

of gluons in the proton. Phys. Rev. Lett., 113:012001, 2014.

[239] C. Adolph et al. Leading-order determination of the gluon polarisation from semi-

inclusive deep inelastic scattering data. Eur. Phys. J. C, 77:209, 2017.

[240] G. Altarelli and G. G. Ross. The Anomalous Gluon Contribution to Polarized Lep-

toproduction. Phys. Lett. B, 212:391, 1988.

[241] C. Adolph et al. Final COMPASS results on the deuteron spin-dependent structure

function gd1 and the Bjorken sum rule. Phys. Lett. B, 769:34, 2017.

137



[242] X. D. Ji, J. Tang, and P. Hoodbhoy. The spin structure of the nucleon in the asymp-

totic limit. Phys. Rev. Lett., 76:740, 1996.

[243] X. S. Chen, W. M. Sun, F. Wang, and T. Goldman. Proper identification of the gluon

spin. Phys. Lett. B, 700:21, 2011.

[244] D. P. Anderle et al. Electron-ion collider in China. Front. Phys. (Beijing), 16:64701,

2021.

[245] R. Abdul Khalek et al. Science Requirements and Detector Concepts for the Electron-

Ion Collider: EIC Yellow Report. Nucl. Phys. A, 1026:122447, 2022.

[246] A. Krassnigg and C. D. Roberts. DSEs, the pion, and related matters. Fizika B,

13:143, 2004.

[247] M. Oettel, M. Pichowsky, and L. von Smekal. Current conservation in the covariant

quark diquark model of the nucleon. Eur. Phys. J. A, 8:251, 2000.

138


	Abstract
	Table of Contents
	Chapters
	Introduction
	Symmetry-preserving treatment of a contact interaction
	Introduction
	Contact interaction
	Gap equation
	Bethe-Salpeter equation
	Meson and diquark
	Ward-Green-Takahashi identities

	Faddeev equation
	General structure of the Faddeev amplitudes
	Explicit example:  baryon


	Octet baryon axialvector and pseudoscalar form factors
	Introduction
	Baryons' axial current
	Calculated form factors
	Axial form factors
	Induced pseudoscalar form factors
	Pseudoscalar form factors

	Valence spin fraction
	Summary

	Angular momentum decomposition of proton axial charge
	Introduction
	Partial wave decomposition
	Solutions and their features
	Canonical normalisation
	Axial charges

	Summary

	Polarised parton distribution functions and proton spin
	Introduction
	Results based on Faddeev equation
	Polarised valence quark distributions at H
	Polarised quark distributions at 2=3GeV2
	Polarised gluon distribution at 2=3GeV2
	Proton spin
	Summary

	Conclusions and outlook
	Key results
	Outlook
	Nucleon Resonance Electroexcitation
	Semileptonic decay of heavy baryons
	Distribution functions (DFs) of proton


	Appendix Conventions and techniques
	Euclidean metric
	Relevant expressions and relations
	colour and flavour coefficients

	Appendix Selected octet baryons Faddeev equations
	Proton
	Kernel for the  baryon
	+

	Appendix Hadron currents
	Baryon currents
	Diagram 1
	Diagram 2
	Diagram 3
	Diagram 4
	Diagrams 5 and 6

	Diquark currents
	Axial-vector diquark transition form factors
	Axial-vector-scalar diquark transition form factors
	Ward-Green-Takahashi identities for diquark currents
	Probe-diquark form factors


	Appendix Angular momentum decomposition

	Bibliography

