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Abstract: There is currently a renewed interest in the Bayesian predic-
tive approach to statistics. This paper offers a review on foundational con-

cepts and focuses on ‘predictive modeling’, which by directly reasoning on

prediction, bypasses inferential models or may characterize them. We de-

tail predictive characterizations in exchangeable and partially exchangeable

settings, for a large variety of data structures, and hint at new directions.

The underlying concept is that Bayesian predictive rules are probabilistic

learning rules, formalizing through conditional probability how we learn on

future events given the available information. This concept has implications

in any statistical problem and in inference, from classic contexts to less ex-

plored challenges, such as providing Bayesian uncertainty quantification to

predictive algorithms in data science, as we show in the last part of the

paper. The paper gives a historical overview, but also includes a few new

results, presents some recent developments and poses some open questions.
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ability, Recursive algorithms.

1. Introduction

There is currently a renewed interest in the Bayesian predictive approach to
statistics. The approach is just Bayesian, but the additional adjective ‘predictive’
underlines conceptual emphasis on predictive tasks; while the more common
‘inferential approach’ is centered on inference on parameters, here one focuses
on observable quantities and prediction, evaluates models and priors based on
their implications on prediction, and even deduce models and parameters from
the predictive rule (the long list of references includes [34], [62], [63], [24]). With
the major focus on prediction in data science and machine learning ([18], [117]),
this approach appears natural and is adopted in novel research directions ([67],
[56], [50], [130] [12], [91]). In fact, the predictive approach has a long tradition
in Bayesian statistics and is rooted in its same foundations (de Finetti [29], [30],
[23], Savage [115], [45], and Diaconis [35], [36], Regazzini [110], [52], Dawid [27]
and more; see the book by Bernardo and Smith [10]).
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The first aim of this paper is to offer a review, starting from foundations
and going through methods for predictive constructions in a variety of contexts,
with focus on exchangeable structures, which play a basic role. Thus we also
review, from a predictive perspective, the use of exchangeability and of forms
of partial exchangeability in Bayesian statistics.

A second aim of the paper is to show how a Bayesian predictive approach
can be usefully adopted in less explored situations, beyond exchangeability; in
particular, (a) to obtain computationally tractable approximations of (exchange-
able) Bayesian inferences and (b) to provide Bayesian uncertainty quantification
of some classes of algorithms (a novel example we provide is online gradient de-
scent), without the need of an explicit likelihood and prior law. This is developed
in the last part of the paper and relies on the foundational principles that we
discuss in the first part.

Along our review, we include a few novel results and open problems. We
hope that the paper may be of some interest, especially to young researchers,
as both a reminder of the foundations and of some remarkable results, and as
an inspiration for new work.

1.1. Basic concepts and paper overview

In Bayesian statistics, prediction is expressed through the predictive distribution
of future observations given the available information. In the simplest setting
(and with an abuse of notation, in this introduction identifying distributions
through their arguments) one has a sample from a sequence of random vari-
ables (r.v.’s) (Xn)n≥1, has specified a conditional model (X1, . . . , Xn) | θ̃ ∼
p(x1, . . . , xn | θ̃), n ≥ 1 and a prior distribution π on θ̃, and computes the
predictive density of Xn+1 given x1:n≡(X1 = x1, . . . , Xn = xn) as

p(xn+1 | x1:n) =

∫

Θ

p(xn+1 | x1:n, θ)dπ(θ | x1:n), (1.1)

where π(· | x1:n) is the posterior distribution of θ̃ (we use the notation θ̃ to
underline that it is a r.v.). Summaries of the predictive distribution naturally
include point prediction and predictive credible intervals. Thus, while standard
frequentist prediction would move from a model (X1, . . . , Xn) ∼ pθ(x1, . . . , xn)
and deal with parameters’ uncertainty by plugging their estimates into pθ(xn+1 |
x1:n), in the Bayesian approach uncertainty is taken into account by ‘averaging’
the possible models p(xn+1 | x1:n, θ) with respect to the posterior distribution
of θ̃.

We already see distinctive features of Bayesian prediction; but this all may
sound as ‘the usual Bayesian story’. Actually, Bayesian statistics is often de-
scribed as consisting of assigning a prior on θ̃ and using Bayes rule to compute
the posterior distribution. Obtaining the predictive distribution as in (1.1) is
then just a matter of computations. Of course, Bayesian statistics is deeper
than that; and a first basic concept we should recall for this paper is the inter-
pretation of the Bayesian predictive distribution.
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Bayesian statistics is about acting under uncertainty, or incomplete informa-
tion. This can be information from the data, from domain knowledge, etc; the
point is to formalize that information, and probability is the prescribed formal
language for this. If probability describes (incomplete) information, then the
evolution of information, or learning, is expressed through conditional proba-
bilities. In particular, learning on the next observation based on the observed
x1:n is expressed through the conditional distribution p(xn+1 | x1:n). This leads
us to the interpretation of the Bayesian predictive distribution: it is a learning
rule that formalizes, through conditional probability, how we learn about future
events given the available information. (Thus, it is not meant as the ‘physical
mechanism’ generating Xn+1 given the past – in the classic setting, that might
be the interpretation of pθ0(xn+1 | x1:n) for a true θ0). See e.g. [54].

This principle is the basis of our discussion in the paper, and we return on it
in a rather novel way in Section 5. Here, to see a first implication, let us con-
sider the basic case, random sampling. In the Bayesian approach, one does not
assume independence, as it would give p(xn+1 | x1:n) = p(xn+1), expressing no
learning. One would rather elicit a joint probability p(x1, . . . , xn) that expresses
dependence: not because the Xi are ‘physically’ dependent, but because each Xi

brings information about the others. The Xi are dependent in our probability
assessment formalizing the learning process. In random sampling, the natural
assessment is that the order of the observations does not bring any information:
the Xi are exchangeable. Then they are only conditionally independent. We
devote substantial space in the paper to exchangeability; simply because it is
the natural predictive requirement in random sampling, and random sampling
is the basic setting. The fundamental concepts are treated in Section 2.

In practice, we usually specify the joint distribution p(x1, . . . , xn), for any n,
with the help of models and parameters

p(x1, . . . , xn) =

∫

p(x1, . . . , xn | θ)dπ(θ); (1.2)

and compute the predictive distribution as in (1.1). But, especially if interest
is in prediction, we could in principle bypass the inferential model and directly
specify the predictive distributions - typically, the one-step-ahead predictions,
which give, for any n,

p(x1, . . . , xn) = p(x1)p(x2 | x1) · · · p(xn | x1:n−1). (1.3)

In this predictive approach, that we refer to as “predictive modeling”, one rea-
sons on the observable quantities, for example on symmetry properties as in the
case of exchangeability, and on what is the relevant information in the sample
for prediction, or desirable properties of the predictive learning rule. This is
well rooted in Bayesian foundations and is particularly attractive in complex
settings where models and parameters tend to lose interpretability. Still, pre-
dictive modeling may seem quite impracticable; it has in fact a long tradition,
however the available literature is rather fragmented. Thus in Section 3 our
effort is to trace concepts and methods that may provide a methodological ba-
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sis to predictive constructions. We mostly refer to exchangeable settings, but a
predictive approach can be taken for any kind of data structures; see [12].

Prediction and inference. Predictive modeling is also intriguing as a form
of “Bayesian learning without the prior”. In fact, an inferential model and a
prior law may be implicitly subintended, and unveiling them is important both
practically and conceptually. This is typically obtained through representation
theorems; roughly speaking, one can move from the predictive specification (1.3)
of the joint distribution p(x1, . . . , xn), for any n ≥ 1, and might represent it in
a form as (1.2); see Section 2.1. Although an inferential model is not needed
in a purely predictive approach, representation theorems significantly provide
the link from prediction to inference. de Finetti’s representation theorem has
a central role in Bayesian statistics as it leads from foundations, where proba-
bility is expressed on observable events (see Section 2), to inference. de Finetti
moves from exchangeability of the observable Xi, and the representation theo-
rem gives the theoretical justification of the basic Bayesian inferential scheme
where the parameter θ̃ is random and the Xi are conditionally i.i.d. given θ̃, as
an implication of exchangeability. Moreover, it shows how the inferential model
is related to frequencies. In Section 2.2, we will underline how prediction is re-
lated to frequencies, thus to the inferential model, and in particular we give a
result (Section 2.4) showing how the uncertainty expressed in the posterior dis-
tribution is determined by the way the predictive distribution learns from the
data.

Representation theorems have been extended in numerous directions (Sect
2.3 of [23] includes extensive references) and predictive constructions are applied
well beyond simple random sampling. In Section 4 we consider more structured
data for which it is natural to express a predictive judgment of partial ex-
changeability; we provide predictive characterizations of some forms of partial
exchangeability (Theorems 2.3, 4.4 and 4.7), and review de Finetti-like represen-
tation theorems, which give the predictive-theoretical basis in many problems
including stochastic design regression (as reducible to random sampling), fixed
design regression and multiple experiments (Section 4.1), Markov chains (po-
tentially, models for temporal data based on Markov chains) (Section 4.3) and
arrays and networks data (Section 4.4). There are authoritative and compre-
hensive references on the theory of exchangeability, see Kingman [81], Aldous
[2], Kallenberg [79], to which we refer interested readers. The more specific aim
of our - necessarily brief - review is to point out some main aspects that we
believe are relevant in Bayesian statistics from a predictive perspective.

Open directions. Although the above discussion shows that the predictive
approach is theoretically sound and that predictive modeling can be applied
in many contexts, we acknowledge that proceeding solely through predictive
constructions may not be easy, especially if one wants to satisfy exchangeability
constraints. On the other hand – and this is a further point we want to make in
this paper – there are many predictive algorithms in data science that lack clean
uncertainty quantification, or there are, in fields such as economics, subjective
predictions implicitly guided by the agent’s explanation of the phenomena, that
would be interesting to reveal (see e.g. [5]). A Bayesian predictive approach
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can be usefully employed. In particular, we show that some classes of recursive
predictive algorithms can in fact be read as Bayesian predictive learning rules,
that assume exchangeability only asymptotically. The relevance of this approach
is not merely theoretical, but allows to understand the underlying modeling
assumptions and to provide formal uncertainty quantification, and can lead to
principled extensions. This is treated in Section 5.

Brief final remarks conclude the paper. All the proofs are collected in the
Supplement [58].

1.2. Preliminaries and notation

In this paper, all the random variables take values in a Polish space X, endowed
with its Borel sigma-algebra X . The topology on spaces of probability measures
is implicitly assumed as the topology of weak convergence. Hence, for any Pn

and P , Pn → P means weak convergence.
The underlying probability space (Ω,F ,P) for a random sequence (Xn)n≥1 is

implicitly assumed to be the canonical space (X∞,X∞,P), where P is the prob-
ability law of the sequence, denoted as (Xn)n≥1 ∼ P. We write P-a.s. for “with
P-probability one”. We use the short notation x1:n for (X1 = x1, . . . , Xn = xn).
All conditional distributions must be understood as regular versions. For random
variables taking values in Euclidean spaces, we denote with the same symbol a
probability measure and the corresponding distribution function. Sequences are
denoted as (Zn)n≥1 and arrays as [Zi,j ]i∈I,j∈J .

2. Exchangeability and prediction

We begin by recalling the foundational role of prediction in Bayesian statistics
and the notion of exchangeability as a basic predictive judgment.

Bayesian statistics has decision-theoretic roots in the work of the 1920s in
mathematical logic aimed at founding a normative theory of rational decisions
under risk (Ramsey [109], and later, Savage [115], [45]; two book references are
[10] and [99]). In this perspective, probability arises as the prescribed ratio-
nal (coherent; see [23]) formalization of the agent’s information on uncertain
events, as advocated in the foundations of modern Bayesian statistics by Bruno
de Finetti; see e.g. [30] and [33]. de Finetti emphasises that probability is ex-
pressed on observable events (we do not discuss, here, issues on the notions of
observability or of imprecise probability; see e.g. [129]). In this perspective, un-
observable parameters are not assigned a probability per se, but simply as an
intermediate step for ultimately expressing the probability of observable events.
They are just a tool in the learning process that goes from past observable events
to prediction of future events. Of course, parameters may be interpretable if not
strictly observable, and inference is a core problem; but it is prediction that has
a foundational role.
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The focus on probability of observable events is well demonstrated in de
Finetti’s notion and use of exchangeability. As mentioned in the Introduction,
in the context of homogeneous replicates of an experiment (random sampling)
the researcher would judge that the labels of the Xi “do not matter”. This is
formalized through a joint probability law that is invariant under permutations
of the labels:

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n))

for each permutation σ of (1, . . . , n), where
d
= means equal in distribution. An

infinite sequence (Xn)n≥1 is exchangeable if it is invariant to each finite per-
mutation of {1, 2, . . .}, i.e. each permutation that only switches a finite set of
indexes. Exchangeability is an elegant probabilistic structure and exchangeable
processes arise in many fields. In de Finetti’s work on Bayesian foundations,
however, exchangeability is not meant as a physical property of the sequence
(Xn)n≥1, but as an expression of the agent’s information.

Example 2.1. Consider random sampling from a two-color urn, and let Xi = 1
if the color of the ball picked on the i-th draw is white, and zero otherwise. The
agent judges that the order of the draws is not informative and the sequence
(Xn)n≥1 is exchangeable. By the representation theorem (Section 2.1), (Xn)n≥1

has the same probability law of a sequence arising from an experiment where the
urn composition is picked from a ‘prior’ distribution and balls are then sampled
at random with replacement. The physical experiment is not as such: the urn
composition is not sampled, it is given although unknown. Here, exchangeability
is not referring to the mechanism generating the data, but to the way we use
information. �

We should keep in mind this use of exchangeability in what follows. See
also [57], and the discussion in [124] for the more general setting of stationary
sequences.

Although exchangeability is a predictive requirement, it has an immediate
inferential implication, established by the celebrated de Finetti’s representation
theorem.

Theorem 2.2 (Law of large numbers and representation theorem for infinite
exchangeable sequences). Let (Xn)n≥1 be an infinite exchangeable sequence and
denote by P its probability law. Then:

i) With P-probability one, the sequence of the empirical distributions F̂n =
1
n

∑n
i=1 δXi

converges weakly as n → ∞ to a random distribution F̃ :

F̂n → F̃ ;

ii) For all n ≥ 1 and measurable sets A1, . . . , An,

P(X1∈A1, . . . ,Xn∈An)=

∫ n
∏

i=1

F (Ai)dπ(F ), (2.1)

where π is the probability law of F̃ .
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See Aldous [2], who refers to F̃ as the directing random measure of the ex-
changeable sequence (Xn)n≥1. The representation ii) is often phrased as “Xi |
F̃ = F

i.i.d.∼ F , with F̃ ∼ π”; a subtle difference is that this latter formulation
may (in principle, misleadingly) suggest the existence of a true F . In Bayesian
inference, F̃ plays the role of the statistical model, and its probability law is
the prior. The prior law is unique, and is a probability measure on the class
of all the possible distributions on the sample space. The representation the-
orem is a high-level result: the probability law P characterizes the random F̃ ;
in other words, it shapes it (the model) through its implied distribution (the
prior). In applications, one has to choose a specific law P. In particular, further
information may restrict the support of the prior to a parametric class, so that

Xi | θ̃
i.i.d.∼ p(· | θ̃) (see Section 3.2). In this paper we will mostly keep the

general framework (2.1).

Remark. Note that F̃ in Theorem 2.2 is random; as the limit of the empirical
distributions, it depends on (X1, X2, . . .). Given a sample path ω = (x1, x2, . . .),
we have a realization of the random F̃ , that we denote by F̃ (·)(ω). In fact, for
i.i.d. observations from a distribution F , the limit of the empirical distribution
is F ; the fact that the limit is instead random for exchangeable sequences may
sound weird. Formally, this is because exchangeable sequences are mixtures of
i.i.d. sequences; let us give some intuition. By the representation theorem, an
exchangeable sequence (Xn)n≥1 can be obtained by first picking a distribution
F from the prior law, then sampling the Xi at random from F . Having picked
F , if we restrict ourselves to the set of the sample paths ω = (x1, x2, ...) that
we may obtain by sampling at random from it, we have the usual properties
of the i.i.d. case; in particular, for almost all these ω the empirical distribution
converges to F ; thus F̃ (ω) = F , which is not random. However, when we observe
a finite sample (x1, . . . , xn), we do not know what F was chosen, hence the
limit of the empirical distribution may still be any distribution we could have
picked from the prior. We would know which one if we could observe the entire
ω = (x1, x2, . . .) and thus see the limit of the empirical distribution, that is the
realization F̃ (·)(ω) of the random F̃ .

2.1. Predictive characterization of exchangeability

The representation theorem allows us to specify an exchangeable probability
law through the usual inferential scheme. In a predictive approach, however, we
would avoid models and priors and directly specify it through the predictive
rule. This is the core of predictive modeling, beyond exchangeability.

For any probability law P for the sequence (Xn)n≥1, define the predictive rule
as the sequence of predictive distributions P0(·) ≡ P(X1 ∈ ·) and, for n ≥ 1,

Pn(·) ≡ P(Xn+1 ∈ · | X1, . . . , Xn), (2.2)

and let us denote by Pn(· | x1:n) its realization for x1:n. In particular, if P is
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exchangeable, the predictive rule is obtained as P0(·) = E(F̃ (·)) and Pn(·) =
E(F̃ (·)|X1, . . . , Xn) for n ≥ 1.

In predictive modeling, one moves from the predictive rule to specify the prob-
ability law of the process (Xn)n≥1. More formally, one can assign a sequence
(Pn)n≥0 of probability kernels (or a strategy, [45], [12]). Then by Ionescu-Tulcea
theorem (see [78] Theorem 5.17 and Corollary 5.18) there exists a unique prob-
ability law P for a process (Xn)n≥1 such that X1 ∼ P0 and for every n ≥ 1, Pn

is the conditional distribution of Xn+1 given (X1, . . . , Xn). (Given this equiv-
alence, we will use the notation (Pn)n≥0 to represent both the sequence of the
predictive distributions from a given P, and a strategy).

Thus, the probability law P of a process (Xn)n≥1 is uniquely defined (charac-
terized) by the sequence of predictive distributions (Pn)n≥0. A natural question
is under what conditions on the Pn one obtains an exchangeable law P. This
problem has been addressed in [52].

Theorem 2.3 ([52], Proposition 3.2 and Theorem 3.1). Let (Xn)n≥1 ∼ P be
an infinite sequence of r.v.’s, with predictive rule (Pn)n≥0. Then (Xn)n≥1 is
exchangeable if and only if, for every n ≥ 0, the following conditions hold:

i) For every A, Pn(A | x1:n) is a symmetric function of x1, . . . , xn;
ii) The set function

(A,B) →
∫

A
Pn+1(B | x1:n+1)dPn(xn+1 | x1:n)

is symmetric in A and B,

where P0(· | x1:0) is meant as P0(·).
Condition i) requires that, for every n ≥ 1, the predictive distribution ofXn+1

is a function of the empirical distribution of (x1, . . . , xn); which is a necessary
condition for exchangeability. As well, given x1:n, the predictive distribution of
(Xn+1, . . . , Xn+k) should be invariant under permutations of the k future ob-
servations, since under exchangeability the joint distribution of (X1, . . . , Xn+k)
is symmetric. Condition ii) only asks that the next k = 2 observations can be
permuted.

2.2. Prediction, frequency, models

Although there are no formal constraints in assigning a predictive rule (Pn)n≥0,
we aim for our predictions to be consistent with facts. For exchangeable se-
quences, the following property relates prediction to frequency.

Proposition 2.4. Let (Xn)n≥1 ∼ P be an exchangeable sequence, with pre-
dictive rule (Pn)n≥0. Then, with probability one, for n → ∞ the sequence of
predictive distributions converges, and its limit coincides with the limit of the
empirical distributions:

Pn → F̃ , P-a.s., (2.3)

with F̃ as in Theorem 2.2.
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A proof is given in [2], Lemma 8.2 page 61. In fact, the result remains valid
under the less restrictive condition that (Pn(A))n≥0 is a martingale for every A,
without the need for (Xn)n≥1 to be exchangeable [15]. We return on this point
in more details in Section 2.3.

Example 2.5. Consider an exchangeable sequence (Xn)n≥1 withXi ∈ {1, . . . , k}.
Then the empirical distribution is characterized by the vector of relative frequen-
cies nj/n, and any predictive distribution must be a function of (n1, . . . , nk),
i.e. pn(j) ≡ P(Xn+1 = j | x1:n) = P(Xn+1 = j | n1, . . . , nk), j = 1, . . . , k. For
any j, with probability one the relative frequency nj/n and the predictive prob-
ability pn(j) converge to the same random limit p̃j . The statistical model is a
discrete distribution on {1, . . . , k} with masses (p̃1, . . . , p̃k) and the prior is the
probability law of the random limit (p̃1, . . . , p̃k). �

In Bayesian statistics, Proposition 2.4 ensures that, with probability one, our
predictions will adjust to frequencies; in other words, the predictive distribu-
tion Pn and the empirical distribution F̂n will be close. Several refinements of
this property are available, as well as quantitative bounds ([43], and references
therein; see also [38]).

Proposition 2.4 also shows that, for exchangeable sequences, the statistical
model is the limit of the predictive distribution; which is also the limit of the
empirical distribution. Hence, the uncertainty on the model at a finite n is
uncertainty on their common limit. It is this uncertainty that is expressed in
the posterior distribution of F̃ , as we will illustrate in Section 2.4, expanding
from [56]. This is also the basic principle that underlines the interpretation of
uncertainty in terms of “missing observations” in [50].

Remark. de Finetti proved the convergence property (2.3) for exchangeable
binary sequences (Xn)n≥1, and it is interesting to note that he used this result
to give an explanation in terms of prediction of the frequentist viewpoint on
probability [30]. He considers replicates of an experiment with binary outcome
where a frequentist researcher assumes that P(Xn+k = 1 | x1:n) = p for any
k ≥ 1 and, for n large, estimates p with the relative frequency p̂n =

∑n
i=1 xi/n.

Exchangeability makes the frequentist prediction, namely P(Xn+k = 1 | x1:n) ≃
p̂n, “permissible”, by the result (2.3). See [23], Sect 2.3.

2.3. Asymptotic exchangeability.

A natural question is whether there is a reverse implication of Proposition 2.4.
Exchangeability of (Xn)n≥1 implies that Pn → F̃ , P–a.s., but convergence
of (Pn)n≥0 to a random probability measure does not imply exchangeability.
However, it does so asymptotically. A sequence (Xn)n≥1 is asymptotically ex-

changeable with limit directing random measure F̃ (shortly, F̃ -asymptotically
exchangeable) if, for n → ∞

(Xn+1, Xn+2, . . .)
d→ (Z1, Z2, . . .),
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where the sequence (Zn)n≥1 is exchangeable and has directing random measure

F̃ . It can be proved that, if the sequence of predictive distributions (Pn)n≥0

of (Xn)n≥1 converges to a random probability measure F̃ , then (Xn)n≥1 is F̃ -
asymptotically exchangeable ([2], Lemma 8.2). Roughly speaking, for n large

Xn | F̃ iid≈ F̃ ,

where F̃ has a prior law induced by the predictive rule.
Interestingly, convergence of the sequence (Pn)n≥0 to a random probabil-

ity measure, thus asymptotic exchangeability, holds if (Pn)n≥0 is a martingale,
or, equivalently, if the sequence (Xn)n≥1 is conditionally identically distributed
(c.i.d.); that is, if it satisfies

(X1, . . . , Xn, Xn+1)
d
= (X1, . . . , Xn, Xn+k), (2.4)

for all integers k ≥ 1 and n ≥ 1; i.e., conditionally on the past, all future
observations are identically distributed. The property (2.4) was considered by
Kallenberg as a weak invariance condition that, for stationary sequences, is
equivalent to exchangeability ([76], Proposition 2.1). He also noted that (2.4) is

equivalent to (X1, . . . , Xn, Xn+1)
d
= (X1, . . . , Xn, Xn+2) for all n ≥ 1. The term

c.i.d. was introduced by Berti et al. [15], who proved, among other results, that
the c.i.d. property is equivalent to (Pn)n≥0 being a measure-valued martingale
with respect to the natural filtration of (Xn)n≥1. The martingale property means
that the sequence of random measures (Pn)n≥0 satisfies

E(Pn+1(A) | X1, . . . , Xn) = Pn(A)

for every n ≥ 0 and every measurable set A. See [72].
For exchangeable sequences, it is straightforward to show that the predictive

rule is a martingale. But the martingale condition is weaker than exchangeabil-
ity; still, remarkably, it is sufficient to prove the convergence result in Proposi-
tion 2.4: for a c.i.d. process (Xn)n≥1, the sequence of the empirical distributions

converges P-a.s. to a random probability distribution F̃ , and the sequence of
predictive distributions not only converges (being a bounded martingale), but
converges to the same limit F̃ ([15], Theorem 2.5).

Thus, a c.i.d. sequence is asymptotically exchangeable. However, it is not gen-
erally exchangeable. The property that is broken is stationarity: the researcher
is assuming a temporal evolution in the process. It is however a specific form
of evolution: marginally, the r.v.’s are identically distributed, and the process
converges to a stationary - thus, together with the c.i.d. property, exchangeable
- state (see also [60] and [56]). For more developments, we refer to [12]. We
return to asymptotic exchangeability and c.i.d. sequences in Section 5.

2.4. Predictive-based approximations of the posterior distribution.

In the usual inferential setting, one computes the posterior distribution and
obtains the predictive distribution as in expression (1.1). In predictive modeling,
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the order is reversed; here, from the predictive assumption of exchangeability
of the Xi, we have obtained the implied inferential scheme. Can we also revert
the order in expression (1.1), i.e. go from the predictive rule to the posterior
distribution, and what would be the implications on inference? In this section we
address this question and show two implications; namely, two predictive-based
approximations of the posterior distribution.

For brevity, here we consider Xi ∈ R. In the exchangeable setting, with no

parametric restrictions, we have Xi | F̃ i.i.d.∼ F̃ and we are used to think of
the prior and posterior distributions on F̃ as expressing uncertainty on the true
distribution, say F0. In fact, as briefly anticipated in Section 2.2, what the prior
and the posterior distributions are expressing is the uncertainty about the com-
mon limit F̃ of the empirical and the predictive distributions. If we knew the
entire sample path ω = (x1, x2, . . .), we would know the limit, namely F̃ (·)(ω),
and there would be no uncertainty left. Given a finite sample (x1, . . . , xn), we
are still uncertain about the limit, and this uncertainty is expressed through the
posterior distribution. The following approximations of the posterior distribu-
tion are based on this principle.

A predictive-based simulation scheme.
First, leveraging on Proposition 2.4, we can provide a predictive-based sam-

pling scheme ([56], [57]) to approximate the prior and the posterior distribution
of F̃ ; in practice we use [F̃ (t1), ..., F̃ (tk)] for t1, ..., tk in a grid of values. Assume
that P0(·) = E(F̃ (·)) is continuous in t1, . . . , tk, which implies that, P-a.s., F̃ is
continuous at those points so that limn F̂n(tj) = limn Pn(tj) = F̃ (tj) for any tj ,
P-a.s.

In principle, given the predictive rule, one can generate ω = (x1, x2, . . .) by
sampling x1 from P0, then x2 from P1(· | x1) and so on; and, having ω =
(x1, x2, . . .), can obtain F̃ (tj)(ω) for j = 1, . . . , k; which is a sample from the

prior law of [F̃ (t1), . . . , F̃ (tk)]. Repeating M times gives a Monte Carlo sample
of size M from the prior.

To simulate from the posterior law given (x1, . . . , xn), one can proceed sim-
ilarly by generating the missing observations (xn+1, xn+2, . . .) from the predic-
tive rule to complete ω, and repeat M times to obtain a sample of size M from
the posterior. Of course, in practice, one would truncate ω to a finite sequence
(x1, . . . , xN ) with N large, and approximate F̃ (t)(ω) with PN (t | x1:N ), or with
F̂N (t), for each t in the grid.

A similar predictive principle is considered in the interesting developments
by Fong, Holmes and Walker [50] of the Bayesian bootstrap in a parametric
setting: samples from a martingale posterior distribution are obtained by Doob
theorem [44], after simulating future observations from a sequence of predictive
distributions (see also [68]).

A predictive-based asymptotic approximation of the posterior distribution.
One can also obtain a predictive-based analytic approximation of the pos-

terior distribution for large n. By Proposition 2.4, |F̃ (t) − Pn(t)| → 0, P-a.s.,
for any continuity point t of F̃ , and because (Pn(t))n≥0 is a martingale, one
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could use martingale central limit theorems to give asymptotic approximations
of (F̃ (t)−Pn(t)); yet, this would not inform on its behavior conditionally on the
data. The following result uses a central limit theorem for martingales in terms
of a.s. convergence of conditional distributions [26]. This type of convergence
has been applied in probability for other aims and was used in a novel way in
Bayesian statistics by [56] to inform on the asymptotic form of the posterior dis-
tribution. Here, we provide an asymptotic Gaussian approximation of the joint
posterior distribution of [F̃ (t1), . . . , F̃ (tk)], extending a result in [57]. Because
E(F̃ (t) | X1, . . .Xn) = Pn(t), the approximation is centered on Pn. Then we
look at how the predictive rule learns from the data, introducing the notion
of predictive updates. As a fresh observation becomes available, the predictive
distribution is updated by incorporating the latest information, and for n ≥ 1
and t ∈ R we denote by

∆t,n = Pn(t)− Pn−1(t)

the n-th update of the predictive distribution function at the point t as Xn be-
comes available. For a given t, the predictive updates ∆t,n eventually converge

to zero, since Pn → F̃ , and the rate of convergence is generally of the order
1/n, as discussed in [57]. The following proposition shows that the convergence
of

√
n(F̃ (t) − Pn(t)) depends on the asymptotic behaviour of (n∆t,n)n≥1. For

a grid of points t = (t1, . . . , tk) ∈ R
k, we denote by ∆t,n = [∆t1,n . . .∆tk,n]

T

the column vector of the updates of (Pn(t1), . . . , Pn(tk)). The proposition be-
low holds for exchangeable sequences, but more generally for sequences whose
predictive rule is a martingale, i.e. for c.i.d. sequences.

Proposition 2.6. Let (Xn)n≥1 ∼ P be a c.i.d. sequence of real-valued r.v.’s,
with predictive rule (Pn)n≥0, and take t = (t1, . . . , tk) such that P(X1 ∈ {t1, . . . , tk}) =
0. Suppose that the predictive updates satisfy

E(sup
n

√
n|∆ti,n|) < +∞ (i = 1, . . . , k),

∞
∑

n=1

n2E(∆4
ti,n) < +∞ (i = 1, . . . , k),

E(n2∆t,n∆
T
t,n | X1, . . . , Xn−1) → Ut P-a.s.,

for a positive definite random matrix Ut. Define, for every n ≥ 1,

Vn,t =
1

n

n
∑

m=1

m2∆t,m∆T
t,m. (2.5)

Then, P-a.s., Vn,t converges to Ut and

√
n V

−1/2
n,t





F̃ (t1)− Pn(t1)
. . .

F̃ (tk)− Pn(tk)



 | X1, . . . , Xn
d→ Nk(0, I)

as n → ∞, where Nk(0, I) denotes the k-dimensional standard Gaussian distri-
bution.
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Informally, for n large,







F̃ (t1)
...

F̃ (tk))






| x1:n ≈ Nk













Pn(t1)
...

Pn(tk))






,
Vn,t

n







for P-almost all sample paths ω = (x1, x2, . . .).
Proposition 2.6 allows to compute asymptotic credible sets. For example, a
(1− α) marginal asymptotic credible interval for F̃ (t) given x1:n is

[

Pn(t)− z1−α/2

√

Vn,t

n
, Pn(t) + z1−α/2

√

Vn,t

n

]

with z1−α/2 denoting the 1 − α/2 quantile of the standard normal distribution

and Vn,t =
1
n

∑n
m=1 m

2∆2
t,m.

The proof of Proposition 2.6 is given in Section A2 of the Supplement [58],
and consists of two steps. First we prove (Proposition A2.1 ) that, under the
given conditions on the predictive updates,

√
n





F̃ (t1)− Pn(t1)
. . .

F̃ (tk)− Pn(tk)



 | x1:n
d→ Nk(0, Ut(ω)) (2.6)

for P-almost all ω = (x1, x2, . . . ). Then we prove that the asymptotic result
remains valid if the matrix Ut, that depends on the whole sequence (X1, X2, . . . ),
is replaced by its “estimate” Vn,t, that only depends on (X1, . . . , Xn).

Proposition 2.6 gives sufficient conditions that could possibly be relaxed; also,
other choices of Vn,t can be envisaged. Note that the result is given under the
law P, thus, although having a similar flavor, it differs from Bernstein-von Mises
asymptotic Gaussian approximations, which are stated with respect to a law P∞

F0

that assumes that the Xi are i.i.d. from a true distribution F0. Moreover, here
the asymptotic variance is expressed in terms of the predictive updates.

As “P-probability one” results, our findings may rather be regarded as a re-
finement of Doob’s theorem for inverse probabilities in the nonparametric case;
see point (ii) in Section 4 of Doob [44] (for us limited to the finite-dimensional
distributions). For an exchangeable law P, Doob’s theorem ensures that, with
P-probability one i.e. for P-almost all ω = (x1, x2, . . .), the posterior expecta-
tion E(F̃ (·) | x1:n) converges to F = F̃ (·)(ω) and the posterior variance goes to
zero, so that the posterior distribution of F̃ concentrates around F . Proposition
2.6 further describes how the posterior distribution of F̃ concentrates around its
conditional expectation: the asymptotic distribution is Gaussian, and in particu-
lar, the rescaled asymptotic variance depends on how the predictive distribution
varies in response to new data, namely on the predictive updates.

Discussion. Although ours are “probability one results”, they give insights
on frequentist properties of the posterior distribution, from a novel perspec-
tive explicitly related to the behavior of the predictive learning rule. Roughly
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speaking, our results suggest that frequentist consistency at F0, and frequentist
coverage, can be read as a problem of “efficiency” of the predictive distribution:
if the data are generated as i.i.d. from F0, the predictive distribution, that is, the
adopted learning rule, should be able to ‘efficiently’ learn that. As discussed in
[57], the predictive updates should balance the convergence rate with a proper
“learning rate”: if Pn converges quickly, with predictive updates that quickly
decrease to zero, at step n we would be rather sure about the limit F̃ of Pn,
reflected in small uncertainty (small variance Vn,t) in the posterior distribution

of F̃ and narrow credible intervals. On the other hand, very small predictive
updates could reflect poor learning; the extreme case being a degenerate predic-
tive distribution Pn = P0 for any n, that converges immediately but does not
learn from the data. An open problem we see is thus to explore conditions under
which the predictive rule efficiently balances convergence and learning proper-
ties and provides asymptotic credible intervals for F̃ (t) with good frequentist
coverage.

3. Methods for predictive constructions

The reader may be fairly convinced that predictive modeling is conceptually
sound; but may still be concerned that is it difficult to apply in practice. An in-
terpretable statistical model, when possible, incorporates valuable information,
and sounds more natural. Moreover, while there is wide literature on prior elici-
tation, methodological guidance on “predictive elicitation” is quite fragmented.
The aim of this section is to trace some available methodology, and provide a
few examples. The methods include the notion of predictive sufficiency, that
reconciles predictive modeling to parametric models; and the different notion
of sufficientness, that generally leads to nonparametric constructions - a point
that seems overlooked; and predictive constructions based on stochastic pro-
cesses with reinforcement. Most of the examples we provide come from Bayesian
nonparametric statistics and machine learning, where the predictive approach
allows to overcome difficulties in assigning a prior law on infinite-dimensional
random objects and has indeed been the basis of vigorous theoretical and applied
developments.

3.1. Constraints on the form of point predictions

Basically all predictive constructions make some assessment on the form of the
predictive distribution. If a parametric model has been already chosen, it may
be enough to restrict the class of point predictions E(Xn+1 | x1:n). Diaconis and
Ylvisaker’s [41] characterization of conjugate priors for models in the natural
exponential family (NEF) is possibly the most classic example.

Example 3.1. (Conjugate priors for the NEF.) Let Xi | θ
i.i.d.∼ p(x | θ) =

ex
T θ−M(θ), where p(· | θ) is a probability density function on R

k with respect
to a dominating measure λ whose support contains an open interval of Rk, and
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M(θ) = ln
∫

ex
T θdλ(x), for θ ∈ Θ = {s ∈ R

k : M(s) < ∞}. Because the model

is given, the predictive rule characterizes the prior distribution π of θ̃, which
is assumed to be non degenerate. Let µ̃ = E(X1 | θ̃) denote the mean vector
parameter, which is also the point prediction: E(X2 | X1) = E(µ̃ | X1). Diaconis
and Ylvisaker ([41], Theorem 3) prove that if E(µ̃ | X1) = aX1 + b with a ∈ R

and b ∈ R
k, then a 6= 0 and the prior density on the natural parameter θ̃ is the

conjugate prior π(θ) = c exp(a−1bT θ − a−1(1 − a)M(θ)). This result does not
apply to discrete distributions in the NEF, since the support of the dominating
measure does not include an interval of Rk. For discrete univariate distributions
they give an analogous characterization under the assumption Θ = (−∞, θ0)
with θ0 < ∞. The characterization for the Poisson distributions was already
known. �

Example 3.2. (Conjugate prior for binary data). LetXi | p̃ = p
i.i.d.∼ Bernoulli(p).

Diaconis and Ylvisaker [41] prove that, if E(p̃ | X1, . . . , Xn) - that coincides with
E(Xn+1 | X1, . . .Xn) - is linear in Xn for every n, then the prior on p̃ is the
conjugate Beta distribution. The result extends to the characterization of the
Dirichlet as the unique family of distributions allowing linear posterior expec-
tation for multinomial observations. �

3.2. Predictive sufficient statistics and parametric models

A natural tool for predictive elicitation is predictive sufficiency. For exchange-
able sequences (Xn)n≥1, the predictive distribution Pn is a function of the entire

empirical distribution F̂n. In other words, the empirical distribution is a suffi-
cient summary of (X1, . . . , Xn) for prediction of future observations, which is an
immediate consequence of exchangeability. In many applications, it is natural
to think that a summary Tn = T (F̂n) of F̂n is sufficient, i.e. that the predic-
tive distribution is a function of Tn. The statistic Tn is said to be sufficient for
prediction or predictive sufficient.

Predictive sufficiency has been investigated by several authors from the 1980’s;
see the book by Bernardo and Smith ([10], Sect 4.5) and Fortini et al. [52], which
includes extensive references. Related notions of sufficiency have been studied
by Lauritzen ([84], [85]) and Diaconis and Freedman [37]; Schervish ([116], Sect
2.4) gives a review. Several results, and relations with classical and Bayesian
sufficiency, are given in [52].

The assumption of a predictive sufficient statistic is strictly connected with
the assumption of a parametric model. Informally, if the predictive distribution
depends on the data through a predictive sufficient statistic Tn = T (F̂n) -
expressed, with an abuse of notation, as P(Xn+1 ∈ · | X1, . . . , Xn) = Pn(· |
T (F̂n)) - then we can expect that, under conditions on T ,

Tn ≡ T (F̂n) → T (F̃ ) ≡ θ̃,

(because F̂n → F̃ ); and, under conditions on Pn as a function of Tn,

Pn(· | Tn) → F (· | θ̃)
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for a function F . That is, the statistical model (which is the limit of Pn) has
a parametric form F (· | θ̃) where the parameter θ̃ = T (F̃ ) is the limit of the
predictive sufficient statistic. This is the content of next theorem. A more general
result, but technically more involved, is in [52], Theorem 7.1.

Theorem 3.3. Let (Xn)n≥1 ∼ P be an exchangeable sequence with directing

random measure F̃ . Assume that there is a predictive sufficient statistic Tn =
T (F̂n), where T : M → T ∈ B(Rk) is a continuous function defined on a
measurable set M of probability measures such that P(F̃ ∈ M) = 1. For every
n ≥ 1, let qn(·, t) = P(Xn+1 ∈ · | T (F̂n) = t), t ∈ T.
If, for every A with P0(∂A) = 0, the functions (qn(A, ·))n≥0 are continuous on

T, uniformly in t and n, then there exists a function F such that F̃ (·) = F (· | θ̃),
where θ̃ = T (F̃ ) is the P-a.s. limit of Tn.

The continuity assumptions in the theorem seem reasonable as a ‘robustness’
requirement expressing the idea that small changes in the value of the predictive
sufficient statistic Tn do not lead to abrupt changes in the prediction. The proof
is in Section A3 of the Supplement [58].

Example 3.4. Consider a Gaussian model Xi | µ i.i.d.∼ N (µ, σ2), with µ̃ ∼ N (0, 1)
and known variance σ2, for simplicity equal to one. Take M as the set of proba-
bility measures with finite first moment, T = R and T (m) =

∫

x dm(x), for m ∈
M. The conditions of Theorem 3.3 hold. First, E(

∫

|x|F̃ (dx)) =
∫

|x|dP0(x) <

+∞, which implies that F̃ ∈ M, P-a.s. The function T is continuous on M and,
for every A, the evaluation on A of qn(·, t) = N (n/(n+ 1)t, (2 + n)/(1 + n)) is
continuous in t, uniformly with respect to t and n. �

Theorem 3.3 gives sufficient conditions under which the statistical model is
parametric. Stronger conditions are needed if we want to obtain a dominated
model.

Proposition 3.5. Under the assumptions of Theorem 3.3, and

i) the predictive distributions Pn are absolutely continuous w.r.t. a dominat-
ing measure λ,

ii) with probability one, the sequence (Pn)n≥0 converges to the directing ran-

dom measure F̃ in total variation,

then the statistical model is dominated, i.e. P-a.s., F̃ (·) = F (· | θ̃), with F (· | θ)
absolutely continuous with respect to λ for every θ.

The proof follows from Theorem 1 in [16], which shows that the conditions
i) and ii) are necessary and sufficient for the random directing measure F̃ to be
absolutely continuous w.r.t. λ. By Theorem 3.3, F̃ has parametric form F (· | θ̃),
and because the limit of Pn is unique almost everywhere, we have the conclusion.

3.3. Predictive “sufficientness”

A different concept is predictive “sufficientness” [134]. The term ‘sufficientness’
was used by Good [65] with reference to the work by W. E. Johnson [75]. Zabell
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[131] notes that Good [64] initially used ‘sufficiency’ but switched to ‘sufficient-
ness’ to avoid confusion with the usual notion of sufficiency. Here, there is no
predictive sufficient statistic beyond the empirical distribution; however, for ev-
ery set A, the probability that a future observation takes value in A is assumed
to depend only on F̂n(A). In principle, only sufficientness assumptions of the
kind above are made; it is however assumed that (Xn)n≥1 is exchangeable, which
introduces constraints on the permissible analytic form of Pn and may identify
it.

Interestingly, since the entire empirical distribution is needed for prediction
of future observations, we expect that, if no further restrictions are made beyond
exchangeability and sufficientness, this type of predictive constructions leads to
a nonparametric model.

Example 3.6. (Sufficientness characterization of the Dirichlet conjugate prior
for categorical data). Consider an exchangeable sequence (Xn)n≥1 of categorical
r.v.’s with values in {1, . . . , k} with k > 2, finite. With the notation as in
Example 2.5,

Xi | (p̃1, . . . , p̃k) i.i.d.∼
{

1, . . . , k
p̃1, . . . , p̃k.

(3.1)

No parametric form is imposed on the masses (p̃1, . . . , p̃k); in this sense, this
is a “nonparametric” setting. Since the sequence (Xn)n≥1 is exchangeable, the
predictive distribution depends on the empirical frequencies (n1, . . . , nk), i.e.
P(Xn+1 = j | x1:n) = P(Xn+1 = j | n1, . . . , nk). The sufficientness postulate
states that the predictive probability of Xn+1 = j only depends on nj ,

P(Xn+1 = j | x1:n) = fn,j(nj), j = 1, . . . , k. (3.2)

We stress that, to provide the predictive probabilities for all j, the entire vector
of empirical frequencies is needed.

Formally developing an argument by [75], Zabell [131] proves that the suf-
ficientness assumption (3.2), together with P(X1 = x1, . . . , Xn = xn) > 0 for
every (x1, . . . , xn), implies that fn,j(nj) is linear in nj , and more specifically,
that, if the Xi are not independent, there exist positive constants (α1, . . . , αk)
such that

P(Xn+1 = j | nj) =
αj + nj

α+ n
, (3.3)

where α =
∑k

i=1 αi. In turn, this allows to obtain the expression of all the mo-
ments of the prior distribution, which are shown to characterize the Dirichlet(α1, . . . , αk)
distribution as the prior for (p̃1, . . . , p̃n). [131] also includes results for finite ex-
changeable sequences. �

Johnson’s sufficientness postulate can be extended to the case of r.v.’s taking
values in a general Polish space X. Consider (Xn)n≥1 exchangeable and assume
that for any n ≥ 1, the predictive rule states that for any measurable set A

Pn(A) = P(Xn+1 ∈ A | F̂n(A)). (3.4)
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Since (Xn)n≥1 is exchangeable, there exists F̃ such that Xi | F̃ i.i.d.∼ F̃ . Again,
the entire empirical distribution is needed to obtain the predictive distribution,
thus we expect to characterize a nonparametric prior on the random distribution
F̃ . This is indeed the case.

Proposition 3.7. Let (Xn)n≥1 be an exchangeable sequence and assume that
X1 ∼ P0 and, for any n ≥ 1, the predictive distribution satisfies (3.4). If the
Xi are not independent, then the directing random measure F̃ has a Dirich-
let process distribution with parameters (α, P0) for some α > 0, denoted F̃ ∼
DP(α, P0).

The proof of Proposition 3.7 is in Section A3 of the Supplement [58]. This re-
sult seems new. Doksum ([42], Corollary 2.1) proves that the Dirichlet process is
the only ‘non trivial’ process such that the posterior distribution of F̃ (A) given
x1:n only depends on the number nA of observations in A (and not on where
they fall within or outside A). This implies that the predictive distribution of
Xn+1 given x1:n only depends on nA; but the latter is a weaker condition. The
proposition above shows that it still implies that F̃ is a Dirichlet process. Other
characterizations of the Dirichlet process through sufficientness use the addi-
tional assumption that the predictive distribution has a specific linear form as
e.g. in [88] or, equivalently, assume that the Xi are categorical random variables.
Actually, the sufficientness postulate (3.4) is reasonable only for categorical ran-
dom variables (for continuous data, for example, one would not fully exploit the
information in the sample).

A number of nonparametric priors are characterized by forms of predictive
sufficientness. Zabell [133] characterizes the two parameter Dirichlet process
from sufficientness assumptions (see Example 3.11 in Section 3.5). Extensions
to the class of Gibbs-type priors [28] and to hierarchical generalizations are given
by [7]. Muliere and Walker [128] give a predictive characterization of Neutral
to the Right processes [42] based on an extension of Johnson’s sufficientness
postulate. Sariev and Savov [113] provide a sufficientness characterization of
exchangeable measure-valued Pólya urn sequences.

3.4. Stochastic processes with reinforcement

Stochastic processes with reinforcement, originated from an idea by Diaconis
and Coppersmith [25], are perhaps the main tool used in Bayesian statistics for
predictive constructions. They express the idea that, if an event occurs along
time, the probability that it occurs again in the next time increases (is rein-
forced). They are of interest in probability and in many areas beyond Bayesian
statistics; applications include population dynamics, network modeling (where
they are often referred to as preferential attachment rules), learning and evolu-
tionary game theory, self-organization in statistical physics and many more. A
beautiful review is given by Pemantle [100].

Urn schemes are basic building blocks for random processes with reinforce-
ment.
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Example 3.8. (Two-color Pólya urn) The simplest example is the two color Pólya
urn ([47], [108]). One starts with an urn that contains α balls, of which α1 are
white and the others are black. At each step, a ball is picked at random and
returned in the urn along with an additional ball of the same color. Denoting
by Xn the indicator of a white additional ball at step n, and by Zn, n ≥ 0,
the proportion of white balls in the urn before the (n + 1)th draw, we have
P(X1 = 1) = α1/α = Z0 and for any n ≥ 1

P(Xn+1 = 1 | X1, . . . , Xn) =
α1 +

∑n
i=1 Xi

α+ n
= Zn.

The two color Pólya urn was proposed as a model for the evolution of contagion.
In Bayesian statistics, Pólya sampling is not meant as describing a process that
actually evolves over time (such as the spread of contagion), but describes the
evolution of information; namely a learning process where the probability that
the next observation is white is reinforced as more white balls are observed in the
sample. It is well known that the sequence (Xn)n≥1 so generated is exchangeable,
and that both the relative frequency

∑n
i=1 Xi/n and the proportion of white

balls Zn converge to a random limit θ̃ ∼ Beta(α1, α − α1). Thus, from the

predictive rule we get Xi | θ̃ i.i.d.∼ Bernoulli(θ̃) with a conjugate Beta(α1, α−α1)
prior. �

The celebrated extension to a countable number of colors are Pólya sequences
[17], see the following Example 3.9. Many more exchangeable predictive con-
structions are based on reinforced stochastic processes; we provide a few notable
examples in the next section.

3.5. Examples in Bayesian nonparametrics

Example 3.9. (The Dirichlet process) In Section 3.3, we have seen a character-
ization of the Dirichlet process in terms of sufficientness. The predictive charac-
terization as an extension of Pólya sampling was given by Blackwell and Mac-
Queen [17]. For data in a Polish space X, Blackwell and MacQueen define Pólya
sequences (Xn)n≥1 as characterized by the predictive rule X1 ∼ P0 and for any
n ≥ 1,

Xn+1 | X1, . . . , Xn ∼ Pn =
α

α+ n
P0 +

n

α+ n
F̂n, (3.5)

where α > 0. They prove that a Pólya sequence is exchangeable and Pn con-
verges P-a.s. to a discrete random distribution F̃ ; moreover, F̃ ∼ DP(α, P0). It

follows that Xi | F̃ i.i.d.∼ F̃ , with a DP(α, P0) prior on F̃ .
Pólya sequences can be also described as reinforced urn processes; the interest

in such characterization is that it enlightens the link with the theory of random
partitions. Indeed, the discrete nature of the Dirichlet process, that follows from
(3.5), implies that ties are observed in a random sample (X1, . . . , Xn) with
positive probability. This induces a random partition of {1, . . . , n}, with i and
j in the same group if Xi = Xj . The characterization as a reinforced urn model
explicates its probability law.
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Rather than an impractical urn with infinitely many balls, a proper urn
metaphor is the Hoppe’s urn scheme ([70], [71]), also popularly described as the
Chinese Restaurant Process [2]. Consider sampling from an urn that initially
only contains α > 0 black balls. At each step, a ball is picked at random and,
if colored, it is returned in the urn together with an additional ball of the same
color; if black, the additional ball is of a new color. Natural numbers are used to
label the colors and they are chosen sequentially as the need arises. The sampling
generates a process (Ln)n≥1, where Ln denotes the label of the additional ball
returned after the nth draw. Clearly, the sequence (Ln)n≥1 is not exchangeable.
However, if one ‘paints’ it, picking colors, when needed, from a color distribution
P0, then the resulting sequence of colors (Xn)n≥1 has predictive rule (3.5),
thus it is a Pólya sequence with parameters (α, P0). In terms of the Chinese
Restaurant metaphor, where customers enter sequentially in the restaurant and
are allocated either in a occupied table, or in a new one, Ln = j denotes that
the n customer is seated at table j, and for any n ≥ 1, the label’s configuration
(L1, . . . , Ln) gives the allocation of customers at tables, representing the random
partition; then tables are painted at random from the color distribution P0.

For any n ≥ 1, let ρn = (A1, . . . , Akn
) be the random partition of {1, 2, . . . , n}

so generated (where i ∈ Aj if Li = j, kn is the number of colors that have been
created, or of the occupied tables, and the Aj are in order of appearance).
The probability mass function, or partition probability function of ρn is easily
computed from the labels’ sampling scheme; if P0 is diffuse, we have

P(ρn = (A1, . . . , Akn
)) =

αkn

α[n]

kn
∏

j=1

(nj − 1)! (3.6)

where α[n] = α(α + 1) · · · (α + n − 1) and nj is the number of elements of Aj ,
j = 1, . . . , kn. See [48], [4], [70]. �

The above characterization is an emblematic example of the potential of pre-
dictive constructions - in this case, explicating the link with random partitions
theory. In Bayesian statistics, the capacity of the Dirichlet process of generating
random partitions is leveraged for model based clustering in many applications;
beyond Bayesian statistics, random partitions, and in particular, exchangeable
random partitions, are of interest in a wide range of fields such as combinatorics,
genetics, population dynamics. The construction of Example 3.9 extends more
generally, and we recall here some basic notions that we use in the following
examples.

Given an exchangeable sequence (Xn)n≥1 one can define a random partition
ρn of {1, . . . , n} by letting i and j be in the same group if Xi = Xj . Then we
have

P(ρn = (A1, . . . , Akn
)) = p(n1, . . . , nkn

) (3.7)

for a symmetric function p of (n1, . . . , nkn
), where nj is the number of elements

in Aj . A partition probability function p so generated is called the exchange-
able partition probability function (EPPF) derived from the sequence (Xn)n≥1.
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More formally, p is defined on the space of sequences n = (n1, n2, . . .), identi-
fying (n1, . . . , nkn

) as n = (n1, . . . , nkn
, 0, 0, . . .). Let nj+ be defined from n by

incrementing nj by 1. Clearly an EPPF p must satisfy

p(1, 0, 0, . . . ) = 1 and p(n) =

kn+1
∑

j=1

p(nj+).

In predictive modeling, the conditional probability that the next observation
Xn+1 is in group j, given x1:n, is

pj(n) =
p(nj+)

p(n)
provided p(n) > 0, (3.8)

for j = 1, . . . , kn + 1. The concept of EPPF has been introduced in Pitman
[104]. A fundamental result in the theory of exchangeable random partitions
is Kingman’s de Finetti-like representation theorem for exchangeable random
partitions as mixtures of paint-box processes [83]; see also Kingman [82], Pitman
[106], Zabell [134].

Example 3.10. (Species sampling priors). Pitman [105] defines a class of pre-
dictive rules, in the framework of species sampling, that generalizes Black-
well and McQueen scheme (3.5). One underlines sequential sampling from a
discrete random distribution for categorical data - in species sampling, se-
quential draws from a population of species labeled in the order they are dis-
covered with tags X∗

j i.i.d. from a diffuse distributions P0. Here Xi repre-
sents the species of the ith individual sampled and takes values in the set of
tags. In a sample x1:n, one will observe kn distinct species, labeled x∗

1, . . . , x
∗
kn

and the next observation Xn+1 will either be one of the species already dis-
covered in the sample, or a new one, formalized in the predictive distribu-
tion Pn(· | x1:n) =

∑kn

j=1 pj,n(x1:n)δx∗

j
(·) + pkn+1,n(x1:n)P0(·). In random sam-

pling, the sequence (Xn)n≥1 should be exchangeable, and a necessary condi-
tion is that pj,n depends on (x1, . . . , xn) only through the sequence of counts
n = (n1, n2, . . .) (terminating with a string of zeroes) of the various species in
the sample in the order of appearance.

A sequence (Xn)n≥1 is a species sampling sequence if it is exchangeable and
has a predictive rule of the form

Pn(·) =
kn
∑

j=1

pj(n)δX∗

j
(·) + pkn+1(n)P0(·), (3.9)

for n ≥ 1, for a diffuse distribution P0, which is also the law ofX1. Pitman ([105],
Theorem 14) shows that exchangeability holds if and only if there exists a non-
negative symmetric function p that drives the probabilities pj(n) according to
(3.8). Then the EPPF of (Xn)n≥1 is the unique non-negative symmetric function
p such that (3.8) holds and p(1) = 1.

From exchangeability, by Proposition 2.4 we have that, with probability one,
Pn converges to a random distribution F̃ ; Pitman ([105], Proposition 11) proves
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that the convergence is in total variation norm and F̃ has the form

F̃ (·) =
k∞
∑

j=1

p∗jδX∗

j
(·) + (1−

k∞
∑

j=1

p∗j )P0(·), (3.10)

where p∗j = limnj/n is the random limit of the relative frequency of the j-th
species discovered, the X∗

j are i.i.d. according to P0, independently of the p∗j
and k∞ = inf{k : p∗1 + · · ·+ p∗k = 1} is the number of distinct values to appear
in the infinite sequence (X1, X2, . . .).

The above results do not provide an explicit description of the distribution of
the weights p∗j , which is however available in remarkable special cases, including
the Dirichlet process, that corresponds to pj(n) = nj/(α + n), where α > 0
is a fixed number; the finite Dirichlet process [73] that assumes pj(n) = (nj +
α/K)/(α+ n) for j ≤ kn ≤ K, where α > 0 and K ∈ N are fixed numbers; and
the two parameter Poisson-Dirichlet process. �

Example 3.11. (Two parameter Poisson-Dirichlet process) The two parameter
Poisson-Dirichlet process, or Pitman-Yor process, introduced in [101] and further
studied in [104] and [107], can be viewed both as an extension of the Dirichlet
process and as the directing random measure of a specific species sampling
sequence characterized by the predictive rule (3.9) with

pj(n) =
nj − θ

α+ n
and pkn+1(n) =

α+ knθ

α+ n
, (3.11)

where α and θ are real parameters satisfying 0 ≤ θ < 1 and α > −θ. As it ap-
pears from (3.11), the Poisson-Dirichlet process allows a more flexible predictive
structure than the Dirichlet process (corresponding to θ = 0): the predictive
probability of observing a new species at time n depends on both n and the
number kn of distinct species sampled.

In analogy to Example 3.9, the sequence (Xn)n≥1 can be described as a
generalized Hoppe’s urn [133] if α > 0. Initially, the urn only contains one black
ball of weight α, and balls are selected with probabilities proportional to their
weights; whenever a black ball is selected, it is returned into the urn together
with two new balls, one black, having weight θ, and one of a new color, sampled
from P0, having weight 1− θ.

As shown by Zabell [133], the two-parameter Poisson-Dirichlet process is also
characterized through sufficientness (Section 3.3); namely, by the sufficientness
of nj and of kn in the predictive probabilities pj(n) and pkn+1(n), respectively.

For increasing n, the predictive distribution Pn converges P-a.s. to a random
measure F̃ =

∑∞
j=1 p

∗
jδX∗

j
, where the p∗j have the stick-breaking representation

p∗j =
∏j−1

i=1 (1 − Vi)Vj , with Vi
indep∼ Beta(α + iθ, 1 − θ). Again, the predictive

construction can be exploited to design computational strategies; see e.g. [8]. �

In some examples, the predictive construction does not characterize a novel
prior, but explicates the predictive assumptions that are made when adopting
a certain (already known) prior law – which is clearly important; and here is an
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example of a purely predictive construction, whose de Finetti-like representation
and implied prior law was only given afterwards.

Example 3.12 (Indian Buffet Process). The Indian Buffet process, introduced
by Griffith and Ghahramani [66], is a clever and popular predictive scheme
for infinite latent features problems. Here, exchangeable objects or individuals
are each described through a potentially infinite array of features, resulting in
an underlying random binary matrix with rows representing the individuals,
and an unbounded number of columns, representing the features. Specifically,
a 1 in the [n, k] entry of the random matrix indicates that the nth individual
possesses the kth feature. The predictive construction can be illustrated by
imagining customers sequentially entering an Indian Buffet restaurant. In this
metaphor, customers represent individuals, dishes symbolize features, and when
a customer selects a dish z, it means that the corresponding individual possesses
feature z. Let θ be a fixed strictly positive number. The first customer chooses
a Poisson(θ) number of dishes from a non-atomic distribution F0. Then, for
n = 1, 2, . . . , the (n + 1)th customer decides, for each of the kn dishes already
served, whether to take it or not, according to its popularity, namely she chooses
dish z with probability kz,n/(n+ 1), where kz,n is the number of customers who
have already chosen dish z, independently for z = 1, . . . , kn; then she chooses a
Poisson(θ/(n+ 1)) number of new dishes, sampling them from F0.

This construction, which is purely predictive, characterizes an exchangeable
law for the individuals’ features, represented as Xn =

∑∞
k=1 bn,kδZk

, where
bn,k = 1 if the nth individual possesses feature Zk, and zero otherwise, and with
the features (Zk)k≥1 independently sampled from F0; and enables Bayesian
learning without an explicit prior law. Actually, the implied prior law was later
made explicit [123], and assumes that, conditionally on a sequence (pk)k≥1 of
r.v.s taking values in (0, 1), the (bn,k)n,k≥1 are sampled independently, with
bn,k ∼ Bernoulli(pk). In turn, the (pk)k≥1 are the points of a Poisson random
measure with mean intensity λ(s) = θs−11(0,1)(s).

The Indian Buffet process has been extended for allowing different distribu-
tions on (pk, bi,k)i,k≥1 (see [74], [19] and references therein) or random weights
[11]. �

Example 3.13 (Predictive constructions for continuous data). As already men-
tioned, the predictive rule (3.5) of Pólya sequences is appropriate for categorical
data, but as it appears from the underlying sufficientness postulate (3.4), it is not
efficient for continuous data, failing to fully exploit the sample information. A
similar remark holds for species sampling sequences. Indeed, in Bayesian statis-
tics, the Dirichlet process and generally discrete prior laws are mostly used at
the latent stage of hierarchical models, where, as already noted by Antoniak [4],
their power in generating a random partition is an asset; see e.g. [122] and [97]
for overviews. A popular example are Dirichlet process mixture models where,
conditionally on a latent exchangeable sequence (θ̃n)n≥1, theXi are independent

and the distribution of Xi only depends on θ̃i, with a slight abuse of notation
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written as

Xi | θ̃i indep∼ k(· | θ̃i), (3.12)

for a kernel density k, and

θ̃i | G̃ i.i.d.∼ G̃, with G̃ ∼ DP (α,G0). (3.13)

This gives an exchangeable mixture model:

Xi | G̃ i.i.d.∼ fG̃(·) =
∫

k(· | θ)dG̃(θ).

The predictive rule of the Dirichlet process induces a parametric model on the
random partition of the θ̃i’s, and Xi and Xj are set in the same cluster if

θ̃i = θ̃j . This is a powerful and popular use of predictive rules such as (3.5),
which however would not be appropriate as predictive learning rules at the
observation level with continuous data.

An approach to address this difficulty is to smooth the trajectories generated
by discrete priors thus obtaining novel prior laws that almost surely select ab-
solutely continuous distributions; for example, a constructive smoothing of the
Dirichlet process through Bernstein polynomials was proposed, from an idea
of Diaconis, by [102] and extended by [103], who obtained a general class of
mixture priors. However, in these constructions, and more generally in Bayesian
mixture models with a discrete prior law on the mixing distribution, the predic-
tive distribution is not analytically tractable, requiring to average with respect
to the posterior law on the huge space of partitions (see e.g. [126]).

A predictive approach may consist in directly smoothing the empirical dis-
tribution in predictive rules such as (3.5). Recent proposals are kernel-based
Dirichlet sequences [13], that are defined as exchangeable sequences whose pre-
dictive distributions spread the point mass δXi

in (3.5) through a probability
kernel K, as

Pn(·) =
α

α+ n
P0(·) +

1

α+ n

n
∑

i=1

K(· | Xi).

The exchangeability condition imposes that the kernel K must satisfy K(· |
x) = P0(· | G)(x) for a sigma-algebra G on X ([13], [114]). In particular, in their
perhaps most natural specification, with K(· | x) ≪ P0 for every x ∈ X, the
underlying F̃ is a mixture model with kernels having known disjoint support
(e.g. a histogram with known bins), see [114], Theorem 3.13; which is clearly
limited for statistical applications.

This example hints that exchangeability constraints may be quite restrictive
if one wants to have both a tractable predictive rule and some desired modeling
features. Here is a predictive construction that is analytically simple, and gives
another ‘smoothed version’ of (3.5). We start from P0(·) =

∫

K(· | θ)dG0(θ) ≡
FG0(·) and recursively update our prediction as

Pn(·) = (1 − αn)Pn−1(·) + αnFGn−1(· | Xn),
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with FGn−1(· | Xn) =
∫

K(· | θ)dGn−1(θ | Xn), where Gn−1(· | Xn) denotes
the posterior distribution obtained from the prior Gn−1 and updated based
on Xn, and Gn(·) = (1 − αn)Gn−1(·) + αnGn−1(· | Xn); and the αn are real
numbers in (0, 1) satisfying

∑∞
n=1 αn = +∞ and

∑∞
n=1 α

2
n < +∞. (We may

recognize ‘Newton’s algorithm’ [96], popularly used for fast computations in
Dirichlet process mixture models). This predictive rule does not characterize
an exchangeable sequence (Xn)n≥1; it is however a martingale and preserves
exchangeability asymptotically. More specifically, it can be shown ([53]) that
Pn converges to a mixture model FG̃(·) with a novel prior law on G̃, as we will
expand in Section 5. �

Further remarkable examples, among many, include the class of reinforced urn
processes ([127], [92]); see Example 4.9), and constructions aimed at addressing
the rigidity of the global clustering induced by the predictive structure (3.5)
of the Dirichlet process in the case of multivariate random distributions; for
example, [125] obtain a nested clustering for multivariate data characterized by
an enriched Hoppe’s urn scheme. There are many more predictive constructions
based on the idea of reinforcement, that characterize forms of partial exchange-
ability, as we introduce in the next section.

4. Partial exchangeability for more structured data

As seen, exchangeability in Bayesian statistics is the natural predictive require-
ment in homogeneous repeated trials; but of course data may be much more
complex. Still, in many cases the data show forms of symmetry, such that ex-
changeability assessments, judging that the individuals’ labels in some data
sub-structures do not bring any information for prediction, are still natural. In
this section we review the concept of partial exchangeability, i.e. invariance under
a group of permutations. For the sake of space, we focus on the main concepts
and on de Finetti-like representation theorems that again justify the Bayesian
inferential model from predictive assumptions. The predictive characterization
in Theorem 4.4 is new. We start with the notion of partial exchangeability in the
sense of de Finetti and a point we will underline is that other forms of partial
exchangeability are ultimately related to it.

4.1. de Finetti’s partial exchangeability

A first notion of partial exchangeability was introduced by de Finetti in [31].
It is interesting to report some excerpt from this, perhaps less known, work by
de Finetti, as, beyond historical interest, it clearly shows what are the applied
contexts that suggest a partial exchangeability assessment. de Finetti [31] refers
to replicates of trials of different types.

Exchangeability can still be considered, but specifying that the trials are divided

into a certain number of types, and what is judged exchangeable are the events

of the same type.

As a simple example, he considers tossing two coins. If the two coins look exactly
alike, one may judge all tosses as exchangeable; at the opposite extreme, if the
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coins are completely different, one would consider the corresponding tosses as
two separate exchangeable sequences, completely independent of each other.
However, if the coins look almost alike, but not to the point of considering them
exchangeable, then

observations of the tosses of one coin will still be capable of influencing, although

in an less direct manner, our probability judgment regarding the tosses of the

other coin.

Again from [31]:

One can have any number of types of trials,

for example, different coins, or tosses of one coin by two different people, or
under different conditions of temperature and atmospheric pressure.

If the types are in a countable or continuous set, prediction would typically refer

to a new type; thus, information will exclusively be indirect.

(de Finetti’s note [31] includes several more examples, e.g. in insurances and in
treatments’ effects and debatable causality). In the Bayesian literature, partial
exchangeability in the sense of de Finetti is usually referred to random sampling
in parallel experiments; as we see, it refers more generally to fixed-design regres-
sion where the ‘types’ are induced by covariates. As in the coins example, exper-
iments are run independently, nevertheless each experiment brings information
on the other ones; and because information is described through probability (see
Section 1), the joint probability law will assume a form of dependence across
the experiment-specific samples, i.e. of sharing information across experiments
in prediction.

Formalizing, consider a family of sequences (Xn,j)n≥1 of r.v.’s where Xn,j

describes the nth observation of type j, j = 1, . . . ,M ;M can be finite or infinite,
and the types may be taken from a continuum of types. For more compact
notation, we may arrange them in an array [Xn,j]n≥1,j=1,...,M . The family of
sequences [Xn,j]n≥1,j=1,...,M is partially exchangeable in the sense of de Finetti
if its probability law is invariant under separate finite permutations within each
column; that is, if

[Xn,j ]n≥1,j=1,...,M
d
= [Xσj(n),j]n≥1,j=1,...,M

for any finite permutation σj , j = 1, . . . ,M . Roughly speaking, observations
are exchangeable inside each experiment, but not across experiments. Aldous
([2], page 23) refers to this symmetry property as exchangeability over V . A

sequence (Yn)n≥1 is exchangeable over V if (V, Y1, Y2, . . .)
d
= (V, Yσ(1), Yσ(2), . . .)

for any finite permutation σ. Partial exchangeability corresponds to each se-
quence (Xn,j)n≥1 being exchangeable over all the others, collected as Vj .

The representation theorem extends to partially exchangeable families of se-
quences.

Theorem 4.1 (Law of large numbers and de Finetti representation theorem
for partially exchangeable sequences ). Let [Xn,i]n≥1,i=1,...,M ∼ P be a partially
exchangeable array in the sense of de Finetti. Then:
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i) For n1, . . . , nM → ∞, the vector of the marginal empirical distributions
(F̂n1 , . . . , F̂nM

) converges weakly to a vector of random distributions (F̃1, . . . , F̃M ),
P-a.s.;

ii) For any n ≥ 1 and measurable sets Ai,j,

P(∩M
j=1(X1,j ∈ A1,j , . . . , Xnj ,j ∈ Anj ,j))

=

∫

∏

j=1,...,M

∏

i=1,...,nj

Fj(Ai,j)dπ(F1, . . . , FM ),

where π is the joint probability law of (F̃1, . . . , F̃M ).

A proof is in [2], pp. 23-25. The representation ii) says that conditionally on
(F̃1, . . . , F̃M ), the sequences (Xn,j)n≥1 are independent and, within sequence j,

the Xn,j are i.i.d. according to F̃j . That is, a de Finetti-partially exchangeable
array is obtained by first picking (F1, . . . , FM ) from a joint prior distribution

and then for each j = 1, . . . ,M picking Xn,j
i.i.d.∼ Fj , independently for different

j.

Example 4.2 (Hierarchical models). Consider random samples (X1,j , . . . , Xnj ,j),
j = 1, . . . ,M , fromM independent parallel experiments, say of binary r.v.’s with
experiment specific means θj, and the classic problem of estimating the mean
vector (θ1, . . . , θM ). This problem is also rephrased (e.g. in [46]) as predicting
Xnj+1,j in each experiment. Bayesian hierarchical models are a powerful tool
for borrowing strength across experiments and for shrinkage. In this example,
a basic hierarchical model regards the parameters as r.v.’s θ̃j , sampled from a
latent distribution, and assumes a hierarchical structure as follows

θ̃j | λ i.i.d.∼ π(· | λ), with λ ∼ h(·),
(X1,j , . . . , Xnj ,j) | θ1, . . . , θM

i.i.d.∼ Bernoulli(θj),

independently across j (here π and h denote densities). The theoretical justifi-
cation of this model comes from the assessment of partial exchangeability of the
sequences (Xn,j)n≥1, and of exchangeability of the experiments. By partial ex-
changeability, the observations are exchangeable inside each experiment, but not
across them; and the sequences (Xn,j)n≥1 are only conditionally independent

given (θ̃1, . . . , θ̃M ), which naturally implies sharing information. The dependence
across experiments is introduced through the joint prior law of (θ̃1, . . . , θ̃M ) -

here, the joint density π(θ1, . . . , θM ) =
∫ ∏M

j=1 π(θj | λ)h(λ)dλ. �
Example 4.3. In hierarchical models as above, the prior law π expresses the
judgement that the θ̃j - informally, the experiments - are exchangeable. But,
more generally, the groups may be induced by covariates, or refer to time or
space, etc., and the prior would express other forms of dependence. For example,
consider clinical trials where the outcome is binary (tumor shrank or not), run
in different hospitals, with patients receiving the same treatment in all hospitals.
Here one would judge that the hospitals’ labels do not bring information, that is,
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the hospitals (the corresponding model parameters θ̃j ’s) are exchangeable; as in
the example above. Now suppose that different treatments, say different dosages
zj, are administrated in different hospitals. Then the groups’ labels are relevant,

and the prior will not treat the θ̃j ’s as exchangeable, but will incorporate the

effect of the covariate; for example, express the idea that θ̃j and θ̃k are similar
if the dosages zj and zk are close.

With no replicates inside the groups and no random effects - i.e. in a basic
fixed-design regression context where the probability of success is θ̃j = g(zj; β̃)

for a known g and unknown β̃ - partial exchangeability reduces to conditional
independence of the X1,j ’s given β̃, with dependence across j modeled through
the regression function.�

Marginally, the result of Theorem 4.1 is not surprising, because each sequence
(Xn,j)n≥1 is exchangeable and one obtains the marginal directing random mea-

sure F̃j (the statistical model and the prior for experiment j) as seen in Section 2;
in particular, from

Pn,j(·) ≡ P(Xn+1,j ∈ · | X1,j , . . . , Xn,j) → F̃j(·). (4.1)

But this is not enough: the theorem characterizes the joint distribution (the
joint prior law) of (F̃1, . . . , F̃M ).

It is this joint distribution that induces probabilistic dependence across the
individual sequences, i.e. borrowing strength in prediction. As in Example 4.2,
rather than the marginal predictive distribution Pn,j as in (4.1), a more interest-
ing predictive distribution refers to future results in experiment j given past ob-
servations therein and observations in all the related experiments. Aldous’s no-
tion of exchangeability over V is particularly suited. Let V = [(Xn,i)n≥1;i=1,...,M ;i6=j ]
collect the observations in all the experiments but the jth. Then, with P-
probability one,

lim
n

P(Xn+1,j ∈ · |X1,j , . . . , Xn,j , V ) (4.2)

= lim
n

P(Xn+1,j ∈ · |(Xk,i)k≤n,i=1,...,M )= F̃j(·).

For a proof, see [2]. Informally, V does not carry additional information only in
the limit, when the experiments become independent.

Note that the rows ([Xn,1, . . . , Xn,M ])n≥1 of a de Finetti partially exchange-

able array are an exchangeable sequence, with directing random measure F̃ on
the product space (X1× · · ·×XM ) that assumes independent components, i.e.

F̃ = ×M
j=1F̃j . This implies that the relationship between variables in distinct

columns of the array [Xn,j ]n≥1,j=1,...,M is solely driven by the probabilistic link
between the marginal directing random measures. Again, the sequences do not
physically interact.

Also note that P(Xn+1,j ∈ · | (Xm,i)m≤n,i=1,...,M ) = E(F̃j(·) | (Xm,i)m≤n,i=1,...,M )

and, as shown in equation (4.2), approximates F̃j for n large. Since the sequence

(Xn,j)n≥1 is exchangeable, an alternative approximation of F̃j is provided by the

predictive distribution Pn,j(·) = E(F̃j(·) | X1,j , . . . , Xn,j), that is only based on
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the past observations in experiment j. However, the latter uses less information,
resulting in a less efficient approximation:

E
(

(

F̃j(A)− P(Xn+1,j ∈ A | X1,j, . . . , Xn,j)
)2
)

≥ E
(

(

F̃j(A)−P(Xn+1,j ∈ A |(Xk,i)k≤n,i=1,...,M

)2
)

.

If the sequences (Xn,j)n≥1 are independent, both methods yield the same result;
there is no gain of information in considering the entire array.

The predictive characterization of exchangeability of Theorem 2.3 can be
extended to de Finetti partial exchangeability.

Theorem 4.4. A family of sequences [Xn,j]n≥1,j=1,...,M is partially exchange-
able in the sense of de Finetti if and only if for every finite k ≤ M and every
n ≥ 0, the following conditions hold:

i) For every measurable sets A1, . . . , Ak and every i = 1, . . . , k

Pn(A1 × · · · ×Ak | (xm,j)m≤n,j≤k)

is symmetric in (x1,i, . . . , xn,i);
ii) The set function that maps {Aj , Bj : j ≤ k} into

∫

A1×···×Ak

Pn+1(B1 × · · · ×Bk | (xm,j)m≤n+1,j≤k)

dPn((xn+1,1, . . . , xn+1,k) | (xm,j)m≤n,j≤k)

is symmetric in (Ai, Bi) for every i = 1, . . . , k,

where Pn is to the conditional distribution of (Xn+1,j)j≤k, given (Xm,j)m≤n,j≤k

and P0(· | (xm,j)m≤0,j≤k) is meant as P0.

The proof is provided in Section A4 of the Supplement [58]. The predictive
characterization in Theorem 4.4 is natural when at each time n, a new observa-
tion is made for each type. In fact, de Finetti’s partial exchangeability can be
described as invariance of the law of a sequence (X1, X2, . . . ) to the permuta-
tions acting separately on M groups of random variables, forming a partition
of (Xn)n≥1. In this context, a predictive characterization of partial exchange-
ability should account for the structure of the partition into groups, likely in a
nontrivial way.

Statistical applications are broad; hierarchical models are one of the key
strengths of Bayesian statistics, and great flexibility in sharing information in
prediction is enabled through the prior law π. While the choice of π in parametric
models is a long studied problem, defining a nonparametric prior on the vector
of random distributions (F̃1, . . . , F̃M ) has posed challenges; yet, a wealth of
proposals is nowadays available, many of which are defined through, or benefit
from, predictive characterizations.
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Example 4.5 (Hierarchical Dirichlet process). The hierarchical Dirichlet process
has been introduced in [121] to model shared clusters among groups of data.
For example, consider the problem of modelling shared topics in a corpus of
M documents, where a “topic” induces a multinomial distribution over the
words of a given dictionary, and a document j is defined as an unordered -
exchangeable - sequence of words (Xn,j)n≥1. For each document j, we have a

latent sequence of topics (θ̃n,j)n≥1, and Xn,j | θ̃n,j ∼ k(· | θ̃n,j). The family of

sequences (θ̃n,j)n≥1 for j = 1, . . . ,M is assumed to be partially exchangeable,

thus conditionally independent given the vector (G̃1, . . . , G̃M ) of the random
distributions of topics in the documents.

A predictive construction that allows for document-specific clustering into
topics and shared topics across documents is given in [121] as a hierarchical
Chinese Restaurant process, or Chinese franchise, which is reminiscent of the
hierarchical Hoppe’s urn proposed for infinite hidden Markov models by [9],
as we here describe. To each document j, let us associate a Hoppe’s urn Uj ,
that initially only includes αj > 0 black balls, then sample from each urn as
described in Example 3.9; however, whenever a new color is needed, pick it
from an “oracle urn” which is another Hoppe’s urn, with initial number γ of
black balls and color distribution G0, for simplicity assumed to be diffuse. The
draws from the oracle Hoppe’s urn represent the labels of the topics available for
all documents; when colored, they are an exchangeable sequence with directing
random measure G̃ ∼ DP (γ,G0). Conditionally on all the draws from the oracle
urn (thus on G̃), the colored drawings from the document-specific Hoppe’s urns
Uj are independent exchangeable sequences (θ̃n,j)n≥1, with

θ̃n,j | G̃j
i.i.d.∼ G̃j

G̃j | G̃ ∼ DP (αj , G̃) ,

independently across j, and in turn, G̃ ∼ DP (γ,G0). This defines a Hierarchical
Dirichlet Process prior for (G̃1, . . . , G̃M ), with parameters (α1, . . . , αM , γ, G0).

This model is based on an exchangeable structure at the latent stage, where
(in line with the considerations in Example 3.13), one envisages an actual ran-
dom partition. Differently from Example 3.9, here the draws from the Hoppe’s
urns are latent variables, since, at any time, an “old” color could be picked from
Uj or from the oracle urn. This leads to computational challenges, as we discuss
in the next section.

Extensions of the hierarchical Dirichlet process include the hierarchical Pitman-
Yor process [120], and hierarchies of general discrete random measures leading
to interesting combinatorial structures; see Camerlenghi et al. [20], and [22] and
references therein. �

4.2. Asymptotic partial exchangeability

In the above example, and in fact more generally with partially exchange-
able data, the predictive and the posterior distributions are not available in
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a “closed” (ideally, conjugate) analytic form - with a sometimes significant
computational cost. To give some insight on the reasons for this difficulty,
suppose for brevity that we only have two partially exchangeable sequences
(Xn)n≥1, (Yn)n≥1 and aim for an analytically tractable predictive distribution
P(Xn+1 ∈ · | x1:n, y1:n, yn+1). Assuming Xn+1 ⊥⊥ Yn+1 | X1, . . . , Xn, Y1, . . . , Yn

would help, but typically breaks partial exchangeability, except for trivial cases.
On another extreme, a functionally simple inclusion of Yn+1 in the expression
of the predictive distribution above may create direct dependence between the
two sequences, and rather give interacting stochastic processes (see e.g. [3] and
references therein). In fact, in partially exchangeable constructions one typi-
cally identifies a conditional independence structure of the kind Xn+1 ⊥⊥ Yn+1 |
X1, . . . , Xn, Y1, . . . , Yn, U where U is a latent random variable; (in a nonpara-
metric setting with discrete priors, U is an appropriate feature of the random
partition, see e.g. [20]). While this may allow approximation schemes, for exam-
ple through Gibbs sampling ([121], [86], [21]), integrating out the latent U to
obtain the predictive distribution P(Xn+1 ∈ · | x1:n, y1:n, yn+1) is not, generally,
analytically manageable.

Although there has been a sensible effort to find “closed form” expressions
for predictive distributions for partially exchangeable models, the above con-
siderations highlight that it is not easy to have partial exchangeability and
also an analytically tractable predictive rule. This raises interest for predictive
structures that only preserve partial exchangeability asymptotically, but are
computationally easier. [60] have proposed the notion of partially conditionally
identically distributed (partially c.i.d.) sequences, which is equivalent to partial
exchangeability for stationary data and preserves main properties of partially
exchangeable sequences. In particular, partially c.i.d. processes are asymptot-
ically partially exchangeable. Natural extensions of reinforced stochastic pro-
cesses turn out to be partially c.i.d. For example, consider a family of sequences
[Xn,j]n≥1,j=1,...,M such that P(X1,j ∈ ·) = P0,j(·) and for any n ≥ 1

P(Xn+1,j ∈ · | (Xk,i)k≤n,i=1,...,M ) =
α0,jP0,j(·) +

∑n
k=1 Wk,jδXk,j

(·)
α0,j +

∑n
k=1 Wk,j

,

where the random weights Wm,j are strictly positive r.v.’s and may be functions
of the observed values of the other sequences. It is proved in [60] that if, condi-
tionally on (Xm,i,Wm,i)m≤n,i≤M , the future observations Xn+1,1, . . . , Xn+1,M

are mutually independent and Wn,j is independent of Xn,j , j = 1, . . . ,M , then
the sequences [Xn,j]n≥1,j=1,...,M are partially c.i.d.

4.3. Markov exchangeability

The representation theorem 2.2 for exchangeable sequences gives the conceptual
justification of the Bayesian inferential setting for random sampling. A natural
question is if there is a symmetry notion and a de Finetti-like representation
theorem that justify the Bayesian inferential setting for Markov chains. In this
section we recall the notion of Markov exchangeability [36] and its predictive
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characterization [55], and review Diaconis and Freedman’s representation theo-
rem and a different representation that relates Markov exchangeability to partial
exchangeability in the sense of de Finetti. Many models, for instance state-space
models for nonstationary time series, are based on Markov chains; thus, these
results also give insights on predictive constructions for Bayesian learning with
temporal data, beyond Markov chains.

Let X be a finite or countable set that includes at least two points, and
(Xn)n≥0 be a sequence of r.v.’s taking values in X, and with probability law
P. The process (Xn)n≥0 is partially exchangeable in the sense of Diaconis and
Freedman, or, following the terminology of [135] and [132], Markov exchangeable,
if its probability law is invariant under finite permutations that do not alter
the number of transitions between any two states; more precisely, if P(X0 =
x0, . . . , Xn = xn) = P(X0 = x′

0, . . . , Xn = x′
n) whenever (x0, . . . , xn) and

(x′
0, . . . , x

′
n) have the same initial value (i.e. x0 = x′

0) and exhibit the same
number of transitions from state i to state j, for every i, j ∈ X.

Under a recurrence condition, Diaconis and Freedman prove a de Finetti-
like representation theorem for Markov exchangeable sequences. The process
(Xn)n≥0 is recurrent if the initial state x0 is visited infinitely many times with

probability one. Let us also define, for any i, j ∈ X, the transition counts T
(n)
i,j

as the number of transitions from state i to state j in (X0, . . . , Xn), and the

matrix of normalized transition counts as the matrix with elements T̂
(n)
i,j =

T
(n)
i,j /

∑

k∈X
T

(n)
i,k if the sum is different from zero, and zero otherwise.

Theorem 4.6 (Diaconis and Freedman [36], Theorem 7 and Remark 25). Sup-
pose that the process (Xn)n≥0, starting at x0, is recurrent. If (Xn)n≥0 is Markov
exchangeable, then

i) With probability one, the matrix of normalized transition counts converges
(in the topology of coordinate convergence) to a random limit Q̃;

ii) conditionally on Q̃, the process (Xn)n≥0 is a Markov chain with transition

matrix Q̃.

In applications in Bayesian statistics, the probability law of the random limit
Q̃, which is uniquely determined by P, plays the role of the prior.

The following result gives a predictive characterization of Markov exchange-
able processes; it parallels Theorems 2.3 and 4.4.

Theorem 4.7 ([55]). A predictive rule (Pn)n≥0 for a process (Xn)n≥0 with
X0 = x0 and Xn ∈ X characterizes a Markov exchangeable process if and only
if for every n ≥ 0 and every (x1, . . . , xn) the following conditions hold:

i) For every j ∈ X, P(Xn+1 = j | x0:n) depends on x0:n only through x0 and
its transition counts;

ii) For every k ≥ 1 and all strings y, y′ and z of elements in X that do
not contain xn and have no common elements, the function that maps
(y,y′) into P((Xn+1, . . . , Xn+k) = (y, z, xn,y

′, z, xn) | x0:n) is symmetric
in (y,y′).
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This is proved in [55], where a predictive condition for recurrence is also given.
The characterization becomes much simpler when the predictive distribution of
Xn+1 only depends on the last visited state xn and on the xnth row txn

of the
matrix of transition counts: P(Xn+1 = y | x0:n) = p(y | xn, txn

). In this case,
(Xn)n≥0 is Markov exchangeable if and only if

p(y |x, t)p(z |x, t + ey) = p(z |x, t)p(y |x, t+ ez) (4.3)

for every t and every x, y, z ∈ X, where ey and ez have a 1 at positions y and
z, respectively, and 0 elsewhere.

Example 4.8 (Reinforced urn scheme). Let X be finite or countable, and let
(Xn)n≥0 satisfy X0 = x0 and

P(Xn+1 = y | x0:n) =
αxn

qxn
(y) + txn,y

αxn
+
∑

j∈X
txn,j

, (4.4)

where for every x, αx is a positive number and qx(·) is a probability mass
function on X. It is easy to verify that the predictive rule (4.4) satisfies (4.3).
Moreover, by the Lévy extension of the Borel-Cantelli lemma, the state x0 is
visited infinitely many times (see [55] for the details). Hence, (Xn)n≥0 is a
mixture of Markov chains.

For a finite state space, Zabell [132] derived the predictive rule (4.4) from
Johnson’s sufficiency postulate and assuming that (Xn)n≥0 is recurrent and
Markov exchangeable, characterizing independent Dirichlet prior distributions
on the rows of the random transition matrix. �

By the result i) in Theorem 4.6, the random transition matrix Q̃ has an
empirical meaning as the limit of the matrix of normalized transition counts. It
is of interest to know whether it also has an interpretation in terms of prediction,
in the spirit of Proposition 2.4. We can show that this is possible by leveraging
on an alternative characterization of Markov exchangeable processes, hinted in
[32] and [132] and developed in [51], in terms of partial exchangeability of the
matrix of successor states.

The nth successor state of a state x is defined as the state visited by the
process (Xn)n≥0 just after the nth visit to state x. Denoting by τn(x) the time
of the nth visit to state x, with τn(x) = ∞ if x is not visited n times, we can
define the nth successor state of x as

Sx,n = Xτn(x)+1

if τn(x) is finite. Let us collect the successor states for all x in an array [Sx,n]x∈X,n≥1.
Note that the xth row of [Sx,n] has infinite length if the state x is visited in-
finitely many times, otherwise it is of finite length. The set of states that are
visited infinitely many times depends on the path ω, so does the length of the
row (Sx,n)n. To avoid rows of finite length, [51] enlarge the state space, by
adding an external point ∂, and define Sx,n(ω) = ∂ if τn(x)(ω) = ∞.

It is proved in [51] that (Xn)n≥0 is a mixture of recurrent Markov chains if
and only if the array of successor states [Sx,n]x∈X,n≥1 is partially exchangeable



/Prediction and exchangeability 34

by rows in the sense of de Finetti, (see Theorem 1 in [51] for more details
and for the extension to uncountable state spaces). This allows us to use the
results in Section 4.1 for the array [Sx,n]x∈X,n≥1 of successor states. For each
x, the xth row (Sx,n)n≥1 is exchangeable, thus the successors Sx,n of state

x are conditionally i.i.d. given a random probability mass function Q̃x on X.
The probability masses Q̃x,i ≡ Q̃x(i) are the limits of the empirical frequencies
∑n

k=1 δSx,k
(i)/n, i ∈ X, and correspond to the xth row of the random transition

matrix Q̃. Partial exchangeability also implies that the rows of the array of
successor states are not independent sequences: probabilistic dependence across
them is introduced through the joint prior law of the vector (Q̃x, x ∈ X), i.e. of
the rows of the random transition matrix Q̃.

Moreover, the random transition matrix is the limit of the predictive distri-
butions, in the sense that, for all x, i,

lim
n

P(Sx,n+1 = i | Sx,1, . . . , Sx,n, V )

= lim
n

P(Sx,n+1 = i | Sx,1, . . . , Sx,n) = Q̃x,i

where V collects all the rows of the matrix of successors states but the xth.
This result refers to the successor states. In terms of the sequence (Xn)n≥0, see
Theorem 1 in [55].

Stochastic processes with reinforcement are again powerful tools in predic-
tive constructions of Markov exchangeable sequences. An elegant construction,
through edge reinforced random walks on a graph, is Diaconis and Rolles’ [40]
characterization of a conjugate prior for the transition matrix of a reversible
Markov chain. Developments for variable order reversible Markov chains are in
[6]. The reinforced urn schemes in the following examples could also be read in
terms of reinforced random walk on a graph (by associating urns to the vertices).

Example 4.9 (Reinforced Hoppe urn processes). The predictive rule of Example
4.8 was obtained by [53] through a class of ‘reinforced Hoppe urn processes’, that
includes other constructions in the literature as special cases. Let the sample
space (or color space) be finite or countable. To each x ∈ X, associate a Hoppe
urn Ux, with αx black balls and discrete color distribution qx on X. Balls are
extracted from each urn by Hoppe sampling as in Example 3.9, but we now move
across urns as follows. Pick x0 from an initial distribution q on X, set X0 = x0,
go to urn Ux0 and pick a ball from it. Since the ball will be black, a color x1

is sampled from qx0 and a ball of color x1 is added in the urn, together with
the black ball. Set X1 = x1 and move to Hoppe urn Ux1 , and proceed simlarly.
Let (Xn)n≥0 be the process so obtained. In this construction, the draws from
the state-specific Hoppe urns Ux represent the successors of state x and are
Pólya sequences, independent across x; thus, the process (Xn)n≥0 is Markov
exchangeable. Under mild conditions it is also recurrent (see [55] for details). It
follows that a recurrent reinforced Hoppe urn process is conditionally Markov,
and the prior on the random transition matrix Q̃ is such that the rows of Q̃,
regarded as random measures on the state space X, are independent, with Q̃x ∼
DP(αx, qx) (or Dirichlet distributions in the case of a finite state space).
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As a special case, with a finite state space X, suppose that, for each x ∈ X, the
color distribution qx has finite support in X; then the process (Xn)n≥0 reduces
to the reinforced urn process by [92].

If X = {0, 1, 2, . . .} and for each x ∈ X, the color distribution qx of urn Ux

has positive masses only on x + 1 and x0 = 0, the process (Xn) corresponds
to the reinforced urn process proposed by [127] for Bayesian survival analysis.
Indeed, for this case, the exchangeable sequence of the lengths of the x0 blocks
characterizes a novel Beta-Stacy prior can be used as a conjugate prior with
exchangeable censored data. A version of this predictive construction also allows
a generalization of the finite population Bayesian bootstrap [87], to include
censored observations [93]. �

A hierarchical version of the reinforced Hoppe urn process gives the popular
infinite hidden Markov model proposed by Beal, Ghahramani and Rasmussen
[9] for Bayesian learning in hidden Markov models with an unbounded number
of states.

Example 4.10 (infinite Hidden Markov Model). Suppose that the state space
(θ∗1 , θ

∗
2 , . . .) is countable and unknown. In [9], this is the state space of the latent

state process (Xn)n≥0 of a hidden Markov model where a new state may be
added as the need occurs. The authors construct (Xn)n≥0 through a predictive
scheme that again envisages a reinforced Hoppe urn process; but, differently
from Example 4.9, and also from the construction in Example 4.5, here Hoppe’s
urns are created as a new state (color) is discovered; and colors are drawn when
the need occurs from a common ‘oracle’ Hoppe urn with an initial number γ
of black balls and diffuse color distribution P0. The process starts by picking
a ball from the oracle urn; since the ball will be black, a first color, say θ∗1 ,
is picked from P0; and the black ball and an additional ball of color θ∗1 are
returned in the oracle urn. Then one sets X0 = θ∗1 and creates a Hoppe urn Uθ∗

1

with α black balls, picks a ball from it, and proceeds similarly. This generates a
process (Xn)n≥0 that is recurrent and Markov exchangeable; thus, there exist Q̃

conditionally on which (Xn)n≥0 is a Markov chain with transition matrix Q̃, and

the construction characterizes the prior law on Q̃. The draws from the oracle
urn generate the states of the process, and are a Pólya sequence with directing
random measure P̃ ∼ DP(γ, P0). Conditionally on all the draws (θ∗1 , θ

∗
2 , . . .)

from the oracle urns, thus on P̃ = P , the process (Xn)n≥0 is a reinforced
Hoppe urn process as in Example 4.9, with state space (θ∗1 , θ

∗
2 , . . .); thus, the

rows of Q̃, regarded as random distributions on the state space (θ∗1 , θ
∗
2 , . . .),

have independent DP(α, P ) distributions. Therefore, the prior law on the rows
of Q̃, regarded as random distributions, is a hierarchical Dirichlet process with
parameters (α, γ, P0). Here, the construction of the prior is purely predictive;
the hierarchical Dirichlet process was introduced later [121].

The predictive distribution of Xn+1 given x0:n is analytically complex; how-
ever, the predictive construction above can be exploited to design computational
methods, see e.g. [61]. �



/Prediction and exchangeability 36

4.4. Row-column exchangeability

Many data are in the form of arrays, graphs, matrices, and forms of partial
exchangeability are developed for general random structures. In this section
we briefly review Aldous’ notion of row-column exchangeability, or partial ex-
changeability for random arrays, and refer to Aldous [2] and Kallenberg [79] for
extensive treatment. An excellent review paper that also includes Bayesian mod-
els for exchangeable random structures in statistics and machine learning is [97].
We do not even try to review the wide and growing literature on row-column ex-
changeable arrays, and related theory of exchangeable random graphs and more
recent theory for sparse graphs. We just recall basic concepts and the analogue
of de Finetti representation theorem for row-column exchangeable arrays. In
the predictive perspective of this paper, it would be interesting to include basic
properties of the predictive distributions, in analogy to what we have in Propo-
sition 2.4 for exchangeable sequences. However, to the best of our knowledge,
results of this nature for row-column exchangeable arrays are lacking. A first
result, that once more relates the problem with de Finetti’s concept of partial
exchangeability and holds for a fairly general class of row-column exchangeable
arrays, is given in unpublished work by [49].

In studying exchangeability, we have regarded the data (X1, . . . , Xn) as el-
ements of an infinite sequence (Xn)n≥1. Similarly, here we consider an ob-
served finite array [Xi,j ]i,j=1,...,n as a sub-array of an infinite random array
X = [Xi,j ]i,j≥1; the Xi,j are X-valued random variables, where X is a Polish
space.

Definition 4.11. An infinite random array X = [Xi,j ]i,j≥1 is separately ex-
changeable if

X
d
= [Xσ1(i),σ2(j)]i,j≥1 (4.5)

for all finite permutations σ1, σ2 of N. It is jointly exchangeable if the above
holds in the special case σ1 = σ2.

Condition (4.5) is equivalent to requiring that the rows of X are exchangeable
and the columns are exchangeable; it is thus referred to as row-and-column
exchangeability (RCE). We will use the terminolgy RCE array to mean that the
array is either separately or jointly exchangeable. Separate exchangeability is
an appropriate assumption if rows and columns of the array correspond with
two distinct sets of entities; for example, rows correspond to users and columns
to movies. If there is a single set of entities, for example the vertices of a graph,
one may require invariance under permutations of the entities, that is, joint
exchangeability.

Indeed, binary jointly exchangeable arrays give a representation of exchange-
able random graphs. A random infinite graph (with known vertices, labeled by
N, and random edges) is exchangeable if its probability law is invariant under
every finite permutation of its vertices. Equivalently, if and only if the corre-
sponding adjacency matrix X = [Xi,j ]i,j≥1, where Xi,j is the indicator of there
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being an edge (i, j) in the graph, is jointly exchangeable. Actually, theoretical
results for RCE arrays have been rediscovered in the developments of the limit-
ing theory for large graphs initiated by Lovász and Szegedy [90]. The connection
between graph limits and RCE arrays is given by Diaconis and Janson [39]. We
refer to the monograph by Lovász [89] for the graph limit theory.

Proving a de Finetti-like representation for RCE arrays has been more del-
icate than expected. The representation theorem was independently given by
Hoover [69] and Aldous [1] and developed more systematically by Kallenberg,
culminating in his 2005 monograph [79]. The proof that appears in Aldous ([1];
see also [2], Theorem 14.11) uses the concept of ‘coding’. The way this is used
may be unfamiliar for some readers; to introduce it, note that de Finetti’s rep-
resentation theorem can be given (e.g. [2], page 129) as follows. A sequence of
r.v.’s (Xn)n≥1 is exchangeable if and only if there exists a measurable function
H : [0, 1]2 → X such that (Xn)n≥1 can be coded through i.i.d. uniform r.v.’s

U,Ui, i ≥ 1 with a representing function H , that is, (Xn)n≥1
d
= (H(Un, U))n≥1.

For example, binary r.v.’s (Xn)n≥1 are exchangeable if and only if they can be
generated by first picking θ from a prior law π (through θ = π−1(U), where π−1

is the generalized inverse of the prior distribution function π), then sampling

Xi
i.i.d.∼ Bernoulli(θ) (through Xi = 1(Ui≤θ)).

Theorem 4.12 (Aldous-Hoover representation theorem for separately exchange-
able arrays). An infinite random array X = [Xi,j ]i,j≥1 is separately exchange-
able if and only if there exists H : [0, 1]4 → X such that X can be coded by
i.i.d. Uniform(0, 1) independent r.v.’s U ;Ui, i ≥ 1;Vj , j ≥ 1, Ui,j , i, j ≥ 1, with
representing function H, that is

[Xi,j ]i,j≥1
d
= [X∗

i,j ]i,j≥1,where X
∗
i,j = H(U,Ui, Vj , Ui,j).

The natural statistical interpretation is that Xi,j is determined by a row
effect Ui, a column effect Vj , an individual effect Ui,j and an overall effect U .

Binary arrays. To simplify, let us consider binary arrays. The representation
theorem can be rephrased by saying that an infinite binary random array X is
separately exchangeable if and only if there exists a probability measure π on
the space of (measurable) functions from [0, 1]2 → [0, 1] such that X can be
generated as follows (the r.v.’s Ui, Vi, Ui,j are as in the theorem). Each row i is
assigned a latent feature Ui and each column j is assigned a feature Vj . Indepen-
dently generate a function W (·, ·) from the probability distribution π (through
the uniform r.v. U). Given the features assignment and W , set Xi,j = 1 with
probability W (Ui, Vj) (that is, Xi,j = 1 if Ui,j ≤ W (Ui, Vj)). Note that if W is
fixed (not picked from π), the resulting array [Xi,j ]i,j≥1 is separately exchange-
able by the symmetry of the construction. Denote by PW its probability law.
Aldous-Hoover representation theorem proves that any separately exchangeable
binary array is a mixture of such arrays.

Theorem 4.13 (Aldous-Hoover; binary arrays). Let X = [Xi,j ]i,j≥1 be an
infinite separately exchangeable binary random array. Then, there is a probability
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distribution π such that

P(X ∈ ·) =
∫

PW (·)dπ(W ). (4.6)

Borrowing from the language of random graphs, a (measurable) map W :
[0, 1]2 → [0, 1] is called a graphon. A graphon defines a probability law PW as
above, however this parametrization is not unique; in other words, in statistical
sense, W is not identifiable. Indeed, if W ′ is obtained from W by a measure-
preserving transformation of each variable, then clearly the associated process
[X ′

i,j ]i,j≥1 has the same joint distribution as [Xi,j ]i,j≥1. It has been proved that
this is the only source of non-uniqueness [79]. A unique parametrization can be
obtained by substituting the graphons W by equivalence classes. The results
by Orbanz and Szegedy [98] imply that this parametrization is measurable. See
[39] and [97] for a more extensive treatement.

For jointly exchangeable arrays, there is an analogous representation result as
Theorem 4.12, with X∗

i,j = H(U,Ui, Uj, U{i,j}), where (Ui)i≥1 and [U{i,j}]i,j≥1

are, respectively, a sequence and an array of independent uniform r.v.’s and H is
symmetric in (Ui, Uj); see [2], Theorem 14.21. Note that the indexes of the U{i,j}
are unordered and the array [U{i,j}] may be thought of as an upper-triangular
matrix with i.i.d. uniform entries.

We give a version of the representation theorem for binary jointly exchange-
able arrays; in particular, this applies to binary arrays representing the adja-
cency matrix of an infinite simple graph (undirected and with no multiple edges
and self-loops). In this latter case, the adjacency matrix [Xi,j ]i,j≥1 is symmetric
with a zero diagonal. A binary jointly exchangeable array can be constructed in a
similar way as before, by now assigning features to vertices. Namely, each vertex

i ∈ N is assigned a latent feature Ui, with Ui
i.i.d.∼ Uniform(0, 1); given the latent

features and a graphon W , we set Xi,j = 1 with probability W (Ui, Uj), inde-
pendently for all i, j. The array [Xi,j ]i,j≥1 so constructed is jointly exchangeable

by construction (and is symmetric if W is such). Denote by P
(joint)
W its prob-

ability law. The Aldous-Hoover representation theorem shows that any binary

jointly exchangeable array can be constructed as a mixture of these P
(joint)
W . In

other words, if [Xi,j ]i,j≥1 is an infinite jointly exchangeable binary array, then
conditionally on the features and on the graphon, the Xi,j are independent

Bernoulli(θ̃i,j) where θ̃i,j = W (Ui, Uj).

As given, the Aldous-Hoover theorem does not provide an empirical link for
the elements of the representation. For exchangeable sequences, de Finetti’s
representation theorem is complemented by a law of large numbers, that gives
an empirical meaning to the random directing measure F̃ as the limit of the
sequence of empirical distributions; moreover, F̃ is also the limit of the predic-
tive distributions Pn (see Proposition 2.4). For RCE arrays, the notion of an
empirical distribution and a law of large numbers are given by Kallenberg [77],
Theorem 3. The asymptotic theory is also thoroughly explained in [97]. Instead,



/Prediction and exchangeability 39

no result seems available on convergence of predictive distributions, that relate
the Aldous-Hoover representation to prediction. To our knowledge, a first result
is given in [49]; but we do not expand this further here.

5. Recursive algorithms and predictions

The predictive approach has been shown to be powerful in many contexts. A last
but important (to us) point we want to make in this paper is that a Bayesian
predictive approach can also be taken in less ‘classic’ contexts, in particular to
evaluate predictive algorithms, possibly arising from other fields, in order to
obtain better awareness of their implicit assumptions and provide probabilistic
quantification of uncertainty. We discuss this point for two recursive procedures.
The first example is from [56]; the second one is new.

Recursive computations are particularly convenient in sequential learning
from streaming data, where it is crucial to have predictions that can be quickly
updated as new observations become available, at a constant computational cost
and with limited storage of information; and recursive procedures have been de-
veloped since at least the work of Kalman [80]. Recent directions in a Bayesian
predictive approach include, among others, [67], [50] and [14]. In sections 5.1
and 5.2 below, we examine two recursive algorithms for prediction with stream-
ing data; and, in line with the principles at the basis of this paper, exposed in
the Introduction, we show how they can be read as Bayesian predictive learn-
ing rules (although not exchangeable), unveiling the implied statistical model
and obtaining Bayesian uncertainty quantification. In the examples, the implied
model is asymptotically exchangeable, thus for n large the ‘algorithm’ provides a
computationally simple approximation of an exchangeable Bayesian procedure.

In some more detail, we can read the algorithms as particular cases of a broad
class of Bayesian recursive predictive rules of the following form: X1 ∼ P0 and
for every n ≥ 1 Xn+1 | X1, . . . , Xn ∼ Pn, with

{

Pn = pn(Tn),
Tn = hn(Tn−1, Xn),

(5.1)

where pn and hn are given functions, and Tn is a predictive sufficient sum-
mary (Sect. 3.2) of X1, . . . , Xn. The form of Pn allows storage of only the suf-
ficient summaries and straightforward updating. Suitable specifications lead to
desirable properties for the sequence (Xn)n≥1 (in the examples, asymptotic ex-
changeability).

In an exchangeable parametric setting, many common models, for example
the Beta-Bernoulli scheme, have a recursive rule of the form (5.1). In a non-
parametric setting, this holds for Pólya sequences, whose predictive rule (3.5)
can be written recursively as

Pn =
α+ n− 1

α+ n
Pn−1 +

1

α+ n
δXn

.

In this case Tn ≡ Pn, and the recursive rule applies directly to the predictive dis-
tributions. This extends to other discrete nonparametric schemes; it is however
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more delicate in the continuous case. Here, a class of sequences (Xn)n≥1 that
satisfy (5.1) are measure-valued Pólya sequences (MVPS; [114]), characterized
by

Pn(·) =
γP0(·) +

∑n
i=1 RXi

(·)
γ +

∑n
i=1 RXi

(X)

where R is a non-null finite transition kernel on the sample space X and γ is a
positive constant. Letting µ0(·) = γP0(·), we can write the predictive distribu-
tions, for n ≥ 1, as in (5.1), with







Pn(·) =
µn(·)
µn(X)

µn(·) = µn−1(·) +RXn
(·).

The predictive sufficient statistic Tn in (5.1) is, in this case, the random measure
µn, which is updated by simply adding the random measure RXn

to µn−1. This
scheme extends the Hoppe’s urn characterization of Pólya sequences shown in
Example 3.9: any set of colorsB in X has initially mass µ0(B); then, at each step
n, the mass ofB is reinforced with a massRxn

(B). As proved in [114], a measure-
valued Pólya sequence (Xn)n≥1 is exchangeable if and only if it coincides with
a kernel-based Dirichlet sequence; unfortunately, as seen in Example 3.13, the
latter seems quite limited for statistical applications; and so are exchangeable
specifications of MVPS. Moreover, natural extensions, for example allowing for
random reinforcement (see e.g. [59], [112]) also require to go beyond exchange-
ability. Indeed, MVPS can be asymptotically exchangeable. The procedure we
consider in the next section 5.1 will be shown to be an asymptotically exchange-
able generalized MVPS.

Remark. As seen in Section 2, asymptotic exchangeability holds for c.i.d.
sequences. A class of recursive predictive rules that, under mild assumptions,
meets the c.i.d. condition, is presented in [12], (Sect. 4.1, Eqn (5)). Although
this class is rather general, not all the predictive rules of the form (5.1) - in
particular, not those arising in the following sections - are included in it. We
need the generality and the predictive features of the class (5.1).

5.1. Newton’s algorithm and recursive prediction in mixture models

Michael Newton and collaborators ([95], [96], [94]) proposed a recursive proce-
dure for unsupervised sequential learning in mixture models, that extends an
earlier proposal by Smith and Makov [119] and is referred to as the Newton’s
algorithm in the Bayesian nonparametric literature. Let (Xn)n≥1 be a sequence
of r.v.’s taking values in X ⊆ R

d, and consider a mixture model

Xi | G i.i.d.∼ fG(x) ≡
∫

k(x | θ)dG(θ),

where k(x | θ), θ ∈ Θ ⊆ R
k, is a kernel density of known parametric form, and

G is the unknown mixing distribution. Let us assume that the mixture model is
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identifiable. The Newton’s algorithm estimates G starting from an initial guess
G0 and recursively updating the estimate, as x1, x2, . . . become available, as

Gn(·) = (1− αn)Gn−1(·) + αnGn−1(· | xn), (5.2)

where αn and Gn−1(· | xn) are as described in Example 3.13 of Section 3, and a
simple choice for αn is αn = 1/(α+n) for some α > 0. At step n, the algorithm
returns Gn(·) as the estimate of G(·).

This recursive procedure was suggested as a simple and computationally fast
approximation of the intractable Bayesian solution in a Dirichlet process mix-
ture model. In the latter, the mixing distribution is random and is assigned a
DP(αG0) prior; then the prior guess is E(G̃(·)) = G0(·), and the first update,
based on x1, gives the Bayesian estimate

E(G̃(·) | x1) =
α

α+ 1
G0(·) +

1

α+ 1
G0(· | x1).

Newton’s algorithm (5.2) replicates the same updating form for any n > 1.
The resulting estimate Gn deviates from the Bayesian solution E(G̃(·) | x1:n),
but is computationally much simpler; and, in practice, may give a surprisingly
good approximation. Based on Gn, one can also obtain a plug-in estimate of
the mixture density fG, as fGn

(x) =
∫

k(x | θ)dGn(θ). Again, this differs from
the Bayesian density estimate E(fG(x) | x1:n) in the Dirichlet process mixture
model, where E(fG(x) | x1:n) is also the predictive density of Xn+1 given x1:n.
Our point is thus that Newton’s algorithm is using a different learning rule,
namely the predictive density

Xn+1 | x1:n ∼ fGn
(x) =

∫

k(x | θ)dGn(θ), (5.3)

with Gn as in (5.2). This is of the form (5.1), with sufficient statistic Tn = Gn;
and gives a generalized measure-valued Pólya sequence. Because, as seen in Sec-
tion 2.1 and along this paper, the predictive rule characterises the probability
law of the process (Xn)n≥1, reading the algorithm as a probabilistic predic-
tive rule allows to reveal the probability law that the researcher is implicitly
assuming for the process. It is easy to see that (5.3) characterizes a probabil-
ity law P for (Xn)n≥1 that is no longer exchangeable. However, one still has

Xn+2 | x1:n
d
= Xn+1 | x1:n. Thus, the sequence (Xn)n≥1 is c.i.d. (see sec-

tion 2.3), therefore asymptotically exchangeable. Actually, [56] prove stronger
results: the asymptotic directing random measure of (Xn)n≥1 has precisely den-

sity fG̃(x) =
∫

k(x | θ)dG̃(θ), where, P-a.s, the random distribution G̃ is the
limit of the sequence Gn, and fG̃ is the limit in L1 of the predictive density
fGn

(x).
The above results imply that for n ≥ N large

Xn | G̃ i.i.d.≈ fG̃,
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with a novel prior on the random mixing distribution G̃, that, interestingly, can
select absolutely continuous distributions [56]; but is not known explicitly. How-
ever, one can sample from it, through the ‘sampling from the future’ algorithm
described in Section 2.4. Moreover, in the same spirit as in Proposition 2.6, but
referring to the mixing distribution, one can obtain an asymptotic Gaussian ap-
proximation of the posterior distribution of [G̃(t1), . . . , G̃(tM )] given x1:n. Our
predictive methodology also allows to naturally obtain principled extensions,
that otherwise would mostly be heuristic; see again [56].

5.2. Online gradient descent and prediction

Consider the problem of classifying items as ‘type 0’ or ‘type 1’ based on
a d-dimensional vector of features, for example through a neural network or
a generalized linear model. Let the items arrive sequentially, and, for every
n ≥ 1, let Yn and Xn represent the ‘type’ and features of the nth item, re-
spectively. Typically, the relationship between Xn and Yn is modelled through
P(Yn = 1 | xn) = g(xn, β), where g is a known function and β is an unknown
d-dimensional parameter, and the Xi are assumed to be i.i.d. from a distribution
(known or unknown) PX . Given a sample, or ‘training set’, (xi, yi)i=1,...,n, an
estimate of the parameter β can be obtained by minimizing, with respect to β, a
loss function L(β;x1, y1, . . . , xn, yn) measuring the difference between the actual
values of y1, . . . , yn and the ones predicted by the model. While efficient algo-
rithms exist to solve this optimization problem, the computational cost becomes
substantial when β is high-dimensional. Additionally, if data arrive sequentially,
the process must be restarted from scratch with each new data point. In this
context, β can be estimated by an online learning [118] procedure, based on the
stochastic approximation [111] of the gradient descent dynamic: β is initialised
at time zero as β0 (which can be random or deterministic), and then updated,
at each new data (xn, yn), by “moving” it along the direction that minimizes
L(βn−1;xn, yn), (that is opposite to the direction of the gradient with respect
to βn−1):

βn = βn−1 −
1

n
∇βL(βn−1;xn, yn). (5.4)

Although the results of this section hold for other choices of L (for example
quadratic loss) and g, here we consider the typical case of binary cross entropy
loss
L(β;x1, y1, . . . , xn, yn) = −∑n

i=1[yi log2(g(xi, β)) + (1 − yi) log2(1 − g(xi, β))]
and logistic function

g(x, β) =
ex

Tβ

1 + exTβ
. (5.5)

In this case, (5.4) becomes

βn = βn−1 +
1

n log 2
(yn − g(xn, βn−1))xn. (5.6)
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If PX is known, we can reinterpret the algorithm as a Bayesian predictive
learning rule of the form (5.1), where Tn = βn is updated at each new observa-
tion (xn, yn) as in (5.6), and we assume that, for y = 0, 1,

P(Xn+1 ∈ dx, Yn+1 = y|x1:n, y1:n) (5.7)

= g(x, βn)
y(1− g(x, βn))

1−yPX(dx),

with g as in (5.5). In fact, the assumption that PX is known (or has been
estimated separately) is only instrumental for the theoretical results; our final
result does not require to know PX .

This predictive rule is not consistent with exchangeability of the sequence
((Xn, Yn))n≥1; however, under mild assumptions, exchangeability holds asymp-
totically, as shown in the following proposition. All the proofs are in Section A5
of the Supplement [58].

Proposition 5.1. Let ((Xn, Yn))n≥1 have probability law P characterized by the
predictive rule (5.6)-(5.7), where g is given by (5.5), E(||β0||2) < ∞, and PX

has bounded support. Then:

i) The sequence of random vectors (βn)n≥0 converges P-a.s. to a random

limit β̃ and, for every n ≥ 0, βn = E(β̃ | β0, X1, Y1, . . . , Xn, Yn);
ii) The sequence of random vectors ((Xn, Yn))n≥1 is P̃X,Y -asymptotically ex-

changeable, with the random measure P̃X,Y such that the conditional dis-

tribution P̃Y |X=x of Y given X = x is Bernoulli(g(x, β̃)).

Informally, this implies that, for n large,

Yn | β̃, xn
indep≈ Bernoulli(g(xn, β̃)).

The posterior distribution of the random vector β̃ remains unknown. How-
ever, for n large, it can be approximated by a multivariate Normal distribution
centered in βn.

Proposition 5.2. Under the assumptions of Proposition 5.1, with PX being
non-degenerate on any linear subspace of R

d, the conditional distribution of√
n(β̃ − βn), given β0, X1, Y1, . . . , Xn, Yn, converges P-a.s., as n → ∞, to a

multivariate Normal distribution with mean zero and random covariance matrix

U = (log 2)−2

∫

xxT g(x, β̃)(1−g(x, β̃))PX(dx). (5.8)

The random matrix U , that depends on the unknown parameter β̃, can
be approximated by replacing β̃ with βn. Thus, for n large β̃ | x1:n, y1:n ≈
Nd(βn, Un/n), with Un = (log 2)−2

∫

xxT g(x, βn)(1− g(x, βn))dPX(x).
The following alternative approximation of U does not require to know PX .

Proposition 5.3. Under the assumptions of Proposition 5.2, as n → ∞,

i) The statistic Vn = 1
n

∑n
k=1 k

2(βk − βk−1)(βk − βk−1)
T converges P-a.s. to

the random matrix U in (5.8);
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ii) The conditional distribution of
√
nV

−1/2
n (β̃−βn), given β0, X1, Y1, . . . , Xn, Yn

converges P-a.s. to the standard multivariate Normal distribution.

Thus, for n large, for P-almost all sample paths,

β̃ | x1:n, y1:n ≈ Nd(βn, Vn/n),

which can be used, in particular, to provide asymptotic credible sets.

Remark. The proofs of Propositions 5.1, 5.2 and 5.3 are based on a key mar-
tingale property of the sequence (βn)n≥0. These results can be generalized to
other algorithms as long as the martingale property holds and certain moment
bounds are met. Although our techniques are not directly applicable without the
martingale property, extending the Bayesian interpretation beyond martingale-
based learning appears feasible, since many algorithms are based on stochas-
tic approximations with well-understood limit theorems and convergence rates.
Also, computational strategies such as Approximate Bayesian Computation or
Variational Bayes might be read as using a predictive learning rule whose prop-
erties could be studied in our predictive approach.

6. Final remarks

We have offered a review, from foundations to some recent directions, of prin-
ciples and methods for Bayesian predictive modeling; and of course a lot could
not be covered. We barely mentioned that prediction is not, in fact, the ulti-
mate goal, but the basis for decisions to be taken under risk. Also, the paper
is, somehow unavoidably, mostly theoretical, aiming at discussing fundamental
concepts; but a predictive approach involves our perspective in inference and
in any statistical problem, with evident practical implications; ultimately, the
basic principle is that, differently from inferential conclusions, predictions can
be checked with facts.
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via Pólya urn schemes. Ann. Statist. 1 353-355.
[18] Breiman, L. (2001). Statistical Modeling: The Two Cultures (with dis-

cussion). Statist. Sci. 16 199-231.
[19] Camerlenghi, F., Favaro, S., Masoero, L. and Broderick, T.



/Prediction and exchangeability 46

(2024). Scaled Process Priors for Bayesian Nonparametric Estimation of
the Unseen Genetic Variation. Journal of the American Statistical Asso-
ciation 119 320–331.

[20] Camerlenghi, F., Lijoi, A., Orbanz, P. and Prünster, I. (2019).
Distribution theory for hierarchical processes. Ann. Statist. 47 67–92.

[21] Camerlenghi, F., Lijoi, A. and Prünster, I. (2017). Bayesian predic-
tion with multiple-samples information. Journal of Multivariate Analysis
156 18-28.

[22] Catalano, M., Sole, C. D., Lijoi, A. and Prünster, I. (2023). A
Unified Approach to Hierarchical Random Measures. Sankhya A.

[23] Cifarelli, D. M. and Regazzini, E. (1996). De Finetti’s contribution
to probability and statistics. Statist. Sci. 11 253 – 282.

[24] Clarke, B. S. and Clarke, J. L. (2018). Predictive Statistics: Analysis
and Inference beyond Models. Cambridge University Press.

[25] Coppersmith, D. and Diaconis, P. (1986). Random walk with rein-
forcement. Unpublished manuscript.

[26] Crimaldi, I. (2009). An almost sure conditional convergence result and
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[95] Newton, M. A.,Quintana, F. A. and Zhang, Y. (1998). Nonparamet-
ric Bayes methods using predictive updating In Practical Nonparametric
and Semiparametric Bayesian Statistics 45–61. Springer, New York.

[96] Newton, M. A. and Zhang, Y. (1999). A recursive algorithm for non-
parametric analysis with missing data. Biometrika 86 15–26.

[97] Orbanz, P. and Roy, D. M. (2015). Bayesian Models of Graphs, Ar-
rays and Other Exchangeable Random Structures. IEEE Transactions of
Pattern Analysis and Machine Intelligence 37 437–461.

[98] Orbanz, P. and Szegedy, B. (2016). Borel liftings of graph limits. Elec-
tron. Commun. Probab. 21 1-4.

[99] Parmigiani, G. and Inoue, L. (2009). Decision Theory: Principles and
Approaches. John Wiley & Sons,Chichester, UK.

[100] Pemantle, R. (2007). A survey on random processes with reinforcement.
Probab. Surv. 4 1–79.

[101] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of
Poisson point processes and excursions. Probability Theory and Related
Fields 92 21—39.

[102] Petrone, S. (1999). Random Bernstein Polynomials. Scand. J. Stat. 26
373–393.

[103] Petrone, S. and Veronese, P. (2010). Feller operators and mixture
priors in Bayesian nonparametrics. Statist. Sinica 20 379–404.

[104] Pitman, J. (1995). Exchangeable and partially exchangeable random par-
titions. Probab. Theory Related Fields 102 145–158.

[105] Pitman, J. (1996). Some developments of the Blackwell–MacQueen urn
scheme. In Statistics, Probability and Game Theory. Papers in honor of
David Blackwell, (T. S. Ferguson, L. S. Shapley and J. B. MacQueen,
eds.). IMS Lecture Notes - Monograph Series 30 245–267. Institute of
Mathematical Statistics, Hayward, California.

[106] Pitman, J. (2002). Combinatorial Stochastic Processes. Ecole d’Eté
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A1. Preliminary results

We first recall two results in the literature that will be used in the subsequent
arguments. The first result [3] is an almost sure convergence of conditional dis-

tributions result for martingales; the notation has been adapted to fit with this
paper.

Theorem A1.1 (Theorem 2.2 in [3]). On (Ω,F ,P), let (Mn)n≥0 be a real

martingale with respect to the filtration G = (Gn)n≥0. Suppose that (Mn)n≥0

converges in L1 to a random variable M . Moreover, setting, for n ≥ 1,

Un ≡ n
∑

m≥n

(Mm −Mm−1)
2, Y ≡ sup

n

√
n|Mn −Mn−1|,

assume that the following conditions hold:

i) The random variable Y is integrable.

ii) The sequence (Un)n≥1 converges P-a.s. to a positive random variable U .

Then, for every z ∈ R,

P(
√
n(Mn −M) ≤ z | Gn)

a.s.→ Φ(U−1/2z),

as n → ∞, where Φ denotes the standard normal cumulative distribution func-

tion.

A careful inspection of the proof of Theorem 2.2 in [3] shows that, if Un

converges to a non-negative random variable U , then the thesis can be modified
as follows: for ω in a set of probability one

P(
√
n(Mn −M) ≤ x | Gn)(ω) →

{

Φ(U−1/2x)(ω) U(ω) > 0
1[0,+∞))(x) U(ω) = 0.

In applying Theorem A1.1, a critical point is proving the convergence of
(Un)n≥1. The following result provides sufficient conditions.

Theorem A1.2 (Lemma 4.1 in [4]). Let G = (Gn)n≥0 be a filtration and

(Zn)n≥1 be a G-adapted sequence of real random variables such that E(Zn|Gn−1) →

1

http://arxiv.org/abs/2402.10126v2
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Z, P-a.s. for some real random variable Z. Moreover, let (an)n≥1 and (bn)n≥1

be two positive sequences of strictly positive real numbers such that

bn ↑ +∞,

∞
∑

n=1

E(Z2
n)

a2nb
2
n

< +∞.

Then we have:

i) If 1
bn

∑n
m=1

1
am

→ γ for some constant γ, then

1

bn

n
∑

m=1

Zm

am

a.s.→ γZ.

ii) If bn
∑

m≥n

1

amb2m
→ γ for some constant γ, then

bn
∑

m≥n

Zm

amb2m

a.s→ γZ.

A2. Proofs for Section 2

Before proving Proposition 2.6, we give a preliminary convergence result.

Proposition A2.1. Let (Xn)n≥1 ∼ P be a c.i.d. sequence of real-valued r.v.’s,

with predictive rule (Pn)n≥0, and take t = (t1, . . . , tk) such that P(X1 ∈ {t1, . . . , tk}) =
0. If the following conditions hold:

E(sup
n

√
n|∆ti,n|) < +∞ i = 1, . . . , k

∞
∑

n=1

n2E(∆4
ti,n) < +∞ i = 1, . . . , k

E(n2∆t,n∆
T
t,n | X1, . . . , Xn) → Ut P-a.s.

for a positive definite random matrix Ut, then, P-a.s.,

√
n





F̃ (t1)− Pn(t1)
. . .

F̃ (tk)− Pn(tk)



 | X1, . . . , Xn
d→ Nk(0, Ut).

Proof. By Cramér-Wald device, it is sufficient to show that, for every vector
u = [u1 . . . uk]

T with ||u|| = 1, every z ∈ R, P-a.s.

P(
√
n

k
∑

i=1

ui(F̃ (ti)− Pn(ti)) ≤ z | X1, . . . , Xn) → Φ((uTUtu)
−1/2z),

where Φ denotes the standard normal cumulative distribution function. The
proof is based on Theorem A1.1 and Theorem A1.2.
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The sequence (Xn)n≥1 is c.i.d., thus (Pn)n≥0 is a martingale with respect
to the natural filtration (Gn)n≥0 of (Xn)n≥1. Moreover the asymptotic direct-

ing random measure F̃ of (Xn)n≥1 is the P-a.s. limit of Pn (in the topology of

weak convergence) and satisfies, for every n ≥ 1, E(F̃ | Gn) = Pn. In particu-
lar, E(F̃ ) = P0, which implies that E(F̃{t1, . . . , tk}) = P0({t1, . . . , tk}) = 0.
It follows that F̃ ({t1, . . . , tk}) = 0 (P-a.s.). Hence the bounded martingale
(Pn(t1), . . . , Pn(tk))n≥0 converges P-a.s. and in L1 to (F̃ (t1), . . . , F̃ (tk)).

For every n ≥ 0, let Mn =
∑k

i=1 uiPn(ti). Then, (Mn)n≥0 is a martingale

with respect to (Gn)n≥0, converging in L1 to
∑k

i=1 uiF̃ (ti). Notice that, for every

n ≥ 1, Mn−Mn−1 =
∑k

i=1 ui∆ti,m. To prove that condition i) of Theorem A1.1
holds we can write that

sup
n

√
n

∣

∣

∣

∣

∣

k
∑

i=1

ui∆ti,n

∣

∣

∣

∣

∣

≤ sup
n

√
n

k
∑

i=1

|∆ti,n| ≤
k
∑

i=1

sup
n

√
n |∆ti,n| .

Thus,

E

(

sup
n

√
n

∣

∣

∣

∣

∣

k
∑

i=1

ui∆ti,n

∣

∣

∣

∣

∣

)

≤
k
∑

i=1

E

(

sup
n

√
n |∆ti,n|

)

,

which is finite by the first assumption of Proposition A2.1. To verify condition
ii) of Theorem A1.1, we employ Theorem A1.2ii), with

Zn = n2(Mn −Mn−1)
2 = n2(

k
∑

i=1

ui∆ti,n)
2,

un = 1 and bn = n. First,

E(Zn | Gn−1) = E

(

n2(
k
∑

i=1

ui∆ti,n)
2 | Gn−1

)

=
k
∑

i,j=1

uiujE
(

n2∆ti,n∆tj ,n | Gn−1

)

,

which converges P-a.s. to uTUtu by the third assumption of Proposition A2.1.
Furthermore

∞
∑

n=1

n2E





(

k
∑

i=1

ui∆ti,n

)4


 ≤
∞
∑

n=1

n2E





(

k
∑

i=1

∆2
ti,n

)2




≤ k2
∞
∑

n=1

n2E





(

1

k

k
∑

i=1

∆2
ti,n

)2


 ≤ k2
∞
∑

n=1

n2E

(

1

k

k
∑

i=1

∆4
ti,n

)

≤ k

k
∑

i=1

∞
∑

n=1

n2E
(

∆4
ti,n

)

,
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which is finite by the second assumption of Proposition A2.1. It follows by
Theorem A1.2 that

n
∑

m≥n

(Mm −Mm−1)
2 = bn

∑

m≥n

Zm

b2m

converges P-a.s. to the P-a.s. limit of E(Zn | Gn−1), that is to uTUtu. This
proves that assumption ii) of Theorem A1.1 holds. Therefore, for every z ∈ R,
P-a.s.,

P(
√
n

k
∑

i=1

ui(F̃ (ti)− Pn(ti)) ≤ z | X1, . . . , Xn)

= P(
√
n(Mn −M) ≤ z | X1, . . . , Xn)

a.s.→ Φ((uTUtu)
−1/2z).

Proof of Proposition 2.6. By the properties of stable convergence and Proposition A2.1,
it is sufficient to show that Vn,t is positive definite for n large enough, and con-
verges to Ut, P-a.s, with respect to the operator norm || · ||op. Since Ut is positive
definite, then Vn,t is positive definite for n large enough if (Vn,t)n≥1 converges to
Ut in the operator norm. Thus, it is sufficient to show that (Vn,t)n≥1 converges to
Ut in the operator norm, or, equivalently that, for every vector u = [u1 . . . uk]

T

with ||u|| = 1,
uTVn,tu → uTUtu,

P-a.s. Notice that

uTVn,tu =

k
∑

i,j=1

uiuj
1

n

n
∑

m=1

m2∆ti,m∆tj ,m =
1

n

n
∑

m=1

m2

(

k
∑

i=1

uti∆ti,m

)2

=
1

n

n
∑

m=1

Zm,

with Z1, Z2, . . . defined as in the proof of Proposition A2.1. Since we are working
under the assumptions of Proposition A2.1, we can employ all the findings in its
proof. In particular, we know that (E(Zn | Gn−1))n≥1 converges P-a.s to uTUtu,
and

∑∞
n=1 E(Z2

n)/n
2 < +∞. By Theorem A1.2 i) with an = 1 and bn = n,

we obtain that 1
n

∑n
m=1 Zm converges P-a.s. to uTUtu, which completes the

proof.

A3. Proofs for Section 3

Proof of Theorem 3.3. Consider a countable class of convergence determining
sets A such that P0(∂A) = 0. For every A in the class, P̃ (∂A) = 0, P − a.s.
Thus,

T (F̂n) → T (F̃ ), qn(A, T (F̂n)) → F̃ (A) (A1)
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hold for every A in the class, with probability one. Fix A. Since (qn(A, t))n≥0

are continuous in t, uniformly with respect to t and n, then for every ǫ > 0 there
exists δ = δ(A) such that

|qn(A, t)− qn(A, t
′)| < ǫ

for every n, whenever t, t′ ∈ T satisfy ||t − t′|| < δ. Let ω and ω′ be such that
(A1) holds for ω and ω′, and T (F̃ )(ω) = T (F̃ )(ω′). Then, for n large enough
||T (F̂n)(ω)− T (F̂n)(ω

′)|| < δ, which implies that, for n sufficiently large

|qn(A, T (F̂n(ω)))− qn(A, T (F̂n(ω
′)))| < ǫ.

In turn, this implies that |F̃ (A)(ω)− F̃ (A)(ω′)| < ǫ. Since this is true for every
ǫ, then F̃ (A)(ω) = F̃ (A)(ω′). Since the class of sets A is countable, then there
exists a set N ∈ F with P(N) = 0, such that F̃ (·)(ω) = F̃ (·)(ω′) for every
ω, ω′ ∈ N c satisfying T (F̃ )(ω) = T (F̃ )(ω′). It follows that there exists a function
F (· | t) such that F̃ (·)(ω) = F (· | T (F̃ (ω))) for every ω ∈ N c. Extending
arbitrarily F (· | t) outside the set T (F̃ (N c)), we obtain F̃ (·) = F (· | T (F̃ )),
P-a.s. The measurability of F can be proved by classical arguments.

Proof of Proposition 3.7. For any k ≥ 1 and any partition (A1, . . . , Ak), we have
from [7] that there exists (αA1 , . . . , αAk

) such that

P(Xn+1 ∈ Aj | x1:n) = P(Xn+1 ∈ Aj | nAj
) =

αAj
+ nAj

αA1,...,Ak
+ n

,

where, for each setA, nA is the number of observations x1, . . . , xn in A, αA1,...,Ak
=

∑k
i=1 αAi

and the first equality comes from (3.4). Moreover, (F̃ (A1), . . . , F̃ (Ak))
∼ Dirichlet(αA1 , . . . , αAk

). Any set A can be interpreted as an element of a
finite partition, and, by the properties of the Dirichlet distribution, αA does
not depend on the partition. In particular, α ≡ αA1,...,Ak

does not depend on

A1, . . . , Ak. By the assumption of exchangeability, we have that E(F̃ (A)) =
P(X1 ∈ A) = P0(A) for every A. On the other hand, by the properties of
the Dirichlet distribution, E(F̃ (A)) = αA/α, for any A. Hence αA = αP0(A),
which implies that, for every partition (A1, . . . , Ak), (F̃ (A1), . . . , F̃ (Ak)) ∼
Dirichlet(αP0(A1), . . . , αP0(Ak)). Since all the finite dimensional distributions
of F̃ coincide with the ones of a Dirichlet process with parameters (α, P0), then
F̃ ∼ DP (α, P0).

Remark. The proof of Proposition 3.7 relies on the characterization of the Dirich-
let distribution (i.e. a Dirichlet process on a finite set {1, . . . , k}) by Zabell [7].
Zabell assumes that P0({j}) > 0 for every j = 1, . . . , k. However, if P0({j}) = 0
for a specific j, one can apply the result to the reduced space where j has
been removed, demonstrating that F̃ restricted to this reduced space follows a
Dirichlet distribution. The law of F̃ on the entire space {1, . . . , k} can then be
obtained by setting F̃ ({j}) = 0. This distribution is still referred to as Dirichlet
distribution (see e.g. [5]).
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A4. Proofs for Section 4

Proof of Theorem 4.4. First we prove that the conditions i) and ii) are necessary
for partial exchangeability. Partial exchangeability implies that, for every n ≥ 2,
k ≤ M finite, (Am,j)1≤m≤n+1,1≤j≤k and permutation σj of {1, . . . , n} (j =
1, . . . , k)

P(∩j≤k,m≤n+1(Xm,j ∈ Am,j))

=P(∩j≤k,m≤n(Xm,j∈Aσ−1
j

(m),j)∩∩j≤k(Xn+1,j∈An+1,j)).

Hence,

∫

×m≤n,j≤kAm,j

P(∩k
j=1(Xn+1,j ∈An+1,j) | (xm,j)m≤n,j≤k)P(∩m≤n,j≤k(Xm,j ∈ dxm,j))

=

∫

×m≤n,j≤kA
σ
−1
j

(m),j

P(∩k
j=1(Xn+1,j ∈ An+1,j) | (xm,j)m≤n,j≤k)P(∩m≤n,j≤k(Xm,j ∈ dxm,j))

=

∫

×m≤n,j≤kAm,j

P(∩k
j=1(Xn+1,j ∈ An+1,j) | (xσj(m),j)m≤n,j≤k)P(∩m≤n,j≤k(Xm,j ∈ dxσj(m),j))

=

∫

×m≤n,j≤kAm,j

P(∩k
j=1(Xn+1,j ∈ An+1,j) | (xσj (m),j)j≤k,m≤n)P(∩m≤n,j≤k(Xm,j ∈ dxm,j)).

Thus, P(∩k
j=1(Xn+1,j ∈ An+1,j) | (xm,j)m≤n,j≤k) = P(∩k

j=1(Xn+1,j ∈ An+1,j) |
(xσj(m),j)j≤k,m≤n), which proves i).

Let us now prove ii). By partial exchangeability, we can write, for every n
and Am,j , Aj and Bj (j = 1, . . . , k,m = 1, . . . , n), and every i = 1, . . . , k,

P

(

∩m≤n,j≤k(Xm,j ∈ Am,j) ∩ ∩k
j=1(Xn+1,j ∈ Aj) ∩ ∩k

j=1(Xn+2,j ∈ Bj

)

= P

(

∩m≤n,j≤k(Xm,j ∈ Am,j) ∩ ∩j≤k,j 6=i(Xn+1,j ∈ Aj)

∩ ∩j≤k,j 6=i(Xn+2,j ∈ Bj) ∩ (Xn+1,i ∈ Bi) ∩ (Xn+1,i ∈ Ai)
)

.

Hence,

∫

×m≤n,j≤kAm,j××j≤k,j 6=iAj×Bj

P(∩m≤n,j≤k(Xm,j ∈ dxm,j))

∫

Ai

P(Xn+1,i ∈ dxn+1,i | (xm,j)m≤n,j≤k)

P(Xn+2,i ∈ Bi | (xm,j)m≤n+1,j≤k)
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=

∫

×m≤n,j≤kAm,j××j≤k,j 6=iAj×Bj

P(∩m≤n,j≤k(Xm,j ∈ dxm,j))

∫

Bi

P(Xn+1,i ∈ dxn+1,i | (xm,j)m≤n,j≤k)

P(Xn+2,i ∈ Ai | (xm,j)m≤n+1,j≤k).

Since the equality holds for every (Am,j)1≤m≤n,1≤j≤k, it follows that ii) holds.
We now prove that the conditions i)-ii) are sufficient for partial exchange-

ability. Since permutations can be obtained as combinations of permutations of
adjacent elements, then it is sufficient to show that for every i = 1, . . . , k, n ≥ 2,
s = 1, . . . , n− 1, and (Am,j)1≤m≤n,1≤j≤k

P(∩k
j=1 ∩n

m=1 (Xm,j ∈ Am,j)) = P(∩k
j=1 ∩n

m=1 (Xm,j ∈ Aσj(m),j)),

where σj is the identity for j 6= i and σi interchanges s and s+1. For s = n− 1
the property is a direct consequence of ii). For s < n− 1, we have

P(∩m≤n,j≤k(Xm,j ∈ Aσj(m),j))

=

∫

×m≤s−1,j≤kAm,j

P(∩m≤s−1,j≤k(Xm,j ∈ dxm,j))

∫

×j≤kAσj(s),j

P(∩k
j=1(Xs,j ∈ dxs,j) | (xm,j)m<s,j≤k)

∫

×j≤kAσj(s+1),j

P(∩k
j=1(Xs+1,j ∈ dxs+1,j) | (xm,j)m≤s,j≤k)

∫

×s+2≤m≤n,j≤kAm,j

∏n−1
m=s+1P(∩k

j=1(Xm+1,j ∈ dxm+1,j) | (xl,j)l≤m,j≤k)

=

∫

×m≤s−1,j≤kAm,j

P(∩m≤s−1,j≤k(Xm,j ∈ dxm,j))

∫

×i≤kAs,j

P(∩k
j=1(Xs,j ∈ dxs,j) | (xm,j)m<s,j≤k)

∫

×j≤kAs+1,j

P(∩k
j=1(Xs+1,j ∈ dxs+1,j) | (xm,j)m≤s,j≤k)

∫

×s+2≤m≤n,j≤kAm,j

∏n−1
m=s+1P(∩k

j=1(Xm+1,j ∈ dxm+1,j) | (xl,j)l≤m,j≤k)

= P(∩m≤n,j≤k(Xm,j ∈ Am,j)),

where the second equality comes from ii) and the symmetry of the predictive
distributions with respect to past observations. This concludes the proof.

A5. Proofs for Section 5

Proof of Proposition 5.1.

i) By assumption, PX has bounded support, that we assume, with no loss of
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generality, to be included in [0, 1]d. Let u be a fixed d-dimensional vector satis-
fying ‖u‖ = 1. It is immediate to prove by induction that, for each n ≥ 0, uTβn

is square integrable. Now, we prove that (uTβn)n≥0 is a martingale with respect
to the filtration (Gn)n≥0, with G0 = σ(β0), and Gn = σ(β0, X1, Y1, . . . , Xn, Yn)
for n ≥ 1. Since E(Yn − g(Xn, βn−1)) | Gn−1, Xn) = 0, then

E(uTβn − uTβn−1 | Gn−1)

= E(E(uTβn − uTβn−1 | Gn−1, Xn)Gn−1)

=
1

n log 2
E(uTXnE(Yn − g(Xn, βn−1)) | Gn−1, Xn) | Gn−1)

= 0.

Next, we show that (uTβn)n≥0 is uniformly integrable. We can write that

E((uTβn)
2)

= E(uT (βn−1 +
1

n log 2
uTXn(Yn − g(Xn, βn−1)))

2)

= E((uTβn−1)
2)

+
1

(n log 2)2
E((uTXn)

2(Yn − g(Xn, βn−1))
2),

with Yn, Xn, u and g(Xn, βn−1) bounded. Thus,

sup
n

E((uTβn)
2) < +∞.

It follows that (uTβn)n≥0 is a uniformly integrable martingale, therefore it con-
verges almost surely and in L1 to a limit random variable. Since the limit is
linear in u, then there exists β̃ such that βn converges to β̃ almost surely and
in L1. Moreover E(β̃ | Gn) = βn.
ii) Let A ∈ B(Rd) be such that PX(∂A) = 0 almost surely. By Theorem 2 in [2],

P(Xn+1 ∈ A, Yn+1 = 1 | Gn)

= E(1A(Xn+1)P(Yn+1 = 1 | Gn, Xn+1) | Gn)

= E(1A(Xn+1)g(Xn+1, βn) | Gn)

a.s.→
∫

A

g(x, β̃)PX(dx).

By Lemma 8.2 in [1], the sequence (Xn, Yn)n≥1 is P̃X,Y -asymptotically ex-
changeable, with

P̃X,Y (dx, dy)

= (g(x, β̃)δ1(dy) + (1− g(x, β̃))δ0(dy))PX(dx).
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Proof of Proposition 5.2. The proof is based on Theorem 2.2 in [3] and Lemma
4.1 in [4] (see Theorem A1.1 and Theorem A1.2).

Let u be a fixed d-dimensional vector satisfying ‖u‖ = 1. By the proof of
Proposition 5.1, the sequence (uTβn)n≥0 is a martingale with respect to the
filtration (Gn)n≥0, with G0 = σ(β0) and Gn = σ(β0, X1, Y1, . . . , Xn, Yn) for

n ≥ 1. Moreover, (uTβn)n≥0 converges P-a.s. and in L1 to uT β̃. We apply

Theorem A1.1 with Mn = uTβn and M = uT β̃. To prove that the assumption
i) of Theorem A1.1 holds, we can write

sup
n

√
n|uTβn − uTβn−1|

≤ sup
n

|(Yn − g(Xn, βn−1))u
TXn|√

n log 2
,

which is integrable, since the random variables (Yn − g(Xn, βn−1))u
TXn are

uniformly bounded. To prove that condition ii) of Theorem A1.1 holds, we apply
Theorem A1.2 ii) with an = 1 and bn = n. Let Zn = n2(uTβn − uTβn−1)

2 for
n ≥ 1. Then,

E(Zn | Gn) = (log 2)−2E((Yn+1 − g(Xn+1, βn))
2(uTXn+1)

2 | Gn)

= (log 2)−2E((uTXn+1)
2E((Yn+1 − g(Xn+1, βn))

2 | Gn, Xn+1) | Gn, )

= (log 2)−2E((uTXn+1)
2g(Xn+1, βn)(1 − g(Xn+1, βn))) | Gn)

a.s.→ (log 2)−2

∫

g(x, β̃)(1 − g(x, β̃)(uTx)2PX(dx)

= (log 2)−2uT

∫

xxT (g(x, β̃)(1− g(x, β̃))PX(dx) u.

By Theorem A1.2 ii),

n
∑

k≥n

(uTβk − uTβk−1)
2 a.s.→ uTUu,

with

U = (log 2)−2

∫

xxT g(x, β̃)(1− g(x, β̃)PX(dx).

It follows from Theorem A1.1 that

E
(

eit
√
n(uT β̃−uT βn+1) | Gn

)

a.s.→ e−
1
2 t

2uTUu.

Since this is true for every unitary vector u, then, for every s,

E
(

eis
T√

n(β̃−βn+1) | Gn

)

a.s.→ exp(−1

2
sTUs),

which concludes the proof.
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Proof of Proposition 5.3.

i) Let u be a d-dimensional vector satisfying ‖u‖ = 1. We prove that uTVnu
converges to uTUu, P-a.s. We can write that

1

n

n
∑

k=1

k2uT (βk − βk−1)(βk − βk−1)
Tu =

1

n

n
∑

k=1

k2(uTβk − uTβk−1)
2

=
1

n

n
∑

k=1

k2E((uTβk − uTβk−1)
2 | Gk−1) +

1

n

n
∑

k=1

k2{(uTβk − uTβk−1)
2

− E((uTβk − uTβk−1)
2 | Gk−1)}.

For the first term, we can write that

1

n

n
∑

k=1

k2E((uTβk − uTβk−1)
2 | Gk−1)

= (log 2)−2 1

n

n
∑

k=1

E((Yk − g(Xk, βk−1))
2(uTXk)

2 | Gk−1).

From the proof of Proposition 5.2, we deduce that

E((Yk − g(Xk, βk−1)
2(uTXk)

2 | Gk−1)

a.s.→
∫

g(x, β̃)(1− g(x, β̃)(uTx)2PX(dx),

as k → ∞. Hence, by Theorem A1.2 i) with an = 1 and bn = n,

1

n

n
∑

k=1

k2E((uTβk − uTβk−1)
2 | Gk−1)

a.s.→ (log 2)−2

∫

(g(x, β̃)(1− g(x, β̃))(uTx)2PX(dx)

= uTUu.

Let us now prove that

1

n

n
∑

k=1

k2
(

(uTβk − uTβk−1)
2 − E((uTβk − uTβk−1)

2 | Gk−1)
)

a.s.→ 0.

To this aim we can invoke the martingale law of large numbers ([6], Theorem
2.18), that requests to show that

∞
∑

k=1

1

k2
E
(

k2
(

(uTβk − uTβk−1)
2 − E((uTβk − uTβk−1)

2)
)2 | Gk−1

)

< +∞.
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We can write that

∞
∑

k=1

1

k2
E
(

k2
(

(uTβk − uTβk−1)
2 − E((uTβk − uTβk−1)

2)
)2 | Gk−1

)

≤
∞
∑

k=1

k2E
(

(uTβk − uTβk−1)
4 | Gk−1

)

≤ (log 2)−4
∞
∑

k=1

1

k2
E
(

(Yk − g(Xk, βk−1))
4(uTXk)

4 | Gk−1

)

< +∞,

where the last inequality holds true since the terms (Yk − g(Xk, βk−1)u
TXk)

are uniformly bounded. We can conclude that uTVnu converges almost surely
to uTUu. Since this is true for every unitary vector u, then Vn converges almost
surely to U , as n → ∞.
ii) From Proposition 5.2, we know that, for ω in a set with probability one,

E(exp(isT
√
n(β̃ − βn)) | Gn)(ω) → exp(−1

2
sTU(ω)s),

and the convergence is uniform with respect to s on compact sets. If ω is such
that Vn(ω) converges to U(ω), then

E(exp(i(sTV −1/2
n )

√
n(β̃ − βn)) | Gn)(ω) → exp

(

−1

2
sTU(ω)−1/2U(ω)U−1/2(ω)s

)

= exp(−1

2
sT s).

This concludes the proof.
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