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Abstract. Univariate polynomials are called stable with respect to a circular region
A, if all of their roots are in A. We consider the special case where A is a half-plane
and investigate affine slices of the set of stable polynomials. In this setup, we show that
an affine slice of codimension k always contains a stable polynomial that possesses at
most 2(k + 2) distinct roots on the boundary and at most (k + 2) distinct roots in the
interior of A. This result also extends to affine slices of weakly Hurwitz polynomials.
Subsequently, we apply these results to symmetric polynomials and varieties. Here we
show that it is necessary and sufficient for a variety described by polynomials in few
multiaffine polynomials to contain points in An with few distinct coordinates for its
intersection with An being non-empty. This is at the same time a generalization of
the degree principle to stable polynomials and a result similar to Grace-Walsh-Szegő’s
coincidence theorem on multiaffine symmetric polynomials.

1. Introduction

The study of univariate polynomials whose roots are restricted to a subset of C is a central
topic in mathematics. For instance, a univariate real polynomial is called hyperbolic if it
is real rooted. Recall that a circular region A is a subset of the complex plane that is
bounded by either a circle or a line, and is either open or closed. A univariate complex
polynomial is said to be A-stable if all its roots lie in A. Here, we consider the case where
A is a half-plane. Since the roots of real polynomials come in conjugated pairs, hyperbolic
polynomials are thus exactly real stable polynomials relative to the upper half-plane. Well-
known examples of stable polynomials are Hurwitz stable polynomials, which are real open
left half-plane stable polynomials, and Schur stable polynomials, which are unit disk stable
polynomials. In particular, stable polynomials have been extensively leveraged to gain
insights into combinatorial objects (see e.g. [4, 6, 8, 11]), and Hurwitz polynomials are at
the heart of control theory and are used for asymptotic stability for linear continuous-time
systems (see e.g., [17] or [7, p. 75]).
Studying the roots of univariate polynomials is deeply related to studying multivariate
symmetric polynomials by Vieta’s formula

n

∏
i=1
(T − xi) = T

n
− e1(x)T

n−1
+ e2(x)T

n−2
+ . . . + (−1)nen(x)

where ek = ∑1≤i1<...<ik≤nXi1⋯Xik denotes the k-th elementary symmetric polynomial. In
the paper we associate points z ∈ Cn with monic polynomials

fz = T
n
− z1T

n−1
+ z2T

n−2
− . . . + (−1)nzn.

In particular, monic hyperbolic polynomials are described by the image of Rn under the
Vieta map, i.e., the image under the evaluation of the n elementary symmetric polynomials.
Similarly to this hyperbolic picture, monic A-stable polynomials can be identified with the
image of An under the Vieta map.
Sets of hyperbolic polynomials obtained by fixing the first k coefficients have been con-
sidered by various authors, beginning with the work of Arnold [2, 9, 14, 18] and recently
[16, 20]. In the domain of the Vieta map, such sets are called Vandermonde varieties,
whereas the corresponding sets in the image of the Vieta map are called hyperbolic slices.
More generally, this notion has been introduced in [21] to sets of hyperbolic polynomials
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that are cut out by a (n − k)-dimensional affine subspace. A remarkable property of such
hyperbolic slices concerns their local extreme points: It turns out that these local extreme
points of linear functionals can be characterized as polynomials with at most k distinct
roots. Similarly to this hyperbolic situation, we study affine slices of the set of upper
half-plane stable polynomials defined by k linear combinations of coefficients and show in
Theorem 2.4 that the local extreme points of such stable slices have at most k non-real
roots and at most 2k distinct real roots.
One of our main motivations for this result is provided by a natural connection to the
classical Grace-Walsh-Szegő’s coincidence theorem. This beautiful result states that for a
symmetric multiaffine polynomial f ∈ C[X1, . . . ,Xn] evaluated on a circular region A ⊂ C
there exists for all (ζ1, . . . , ζn) ∈ An some ζ ∈ A with the property that f(ζ1, . . . , ζn) =
f(ζ, . . . , ζ), under the assumption that the degree of f is n or A is convex. The coincidence
theorem has several applications in stability testing since it allows reduction of the question
of verifying multivariate stability to univariate polynomials. However, the assumptions of
the theorem are relatively strict. It was proven by Brändén and Wagner [5] that no
analogous result can be applied to any multiaffine polynomials invariant under a fixed
proper permutation subgroup of Sn. We use our results on stable slices and the connection
with symmetric polynomials to prove in Theorem 4.6 and Corollary 4.11 a similar result
to Grace-Walsh-Szegő’s theorem for multivariate polynomials for functions which can be
expressed as polynomials in few multiaffine symmetric polynomials when A is a half-plane.
We show that for any point ζ ∈ An, we can find a point with few distinct coordinates and
the same evaluation. Furthermore, in a similar spirit, we prove a double-degree principle
for stable varieties in Corollary 4.8 and also a half-degree principle for the upper half-plane
in Theorem 4.13. Our results on stable slices do not transfer directly to Hurwitz slices
since the coefficients of those polynomials are real. However, we prove that if we fix k
linear combinations of coefficients of a weakly Hurwitz polynomial, then there is a weakly
Hurwitz polynomial satisfying the same relations and having only k roots with negative
real part and 2k distinct roots with real part equal to zero (see Theorem 3.3).

Structure of the article. In Section 2 we study stable slices of univariate polynomials
and show in particular that local extreme points of stable slices correspond to polynomials
with few distinct roots (Theorem 2.4). In Section 3 we study Hurwitz slices and their
boundary by root multiplicities. In Section 4 we apply our results from Section 2 to
multivariate symmetric polynomials and formulate a double-degree principle for stable
polynomials and our result similar to Grace-Walsh-Szegő’s coincidence theorem (Theorem
4.6, Corollaries 4.8 and 4.11). Moreover, we briefly discuss the generalization of Grace-
Walsh-Szegő’s coincidence theorem to permutation subgroups of Sn as considered in [5].
Finally, we formulate open questions.

2. Stable slices

Throughout the article we denote by C[T ] and R[T ] the rings of univariate complex and
real polynomials and k ≤ n be fixed positive integers. For a complex number x we write
Re(x) and Im(x) for its real and imaginary parts. Furthermore, we commonly identify the
set of monic univariate polynomials with Cn via the bijection

(z1, . . . , zn) z→ Tn
− z1T

n−1
+ z2T

n−2
− ⋅ ⋅ ⋅ + (−1)nzn.

In this section, we study univariate stable polynomials, i.e. polynomials that have all their
roots lying in a half-plane. In particular, we are interested in intersections of the set of
stable polynomials with affine subspaces of Cn. As multiplication with units in C does not
change the roots of a polynomial, we restrict to monic stable polynomials. We denote the
closed upper half-plane by H+, i.e.

H+ = {x ∈ C ∣ Im(x) ≥ 0}.

Definition 2.1. Let H be a closed half-plane.
(i) We denote by

SH ∶= {z ∈ Cn ∣ Tn
− z1T

n−1
+ ⋅ ⋅ ⋅ + (−1)nzn has all roots in H}

2



the set of monic H-stable polynomials of degree n. If H = H+ is the upper half-plane,
we write S for SH+ .

(ii) We denote the set of points with at most k distinct coordinates on the boundary
of H and at most m coordinates in the interior of H by

Hk,m ∶= {x ∈ Hn
∣ ∣{x1 . . . , xn} ∩ bdH∣ ≤ k and ∣{i ∈ {1, . . . , n} ∣ xi ∈ intH}∣ ≤m} .

Furthermore, the set of all polynomials in SH with all roots in Hk,m is denoted by

S
k,m
H ∶= {z ∈ SH ∣ T

n
− z1T

n−1
+ ⋅ ⋅ ⋅ + (−1)nzn has roots (x1, . . . , xn) ∈ Hk,m} .

If H = H+ is the upper half-plane, we write Sk,m for Sk,mH+ .
(iii) For a = (a1, . . . , ak) ∈ Ck and a surjective linear map L ∶ Cn → Ck we define the

affine slice
SH ∩L

−1
(a) = {z ∈ SH ∣ L(z) = a} .

A set of the form SH ∩L−1(a) is called a H-stable slice.

Remark 2.2. Observe that the set SH can be identified with a semi-algebraic set in R2n.
In contrast to the set of hyperbolic polynomials, where an explicit description of the set of
hyperbolic polynomials in terms of the coefficients can be obtained via Sturm’s Theorem,
it seems in general complicated to give an explicit description of SH. However, in the case
of polynomials with real coefficients, this is possible and we will present this case in Section
3.

Our assumption that the linear map L ∶ Cn → Ck is surjective in Definition 2.1 (iii) is
only for convenience (see Remark 2.5). Moreover, it suffices to study stable slices of a
fixed half-plane. This follows since translations and rotations are linear isomorphisms. Let
ϕ ∶ H → G be a linear bijection between half-planes and let ψ = ϕ−1 be its inverse. Then
fz ∈ SH if and only if fz ○ ψ ∈ SG. In particular, we can restrict to H+-stable slices.

Definition 2.3. Let A ⊂ Cn and let z ∈ A. We say that z is a local extreme point of A if
there is a neighborhood U of z such that z is an extreme point of conv(A ∩U).

While the set of extreme points of a set A is the set of global minima of linear functions
on A, the set of local extreme points of A is the set of local minima of linear functions.
The following theorem which is a generalization of [20, Theorem 4.2] and [21, Theorem
2.8], is our main result on stable slices characterizing local extreme points. As a corollary,
we obtain a result for arbitrary stable slices in Corollary 2.10.

Theorem 2.4. The local extreme points of an H+-stable slice S ∩ L−1(a) correspond to
polynomials that have at most k roots in H+ ∖R and at most 2k distinct real roots.

In other words, any local extreme point of the H+−stable slice S ∩ L−1(a) is contained in
the set S2k,k. In the proof, we investigate the multiplicity of the roots of polynomials in
the stable slice.

Proof. Let z ∈ S ∩L−1(a) be a local extreme point, i.e., there is a neighborhood U of z such
that z is an extreme point of conv(S∩L−1(a)∩U). Consider f ∶= Tn−z1T

n−1+⋅ ⋅ ⋅+(−1)nzn
and factor f = p ⋅ r, where p has only roots in H+ ∖R and r has only real roots.

(1) We show first that p has at most k roots, i.e., deg p ≤ k. We assume that deg p ∶=
m > k and want to find a contradiction. Write r = Tn−m+r1Tn−m−1+ ⋅ ⋅ ⋅+rn−m and
define r0 ∶= 1 and consider the linear map

χ ∶ Cm Ð→ Cn

y z→ (∑i+j=1 riyj , . . . ,∑i+j=n riyj)
,

where in each sum 0 ≤ i ≤ n − m and 1 ≤ j ≤ m. Since m > k, there is b ∈
ker(L○χ)∖{0}. We define h ∶= b1Tm−1+⋅ ⋅ ⋅+bm and g ∶= h ⋅r = c1Tn−1+ . . .+cn ≠ 0,
where c = χ(b) by construction and therefore c ∈ kerL. Now, because p has only
roots in H+ ∖ R, p ± εh is stable for ε > 0 small enough, since the roots depend
continuously on the coefficients [10]. Hence

(p ± εh) ⋅ r = f ± εh ⋅ r = f ± εg
3



is stable for all ε > 0 small enough, i.e., z ± εc ∈ S ∩L−1(a). If we choose ε > 0 small
enough we can ensure also that z ± εc ∈ U . But then

z =
z + εc + z − εc

2
,

a contradiction to z being an extreme point of conv(S ∩L−1(a) ∩U).
(2) Now we show that r has at most 2k distinct roots. We assume r has distinct roots

x1, . . . , xm where m > 2k and want to find a contradiction. We factor f as follows:

f =
m

∏
i=1
(T − xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶q

⋅s,

where s is of degree n−m. Write s = Tn−m+s1Tn−m−1+⋅ ⋅ ⋅+sn−m and define s0 ∶= 1
and consider the linear map

χ ∶ Rm Ð→ Cn

y z→ (∑i+j=1 siyj , . . . ,∑i+j=n siyj)
.

Since m > 2k, there is b ∈ ker(L ○ χ) ∖ {0}. We define h ∶= b1Tm−1 + ⋅ ⋅ ⋅ + bm and
g ∶= h ⋅ s = c1T

n−1 + . . . + cn ≠ 0, where c = χ(b) by construction and therefore
c ∈ kerL. Now, because q has only simple roots in R, q ± εh is hyperbolic and
therefore stable for ε > 0 small enough, since the roots depend continuously on the
coefficients and complex roots come as conjugated pairs (see e.g. [10]). Hence

(q ± εh) ⋅ s = f ± ε ⋅ g

is stable for all ε > 0 small enough, i.e., z ± εc ∈ S ∩L−1(a). If we choose ε > 0 small
enough we can ensure also that z ± εc ∈ U . But then

z =
z + εc + z − εc

2
,

a contradiction to z being an extreme point of conv(S ∩L−1(a) ∩U).
□

Remark 2.5. The assumption that L is surjective is only for convenience. In particular, if
L is not surjective one obtains the same result as in Theorem 2.4, where k can be replaced
by rankL.

We point out that the converse of Theorem 2.4 is not true, i.e. not every point z ∈
S2k,k ∩L−1(a) is a local extreme point.

Example 2.6. Let n = 3, k = 1 and

L ∶ C3 Ð→ C
(z1, z2, z3) z→ z3

.

Then (i,0,0) ∈ S2k,k ∩L−1(0), but

(i,0,0) =
((1 − ε)i,0,0) + ((1 + ε)i,0,0)

2

is not a local extreme point since ((1−ε)i,0,0), ((1+ε)i,0,0) ∈ S ∩L−1(0) for all ε ∈ [0,1).

We consider the set of stable polynomials of degree n with fixed first coefficients which is
an instance of a stable slice.

Definition 2.7. For an integer k ≥ 1 and a point a = (a1, . . . , ak) ∈ Ck we define S(a) =
S ∩ {z ∈ Cn∣z1 = a1, . . . , zk = ak} as the set of all monic H+-stable polynomials of degree n
whose first k non-trivial coefficients are determined by the point a.

With our previous notation we have S(a) = S ∩ L−1(a) where L ∶ Cn → Ck denotes the
projection to the first k coordinates.

Lemma 2.8. For an integer k ≥ 2 the stable slice S(a) is compact.
4



Proof. As the empty set is compact we can assume that there is z ∈ S(a). Furthermore we
denote by x = (x1, . . . , xn) ∈ H+ the roots of the polynomial

fz ∶= T
n
− z1T

n−1
+ . . . + (−1)nzn.

Then, if e1 and e2 denote the first and second elementary symmetric polynomial
n

∑
i=1
xi = e1(x) = a1

and hence the imaginary part of the x′is is contained in [0, Im(a1)]. Furthermore
n

∑
i=1
x2i = e1(x)

2
− 2e2(x) = a

2
1 − 2a2

and hence
n

∑
i=1

Re(xi)
2
=

n

∑
i=1

Re(x2i ) + Im(xi)
2
≤

n

∑
i=1

Re(x2i ) + Im(a1)
2
= Re(

n

∑
i=1
x2i ) + n Im(a1)

2 .

Since ∑n
i=1 x2i = a

2
1 − 2a2 we have

n

∑
i=1

Re(xi)
2
≤ Re(a21 − 2a2) + n Im(a1)

2 .

This shows that also the real part of the xi’s is bounded. Thus the set S(a) is bounded.
Furthermore, as the roots of a polynomial depend continuously on the coefficients it is
clear that S(a) is closed and therefore compact. □

Remark 2.9. For a surjective linear map L ∶ Cn → Ck and a point a ∈ Ck the set
S ∩ L−1(a) can be unbounded. Then we consider the linear map L̃ ∶ Cn → Ck+2, where
L̃(z) = (L(z), z1, z2). The set S ∩ L̃−1(b) is compact for any point b ∈ Ck+2, by a similar
argument as in the proof of Lemma 2.8. Moreover, if one or both of the first two unit vectors
are in the row span of a matrix representation of L, then we can consider L̂(z) = (L(z), zi)
for i ∈ {1,2} instead of L or the original stable slice was already compact.

We are now ready to present our main result on general half-plane stable slices.

Corollary 2.10. Let H be a closed half-plane. Any non-empty H-stable slice SH∩L−1(a) ≠
∅ contains a point that corresponds to a polynomial with at most k+2 roots in the interior
of H and at most 2(k + 2) distinct roots in the boundary of H, i.e.

S
2(k+2),k+2
H ∩L−1(a) ≠ ∅.

Proof. Since H can be bijectively mapped to H+ under a linear isomorphism it suffices to
show the theorem for H = H+. Now the claim follows from Theorem 2.4, Lemma 2.8 and
Remark 2.9. □

Corollary 2.10 says that stable slices do always contain a point with few distinct zeros.
Moreover, we can characterize the maximal number of distinct roots on the boundary of
the half-plane and the number of distinct roots in the interior. Note that the result is
independent of the degree n of the univariate polynomials. Thus it is of more interest if n
is large. In particular, we observe a stabilization in the structure of local extreme points
of stable slices if the number of variables is at least 3k.

Remark 2.11. In the case that L is the projection to the first k < n coordinates, we can
replace 2k by k in Theorem 2.4. This is, since (0, . . . ,0,1) ∈ ker(L ○ χ) and we can choose
h ∶= 1 in the proof in this case. Moreover, if k ≥ 2 the considered stable slice is compact
in this case by Lemma 2.8. So we can replace S2(k+2),k+2H ∩ L−1(a) by Sk,kH ∩ L−1(a) in
Corollary 2.10.

One could hope that every stable slice contains also points that correspond to polynomials
with k distinct roots in H+, analogous to the case of compact hyperbolic slices, mentioned
in [21, Theorem 2.8]. The next example shows that this is not true in general even when
L is the projection to the first k coordinates.

5



Example 2.12. We consider S ∩L−1(a), where

a ∶= (−23i,−463,8461i) and
L ∶ C4 Ð→ C3

(z1, z2, z3, z4) z→ (z1, z2, z3)

is the projection to the first 3 coordinates. Then S ∩L−1(a) is non-empty, since

(−23i,−463,8461i,8020) ∈ S ∩L−1(a).

The coefficient vector corresponds to a polynomial with roots −20 + i, i,20 + i and 20i.
Furthermore, S ∩L−1(a) contains no point corresponding to a polynomial with at most 3
distinct roots.

Figure 1. The stable slice S ∩L−1(a)

3. Hurwitz slices

In this section we consider Hurwitz polynomials, i.e. real univariate polynomials with all
roots in the left half-plane. Moreover, polynomials with all roots having nonpositive real
part are called weakly Hurwitz. We show in Theorem 3.3 that the local extreme points of
affine slices of the set of monic Hurwitz polynomials have few distinct roots and study a
partial order on the set of monic Hurwitz polynomials in Subsection 3.2.
Like for stable polynomials we identify monic weakly Hurwitz polynomials with their co-
efficients. Any monic weakly Hurwitz polynomial has nonnegative coefficients.
Similarly to hyperbolic polynomials, monic Hurwitz polynomials can be characterized as
poynomials with a positive definite finite Hurwitz matrix [12] (see also [22, Section 9.3]).
While the finite Hurwitz matrix of any weakly Hurwitz polynomial is positive semidefinite,
its converse is not true [3]. Kemperman [13] showed that weakly Hurwitz polynomials can
be characterized in a similar way by their infinite Hurwitz matrix (see also [1, Thm. 4.9]
for another characterization).

3.1. Hurwitz slices and their local extreme points. In contrast to the study of sta-
ble polynomials in Section 2 where we considered surjective linear maps Cn → Ck over the
field C, we restrict to real linear maps over R. However, since the roots of weakly Hur-
witz polynomials can be complex, we cannot directly apply any result about hyperbolic
polynomials.

Definition 3.1. We write Hleft for the left half-plane in C, i.e.

Hleft ∶= {x ∈ Cn
∣ Re(x) ≤ 0}

The set of monic weakly Hurwitz polynomials is defined by

HW ∶= SHleft ∩R
n
∶= {z ∈ Rn

∣ fz has all roots in Hleft} .

Moreover, for a linear map L ∶ Rn → Rk we call the set HW ∩L−1(a) a Hurwitz slice.

We have the following connection between Hurwitz polynomials and stable polynomials.
6



Remark 3.2. The set of monic weakly Hurwitz polynomials HW can be embedded in S
in the following way: If f(T ) ∈ HW is Hurwitz then the monic polynomial

f̃(T ) = (−i)n ⋅ f(i ⋅ T ) = Tn
+

n

∑
k=1

ikzkT
n−k

is upper half-plane stable with coefficients alternating from the sets R or i ⋅ R. The map
˜ ∶ HW → S is linear, injective, not surjective, and its inverse is g(T ) ↦ ing(−i ⋅ T ).

For instance, the polynomial

f = (T + 2)(T + 1 + i)(T + 1 − i) = T 3
+ 4T 2

+ 6T + 4

is Hurwitz and
f̃ = (−i)3f(iT ) = T 3

− 4iT 2
− 6T + 4i

is H+-stable with alternating real and purely complex coefficients.
We get the same results about multiplicities of the roots of local extreme points of Hurwitz
slices as for stable slices in Theorem 2.4.

Theorem 3.3. Let L ∶ Rn → Rk be a surjective linear map. The local extreme points of
a Hurwitz slice HW ∩ L−1(a) correspond to polynomials that have at most k roots with
negative real part and at most 2k distinct roots with real part equal to zero.

The result is the same as in Theorem 2.4 and the proof follows the same strategy.
The proof of the theorem is similarly to the proof of Theorem 2.4, but one has to be a bit
careful because we are dealing with real coefficients only.

Proof. Let z ∈ HW ∩ L−1(a) be a local extreme point, i.e., there is a neighborhood U
of z such that z is an extreme point of conv(HW ∩ L−1(a) ∩ U). Consider f ∶= fz =
Tn − z1T

n−1 + ⋅ ⋅ ⋅ + (−1)nzn and factor f = p ⋅ r, where p has only roots with negative
real part and r has only roots with real part equal to zero. Note that since f has real
coefficients, the roots of f come in complex conjugated pairs, so p and r have also real
coefficients.

(1) In order to show that p has at most k roots, we assume that deg p ∶= m > k and
want to derive a contradiction. Write r = Tn−m+r1Tn−m−1+⋅ ⋅ ⋅+rn−m, define r0 ∶= 1
and consider the linear map

χ ∶ Rm Ð→ Rn

y z→ (∑i+j=1 riyj , . . . ,∑i+j=n riyj)
,

where in each sum 0 ≤ i ≤ n −m and 1 ≤ j ≤ m. Similarly to part (1) in the proof
of Theorem 2.4 one verifies, by considering some 0 ≠ b ∈ ker(L ○ χ), that z cannot
be a local extreme point of HW ∩L−1(a).

(2) Now we show that r has at most 2k distinct roots. We assume that all the distinct
roots of r are x1, . . . , xm where m > 2k and we want to find a contradiction. We
factor f as follows:

f =
m

∏
i=1
(T − xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶q

⋅s,

where s is of degree n−m. Note that f and therefore q and s have real coefficients.
Write s = Tn−m + s1Tn−m−1 + ⋅ ⋅ ⋅ + sn−m and define s0 ∶= 1 and consider the linear
map

χ ∶ Rm Ð→ Rn

y z→ (∑i+j=1 siyj , . . . ,∑i+j=n siyj)
.

Since m > 2k, there is b ∈ ker(L ○χ) ∖ {0} with b2i−1 = 0 for all i ∈ {1, . . . , ⌊m2 ⌋}. We
define h ∶= b1Tm−1 + ⋅ ⋅ ⋅ + bm and g ∶= h ⋅ s = c1T

n−1 + . . . + cn ≠ 0, where c = χ(b)
by construction and therefore c ∈ kerL. Note that q corresponds to a hyperbolic
polynomial q̃ via the embedding stated in Remark 3.2 where the degree is m instead
of n. The same transformation maps h to a hyperbolic polynomial h̃. Now, because
q̃ has only distinct roots, q̃ ± εh̃ is hyperbolic for ε > 0 small enough since the roots

7



depend continuously on the coefficients and complex roots come as conjugated pairs
(see e.g. [10]). Moreover, we have q̃ ± εh̃ = Tm + w2T

m−2 + w4T
m−4 + . . . for some

real numbers w2i. Thus, q̃± εh̃ lies in the image of the map ˜ and we can apply the
inverse of the transformation ˜ from Remark 3.2 which is also linear. So q ± εh is
weakly Hurwitz for ε > 0 small enough. Hence

(q ± εh) ⋅ s = f ± ε ⋅ g

is Hurwitz for all ε > 0 small enough, i.e., z ± εc ∈ HW ∩L−1(a). If we choose ε > 0
small enough we can ensure also that z ± εc ∈ U . But then

z =
z + εc + z − εc

2
,

a contradiction to z being an extreme point of conv(HW ∩L−1(a) ∩U).
□

In the case where L is the projection to the first k coordinates, one can again replace 2k
by k in the proof of Theorem 3.3. Furthermore, since closed subsets of compact sets are
compact, we get from Lemma 2.8 and Remark 3.2 also that HW ∩L−1(a) is compact if L
is the projection to the first k coordinates. More generally, Remark 2.9 translates in the
same way.

3.2. Geometry and combinatorics of Hurwitz slices. In this subsection, we briefly
discuss the interplay of the geometry and combinatorics of the set of weakly Hurwitz
polynomials and Hurwitz slices. This is inspired by the rich geometry and combinatorics
of linear slices of the set of monic univariate hyperbolic polynomials and should be seen as
a starting point for further investigations.
The boundary of the set HW consists of polynomials of the form f = p ⋅ q where p, q ∈ R[T ]
are monic, deg(p) + deg(q) = n, p is Hurwitz of even degree r < n and for any root z of
q, we have Re(z) = 0. In a neighborhood of p, one can perturb all coefficients but the
leading coefficient of p and the obtained polynomial is again a monic Hurwitz polynomial.
All imaginary roots ±ib1, . . . ,±ibr of q come in complex conjugated pairs. We assume
0 ≤ ∣b1∣ < . . . < ∣br ∣ and we have

q = T s
l

∏
i=1
((T − ibi)(T + ibi))

µi = T s
l

∏
i=1
(T 2
+ b2i )

µi

with s ∈ {0,1}. Note that s is uniquely determined by the degree of q. We have s = 0 if
deg q is even and s = 1 otherwise. The real polynomial

qe = T
s

l

∏
i=1
(T + b2i )

µi

has only real roots 0 ≥ −b21 > . . . > −b
2
l with multiplicities s, µ1, . . . , µl. For a monic

polynomial f ∈ R[T ] whose roots are all of the form ib with b ∈ R, we call fe its associated
even polynomial. We have a 1 ∶ 1 correspondence between monic polynomials q ∈ R[T ] for
which all of its roots have real part 0 and hyperbolic polynomials with only nonpositive
roots. A composition of n is a sequence of positive integers summing up to n. Let µ =
(µ1, . . . , µl) be the composition of n given by the multiplicities of the ordered roots of qe.
We call the tuple (s, µ) the root multiplicity of the even polynomial qe.
For a weakly Hurwitz polynomial f = p ⋅ q we call the triple (r, s, µ) the multiplicity of f
which we denote by mult(f). For instance, we have mult(T 5) = (0,1, (2)) and (T +1)(T −
i)(T + i)(T − 2i)(T + 2i) has multiplicity (1,0, (1,1)). Moreover, we define the set

HW(r,s,µ) = {f ∈ HW∣mult(f) = (r, s, µ)}

of monic Hurwitz polynomials of degree n with r roots in the interior and the roots on
the boundary are encoded by the root multiplicity (s, µ). For different multiplicity triples,
the associated sets are disjoint. Note that HW(r,s,µ) ≠ ∅ if and only if r + s + 2∑l

i=1 µi = n,
since one can find for any multiplicity (r, s, µ) a monic Hurwitz polynomial with mult(f) =
(r, s, µ). From the definition of HW(r,s,µ) we can say which sets HW(r′,s′,µ′) are contained
in clHW(r,s,µ). To do so, we define a partial order.
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Definition 3.4. Let C be the set of all triples (r, s, µ) where r ≤ n is a positive integer
and, if n − r is even then s = 0 and µ = (µ1, . . . , µl) is a composition of n−r

2 , and otherwise
s = 1 and µ = (µ1, . . . , µl) is a composition of n−r−1

2 . We define the partial order ⊴ on C as
the transitive and reflexive closure of the following relations. We say (r, s, µ) ⊴ (r, s, λ) if
µ can be obtained from λ by replacing some of the commas in the composition λ by the
plus operation. We define (r − 1,1, µ) ⊴ (r,0, µ) and (r − 1,0, (1, µ1, . . . , µl)) ⊴ (r,1, µ).

For instance, we have

(3,0, (2)) ⊴ (3,0, (1,1)), (2,1, (1,1)) ⊴ (3,0, (1,1)) and (2,0, (1,1,1)) ⊴ (3,1, (1,1)).

If µ′ is a composition that can be obtained from µ by replacing some of the commas in
µ plus signs, this means that we can continuously collapse a conjugated pair of roots of a
polynomial in HW(r,s,µ) to obtain a polynomial in HW(r,s,µ′). We have

⋃
(r′,s′,µ′)⊴(r,s,µ)

HW(r′,s′,µ′) ⊂ clHW(r,s,µ).

For fixed r the partial order ⊴ is the partial order considered to study the geometry of
hyperbolic slices in [15, 16]. There are many open questions about the interplay of the
geometry of HW and the poset (C,⊴). Can one use the understanding of the geometry of
hyperbolic slices to understand Hurwitz slices? Is the set HW(r,s,µ) contractible? Is the
geometry of the set HW completely described by the poset (C,⊴), i.e. is the set HW a
stratified manifold with a stratification indexed by the poset? Is the partial order (C,⊴) a
lattice?

(a) HW ∩ {z1 = −14, z2 = 546, z3 =
−6064}

(b) HW ∩ {z1 = −32, z2 = 561, z3 =
−5830}

(c) HW ∩ {z1 = −14, z2 = 546, z4 =
405010}

Figure 2. Hurwitz slices for n = 5 where (∣z4∣, ∣z5∣) resp. (∣z3∣, ∣z5∣) are displayed

In Figure 2 we present three examples of Hurwitz slices for n = 5. The multiplicity of any
polynomial on the upper arc in (A) is (3,0, (1)) at all points but the two endpoints. At
the left endpoint the multiplicity is (3,0, (1)) with a double root at 0 and (2,1, (1)) at
the right endpoint with a root at ≈ ±21i. The bottom line corresponds to the multiplicity
(4,1, (0)). The same multiplicities are true for the arcs in (B). In (C) any boundary point
has multiplicity structure (5,0, (0)).
In general, in a Hurwitz slice not every multiplicity occurs. It is an open question to
classify which multiplicities do occur in Hurwitz slices. Is a Hurwitz slice where the first
coefficients are fixed always connected? We do not expect connectivity for other slices.
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By Theorem 3.3 for k < n
3 the Hurwitz slice can at least not be strictly convex. Adm,

Garloff and Tyaglov classified [1, Thm. 4.9] the subset of weakly Hurwitz polynomials
with r roots in the interior of the left half-plane. They showed that a monic polynomial
f(T ) = p0(T

2)+Tp1(T
2) ∈ R[T ] is weakly Hurwitz with r roots in the open left half-plane

if and only if the first r principal minors of the finite Hurwitz matrix are negative and the
remaining ones are 0 and if the polynomial gcd(p0, p1) has only negative roots. Do the
roots of gcd(p0, p1) correspond to the root multiplicity (s, µ)? Finally, one could study the
combinatorics and geometry of general stable slices.

4. A Grace-Walsh-Szegő like theorem for symmetric polynomials in few
multiaffine polynomials

Throughout this section, let H be a closed half-plane and let X ∶= (X1, . . . ,Xn) be a tuple
of n variables.
The main result of this section is a statement, similar to the well-known Grace-Walsh-
Szegő coincidence theorem, and a generalization of the degree principle in Theorem 4.6,
Corollary 4.11 and Corollary 4.8. We refer to [19, p. 107] for background on the coincidence
theorem. The main tool in this section will be our results on root multiplicities of local
extreme points of stable slices from Section 2. Recall that a multivariate polynomial is
called multiaffine, if it is linear in every variable.

Theorem 4.1 (Grace-Walsh-Szegő coincidence theorem). Let A be a closed circular region
and let f ∈ C[X] be a multiaffine symmetric polynomial. If deg(f) = n or if A is convex,
then for any (x1, . . . , xn) ∈ An there exists a y ∈ A with f(x1, . . . , xn) = f(y, . . . , y).

We address an extension to the case where the symmetric polynomial f is no longer assumed
to be multiaffine but can be written as a polynomial in k multiaffine symmetric polynomials
in Theorem 4.6. However, we cannot expect a diagonal point in An any longer.

Definition 4.2. Let V ⊆ Cn be a variety. We say that V is H-stable if V ∩ Hn = ∅.
Moreover, we say that a polynomial f ∈ C[X] is H-stable if the variety V (f) is H-stable.

Remark 4.3. In Definition 4.2 we follow the standard terminology for stability of multi-
variate polynomials which is in contrast to the definition of stability of univariate polyno-
mials in Definition 2.1. We say that a multivariate polynomial is H-stable if there is no
zero in Hn, while any root of a univariate polynomial has to be contained in H if it is H-
stable. Since the complement of H is an open half-plane Hc one can see that for univariate
polynomials H-stability in Definition 2.1 is the same as Hc-stability in Definition 4.2.

Recall that any n-variate symmetric polynomial can uniquely be written as a polynomial
in the first n elementary symmetric polynomials by the fundamental theorem of symmetric
functions. We are interested in symmetric polynomials, which can be written as polyno-
mials in few linear combinations of elementary symmetric polynomials, which generalizes
the notion of multiaffine symmetric polynomials.

Definition 4.4. Let f ∈ C[X] be a symmetric polynomial and write f in terms of elemen-
tary symmetric polynomials, say f = g(e1, . . . , en) for some g ∈ C[Z1, . . . , Zn].

(1) We say that f is (l1, . . . , lk)-sufficient if g ∈ C[l1, . . . , lk] where l1, . . . , lk are linear
forms.

(2) Moreover, we say that a symmetric variety V ⊆ Cn is (l1, . . . , lk)-sufficient, if it can
be described by (l1, . . . , lk)-sufficient polynomials.

Remark 4.5. A polynomial f is (l1, . . . , lk)-sufficient for some linear forms l1, . . . , lk, if
and only if f can be written as a polynomial in k symmetric and multiaffine polynomials.
In particular, every symmetric and multiaffine polynomial is l1-sufficient for some linear
form l1.

For instance, for n ≥ 3 the polynomial e21(X) + e2(X) + 2e3(X) is (l1, l2) sufficient for
l1(Z1, . . . , Zn) = Z1 and l2(Z1, . . . , Zn) = Z2 + 2Z3. For checking sufficiency of polynomials
and more on the notion of sufficiency we refer to Subsection 3.3 in [21].
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The following Theorem is our main result of this section and can be seen at the same time
as some kind of degree principle for checking stability and as a weak form of generalization
of the Grace-Walsh-Szegő’s coincidence theorem.

Theorem 4.6. Let V ⊆ Cn be a symmetric (l1, . . . , lk)-sufficient variety. Then V is H-
stable, if and only if V ∩H2(k+2),k+2 = ∅.

Proof. The forward implication follows from the definition. To prove the converse impli-
cation we suppose that V is not H-stable and we want to show that

V ∩H2(k+2),k+2 ≠ ∅.

So let x ∈ V ∩Hn and consider z ∶= (e1(x), . . . , en(x)) ∈ SH ∩L−1(a), where

L ∶ Cn Ð→ Ck

y z→ (l1(y), . . . , lk(y))
and a ∶= L (z) ∈ Ck.

Then by Corollary 2.10 we find z̃ ∈ S
2(k+2),k+2
H ∩ L−1(a), i.e. there is x̃ ∈ H2(k+2),k+2 with

z̃ = (e1(x̃), . . . , en(x̃)) and L(z̃) = a = L(z). This means that x̃ ∈ V , since V is (l1, . . . , lk)-
sufficient. □

The following proposition is a direct consequence of the unique representation of a sym-
metric polynomial of degree d in terms of the elementary symmetric polynomials and may
serve as a motivation for Definition 4.4. We consider new variables Z ∶= (Z1, . . . , Zn).
For a symmetric polynomial in R[X] there is a unique polynomial g ∈ R[Z] with f(X) =
g(e1(X), . . . , en(X)).

Proposition 4.7. Let f ∈ R[X] be a symmetric polynomial of degree d. Then f is
(Z1, . . . , Zd)-sufficient, i.e. f can be written as f = g(e1, . . . , ed) for some g ∈ C[Z1, . . . , Zd].
Moreover, g is linear in Z⌊ d

2
⌋+1, . . . , Zd.

Proof. See Proposition 2.3 in [20]. □

From Theorem 4.6 and Proposition 4.7, we obtain immediately the following double-degree
principle.

Corollary 4.8 (Double-degree principle). Let f1, . . . , fm ∈ C[X] be symmetric polynomials
of degree at most d. Then

V (f1, . . . , fm) ∩Hn
= ∅ ⇐⇒ V (f1, . . . , fm) ∩H2(d+2),d+2 = ∅.

Remark 4.9. In the case that H is a rotation of the upper half-plane we can replace
H2(d+2),d+2 by Hd,d in Corollary 4.8. This follows immediately from Remark 2.11 for d = 2
and the case d = 1 is trivial.

Although one might hope for a stronger degree principle, the next example shows that
stability of a variety defined by symmetric polynomials of degree ≤ d cannot always be
checked by testing points with at most d many distinct coordinates.

Example 4.10. Let n = 4 and consider f1 ∶= e1 − 23i, f2 ∶= e2 − 463i and f3 ∶= e3 − 8461i.
Then

V (f1, f2, f3) ∩H4
+ ≠ ∅ and V (f1, f2, f3) ∩ {x ∈ H4

+ ∣ ∣{x1, . . . , x4}∣ ≤ 3} = ∅,

which can either be computed directly using Gröbner basis or concluded by using Example
2.12.

From Remark 4.5 and Theorem 4.6, we get immediately the following variation of Grace-
Walsh-Szegő’s coincidence Theorem.

Corollary 4.11. Let f ∈ C[X] be a symmetric polynomial that can be written as a
polynomial in k symmetric and multiaffine polynomials. Furthermore, let x ∈ Hn. Then
there is x̃ ∈ H2(k+2),k+2 with f(x) = f(x̃).
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Note that different from Grace-Walsh-Szegő’s coincidence theorem we do not require f to
be multiaffine. But our result is weaker in the following sense: We do not consider closed
inner or outer circle. Moreover, if f is symmetric of degree d ≥ 2 and multiaffine and
x ∈ An, then we can find x̃ ∈ Hd,d with

f(x) = f(x̃),

while one can find y ∈ H with Grace-Walsh-Szegő’s coincidence Theorem such that

f(x) = f(y, . . . , y).

Remark 4.12. The results of this section translate to open half-planes in the following
way: Let G be an open circular region and x ∈ Gn. Then x ∈ Hn for some closed half-plane
H ⊂ G. So G2(k+2),k+2 can be replaced by G0,3(k+2) in Theorem 4.6 and Corollary 4.11 and
G2(d+2),d+2 can be replaced by G0,3(d+2) in Corollary 4.8.

If H = H+ is the upper half-plane, one can also formulate a generalization of the half-degree
principle.

Theorem 4.13 (Half-degree principle for the upper half-plane). Let f ∈ C[X] be a sym-
metric polynomial of degree d ≤ n and λ,µ ∈ R. Then

inf
x∈Hn

+

λRe(f(x)) + µ Im(f(x)) = inf
x∈H+k,k

λRe(f(x)) + µ Im(f(x)),

where k =max{⌊d2⌋,2}.

Proof. Write f = g(e1, . . . , ed) for some g ∈ R[Z1, . . . , Zd] and note that g is linear in
Z⌊ d

2
⌋+1, . . . , Zd by Proposition 4.7. Let now x ∈ Hn+ and consider z ∶= (e1(x), . . . , en(x)) ∈

S(a), where a ∶= (e1(x), . . . , ek(x)). Since S(a) is compact and g is linear on S(a), the
minimum of g on S(a) is taken on an extreme point of the convex hull of S(a), i.e. on a
point z̃ ∈ Sk,k by Remark 2.11. □

4.1. A converse to Grace-Walsh-Szegő’s coincidence theorem. In another direc-
tion, Brändén and Wagner [5] proved that for the open upper half-plane intH+ and a
group G ⊊ Sn acting on C[X] via permutation of the variables, no analogous result to
Theorem 4.1 holds. More concretely, if G ⊂ Sn is a group acting on C[X] by restric-
tion and all G-invariant multiaffine polynomials f satisfy that for all x ∈ intHn+ there is a
y ∈ intH+ with f(y) = f(x), then G must be already the full symmetric group Sn.
By considering Young subgroups of Sn we find that a weaker statement still holds.

Definition 4.14. For a group G ⊂ Sn we denote by S(G) = S̃i1 × ⋅ ⋅ ⋅ × S̃ik ⊂ Sn a Young
subgroup of G, where S̃ij is the symmetric group on ij elements acting on Cn by permuting
the i1 + ⋅ ⋅ ⋅ + ij−1 + 1 to i1 + ⋅ ⋅ ⋅ + ij-th coordinates and k be the minimal number of factors
needed. Furthermore, we define k(G) ∶= k.

In particular, we have ∑k
j=1 ij = n for any group G ⊂ Sn.

Theorem 4.15. Let H be a half-plane, f ∈ C[X]G a G-invariant multiaffine polynomial
and x ∈ Hn. Then there are y1, . . . , yk ∈ H, such that

f(x) = f(y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i1-times

, . . . , yk, . . . , yk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ik-times

),

where k ∶= k(G).

Proof. Let S(G) = S̃i1 × ⋅ ⋅ ⋅ × S̃ik ⊂ Sn be as in Definition 4.14 and x ∈ Hn. The polynomial

f1 ∶= f(X1, . . . ,Xi1 , xi1+1, . . . , xn) ⊆ C[X1, . . . ,Xi1]

is S̃i1-invariant and multiaffine, so by Grace-Walsh-Szegő’s theorem, there is y1 ∈ H, such
that

f(x) = f1(x1, . . . , xi1) = f1(y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i1-times

).
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By induction, we define the S̃ij -invariant polynomial

fj = f(y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i1-times

, . . . , yj−1, . . . , yj−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ij−1-times

,X1, . . . ,Xij , xi1+⋅⋅⋅+ij+1, . . . , xn)

and, by Grace-Walsh-Szegő’s theorem, there is a yj ∈ A, such that

f(x) = fj(xi1+⋅⋅⋅+ij−1+1, . . . , xi1+⋅⋅⋅+ij) = fj(yj , . . . , yj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ij-times

).

□

Using the result of Brändén and Wanger we also find the following converse statement:

Theorem 4.16. Let G ⊂ Sn and H = S̃j1 × ⋅ ⋅ ⋅ × S̃jm ⊂ Sn be a supergroup of G, where S̃jl
is the symmetric group on jl elements acting on Cn by permuting the j1 + ⋅ ⋅ ⋅ + jl−1 + 1 to
j1 + ⋅ ⋅ ⋅ + jl-th coordinates. If for any G-invariant multiaffine polynomial f ∈ C[X]G and
any x ∈ (intH+)n, there are y1, . . . , ym ∈ intH+, such that

f(x) = f(y1, . . . , y1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j1-times

, . . . , ym, . . . , ym
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

jm-times

),

then every G-invariant multiaffine polynomial is already H-invariant.

Proof. Let l ∈ {1, . . . ,m}. For any S̃jl-invariant jl-variate multiaffine polynomial f ∈
C[Xj1+⋅⋅⋅+jl−1+1, . . . ,Xj1+⋅⋅⋅+jl] and any x ∈ (intH+)jl , there is yl ∈ intH+, such that

f(x) = f(yl, . . . , yl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jl-times

).

By the converse to Grace-Walsh-Szegő’s coincidence theorem by Brändén and Wagner [5],
every G-invariant multiaffine polynomial is already Sjl-invariant. □

5. Conclusion and open questions

In our paper, we restrict to half-plane stable polynomials. However, the notion of stable
polynomials can be formulated for any circular region, i.e. any open or closed subset of C
that is bounded by a circle or by a line. It is well known that a Möbius transformation
maps circular regions to circular regions and testing stability of a polynomial can always
be reduced to testing whether an associated polynomial of possibly smaller degree is H+-
stable. Let A be a circular region and let ϕ(z) = az+b

cz+d be a Möbius transformation mapping
H+ to A. Then a monic polynomial f ∈ C[T ] is A-stable if and only if the polynomial
(cT + d)deg(f)f (aT+bcT+d) is H+-stable. The roots of the associated polynomial are contained
in the image of the roots of f under ϕ−1. However, the obtained polynomial must not
necessarily be monic or can have fewer roots. This happens if one of the roots is a pole
point of ϕ−1. For instance, if f = p ⋅ (T − 1) is {x ∈ C ∶ ∣x∣ ≤ 1}-stable and p has only roots
different from 1, then

(T + i)deg (p)p(
T − i

T + i
) (T + i) (

T − i

T + i
− 1) = (T + i)deg (p)p(

T − i

T + i
) ⋅ (−2i)

is a non-monic H+-stable polynomial of degree deg(f) − 1. Thus our proofs of Theorems
2.4 and 4.6 do not transfer to circular regions which are bounded by a circle. Nevertheless,
the following questions seem worth to be asked.

Question 5.1. Can Theorem 2.4 and Theorem 4.6 be adapted to arbitrary circular regions?
If not, can our variation of the coincidence theorem be extended to a closed domain bounded
by a circle?

Question 5.2. Can our double-degree principle in Corollary 4.8 be improved?

Finally, we gave a possible combinatorial encoding for subsets of the set of weakly Hurwitz
polynomials. For hyperbolic polynomials, there is the rich interplay between geometry and
combinatorics of its roots. Hyperbolic slices with fixed first k coefficients and their strata

13



are known to be contractible. Moreover, Lien [15] showed that in this case, one can re-
construct the compositions of the stratification from the compositions of its 0-dimensional
strata, and Schabert and Lien [16] showed that this poset has a structure similar to poly-
topes, giving the same bounds on its number of i-dimensional strata. We ask if similar
results hold for Hurwitz slices with fixed first k coefficients.
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