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Incorporating first-order QED effects, we explore the shadows of Kerr-Newman black holes with
a magnetic charge through the numerical backward ray-tracing method. Our investigation accounts
for both the direct influence of the electromagnetic field on light rays and the distortion of the
background spacetime metric due to QED corrections. We notice that the area of the shadow
increases with the QED effect, mainly due to the fact that the photons move more slowly in the
effective medium and become easier to be trapped by the black hole.

I. INTRODUCTION

Since the groundbreaking achievement of capturing the
first two images of the supermassive black holes (M87*
and Sgr A*, respectively) by the Event Horizon Telescope
(EHT) [1–6], the field of black hole physics has entered a
new era. This achievement not only provided direct con-
firmation of the existence of black holes but also unveiled
a trove of information about these enigmatic cosmic enti-
ties and their surrounding environments. The focal point
of much research has been the black hole shadow [1, 7],
a prominent feature of the black hole image. The precise
shape of this shadow has been shown to encode critical
physical parameters, such as the black hole’s mass and
spin [2, 8–15]. Furthermore, the study of black hole shad-
ows has proven instrumental in addressing fundamental
questions spanning a broad spectrum of topics, such as
the behavior of accretion disks [16–20], the nature of dark
matter [21–25], the dynamics of an accelerating universe
[26, 27], modified gravity theories [28–34], and the exis-
tence of extra dimensions [35, 36]. These intriguing ques-
tions have ignited a surge of theoretical and experimental
research into black hole shadows.

Theoretical investigations into black hole shadows pri-
marily hinge on our understanding of photon trajectories
in the spacetime surrounding black holes. In a vacuum,
photons move along geodesics under the approximation
of geometric optics. Thus, the equations of motion of
photons are completely governed by the spacetime back-
ground. However, there will inevitably be other fields
besides the gravitational field in real spacetime. There-
fore, a realistic possible scenario is that photons interact
with other fields as they travel outside the black hole. Of
particular relevance are magnetic fields, which play a piv-
otal role in black hole physics [37–42]. Observations have
indicated the presence of strong magnetic fields around
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supermassive black holes, which may result in the break-
down of the superposition principle. The electromagnetic
field exhibits self-interaction, or in other words, photon-
photon interactions become significant. This leads to
nonlinear QED corrections to electrodynamics, making
the electromagnetic field appear as if it were some kind
of electromagnetic medium, known as vacuum polariza-
tion. Rays of light moving within the electromagnetic
field will deviate from null geodesic paths and follow dif-
ferent time-like trajectories depending on their polariza-
tion direction, resulting in what is known as birefringence
phenomenon [43, 44].
Nonlinear electrodynamics effects may appear in dif-

ferent models, among which the most famous ones are
the Euler-Heisenberg model [45–47] and the Born-Infeld-
like models [47–53]. The former one is a result of
one-loop quantum corrections [54], while the latter was
put forward as a solution of the divergence of a point
charge’s self-energy [55]. The additional nonlinear terms
in electrodynamics introduce extra terms in the energy-
momentum tensor, thereby indirectly affecting the trajec-
tory of light by modifying the spacetime geometry [56].
It is a challenging task to construct a fully back-reacted
black hole solution and study the novel features in its
image.
In this paper, we aim to explore the influence of QED

effects by examining a simplified scenario involving a ro-
tating charged black hole. Specifically, we consider a
Kerr-Newman-like black hole with a magnetic charge,
taking into account the linear effect of QED on the space-
time geometry. After taking into consideration both the
direct impact of the electromagnetic field on light tra-
jectories and the distortion of the background spacetime
metric caused by QED corrections, we obtain the shadow
of a black hole.
Remarkably, we notice that the area of the black hole

shadow increases with the QED corrections, which is in
conflict with the ones in the literature [52, 57, 58]. The
discrepancy originates from a sign difference in the pho-
ton Hamiltonian. Simply speaking, the resulting photon
trajectories should be timelike, while due to the wrong
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sign, they appear as spacelike ones in the literature. Ac-
tually, one motivation of the present work is to correct
the errors in [57, 58] written by two of the authors (Z.Z.
Hu and B. Chen) with others.

The remaining parts of the paper are structured as fol-
lows: In Section II, we provide a concise overview of the
Euler-Heisenberg Lagrangian along with its resulting dis-
persion relations. We correct an essential sign error in the
previous works [52, 57, 58]. In Section III, we consider
the modifications to spacetime geometry due to the ad-
ditional energy-momentum tensor of the electromagnetic
field. In Section IV, we examine the QED influence on
the shadow’s shape and discuss the contributions of dif-
ferent mechanisms of QED effects. In Section V we offer
a summary of our findings. Additionally, some detailed
formulas and derivations are presented in Appendix A,
B, and C.

II. BASICS ON QED BIREFRIGENCE EFFECTS

As shown in [53], considering one-loop vacuum polar-
ization, we get the Euler-Heisenberg effective Lagrangian
for the electromagnetic field [59]

L =
1

4π

[
−1

4
F +

µ

16π

(
F2 +

7

4
G2

)]
, (1)

where variables F and G are the only two independent
relativistic invariant and pseudo-invariant constructed
from the Maxwell field in four dimensions

F =FµνFµν ,

G =Fµν (∗F )µν =
1

2
ϵµνσρFµνFσρ.

(2)

The coefficient µ reads

µ =
2ℏ3α2

45m4
e

, (3)

with ℏ, α, and me being the Planck constant, fine-
structure constant, and electron mass, respectively. We
take the geometric units in this paper, setting c = G = 1.
Also, we would like to set M = 1 for simplicity. In this
case, µ is not a constant anymore because the physical
constants there have dimensions, e.g. ℏ is proportional
to m2

p. The numerical value of µ in geometric units can
be calculated by

µ =
2ℏ3c3α2

45G3m4
eM

2
≈ 9× 107

(
M⊙

M

)2

, (4)

where M⊙ represents the mass of the sun. So, in the rest
of the paper, when we change the value of µ, we actually
change the mass of the black hole M , in our geometric
units.

As shown in previous works, we can derive the mod-
ified equations of motion from the effective Lagrangian

using the effective metric. The accurate expression of the
effective metric is rather complicated, and we leave it to
Appendix A. At the first order of approximation in µ,
the invariant effective metric tensor with upper index is

G̃αβ = gαβ +
λ

4π
FµαF β

µ +O
(
λ2

)
, (5)

with

λ = −8µ, or − 14µ. (6)

The choice of λ is determined by the polarization of the
photon because the one-loop vacuum polarization makes
the electromagnetic field an anisotropic dielectric. Then,
the effective metric tensor with lower indices is defined
to be the inverse of the G̃αβ ,

G̃µνG̃νσ ≡ δµσ . (7)

To the leading order of µ, we read

G̃αβ = gαβ − λ

4π
Fµ

αFµβ +O
(
λ2

)
. (8)

With the dual vector qµ being defined as G̃µνp
ν , the

Hamiltonian and the Hamiltonian equations read

H (qµ, x
µ) =

1

2
G̃µνqµqν ,

ẋµ =
∂H

∂qµ
, q̇µ = − ∂H

∂xµ
.

(9)

From the above equations, one can see that the pho-
ton effectively becomes a time-like particle in the original
spacetime,

gµνp
µpν = gµν ẋ

µẋν ≤ 0. (10)

Intuitively, this is just reasonable: the trajectories of pho-
tons can no longer remain light-like since they are no
longer free massless photons; Instead, they become time-
like under the constraint of causality. Accordingly, such
interactions slow the photons down and make it easier for
them to get trapped by the black hole. In other words,
the gravitational traps of the photons get enhanced.
Even without gravity, QED birefringence alone can

trap photons, as shown in [44], where this effect was
referred to as “electromagnetic traps”. Intuitively, the
stronger the electromagnetic field is, the larger the re-
fractive index of the effective medium is, the slower the
photons are. As long as the strong electromagnetic field
we are considering is local, i.e. the electromagnetic field
attenuates to zero at infinity, the effective medium works
as a convex lens, converging the light rays, even trapping
them, such that the black hole shadow may get enlarged.
The deformation of the black hole shadows due to the

QED effect has been discussed in the previous works
[57, 58]. However, there is a minus sign omitted in the
previous works, e.g. in Eq.(2.10) of [57] in comparison
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with Eq.(8), which would effectively appear as the oppo-
site valued λ in the image of the result. All the theoretical
results there should be corrected by changing λ to −λ.
Then the major features of the images are also opposite.

Corrected calculations of [57] can be briefly explained
as follows. As in section 4 of [57], we consider a
Schwarzschild black hole immersed in a uniform magnetic
field

A =
B

2
r2 sin2 θdϕ. (11)

The corrected effective metric is given by

ds2 = −f(r)dt2 +

(
1

f(r)
+ Λ sin2 θ

)
dr2

+ Λr sin (2θ) drdθ + r2
(
1 + Λ cos2 θ

)
dθ2

+ r2 sin2 θ
(
1 + Λ

(
f(r) sin2 θ + cos2 θ

))
dϕ2,

(12)

where f (r) ≡ 1−2/r is the redshift factor of an ordinary
Schwarzschild black hole and the positive dimensionless
quantity Λ is defined as

Λ ≡ − λ

4π
B2. (13)

The dimensionlessness of Λ implies the invariance of its
expression under the unit change; in other words, its ex-
pression in SI units looks the same. Consequently, the
absolute strength of the magnetic field B turns out to
be the only quantity that affects the shape of black hole
shadows in this static model while the black hole mass
M has no effect on it. Then the corrected images of the
static black hole in uniform magnetic fields are shown in
Fig. 1 and Fig. 2, which should be compared with Fig.
3 and Fig. 4 (i.e. Fig. 3 and Fig. 7 in [57]), respectively.
Notably, the magnetic field is horizontally set in the im-
ages. As can be seen from the comparison, the shadows
are stretched in the direction of the magnetic field and
squeezed in the perpendicular direction rather than the
other way around. Similar recalculations and discussions
about results in [58] can be carried out as well, which is
about the rotating black holes in the magnetic fields.

We also notice that another group has conducted re-
search in similar settings [52] and got the opposite con-
clusion on the black hole shadow. Similar to [57, 58],
the authors in [52] made the same mistake on the sign
of λ. Just like any normal GR physicists, they used the
“East Coast” metric, i.e. η = diag(−,+,+,+). How-
ever, they quoted the expression of effective metric as

G̃µν = gµν + 16α2ℏ3

45m4
e
Tµν from [60], which is written in the

“West Coast” metric, i.e. η = diag(+,−,−,−). Under
the notation shift, the spacetime metric gµν shows a sign
flip, while the energy-momentum tensor Tµν does not.
Therefore, the right expression in line with east coast

metric should be G̃µν = gµν − 16α2ℏ3

45m4
e
Tµν , which accords

with Eq.(5) with λ = −8µ up to a conformal factor [61].
Unfortunately, the authors in [52] did not make corre-
sponding changes and used the wrong sign of λ, which
led to an opposite conclusion that black hole shadows
shrink under QED effects.

III. BACK-REACTED CHARGED BLACK
HOLE

To consider the backreaction of the QED effect, we
need to study the Einstein equation

Gµν = 8πTµν , (14)

with

4πTµν =

[
F α
µ Fνα − 1

4
Fgµν

]
− µ

16π

[
8FF α

µ Fνα −
(
F2 − 7

4
G2

)
gµν

]
.

(15)

For a static and spherically symmetric black hole with
electric charge or magnetic charge only, its metric can be
solved analytically [56, 62]

ds2 =−
(
1− 2m (r)

r

)
dt2 +

(
1− 2m (r)

r

)−1

dr2

+ r2
(
dθ2 + sin2 θdϕ2

)
,

(16)

where

m (r) = 1− Q2

2r
+

µQ4

20πr5
(17)

and Q is either the electric or the magnetic charge. This
black hole will be referred to as the QED-RN black hole.
Notice that

dm(r)

dr
=

Q2

2r2
− µQ2

4πr6
= 4πr2

(
−T 0

0

)
= 4πr2ρm. (18)

The fact that limr→∞ m(r) = 1 = M indicates that M
actually stands for the full mass in space, including the
energy of the electromagnetic field. Accordingly, with
M fixed, larger Q means stronger electromagnetic fields.
As the effective mass decreases with increasing Q, the
shadows of classical RN as well as QED-RN black holes
get smaller with increasing Q. However, it is remarkable
that the shadow of the QED-RN black hole is larger than
the one of RN black hole with the same charge Q, due
to the fact that the QED effect screens the charge Q2 →
Q2 − µQ4/(10πr4) such that the “gravitational mass”
of electromagnetic fields get reduced and the remaining
gravitational mass gets larger. In other words, the QED
backreaction correction tends to enlarge the shadow.
Unfortunately, when it comes to rotating cases, an ex-

act solution has not been found yet. Nevertheless, we
are going to work with the solution found in [56], which
is generated from the static one by using the Newman-
Janis algorithm. The solution could be written in terms
of the Gürses-Gürsey metric [63]

ds2 =−
(
1− 2m (r) r

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2

− 4am (r) r sin2 θ

ρ2
dtdϕ+

Σsin2 θ

ρ2
dϕ2,

(19)
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(a) Λ = 0.00 (b) Λ = 0.20 (c) Λ = 0.40

(d) Λ = 0.60 (e) Λ = 0.80 (f) Λ = 0.95

1
Figure 1: The images of the static black hole in uniform magnetic fields. The inclination angle of the observer is

fixed at θo = π/2.
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Figure 2: The variation of the eccentricity of the image
concerning Λ. We use a quadratic function to fit the

data.

where 
m (r) = 1− Q2

2r + µQ4

20πr5 ,

∆ = r2 + a2 − 2m (r) r,

Σ =
(
r2 + a2

)2 − a2∆sin2 θ,

ρ2 = r2 + a2 cos2 θ.

(20)

The parameter Q can be either electric charge Qe or mag-
netic charge Qm. The outer horizon is still the largest

root of ∆ = 0, i.e.

10πr4
(
r2 − 2r + a2 +Q2

)
= µQ4, (21)

which is determined by a, Q and µ together. Remarkably,
the Newman-Janis algorithm is accurate only with linear
sources. Due to the nonlinearity caused by QED effects,
the above solution is only an approximation. Further
discussions can be found in Appendix B.

The fact that the Gürses-Gürsey metric can simply be
obtained from the classical Kerr-Newman metric by using
the substitute Q2 → Q2 − µQ4/(10πr4) was interpreted
as a screening effect in [64], as in spherical case. Similar
arguments were carried out in [52], only with a different
algebraic expression describing this effective screening,
which would not affect anything qualitatively.

As in the spherical case, the “effective screening” term
actually means that the QED effect reduces the “gravi-
tational mass” of electromagnetic fields. As we can see
from Eq.(15), the QED correction term in the energy-
momentum tensor of electromagnetic fields reads

4π∆Tµν = − µ

16π

[
8FF α

µ Fνα −
(
F2 − 7

4
G2

)
gµν

]
,

(22)
which violates the strong energy condition (SEC) as well
as the null energy condition (NEC), as shown in Ap-
pendix C. More explicitly, the energy density of the QED
correction term tends to be negative and reduces the
gravitational energy of the electromagnetic fields. In this
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(a) Λ = 0.00 (b) Λ = −0.20 (c) Λ = −0.40

(d) Λ = −0.60 (e) Λ = −0.80 (f) Λ = −0.95

1
Figure 3: Fig. 3 in [57].
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e

e = −0.9958Λ
R2 = 0.9993

θo = π
2

Figure 4: Fig. 7 in [57].

sense, we would expect the backreaction effect to enlarge
the shadow, even at the nonlinear level.

It was proved in [56] that, in the framework of nonlin-
ear electrodynamics, the natural variables are the dual
Plebański variables (Pµν) when considering electrically
charged black holes, while they are the standard Maxwell
variables (Fµν) when considering magnetically charged
black holes. We have not found a good method to han-
dle the case with both charges yet. Since these two cases
are similar, we mainly focus on the magnetically charged
case in this work, leaving the electrically charged one for
future study. For the magnetic case, we can directly get

the solution of Maxwell variables [56]

Aµdx
µ =

Qm cos θ

ρ2
[
−adt+ (r2 + a2)dϕ

]
, (23)

Fµν = −Qm

ρ4
2ar cos θ


0 1 0 0
−1 0 0 a sin2 θ
0 0 0 0
0 −a sin2 θ 0 0


−Qm

ρ4
(
r2 − a2 cos2 θ

)
sin θ

×


0 0 a 0
0 0 0 0
−a 0 0

(
r2 + a2

)
0 0 −

(
r2 + a2

)
0

 .

(24)

IV. BLACK HOLE SHADOWS OF
BACK-REACTED KN BLACK HOLE

Generally speaking, the geodesic equation in space-
time generated from static spherically symmetric met-
ric through the Newman-Janis algorithm can be sepa-
rated completely [65]. However, we are dealing with the
effective metric Eq.(8), which destroys the separability
of the corresponding Hamilton-Jacobi equation. There-
fore, we would like to apply the numerical backward ray-
tracing method proposed in [57] for our study. The req-
uisite setup includes background space-time [Eq.(19) and
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Eq.(20)], the electromagnetic field [Eq.(24)], and the pho-
ton’s equation of motion [Eq.(8) and Eq.(9)]. Here, we
also employ the stereographic projection, which is often
called the fisheye camera model. The details can be found
in the appendix of [57]. Using these methods, we are able
to simulate the image of the black hole with a shadow in
the middle.

In our geometric units, the mass M is set to 1, and
alternatively the coefficient µ is variable, as explained
in Section II. Also, Qe is set to zero for simplicity. To
make the difference between the shadows with and with-
out QED effects more significant, we choose the polar-
ization of photons such that λ = −14µ, i.e. Ω = Ω−.
Therefore, our three independent parameters are a, Qm

and µ. When we set µ = 0, we come back to the classical
Kerr-Newman case.

For the back-reacted KN black hole, the larger µ is,
the smaller the mass is, the stronger the QED effects are
and the larger the shadows are. In Fig. 5, we compare
the images of the black hole with two different µ: the
QED effect in expanding the shadow of a black hole can
be obvious. Similarly, increasing Qm leads to stronger
electromagnetic fields and therefore stronger QED effects
and larger expansion in shadows. In contrast, the effects
of altering a are rather small in a large parameter space
range, as will be shown in Subsection IVA.

(a) µ = 0 (b) µ = 1000

Figure 5: The images of the charged spinning black hole
with different QED coupling strength. The inclination
angle of the observer is fixed at θo = π/2, the magnetic

charge is Qm = 0.6 and the spin is a = 0.3.

A. Geometrical analysis

Roughly speaking, larger µ means stronger QED cou-
pling, larger Qm leads to stronger electromagnetic field
strength, and therefore larger µ and large Qm give rise to
larger QED effects. In order to investigate their impacts
on the shadows in a quantitative way, we may introduce
a few geometry parameters suggested in [19, 30, 58] as
follows. The center of the shadow is defined to be

xc =
xmin + xmax

2
, yc =

ymin + ymax

2
= 0. (25)

The polar coordinates (r̃,α) can be defined with respect
to the center of the shadow as

r̃ =

√
(x− xc)

2
+ y2, tanα =

y

x− xc
. (26)

Then the area of shadow can be calculated by

S =
1

2

∫ 2π

0

r̃ (α)
2
dα, (27)

which can be normalized by the shadow area of the cor-
responding KN black hole (µ = 0)

S0 =
1

2

∫ 2π

0

r̃KN (α)
2
dα. (28)

The ratio S/S0 indicates the expansion of shadows in-
duced by QED corrections. Additionally, the QED-
induced deviation from the corresponding KN black hole
(µ = 0) is characterized by

σK ≡
√

1

2π

∫ 2π

0

(
r̃ (α)− r̃KN (α)

r̃KN (α)

)2

dα. (29)

With the parameters defined above, we are able to dis-
cuss the strength of QED effects and its dependence on
µ, Qm and a quantitatively. In Fig. 6, we show how the
expansion S/S0 and deviation σK vary with respect to
different µ, Qm and a. In the study, we vary only one
parameter and keep the other two parameters fixed. We
find that the expansion effects of QED corrections are
going through decelerating growth with increasing µ and
approximately linear growth with increasing Qm, respec-
tively. (Notice that we use a logarithmic coordinate for
µ because of its wide range of variation) In contrast, the
QED expansion effects remain basically invariant with
increasing a, though a slight enhancement is still observ-
able. Moreover, we find another relation with very high
precision that S/S0 ≈ (σK + 1)

2
which reflects that black

hole shadow is approximately a circle, even for relatively
large a.

B. The backreaction effect from QED correction

In this and the next subsection, we will distinguish two
different effects of 1-loop QED correction to the black
hole shadow. The first one is the backreaction effect to
the spacetime geometry, and the other one is the QED
birefringence effect, leading to the QED enhanced grav-
itational traps as well as electromagnetic traps [44], as
explained in Section II.
Let us first investigate the contribution of the backre-

action effects. We can do that simply by comparing the
black hole shadows with and without the backreaction.
Similar to Subsection IVA, we define the geometrical pa-
rameters

S∗ =
1

2

∫ 2π

0

r̃∗ (α)
2
dα (30)
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Figure 6: The variation of geometry parameters with respect to different µ, Qm and a. S refers to the area with
given µ and S0 refers to that with µ = 0. σK refers to the “normalized” deviation between given µ and µ = 0.
(a)S/S0 − µ and σK − µ with a = 0.3 and Qm = 0.6. (b)S/S0 −Qm and σK −Qm with a = 0.3 and µ = 3000.

(c)S/S0 − a and σK − a with Qm = 0.6 and µ = 3000.
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Figure 7: This figure demonstrates the contrast between
the shadows with and without backreaction to the

spacetime. We take a = 0.3 and Qm = 0.6. S refers to
the area of shadows of given µ with backreaction to the
background spacetime and S∗ refers to that without. σ∗

refers to the “normalized” deviation between the
corresponding shadows.

and

σ∗ ≡
√

1

2π

∫ 2π

0

(
r̃ (α)− r̃∗ (α)

r̃∗ (α)

)2

dα, (31)

where r̃∗ (α) refers to the shadow curve without consid-
ering the backreaction. The numerical results are shown
in Fig. 7. As we can see from those results, the back-
reaction enlarges the shadow, which agrees with our dis-
cussion in Section III. However, the backreaction effect
is rather tiny and can be neglected, as argued in [52].

Another interesting point is that the deviation be-

tween the shadows with and without background space-
time modification increases with µ at small coupling and
then decreases. Their growth at small coupling is intu-
itively expected. When QED effects which expand the
shadows get strong enough, the photons that go to in-
finity can’t pass through small r regions. As we can see,
the background spacetime modification, i.e. the screen-
ing term shown in Section III, has a quartic attenuation
with respect to r. Therefore, the modification becomes
less important.

C. QED birefringence effects

As explained in Section II, the QED birefringence ef-
fects make the trajectory of the photon timelike rather
than null. Effectively, the photons move in a medium
with a refractive index larger than 1. If the electromag-
netic field is local, the birefringence effects always enlarge
the shadow, as shown in the case of a charged spinning
black hole with QED corrections.

However, the situation becomes subtle if the electro-
magnetic field is uniformly distributed. In the case stud-
ied in [57], the black hole is immersed in a magnetic field
extending uniformly to the infinity. As can be seen in Fig.
1, the shadow is stretched along the magnetic field while
is squeezed perpendicular to the magnetic field (Notice
that the magnetic field is set to be horizontal in Fig. 1).
The areas of shadow at different Λ are computed and
plotted in Fig. 8. The area decreases a little with the
increase of Λ at first but eventually goes up rapidly at
large Λ.

The perpendicular squeezing of the shadow as well as
the initial decrease of the shadow area comes from the
presence of the uniform magnetic field. This can be un-
derstood more clearly in flat spacetime, in which case
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Figure 8: The variation of the area of the shadow with
respect to Λ.

the effective refractive index does not decay to 1 at infin-
ity such that the light rays do not necessarily converge.
It turns out that the uniform magnetic field tends to
squeeze the shadow in a perpendicular direction. When
λ is small, the squeezing may induce the decrease of the
shadow area.

V. SUMMARY

In this paper, we conducted a study on the QED ef-
fects on the shadows of rotating black holes with mag-
netic charge. There are two distinct QED effects under
consideration. One is the birefringence effect experienced
by light rays in the strong electromagnetic field, and the
other is the extra distortion of the background spacetime
due to backreaction. We considered both effects on the
black hole images and found that the QED effects tend
to enlarge the shadows of black holes.

In practice, we implemented the ray-tracing algorithm
to numerically simulate the shadow of black holes with
different parameters. We defined two geometric parame-
ters, standard deviation of area and radius to characterize
the expansion of black hole shadows quantitatively. The
numerical results indicate that the QED-induced expan-
sion of the shadows grows with QED coupling µ and mag-
netic charge Qm while having relatively little dependence
on spin a.

At last, we analyzed the impact and contribution of
different kinds of QED effects. It turns out that both
the QED birefringence effect and the backreaction effect
tend to enlarge the shadow in our QED KN case. Also,
our study demonstrated that the backreaction has a tiny
influence on the black hole images and could be neglected
safely, supporting the rationality in previous works [57,
58].

In [52], a similar topic has been addressed and it was

found that the shadows of black holes would shrink un-
der the QED effect, opposite to our conclusion. The
discrepancy stems from the sign difference of λ, as we
clarified at the end of Section II, even though the meth-
ods to read the shadow are different. In [52], in or-
der to separate variables to get an analytical expres-
sion for black hole shadows, they took advantage of a
bold approximation thatDQ (r, θ) ≡ Q2/

(
D2

cΣ
2 (r, θ)

)
=

Q2/[D2
c

(
r2 + a2 cos2 (θ)

)2
] is a quasi-constant on photon

regions, where Dc is a constant. In contrast, in this pa-
per, we just numerically integrated Hamilton’s Equations
for better accuracy. Still, after correcting the sign, the
two methods lead to similar pictures.
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Appendix A: The complete expression for effective
metric tensor

Considering the most general covariant Lagrangian for
the electromagnetic field with minimal coupling

S =

∫ √−gL (F ,G) d4x, (A1)

where S is the effective action of the electromagnetic field
and F and G are the only two independent relativistic in-
variant and pseudo-invariant defined in Eq.(2). Variation
of the action δS

δAµ
= 0 gives the equation of motion

∇ν(LFF
µν + LG(

∗F )µν) = 0, (A2)

where LF = ∂FL (F ,G), etc.
Under the approximation of geometric optics, the pho-

ton’s trajectory in nonlinear electrodynamics is a null
geodesic of the effective metric G̃µν

± . The subscript rep-

resents the polarization of the photon. G̃µν
± can be deter-

mined up to an arbitrary conformal factor, which doesn’t
change the null geodesics. Its complete expression is (see
[44] for detailed discussions)

G̃µν
± ∝ [LF + (LFG +Ω±LGGG)] gµν

+ 4 (LFF +Ω±LFG)F
µ

λ Fλν ,
(A3)

where Ω± are the two roots of the quadratic equation

Ω2Ω1 +ΩΩ2 +Ω3 = 0, (A4)
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with 

Ω1 =− LFLFG + 2FLFGLGG

+ G
[
(LGG)

2 − (LFG)
2
]
,

Ω2 = (LF + 2GLFG) (LGG − LFF )

+ 2F
[
LFFLGG + (LFG)

2
]
,

Ω3 = LFLFG + 2FLFFLFG

+ G
[
(LFG)

2 − (LFF )
2
]
.

(A5)

Appendix B: The Einstein Tensor and the
Energy-Momentum Tensor

For a static black hole with either magnetic charge or
electric charge only, up to the first-order QED correc-
tions in the Euler-Heisenberg model, the Einstein field
equations can be analytically solved to give the metric in
Eq.(16). The four nonzero components of the Einstein
tensor and the energy-momentum tensor can be calcu-
lated as

Gtt = 8πTtt =
2m′(r)

r2 [1− 2m(r)/r],

Grr = 8πTrr = − 2m′(r)
r2 [1− 2m(r)/r]−1,

Gθθ = 8πTθθ = Q2/r2 − 3µQ4/(2πr6)

Gϕϕ = 8πTϕϕ = Gθθ sin
2 θ,

(B1)

where m(r) = 1 − Q2/(2r) + µQ4/(20πr5) and m′(r) =
Q2/(2r2)− µQ4/(4πr6).

In contrast, for a rotating black hole, the Einstein field
equations can only be solved approximately to get the
Gürses-Gürsey metric. There are six nonzero compo-
nents in the Einstein tensor and the energy-momentum
tensor, but only three of them are independent due to
the following constraints [56]

a sin2 θGtϕ +Gϕϕ

sin2 θ
=

r2 + a2

ρ2
Gθθ,

a2 sin4 θGtt −Gϕϕ

sin2 θ
= −r2 + a2 + a2 sin2 θ

ρ2
Gθθ,

(B2)

as well as the trivial Gtϕ = Gϕt. The same constraints
hold for the energy-momentum tensor as well.

The independent nonzero components of the Einstein
tensor are given by [56]


Grr = −2r2m′(r)/(ρ2∆)

Gθθ = −2m′(r)a2 cos2 θ/ρ2 − rm′′(r)

Gtϕ = {2[(r2 + a2)a2 cos2 θ − r2∆]m′(r)

+ (r2 + a2)ρ2rm′′(r)}a sin2 θ/ρ6
, (B3)

while those of the energy-momentum tensor are given by
8πTrr = − Q2

ρ2∆ (1− 2µ
π u)− 2µ

π (u2 + 7
4v

2)grr,

8πTθθ = Q2

ρ2 (1− 2µ
π u)− 2µ

π (u2 + 7
4v

2)gθθ,

8πTtϕ = −Q2

ρ6 [∆ + (r2 + a2)]a sin2 θ(1− 2µ
π u),

− 2µ
π (u2 + 7

4v
2)gtϕ,

(B4)
where {

u ≡ Q2

2ρ8 (ρ
4 − 8r2a2 cos2 θ),

v ≡ Q2

ρ8 (r
2 − a2 cos2 θ)2ar cos θ.

(B5)

Notably, these expressions apply for both the electrically
and the magnetically charged case; Q can either be the
electric charge Qe or the magnetic magnetic charge Qm.
The deviation from the Einstein field equations can be

quantified by

δµν =

∣∣∣∣Gµν − 8πTµν

Gµν

∣∣∣∣ . (B6)

The explicit expression of δµν appears long and compli-
cated; still, we might as well gain some intuitions from
the asymptomatic behaviors. For the black hole param-
eters, with large black hole mass (small µ), weak elec-
tromagnetic field (small Q), or slow black hole motion
(small a), the deviation goes as

δrr ∼ δθθ ∼ δtϕ ∼


O(µ), µ → 0

O(Q2), Q → 0

O(a2), a → 0

, (B7)

indicating the validity of the Gürses-Gürsey metric in
said scenarios. In addition, with respect to the coordi-
nates, as θ → π

2 or r → ∞, we have the asymptomatic
behaviors of

δrr ∼ δθθ ∼ δtϕ ∼
{
O(cos2 θ), θ → π

2

O(r−6), r → ∞ , (B8)

indicating the additional effectiveness of the approxima-
tion at large distances and near the equatorial plane.

Appendix C: Energy condition for the QED
correction

In this appendix, we would like to study the energy
conditions for the QED correction. We show that it vi-
olates both the strong-energy condition (SEC) and null-
energy condition (NEC). As a result, the impact of the
electromagnetic field on the gravitation gets attenuated.
The strong energy condition requires that for any nor-

malized timelike vector tµtµ = −1, there is

Rµνt
µtν ∝ (Tµν − 1

2
Tgµν)t

µtν = Tµνt
µtν +

1

2
T ≥ 0,

(C1)
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where T ≡ Tµ
µ is the trace of the energy-momentum ten-

sor. While the null energy condition requires that for any
null vector lµlµ = 0, there is

Rµν l
µlν ∝ (Tµν − 1

2
Tgµν)l

µlν = Tµν l
µlν ≥ 0. (C2)

To begin with, it can be easily proved that the classi-
cal electromagnetic field (CEM) satisfies all four kinds of
energy conditions. For example, as for the weak energy
condition (WEC)

Tµνt
µtν ≥ 0, (C3)

we can always find a coordinate frame where t̂ =
(1, 0, 0, 0), and therefore

TCEM
µν tµtν =

1

4π

[
F α
µ Fνα − 1

4
Fgµν

]
tµtν

= TCEM
00 =

1

8π
(B2 +E2) ≥ 0.

(C4)

This inequality may serve as a lemma,

F α
µ Fναt

µtν ≥ 1

4
Fgµνt

µtν = −1

4
F . (C5)

Next, let us check the SEC for the energy-momentum

tensor of the QED correction, presented in Eq.(22),

4π(∆Tµν − 1

2
∆Tgµν)t

µtν

=− µ

16π

[
8FF α

µ Fνα −
(
3F2 +

7

4
G2

)
gµν

]
tµtν

(as long as F ≥ 0)

≤− µ

16π

[
−
(
F2 +

7

4
G2

)
gµν

]
tµtν

=− µ

16π

(
F2 +

7

4
G2

)
≤ 0.

(C6)

For a magnetically charged KN black hole, the condition
F = 2(B2 − E2) ≥ 0 holds almost everywhere, except
for the extremal spinning black hole case. In this work,
we focus on the spinning black hole far from extremality,
so F ≥ 0 always holds. Moreover, the larger the µ is, the
more obvious the violation is. Similarly, we can show the
violation of NEC for the QED correction.
Furthermore, a similar argument can be made for the

electrically charged KN black holes. The difference is
that, in the electrically charged case, if we still use
Maxwell variables (Fµν), we have to keep in mind that
there are first-order QED corrections in them. In other
words, though Eq.(15) still holds, Eq.(22) does not, since
the proper variables are Pµν as mentioned in Section III
and Fµν = Fµν(µ). Anyway, the fact that the QED cor-
rection terms in the energy-momentum tensor tend to vi-
olate SEC and NEC still holds in the electrically charged
case.
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