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OCD-FL: A Novel Communication-Efficient Peer
Selection-based Decentralized Federated Learning

Nizar Masmoudi and Wael Jaafar, Senior Member, IEEE

Abstract—The conjunction of edge intelligence and the ever-
growing Internet-of-Things (IoT) network heralds a new era
of collaborative machine learning, with federated learning (FL)
emerging as the most prominent paradigm. With the growing
interest in these learning schemes, researchers started addressing
some of their most fundamental limitations. Indeed, conventional
FL with a central aggregator presents a single point of failure
and a network bottleneck. To bypass this issue, decentralized
FL where nodes collaborate in a peer-to-peer network has been
proposed. Despite the latter’s efficiency, communication costs
and data heterogeneity remain key challenges in decentralized
FL. In this context, we propose a novel scheme, called oppor-
tunistic communication-efficient decentralized federated learning,
a.k.a., OCD-FL, consisting of a systematic FL peer selection for
collaboration, aiming to achieve maximum FL knowledge gain
while reducing energy consumption. Experimental results demon-
strate the capability of OCD-FL to achieve similar or better
performances than the fully collaborative FL, while significantly
reducing consumed energy by at least 30% and up to 80%.

I. INTRODUCTION

With the increasing concerns around data privacy and
continuous efforts to enhance the quality and speed of data
processing, edge intelligence is becoming the new standard [1].
An ever-growing Internet-of-Things (IoT) network is laying
the groundwork for a massive edge environment that will
revolutionize smart devices and networks. Thus, interest in
collaborative machine learning (ML) has massively increased
with Google’s Federated Learning (FL) presented as one
of the most promising paradigms [2]. Surveys [3] focused
on investigating the FL model while highlighting its key
challenges, e.g., costly communication, resource heterogeneity,
and data imbalance. Others attempted to tackle these problems.
For instance, Yang et al. proposed in [4] a resource allocation
model to minimize the energy consumption of clients under a
latency constraint. Zhang et al. presented in [5] a relay-based
topology where each client serves as a relay to assist distant
clients in sharing their FL models. Their approach focused on
maximizing each client’s utility according to its serving role
as a computational node and a relay. Furthermore, Wang et
al. focused on counterbalancing the bias introduced by non-
IID data through a deep reinforcement learning algorithm that
systematically selects clients to participate in each round [6],
while Han et al. proposed an adaptive heterogeneity-aware
scheduling to mitigate resource and data heterogeneity [7].

As Beltrán et al. highlighted in their survey [8], the
aggregation server in a centralized Federated Learning (FL)
setting serves as a single point of failure and a network
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bottleneck. Additionally, this centralized approach introduces
security vulnerabilities, making it susceptible to network
breaches and model corruption due to its status as a single
point of attack. Furthermore, the aggregation server is tasked
with combining the model parameters from all participating
nodes, resulting in significant computational overhead.
Finally, centralized FL may not be suitable for systems
where components are dispersed with limited connectivity
such as IoT networks, vehicular networks, and drone
swarm networks. These limitations pushed the proposal of
a decentralized topology where clients communicate with
each other inside a peer-to-peer network. Nevertheless,
communication costs and data heterogeneity persist as key
constraints in decentralized federated learning (D-FL). In
this context, Zheng et al. proposed an algorithm to balance
between energy consumption and learning accuracy [9]. Li et
al. focused on designing a robust solution in non-identically
and distributed (non-IID) environments by achieving an
effective clustered topology using client similarity and
implementing a neighbor matching algorithm [10]. Liu et
al. aimed to achieve a balance between communication
efficiency and model consensus using multiple periodic
local updates and inter-node communications [11]. Du et al.
introduced in [12] a dynamic device scheduling mechanism
that optimizes the peer selection strategy and power allocation
to improve the federated edge learning model accuracy. Their
approach leverages the superposition characteristics of
wireless channels to enhance model training at the server
and proposes a method to measure local data importance
based on the gradient of local model parameters, channel
conditions, and energy consumption. Simulation results show
that the proposed scheduling mechanism achieves high test
accuracy, fast convergence rates, and robustness against
different channel conditions. In [13], Zhang et al. proposed a
blockchain and AI-based secure cloud-edge-end collaboration
scheme coupled with a blockchain-empowered federated
deep actor-critic-based task offloading algorithm to tackle
the secure and low-latency computation offloading problem.
Finally, Xiao et al. addressed the time-varying dynamic
network behavior by proposing a D-FL framework based
on an inexact stochastic parallel random walk alternating
direction method of multipliers, called ISPW-ADMM [14].

Despite the compelling results of D-FL, most published
works establish their algorithms on a dense network of devices
that do not consider mobility constraints. In a real-world
setting, smart mobile devices, for instance, UAVs, tend to
constitute a sparse graph where vertices are in continuous
movement. This setting hinders model consensus across the
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entire network as each client performs a federated averaging
procedure with a random fragment of the network in each
FL round. Furthermore, the majority of the aforementioned
papers rely on a bidirectional communication protocol between
clients. This bidirectional exchange of knowledge can poten-
tially improve the performances of one model at the expense
of another, in addition to increasing communication costs.

Motivated by the aforementioned observations, we propose
an opportunistic communication-efficient decentralized fed-
erated learning (OCD-FL) scheme established on a sparse
network of clients who follow different motion patterns. The
main contributions are summarized as follows:

1) Unlike previous works, we conduct our study for a
sparse network of clients where each node can commu-
nicate only with its neighbors, i.e., nodes within its range
of communication. Also, nodes’ locations vary over time
such that the neighbors of a given node change from one
FL round to another.

2) We design a novel D-FL framework where each client
makes a systematic decision to share its model with a
neighbor aiming to enhance the latter’s FL knowledge
gain. Our approach is designed to get the maximum
benefit from aggregation while saving as much energy
as possible per FL client.

3) Using benchmark datasets under IID and non-IID
scenarios, we implement our algorithm and baseline
schemes, then run extensive simulations to demonstrate
the efficiency of our solution compared to others, in
terms of accuracy, loss, and energy. The obtained results
demonstrate the high potential of OCD-FL.

The paper is organized as follows. Section II describes the
system model. Section III describes D-FL. In section IV, we
expose our proposed method, while section V presents the
simulation results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we present an overview of the adopted
D-FL scheme by describing the network layout, the alloca-
tion strategy of data chunks across nodes, the local learning
scheme, and the collaboration algorithm used in our design.
Several notions are also introduced to help pave the path
towards the proposed OCD-FL. Finally, a summary of the
entire framework is described in Algorithm 1.

A. Network Layout

We assume an ad hoc network of N nodes. The network
is represented using an undirected graph G = (N , E) where
N = {1, 2, . . . , N} is the set of nodes and E is the set of
edges. Note that N ≜ |N | denotes the number of nodes with
| . | being the cardinality of the set. Two nodes (i, j) ∈ N 2

are connected if they are within each other’s range of com-
munication. This connection is denoted by (i, j) ∈ E . We
define by Ki the neighborhood of node i, i.e., the set of nodes
within its range of communication, particularly Ki = {j ∈
N s.t. (i, j) ∈ E}. We also define Ki ≜ |Ki| the number of
neighbors of node i. To emulate a real-world setting where
nodes are mobile, the graph configuration changes at each FL
round. Particularly, nodes change locations following several

patterns, and therefore each one can connect to a different set
of neighbors at each FL round.

B. Communication Model

We assume that each node is equipped with a single antenna
used in half-duplex mode. Moreover, the random way-point
mobility model is used to represent the change in clients’
locations over time [15]. At any given FL round, the wireless
channel between each pair of nodes (i, k) is dominated by
the Line-of-Sight (LoS) component, i.e., the channel path loss
Gi,k between node i and a neighbor k is written as (in dB)

Gi,k = 10 log10
(
P r
i,k/P

t
i

)
, ∀i ∈ N ,∀k ∈ Ki, (1)

where P r
i,k and P t

i are the received power at node k and
transmitted power by node i, respectively. Based on the Friis
formula, the received power P r

i,k can be expressed by [16]

P r
i,k = P t

iG
t
iG

r
k (c/4πf)

2
(di,k)

−n
, ∀i ∈ N ,∀k ∈ Ki (2)

where Gt
i and Gr

k are the antenna gains of the transmitter and
receiver, respectively. c denotes the speed of light, f is the
signal frequency, di,k is the Euclidean distance between the
transmitter and receiver, and n is an environment variable.

Using the Shannon-Hartley channel capacity formula, the
achievable data rate can be given by (in bits/sec) [17]

ri,k = Bi log2

(
1 +

P r
i,k

N0Bi

)
, ∀i ∈ N ,∀k ∈ Ki (3)

where Bi is the allocated bandwidth and N0 is the power of the
unitary additive white Gaussian noise (AWGN) in dBm/Hz.

III. DISTRIBUTED FL: BACKGROUND

In this section, we describe the D-FL scheme, where each
node may peer with its neighbors for FL aggregation.

A. Dataset Distribution

Let D be the global dataset distributed across all nodes, i.e.,
each node i ∈ N owns a chunk of data denoted by Di such
that D = D1 ∪ D2 ∪ · · · ∪ DN and Di ∩ Dj = ∅ ∀i ̸= j. We
define D ≜ |D| and Di ≜ |Di|, ∀i ∈ N . The allocation of data
chunks follows a Dirichlet distribution Dir(α) where α > 0 is
a parameter that determines the distribution and concentration
of the Dirichlet. Dirichlet distributions are commonly used
as prior distributions in Bayesian statistics and constitute an
appropriate choice to simulate real-world data imbalance. It
allows tuning distribution imbalance levels by varying α from
low values (highly unbalanced) to high values (balanced).

B. Local Update

All nodes carry the same FL model architecture. We define,
by Wi the model weight matrix of node i. To learn the
intrinsic features of its local dataset, a node performs a local
training operation. Assuming Xi as the input matrix of the
learning model and Yi is its target matrix, then the local
optimization problem of node i is defined as follows:

W∗ = argmin
Wi

F (Wi,Xi,Yi), (4)

where W∗ denotes the optimal (model weights) solution and
F denotes the loss function. The complexity of machine
learning models and modern datasets translates into a complex
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Algorithm 1: D-FL scheme.
Input : Graph G = (N , E), dataset D, Dirichlet

parameter α, number of rounds Q.
for i ∈ N do

Allocate data chunk Di to node i following Dir(α);
Initialize model weight Wi of node i;

for r ← 1 to Q do
for i ∈ N do

Move node i to a different location;
Simultaneously perform local training (satisfy

(4)) and receive models from other nodes;
Update Ki and select set of peers Ri ⊆ Ki;
Transmit local model to peers;
Execute federated averaging using (5);

Return Wi, ∀i ∈ N

shape of the loss function. With no guarantee of convexity,
finding a closed-form solution to the problem (4) is usually
intractable. As a result, gradient-based algorithms are used to
solve it, namely Stochastic Gradient Descent (SGD) [18] and
Adaptive Moment Estimation (Adam) [19].

C. Federated Averaging

Collaboration among nodes is achieved through inter-node
communications. Each node i transmits its FL model to a set
of neighbors, called peers, and denotedRi, such thatRi ⊆ Ki.
Upon reception, each node carries out a federated averaging
operation. Specifically, assuming Ri ≜ |Ri| is the number of
peers, federated averaging is performed as follows:

Wagg
i =

1

Ri + 1

∑
j∈Ri

Wj +Wi

 . (5)

OCD-FL is built on an asynchronous wireless network
that leverages orthogonal frequency-division multiple access
(OFDMA) to avoid the interference of concurrent transmis-
sions [20]. This allows clients to send their updates as soon
as they are ready without waiting for stragglers [21]. Never-
theless, the local aggregation has to wait for the end of the
training round before aggregating the local model with the
received ones. In Algo. 1, we summarize the proposed D-FL.

IV. PROPOSED OCD-FL SCHEME

The proposed OCD-FL is based on Algo. 1. However, it
designs a specific peer selection mechanism that maximizes
the benefit of peer-to-peer aggregation, while saving commu-
nication energy. To formulate the peer selection problem, we
preliminarily define the energy consumption and knowledge
gain expressions, needed for the objective design.

A. Energy Consumption

Assuming that S is the size of data a node transmits to
peers, the transmission energy can be expressed by (Joules)

Ei,k =
P t
i S

ri,k
=

P t
i S

Bi log2

(
1 +

P r
i,k

N0Bi

) , ∀i ∈ N ,∀k ∈ Ki (6)

Energy is positive and increases with distance. Thus, assuming
that the communication range is dmax

i
1, the energy consumed

by node i with a node located at its range edge, Emax
i , is

Emax
i = P t

i S/

(
Bi log2

(
1 +

P r
i,max

N0Bi

))
, ∀i ∈ N , (7)

where P r
i,max = P t

iG
t
iG

r
(

c
4πf

)2

(dmax
i )

−n, and Gr is the
antenna gain of the neighbor located at distance dmax

i from
node i. Accordingly, energy can be scaled with min-max nor-
malization as Ẽi,k = Ei,k/E

max
i , ∀i ∈ N , i.e., Ẽi,k ∈ [0, 1].

B. Knowledge Gain

Although federated averaging remains an efficient FL col-
laboration method, low-performing models may negatively
influence their peers and thus degrade the results of high-
performing models. The latter, however, offer a good oppor-
tunity for low-performing models to progress further and im-
prove their efficiency. This parasitic exchange between models
may hinder model consensus. The following propositions
highlight this phenomenon:

Proposition 1. Let W∗ be the optimal solution of problem
(4), while W1 and W2 are the weight matrices of two
different models. For convenience, model efficiency is assumed
analogous to its similarity with the optimal solution. Also, the
model defined by W1 outperforms the one of W2. Hence,

∥W∗ −W1∥ ≤ ∥W∗ −W2∥. (8)

Now, we can deduce the following statements:

∥W∗ −Wagg∥ ≤ ∥W∗ −W2∥, (9a)

∥W∗ −W1∥ −
1

2
∥W2 −W1∥ ≤ ∥W∗ −Wagg∥, (9b)

∥W∗ −Wagg∥ ≤ ∥W∗ −W1∥+
1

2
∥W2 −W1∥, (9c)

where Wagg = (W1 +W2)/2.

Proof: Using Cauchy-Schwarz inequality and (8), the
proof of (9a) is as follows:

∥W∗ −Wagg∥ = ∥W∗ −W1 +W2

2
∥ = 1

2
∥2W∗ −W1 −W2∥

≤ 1

2
(∥W∗ −W1∥+ ∥W∗ −W2∥)

≤ 1

2
(∥W∗ −W2∥+ ∥W∗ −W2∥) ≤ ∥W∗ −W2∥.

(10)

Since (9b) and (9c) derive from the reverse Cauchy-Schwarz
inequality, their joint proof is as follows:∣∣∣∥W∗ −Wagg∥ − ∥W∗ −W1∥

∣∣∣ ≤ ∥Wagg −W1∥

≤ ∥W1 +W2

2
−W1∥ ≤

1

2
∥W2 −W1∥.

(11)

1The communication range ensures that a transmission from node i to node
j occurs only if the distance between them di,j ≤ dmax

i .
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By extending (11), we obtain,

− 1

2
∥W2 −W1∥ ≤ ∥W∗ −Wagg∥ − ∥W∗ −W1∥

⇔− 1

2
∥W2 −W1∥+ ∥W∗ −W1∥ ≤ ∥W∗ −Wagg∥,

and
1

2
∥W2 −W1∥ ≥ ∥W∗ −Wagg∥ − ∥W∗ −W1∥

⇔1

2
∥W2 −W1∥+ ∥W∗ −W1∥ ≥ ∥W∗ −Wagg∥.

Thus, statements (9b) and (9c) are obtained.
Proposition 1 confirms that low-performing models always

benefit from high-performing models, while the opposite is
not always true. Indeed, a low-performing model may hinder
a high-performing one especially when models’ dissimilarity
is significant. Accordingly, we introduce a knowledge gain
measure to identify peers with low-performing and high-
performing models. The knowledge gained by k when receiv-
ing the model of node i is defined as

γi,k = max(lk − li, 0), ∀i ∈ N , ∀k ∈ Ki, (12)

where lk and li are the loss measures of k and i, respectively.
(lk − li) is an underlying component that measures the model
performance disparity between i and k. lk < li indicates that
neighbor k’s performance outperforms that of node i, thus
γi,k = 0, and no benefit is gained from peering2.

Since γi,k is computed using the loss functions, its values
are unbounded. To fit within our objective, we propose an ex-
ponential normalization such that the scaled knowledge gain is
γ̃i,k = Γ (max (lk − li, 0)) = 1−exp (−µ ·max (lk − li, 0)),
where µ > 0 determines the slope of exponential scaling.

C. Problem Formulation

We formulate our problem as a node-specific multi-objective
optimization problem. The goal is to efficiently select neigh-
bors for collaboration taking into account the amount of energy
required for transmission as well as the knowledge gained by
neighbors as a result of the collaboration. Hence, for a given
node i, we state the related problem as follows:

max
wk

∑
k∈Ki

σ(wk)γ̃i,k∑
k∈Ki

σ(wk)Ẽi,k

+ θ∥wk∥2 (13)

s.t. 1 ≤
∑
k∈Ki

σ(wk) ≤ Ki (13a)

where (wk)k∈Ki
are the selection model’s trainable parame-

ters, σ(·) denotes the sigmoid function, θ is a regularization
parameter and || · ||2 is the Euclidean norm. In contrast to
L2-regularization in ML that aims to minimize the number
of parameters in a system [22], we use θ||wk||2 with the
maximization function to promote the selection of a higher
number of D-FL neighbors by increasing the magnitude of
the kth model’s parameters (wk)k∈Ki

. θ is a parameter that
controls the strength of the regularization effect. This com-
ponent is necessary as empirical studies have shown that

2While loss and accuracy are important metrics to evaluate local model
training, knowledge gain, defined with the loss metric, is used with energy
consumption as criteria to dictate the peer selection and aggregation strategy.
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Fig. 1. Effect of regularization on neighbor selection rate.

without regularization, the problem is reduced to selecting
a single neighbor, enough to avoid an indeterminate form
of the objective function, while obtaining a high knowledge
gain-to-energy ratio. This hinders the local model’s ability
to generalize. In Fig. 1, we plot the number of selected
neighbors as a function of θ for a specific D-FL node with 30
neighbors, generated using random values for knowledge gain
and energy consumption. Results demonstrate the importance
of the regularization term to avoid selecting a single neighbor.
Constraint (13a) guarantees that at least one neighbor is
selected to avoid an indeterminate form while asserting that
at most all neighbors are selected. For the sake of simplicity,
we define by βk = σ(wk) the probability that neighbor k
is selected as a peer. The objective is to learn (wk)k∈Ki

for
each node i and, according to its (βk)k∈Ki

, decides under a
certainty threshold the neighbors that will be peered. Since the
objective function of (13) is not concave, it cannot be solved
directly. Nevertheless, (13) is differentiable, thus rendering its
resolution with gradient-based algorithms feasible.

V. SIMULATION EXPERIMENTS AND RESULTS

A. Simulation Setup

OCD-FL is implemented using Torch inside a Python envi-
ronment. We adopt a sparse topology, where N = 20 nodes
are randomly placed on a 2-dimensional bounded rectangular
surface. For each node i, P t

i and Bi are uniformly distributed
in the intervals [10, 21] dBm and [5, 20] MHz, respectively,
∀i ∈ N . Antenna gains are Gt

i = Gr
i = 0 dBi, ∀i ∈ N . The

signal frequency f = 1 GHz, c = 3 · 108 m/sec, dmax
i = 2

km, ∀i ∈ N , the size of data is S = 87 Kbits (MNIST) and
S = 23 Mbits (CIFAR-10), n = 2 (suburban), and µ = 2.

Our experiments are performed on two different datasets,
MNIST and CIFAR-10 [23], [24]. Although both datasets
consist of 60,000 training samples and 10,000 test samples,
MNIST has square images (28×28×1 pixels) of handwritten
digits (from 0 to 9), while CIFAR-10 contains colored square
images (32 × 32 × 3 pixels) of 10 different object classes.
Training dataset is split into equally-sized N = 20 subsets
following Dirichlet distribution with α = 1 (non-IID scenario,
i.e., number of samples in classes are significantly unbal-
anced), and α = 100 (IID scenario, i.e., number of samples
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Fig. 2. Avg. accuracy and loss (MNIST, different schemes).

per class are approximately equal). In any case, the testing
subset is IID to avoid non-biased evaluations.3

Different models are implemented to fit adequately each
dataset. For MNIST, we used a model with 2 5× 5 convolu-
tional neural network (CNN) hidden layers and ReLU activa-
tion functions, for a total number of parameters of 21,840. For
CIFAR-10, the model is more complex with six 3 × 3 CNN
layers, for a total number of parameters of 5,852,234. During
local updates, an NVIDIA Tesla T4 processing unit, along with
a CUDA environment, was used to speed up computations.

B. Simulation Results

OCD-FL is evaluated against baseline schemes “No commu-
nication” where each client trains exclusively locally, and “Full
communication” where any node communicates with all its
neighbors. Note that we considered “OCD-FL (θ = 0)” since it
is analogous to the lower case of (13) where

∑
k∈Ki

σ(wk) =
1, while “Full communication” reflects the upper case of (13)
where

∑
k∈Ki

σ(wk) = Ki.
In Fig. 2, we illustrate the FL performances, in terms of

accuracy and loss, for the proposed method when applied to
the MNIST dataset, and compared to the benchmarks, under
IID and non-IID scenarios. For the IID scenario, the proposed
OCD-FL method (θ = 0 and θ = 0.02) outperforms all
benchmarks. Indeed, by setting θ to 0.02, we introduce a
regularization term that promotes collaboration with a wider
range of neighbors. Such results highlight the importance of
controlled collaboration between nodes to achieve consensus
on efficient models. In the meanwhile, the “No communi-
cation” scheme provides the worst results. This is expected
since each client relies only on its knowledge for training. In

3With a non-IID testing dataset, overfitting is a prominent risk that yields
biased evaluations of local models, thus hindering the performance of D-FL.
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Fig. 3. Avg. accuracy and loss (CIFAR-10, different schemes).

the non-IID scenario, the performance gap between the “No
collaboration” scheme and the other ones increases. This is due
to the higher complexity of training in the non-IID setting.
Moreover, the proposed OCD-FL method (θ = 0.02) still
outperforms all other methods, while the performance of OCD-
FL (θ = 0) degrades below that of “Full communication”.
Indeed, since θ = 0, regularization is eliminated. Hence, our
scheme limits its peer selection for each node to a small
number, which may not be sufficient to train efficiently in
the non-IID scenario. Indeed, our scheme struggles to achieve
a consensus on an efficient model, and the instability of the
associated learning curve highlights the network’s inability to
generalize. Note that the initial increasing trend in the loss
curve is due to gradient instability during the first few rounds.
The increase is less significant under “Full Communication”
and “OCD-FL (θ = 0.02)” since efficient model aggregation
contributes to faster gradient stability. This increase is not
observed on the MNIST simpler dataset, where it only takes
the gradients on a small number of training rounds to stabilize.

Fig. 3 presents the same results as in Fig. 2, but for the
CIFAR-10 dataset. As it can be seen, for the IID scenario,
“OCD-FL (θ = 0.02)” is capable of providing similar per-
formances, in terms of accuracy and loss, to “Full commu-
nication”, while the gap with “OCD-FL (θ = 0)” and “No
communication” is very significant. For instance, after 20
rounds, the gap in accuracy is approximately 10%. In the non-
IID scenario, “Full communication” presents the best perfor-
mances, while “OCD-FL (θ = 0.02)” falls slightly behind, by
about 2% in terms of accuracy. “OCD-FL (θ = 0)”, although
not the best scheme, is still significantly outperforming “No
communication”. Note that, even though our scheme is not
the best in CIFAR-10 with non-IID, an optimal θ might be
determined, which would provide very close performances to
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Fig. 4. Knowledge gain (different schemes and scenarios).
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Fig. 5. Consumed communication energy (different schemes and scenarios).

the “Full communication” scheme.
Fig. 4 presents the average knowledge gain under different

scenarios. Although OCD-FL (θ = 0) fails to promote
knowledge sharing between clients, it manages to compete
with “Full Communication” when applied with regularization
θ = 0.02, in IID and non-IID settings. With non-IIDness, the
resulting knowledge gain is significantly high. This is due to
the model performance disparity between clients.

Similarly, in Fig. 5, we depict the communication energy
consumed by each system with OCD-FL or “Full commu-
nication” in IID and non-IID scenarios, and for MNIST
and CIFAR-10 datasets. “Full communication” consumed the
highest amounts of energy in any setting, since it relies on
communications between all N clients. In contrast, our OCD-
FL scheme consumes less energy between 30% and 80% than
“Full communication”. This is mainly due to the accurate
selection of peers for model sharing.

VI. CONCLUSION

In this paper, we proposed a novel distributed FL scheme,
called OCD-FL. The latter systematically selects neighbors
for peer-to-peer FL collaboration. Our solution incorporates a
trade-off between knowledge gain and energy efficiency. To do
so, the developed peer selection strategy was assimilated into
a regularized multi-objective optimization problem aiming to
maximize knowledge gain while consuming minimum energy.
The OCD-FL method was evaluated in terms of FL accuracy,
loss, and energy consumption, and compared against baselines
and under several scenarios. OCD-FL proved its capability to
achieve consensus on an efficient FL model while significantly
reducing communication energy consumption between 30%
and 80%, compared to the best benchmark. Although we
conducted a comprehensive evaluation of OCD-FL, several

aspects of the network’s layout present interesting research
opportunities, such as the impact of a time-varying topology
on model convergence. Moreover, despite the adoption of
federated averaging in our work, this research serves as a proof
of concept and lays the groundwork for future exploration of
other distributed FL systems, where different FL aggregation
techniques might be experimented.
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