2404.10630v2 [cs.CL] 23 Nov 2024

arxXiv

HLAT: High-quality Large Language Model
Pre-trained on AWS Trainium

Haozheng Fan*! , Hao Zhou*2, Guangtai Huangl, Parameswaran Raman?!, Xinwei Fu!,
Gaurav Gupta?, Dhananjay Ram?, Yida Wang!, Jun Huan?
1 Amazon Web Services, 2AWS Al Labs, 3AGI Foundations, Amazon
{fanhaozh, zhuha, guangtai, prraman, fuxinwe, gauravaz, radhna, wangyida, lukehuan} @amazon.com

Abstract—Getting large language models (LLMs) to perform
well on the downstream tasks requires pre-training over trillions
of tokens. This typically demands a large number of powerful
computational devices in addition to a stable distributed training
framework to accelerate the training. The growing number of
applications leveraging AI/ML led to a scarcity of the expensive
conventional accelerators (such as GPUs), which emphasizes the
need for the alternative specialized-accelerators that are scalable
and cost-efficient. AWS TRAINIUM is the second-generation
machine learning accelerator purposely built for training large
deep learning models. However, training LLMs with billions of
parameters on AWS TRAINIUM is challenging due to its relatively
nascent software ecosystem. In this paper, we showcase HLAT:
a family of 7B and 70B decoder-only LLMs pre-trained using
4096 AWS TRAINIUM accelerators over 1.8 trillion tokens. The
performance of HLAT is benchmarked against popular open
source models including LLaMA and OpenLLaMA, which have
been trained on NVIDIA GPUs and Google TPUs, respectively.
On various evaluation tasks, we show that HLAT achieves
model quality on par with the baselines of similar model size.
We also open-source all the training scripts and configurations
of HLAT|| and share the best practice of using the NeuronX
Distributed Training (NxDT), a customized distributed training
library for AWS TRAINIUM. Our work demonstrates that AWS
TRAINIUM powered by NxDT is able to successfully pre-train
state-of-the-art LLM models with high performance and cost-
effectiveness.

I. INTRODUCTION

Large language models (LLMs), based on transformer archi-
tecture [|1]] and trained on massive text data, are the most recent
breakthrough in artificial intelligence. They not only show
remarkable capabilities in understanding and generating text
[2], but offer immense potential across diverse downstream
tasks, such as machine translation [3]], information retrieval
[4]], code generation [5] and so on [6].

Pre-training is the crucial first step in building LLMs
because it lays the foundation for their impressive capabilities.
It initializes the model with random weights, and trains the
model to convergence using tokens from a large text corpus.
The training process is designed to be self-supervised. For
decoder-only models, such as GPT [7] and LLaMA [_8]-[10],
the model is trained to predict the next token in a given
sequence. Eventually, the model learns everything ranging
from syntax and semantics to world knowledge and com-
monsense reasoning with a large amount of training data.

*Both authors contributed equally to this research.
Thttps://github.com/awslabs/HLAT

Pre-training provides the raw material - the language skills
and understanding, which facilitates subsequent fine-tuning for
various downstream tasks.

Since pre-training requires a large amount of training data
(trillions of tokens), it demands highly on computational re-
sources. Advanced Al accelerators, such as AWS TRAINIUMEL
Google TPU, and NVIDIA A100/HI00 GPUs, have been
specifically designed for such workloads. These Al acceler-
ators are often integrated with dedicated tensor processing
units which offer fast matrix operations and high training
throughput. They also have much larger on-chip memory (tens
of GBs per accelerator) and high communication bandwidth
(hundreds of Gbps) between accelerators across different
machines, which allows pre-training of larger models with
efficient hardware utilization.

Even with the powerful AI accelerators, due to the sheer
size and complexity of LLMs, it’s impractical to train them
on a single device which has limited memory and processing
power to handle the massive datasets, model parameters, and
intricate calculations involved in LLM training. Practitioners
rely on distributed training libraries [11]]-[14] to orchestrate
a number of accelerators to conduct the training together.
Distributed libraries can shard the model parameters and
optimizer states across multiple accelerators with different
kinds of parallelism strategy, allowing training of models with
multi-billion parameters. They also spread the workload across
multiple machines, effectively tapping into a combined pool
of resources, to significantly reduce the training time.

Although there have been many successful demonstrations
of pre-training LLMs on conventional accelerators (GPUs
and TPUs) using state-of-the-art distributed training libraries
[11]-[14], training LLMs with billions of parameters on
AWS TRAINIUM is still challenging. First, TRAINIUM uses
a relatively nascent software ecosystem ranging from runtime,
compiler, to distributed training library. The training script
developed for other accelerators needs to be adjusted to
comply with the low-level APIs and operators supported by
TRAINTUM. Second, the optimal training configurations that
ensure stable convergence and optimal training throughput
may also differ from other accelerators, such as level of
precision, dimensions of 3D parallelism, compiler flags and so
on. On the other hand, Amazon EC2 trnl instance, equipped

Zhttps://aws.amazon.com/machine-learning/trainium

with AWS TRAINIUM accelerators, provides the comparable
computation power to Amazon EC2 p4d instance, equipped
with Nvidia A100 40GB GPUs, but comes with only ~60% of
the price. This makes it appealing to fully utilize the compute
power of AWS TRAINIUM for LLM pre-training.

In this paper, we make the following contributions:

e Our work is the first to reproduce a SOTA LLM model
on a completely new hardware - AWS TRAINIUM. We
end-to-end pre-train HLAT-7B and HLAT-70B (High-
quality LLM pre-trained on AWS TRAINIUM), following
the architecture described in [9]] from scratch. The pre-
training covers 1.8 trillion tokens and is performed on
up to 256 Amazon EC2 frnl.32xlarge instances with
totalling up to 4096 AWS TRAINIUM accelerators.

e We evaluate and show that both HLAT-7B and HLAT-
70B perform comparable to models of similar size trained
on other Al accelerators including LLaMA and OpenL-
LaMA. The evaluation is performed over a variety of
tasks including commonsense reasoning, world knowl-
edge, MMLU [15], math, coding, etc.

« We propose multiple techniques to improve training effi-
ciency on AWS TRAINIUM such as a novel online dat-
aloader, layer coalesing, selective activation checkpoint-
ing, precision strategy, and fault recovery mechanisms.
These techniques save significant time and compute re-
sources for pretraining on large datasets, and can be
applied to other accelerators (GPU, TPU, etc.) as well.

« We open-source all the training scripts and configurations
of HLAT-7B and HLAT-70B model including the
Pytorch training script, model definition script, and train-
ing configuration files (including all hyper-parameters).
We also share best practices of pre-training on AWS
TRAINTUM and NeuronX Distributed Training (NxDT),
such as sharding strategies, training precisions, compiler
settings, etc. With those artifacts, practitioners can easily
reproduce HLAT and pre-train their own custom LLMs
on AWS TRAINIUM.

II. BACKGROUND - DISTRIBUTED TRAINING ON AWS
TRAINIUM

AWS TRAINIUM is the second-generation machine learning
accelerator that AWS purposely built for deep learning train-
ing. Each TRAINTUM accelerator includes two NeuronCores.
Each NeuronCore has 16 GB of high-bandwidth memory,
and delivers up to 95 TFLOPS of FP16/BF16 compute
power. In this study, we trained our model on Amazon
EC2 trnl.32xlarge instances: each instance is equipped with
16 TRAINIUM accelerators, and supports 800 Gbps intra-
instance network bandwidth through NeuronLink. The aggre-
gating compute power of Amazon EC2 trni.32xlarge is 3040
TFLOPS in FP16/BF16, slightly higher to its GPU instance
counterpart Amazon EC2 p4d.24xlarge at 2496 TFLOPS, but
at a much lower price (trnl.32xlarge $21.50 vs. p4d.24xlarge
$32.77).

3https://github.com/awslabs/HLAT

AWS Neuron is a software development kit (SDK)Y| with
a compiler, runtime, and profiling tools that unlocks high-
performance and cost-effective deep learning acceleration on
AWS TRAINTUM. Neuron is natively integrated with PyTorch
[14] and TensorFlow [16]], and offers features such as FP32
autocasting, stochastic rounding, collective communication,
custom operators, and so on.

NeuronX Distributed Training (NxDTf} as part of Neu-
ron SDK, is developed to enable high-efficiency distributed
training on TRAINIUM: NxDT supports a variety of distributed
training techniques, such as 3D parallelism [12], i.e., Tensor
Parallelism (TP), Pipeline Parallelism (PP) and Data Paral-
lelism (DP). To reduce the activation memory during training,
activation checkpointing [[17] and sequence parallelism [[18]]
are naturally supported with the 3D parallelism. NxDT also
supports Zero Redundancy Optimizer Stage 1 (ZeRO-1) [[19]
to shard optimizer states, which can be applied simultaneously
with 3D parallelism. NxDT provides unified interfaces to port
custom models and run training scripts on AWS TRAINIUM.
To train models from Huggingface transformers library
on TRAINTUM accelerators with NxDT, it only requires simple
code changes in certain layers of the model. NxDT supports
TP with mixed degrees, i.e., users can use more than one TP
degrees to shard different model parameters. This is helpful
when some model parts of LLMs are not compatible with a
unified large TP degree, e.g., with Grouped Query Attention
(GQA) [20]. Finally, NxDT supports automatic fault recovery
and checkpointing. In case of hardware failures or communi-
cation timeouts, NxDT can automatically restart training from
latest auto-saved checkpoints without manual intervention,
which is critical for maintaining system uptime and training
efficiency.

ITIT. METHOD
A. Model Architecture and Hyperparameters

HLAT models adopt the decoder-only transformer archi-
tecture and apply same modifications used in LLaMA [8]-
[10], including pre-normalization with RMSNorm, SwiGLU
activation function, and Rotary Embeddings. HLAT-70B in
addition applies GQA [20] with group size of 8. The models
are trained with a maximum sequence length of 4096.

We adopt training hyperparameters used in LLaMA2 [9].
Specifically, the global batch size is 1024 sequences, so each
step covers about 4 million tokens. We use a cosine learning
rate scheduler. The maximum learning rate is 3e~* for HLAT-
7B, and 1.5e~* for HLAT-70B. The minimum learning rate
decays to 10% of maximum learning rate. We use a linear
warmup of 2000 steps. The overall learning rate scheduler is
plotted in Figure We use AdamW optimizer with 5; = 0.9
and B2 = 0.95. We use weight decay value of 0.1 for all
parameters, including normalization weights. Gradient-norm
clipping of 1.0 is applied for training stability.

“https://github.com/aws-neuron/aws-neuron-sdk
Shttps://awsdocs-neuron.readthedocs-hosted.com/en/latest/libraries/nxd-
training/overview.html

B. Training Dataset and Dataloader

Our pre-training dataset includes RedPajama-1T [21]], peS2o
[22], and OpenWebMath [23]]. HLAT-7B is purely trained on
RedPajama-1T with 1.8 trillion tokens. HLAT-70B is initially
trained on RedPajama-1T over 1.4 trillion tokens and is then
continually trained on an up-sampled dataset with RedPajama-
1T, peS20 and OpenWebMath for 400B tokens (see Section
for details).

We designed a novel dataloader which performs both tok-
enization and packing online during training. The dataloader
takes one or more dataset files in Apache Arrow format
[24]. All samples are randomly shuffled and split into several
subsets according to the total DP ranks. Each data split is
treated as an independent data stream. For training efficiency,
we use sample concatenation, i.e., if a sample is shorter than
the maximum sequence length of the model, we concatenate
it with the following sample(s) to curate a sequence with total
length equal or more than maximum sequence length. Any
left over tokens from current concatenated sequence is used
in the following sequence. The samples within a concatenated
sequence is concatenated with a special end of sentence (EOS)
token. This gives the model necessary information to infer that
the text separated by EOS token are unrelated [7]]. Note that
samples in the same concatenated sequence may be from very
different sources or can be of different formats (e.g. natural
language and codes). Finally, each batch of sequences are
tokenized on the fly during the training.

The online tokenization has no impact on training through-
put as the tokenization for future samples/batch happens
during forward-backward pass of current samples/batch - we
use CPU for tokenization and TRAINIUM devices for training,
so the computations are in parallel. In comparison, the offline
dataloader requires pre-tokenization of entire datasets which
costs a lot of developer time and compute resources for large
datasets. The offline Nemo dataloader [25]], for example, takes
about 154 hours to pre-tokenize a dataset with 2 trillion tokens.

C. Orchestration

HLAT pre-training is performed on clusters with 256
trnl.32xlarge instances (nodes), totalling to 4096 AWS
TRAINIUM accelerators. Both Amazon EKS and AWS Par-
allelCluster can effectively manage the training cluster. Ac-
celerators within same node are connected with NeuronLinkf]
The nodes within the cluster are interconnected through Elastic
Fabric Adapter (EFAﬂ EFA is a network interface with
uniquely designed operating system that bypasses traditional
hardware interfaces, significantly enhancing performance for
inter-node communications, a critical factor for collectives
operations in distributed training.

D. Training Efficiency
LLaMA [8]] model uses the efficient implementation features
for pre-training on GPUs, that include xformer library,

Shttps://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-

hardware/trainium.html
7https://aws.amazon.com/hpc/efa/

activation checkpointing, model parallelism, and computa-
tion/communication overlapping, etc. Similar features are also
supported by TRAINTUM and Neuron SDK, as well as some
unique enhancement such as BF16 with stochastic rounding.
Below, we list the key features and configurations used in our
model pretraining to improve the efficiency.

Model Parallelism: HLAT-7B is pre-trained over 64 nodes
with TP=8, PP=1, and DP=256. HLAT-70B is pre-trained over
256 nodes with TP=32, PP=§, and DP=32. Both use sequence
parallel (SP). This sharding configuration is observed to have
the highest throughput.

Selective Activation Checkpointing: We use selective ac-
tivation checkpointing [[18]] to improve the training efficiency.
It has slightly higher memory cost as full activation check-
pointing, but increases the overall training throughput.

Training precision: Pre-training with full precision (FP32)
is in-efficient for large LLMs, but generic half-precision
training (BF16 or FP16) often has numerical stability is-
sues [26]. On GPU, mixed precision training [26] is widely
used to achieve similar precision as full FP32 with better
efficiency. For HLAT-7B, we used BF16 with stochastic
rounding (SR) [27]], featured by AWS TRAINIUM. Stochastic
rounding, which theoretically provides an unbiased estimate
of the input, prevents the computation precision-loss in BF16
by performing the rounding operations in a probabilistic
manner. Empirically, we found that BF16 with SR shows
the same convergence behavior as mixed precision training
for HLAT-7B, with higher training throughput and lower
memory footprint. However, on HLAT-70B, BF16 with SR
shows worse convergence than mixed precision training. We
found that mainly due to the nondeterministic normalization
error introduced by stochastic rounding (see Section [[V-C),
and low-precision computations errors in gradient and atten-
tion operations. Such errors accumulate and signify on large
models with more parameters and deeper layers. Therefore,
we developed a standard mixed precision training strategy.
Specifically, unless specified, all computation and storage use
BF16 without stochastic rounding. This strategy uses FP32 in
precision sensitive operators, local gradient accumulation, and
global gradient synchronization. It also uses master weights
and FP32 optimizer states. Finally, it uses ZeRO-1 [11] for
memory efficiency.

Constant Attention Mask: As a decoder-only model,
HLAT pre-training uses a constant attention mask (lower-
triangular) matrix. Instead of passing attention mask as an
input tensor in model training, AWS TRAINIUM supports
creating attention masks on accelerators directly before use.
The masked-out tensors will not be computed in the first
place, which avoids redundant computation, saves host mem-
ory usage, and increases training throughput. To enable this
feature in training script, the attention mask tensor is di-
rectly defined using torch.triu function and mapped to
device='x1la’. The Neuron compiler will therefore enable
the optimization during compilation.

Coalescing Layers with Same Inputs: We coalesced linear
layers with the same inputs to reduce the communication

> query_states =
3 key_states =

in tensor and sequence parallelism, and increase efficiency
of matrix operations. Specifically, the Q, K,V layers in an
attention block are coalesced, and the two linear projections
layers in SwiGLU [28] are also coalesced. Listing [T] shows a
code snippet for implementation. Note that this technique also
applies to other accelerators such as GPU and TPU.

Without layer coalescing
g_proj(hidden_states)

k_proj(hidden_states)
value_states = v_proj(hidden_states)

hidden_size
hidden_size
hidden_size

With layer
gkv_states =
query_states,

split (3,

coalescing

gkv_proj(hidden_states) # 3xhidden_size
key_states, value_states = gkv_states.
dim=2)

Listing 1: Example of layer coalescing.

Compiler Optimization: we use compiling flag
—--distribution-strategy=llm-training and
—-—-model-type=transformer to enable the compiler
to perform optimizations applicable to LLM (transformer
model) training runs that shard parameters, gradients,
and optimizer states across data-parallel workers. We set
Neuron environment variable NEURON_FUSE_SOFTMAX=1
to enable compiler optimizations on custom
lowering for Softmax operation. Finally, we used
NEURON_RT_ASYNC_EXEC_MAX_INFLIGHT_REQUESTS=3 to
reduce training latency with asynchronous execution. This
overlaps some executions of accelerators and host (CPU).

IV. TRAINING PROCESS
A. Training Curves

During the training process, we monitor the cross entropy
training loss, as well as [, norm of gradients and /s norm of
parameters for debugging training stability. Figure [Ta] shows
the training loss over global batches, reduced over all data
parallel ranks. The training loss decreases rapidly over the
initial ~250 billion tokens, and enters a log-linear decrease
afterwards. Similar trends are observed in other LLM pre-
training [8], [9], [29].

In Figure we show the gradient /s norm during the
training. Overall, we see that the gradient norm is stable across
the training journey without divergence. Note that gradient
spikes are common in LLM pre-training when using layer-
normalization, or even RMSNorm [30], and sometimes due to
overflow in low-precision, such as 16-bit floats. We show an
assuring trend in Figure[Tb| even with using 16-bit floats.

Note that sustained spikes in the gradient norm leads to
training divergence due to improper weight updates, even after
gradient normalization through clipping (see Section[[TI-A). In
Figure [2| we show that the gradient spikes often last for a sin-
gle step, and did not lead to training divergence. Specifically,
we first track a running average (r) of gradient norm over a
window of 20 steps to smooth out the natural fluctuations due
to batching. We define occurrence of a gradient spike when
the current gradient norm is higher than r 4 0.1. We then track
the number of steps for gradient norm returning to less than

r + 0.1. Over 86%, the spike deviates from running average
for only a single step.

Finally, we show the parameter [norm in Figure
During first ~250B tokens, the parameter norm increases
consistently. This phase also coincides with the fast decreasing
phase of training loss where model parameters converge from
random initialization to a structured distribution. After that, the
parameter norm consistently decrease since AdamW applies
weight decay for regularization [31].

B. Hardware and System Failures

Pre-training on a cluster with thousands of accelerators
often faces hardware-level errors that interrupts the training
process. Those errors could be due to malfunction of AWS
TRAINTUM chips or host machines, network communication
timeouts, and so on [32]]. Manually restarting the pre-training
from last-saved checkpoints demands significant developer
time and causes low system uptime. For example, we per-
formed an experimental training run (over 600 billion tokens)
without automatic fault recovery, and we observed an average
system uptime of 77.83%. In HLAT pre-training, we enabled
automatic fault recovery mechanism in NxDT (see Section
[), which automatically replaces the faulty nodes and restart
training from latest checkpoints. The overall system uptime of
HLAT pre-training is then improved 20% to 98.81%.

C. Training Convergence and Instability

We describe a few changes we made before and during the
training process for convergence and training stability.

Initialization: We use a scaled initialization strategy for
initializing model parameters. Specifically, the initial standard
deviation of output layers in attention blocks and MLP layers
are scaled by 1/ V21 where [is the layer index. Similar as
discussed in [30], we found better numerical stability and
convergence with smaller initial variance on deeper layers.

Normalization: We used tensor parallelism to shard the
model parameter matrices except normalization layers. For
HLAT-7B, the normalization layer weights, however, are
slightly different across TP ranks due to stochastic round-
ing. Empirically, we found the differences are small, and
RMSNorm weights values are all close to 1. Note that with
standard mixed precision strategy, we do not see such weight
difference for HLAT-70B.

Checkpoint Averaging: For HLAT-70B, the final check-
point used for evaluation is an average of last two checkpoints
in the training process. Similar as [[10]], [33]], we found averag-
ing the last two checkpoints provides better performance than
each single checkpoint. We provide more detailed discussion
in Section

Neuron Persistent Cache on Local Worker: In HLAT pre-
training, all instances share a same file system using Amazon
FSxE] for storing data, checkpoints, logs, etc. However, we
found that storing Neuron Persistent Cacheﬂ on FSx may cause

8https://aws.amazon.com/fsx/

9https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-

features/neuron-caching.html

Gradient norm

10t
\ 100
L4
a— :

250 500 750 1000 1250 1500 1750 2000
Tokens (in Billions)

Training loss

by

w
n

o

Training loss
NN W
P

Gradient norm

-
n

Iy

0 250 500 750 1000 1250 1500 1750 2000
Tokens (in Billions)

(2 (b)

Parameter norm Learning rate

6000 0.00030{ HLAT-TB
L
IS
5 000/ % 0.00025
< = 0.00020
@ 4000 o
= € 0.00015 4~
Q c
€ 3000 5 0.00010
o a ~
© —I 0.00005
Q- 2000
0.00000
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Tokens (in Billions) Tokens (in Billions)
() (d)

Fig. 1: HLAT training progress. (a) The training loss vs number of tokens (in billions) seen by the model during training.
Gradient/Parameter norm vs number of tokens in (b)/(c), respectively. (d) The learning rate schedule vs number of tokens. The
warm-up steps are 2000 iterations (about 8 billion tokens, see SectionflII-A).

103] 797

102 89
25

Occurrence

1 2

3 4 5 6 7
Number of steps to stabilize

Fig. 2: Number of occurrence of sustained gradient spikes vs
contiguous length of appearance. Over 86%, the spike lasts
for only a single step.

communication bottleneck because those cached graphs are
frequently accessed by all TRAINIUM devices in the cluster.
Such bottleneck may lead to communication timeout and
affects training stability. Therefore, we instead store caches
in file system of each local worker.

V. EVALUATION

Baselines: We evaluate HLAT against several open-source
benchmark models. Since HLAT structure is similar as
LLaMA model, we include LLaMA-1 (7B, 13B, 65B) [S],
LLaMA-2 (7B, 70B) [9], OpenLLaMA-1 (7B, 13B) and
OpenLLaMA-2 (7B) [29]. The model architecture and com-
position of the training data of the models being compared
are listed in Table [OpenLLaMA-1 model is trained on
RedPajama [21] dataset. OpenLLaMA-2 model shares same
structure as OpenLLaMA-1, but is trained on a different data
mixture which includes data from Falcon-RefinedWeb [34]],
StarCoder [35]], and RedPajama [21]].

TABLE I: Model architectures comparison.

Model Sizes Sequence length
OpenLLaMA1 7B, 13B 2048
OpenLLaMA2 7B 2048
LLaMA1 7B, 13B, 33B, 65B 2048
LLaMA?2 7B, 13B, 70B 4096
HLAT 7B, 70B 4096

Evaluation Tasks: We evaluate HLAT against baselines on
7 groups of tasks including both zero-shot and few-shot tasks

[36]]. We use HumanEval [37] for coding tasks, and Language
Model Evaluation Harness [38|] for others.

Massive Multitask Language Understanding (MMLU)
[15[], [39] contains 57 tasks, spanning STEM, social sciences,
humanities, and other subjects. The difficulty ranges from
elementary to professional levels. The breadth of the dataset
tests model’s overall problem solving and knowledge ability.

Commonsense Reasoning (CR) consists of 6 datasets:
PIQA [40], HellaSwag [41]], WinoGrande [42]], ARC easy
and challenge [43]], and OpenBookQA [29]]. These multi-
choice tasks include carefully crafted riddles, puzzles, and
scenarios designed to probe a model’s ability to leverage
implicit knowledge, make logical inferences, and navigate the
rules of physical and social worlds.

World Knowledge (WK) includes NaturalQuestions [44]]
and TriviaQA [45]. Both tasks are designed to test model’s
question-answering ability in closed book setting. The models
are not provided documents that may contain information
about the question, and it has to rely on information learnt
or memorized in pre-training data.

Reading Comprehension (RC) uses BoolQ [46] to test
model’s open book comprehension ability. BoolQ is a question
answering dataset for yes/no questions. Each example is a
triplet of (question, passage, answer), with the
title of the page as optional additional context. The model
is required to answer the question based on the given context
in passage.

Math ability is evaluated with GSM8K (Grade School Math
8K) [47]. GSMS8K contains 8,500 grade school math problems.
Both problems and answers are provided in natural language.
These problems take between 2 and 8 steps to solve, which is
ideal for testing basic multi-step reasoning ability.

Code evaluation uses HumanEval [37]] dataset including 164
programming problems with a function signature, docstring,
body, and several unit tests. They were handwritten to ensure
not present in the training set of the models.

A. Performance against open-source Models

We compare the performance of HLAT with other open-
source benchmarks in Table [l The numbers are reported in
percentage and for HLAT results, we include both mean and

TABLE II: Evaluation of HLAT against 4 open-source models on 6 groups of tasks described in Section [V} Numbers in the

parentheses represent standard deviation, if available.

Model Size MMLU CR WK RC Math Code Average
- accuracy accuracy exact match accuracy accuracy pass@1 pass@10
OpenLLaMA-1 7B 30.5 58.4 40.6 70.5 5.2 4.5 13.4 41.2
OpenLLaMA-2 7B 41.1 61.3 37.9 724 6.8 9.7 25 449
LLaMA-1 7B 35.1 63.5 43.6 76.5 11 10.5 21.3 474
LLaMA-2 7B 453 64 452 774 14.6 12.2 252 49.2
HLAT-7B 7B 413 (3.6) 59.5(1.2) 388 (0.5) 72.5(0.8) 9.4 (0.8) 7.6 19.8 44.6
OpenLLaMA-1 13B 435 62 459 72.3 8.3 7 17 47.1
LLaMA-1 13B 469 65.3 49.7 78.1 17.8 15.8 22.6 53.1
LLaMA-2 13B 453 66.3 50.5 81.7 28.7 18.3 30.5 54.6
LLaMA-1 33B 57.8 68.9 54.6 83.1 35.6 21.7 38.4 59.2
LLaMA-1 65B 634 69.8 57 85.3 50.9 23.7 - 62.1
LLaMA-2 70B 68.9 70.7 59 85 56.8 30.5 59.4 64.7
HLAT-70B 70B 65.1 (34) 673 (12) 545 (0.6 82.6 (0.7) 485 (1.4) 214 57.9 60.8

standard deviation (in the parentheses, if available). We also
report an average score over all tasks in the last column.

HLAT-7B performs better than OpenLLaMA-1 and is on-
par with OpenLLaMA-2. Both HLAT-7B and OpenLLaMA
models have some gap with LLaMA-1 and LLaMA-2, which
is likely due to the training data quality. Even though the
data composition of RedPajama-1T is similar as those used
in LLaMA-1, the data cleaning pipeline and final data quality
are different, which therefore affects the model performance
[48]]. For HLAT-70B, we use the same training dataset as the
7B model for consistency. Although there is no OpenLLaMA
baseline for a fair comparison, HLAT-70B performs better
than LLaMA-1 and LLaMA-2 models of smaller sizes. The
model performance gap with LLaMA-1 (65B) and LLaMA-2
(70B) is also smaller than those on 7B models. We acknowl-
edge the lack of effort on data quality improvement, but our
main goal is to showcase the effectiveness and efficiency of
AWS TRAINIUM.

On MMLU (5-shot), both HLAT models perform better
than OpenLLaMA-1 and LLaMA-1 models of similar size.
The performance is slightly worse than LLaMA-2 family of
models, likely due to the difference in training dataset size and
composition [8].

On Commonsense Reasoning (0-shot) and World Knowl-
edge (5-shot), HLAT-7B performs similar to OpenLLaMA-1
and OpenLLaMA-2 models. By diving deep into performance
on each individual task, HLAT-7B excels in 19/29 tasks as
compared with OpenLLaMA-1, and 15/29 tasks compared
with OpenLLaMA-2. Both HLAT and OpenLLaMA models
have some gaps with LLaMA-1 and LLaMA-2 models, which
may be due to the training set quality. Nevertheless, the gap
(~ 3%) is consistent on 7B and 70B models.

On Math problems (GSMS8K, 8-shot), HLAT-7B performs
significantly better than OpenLLaMA-1 and OpenLLaMA-2.
As will be discussed in the next section, HLAT-70B has a big
improvement of Math ability in later training stage. HLAT-
70B performs similar as LLaMA1-65B, and we observed
significant improvement in upsampling training stage.

On Coding problems, both HLAT-7B and HLAT-70B

perform comparable with LLaMA-1. HLAT-7B performs
better than OpenLLaMA-1 and worse than OpenLLaMA-
2 and LLaMA-2. First, for OpenLLaMA-1, the tokenizer
merges consecutive spaces which negatively affects the coding
performance, as it eliminates important information such as
indentation and line breaks. This issue is subsequently fixed
in OpenLLaMA-2, which explains its better performance.
Besides, OpenLLaMA-2 is trained with additional code data
from StarCoder which also contributes to performance im-
provement.

B. Intermediate Model Performance

During the model training, we also evaluate the intermediate
checkpoints about every 200 billion tokens. Figure (3| and
Figure [show the model performance of HLAT-7B and
HLAT-70B with respect to number of seen training tokens (in
billions), respectively. On most benchmarks, the performance
improves steadily, and correlates with the training loss.

We found that for different tasks, the model converges
at different rates. For Commonsense Reasoning, the model
accuracy improves quickly at beginning of training, and starts
to saturate at later training stages. This is similar as the trends
observed in other LLM model trainings [8]], [49].

However, for Math task (GSM8K) shown in Figure
the learning curve shows an exponentially increasing trend.
It increase very gradually for the initial ~1 trillion tokens
and begins to improve significantly during the later stages of
training. Intuitively, this seems to indicate that the model is
able to grasp more logical abilities after entering a relatively
stable training plateau. We defer further research into this
behavior as a future work.

For World Knowledge task shown in Figure the per-
formance increases almost linearly with number of training
tokens. Since this is a closed book test and mainly evaluates
the model’s ability of memorizing facts in pre-training data,
the model seems to consistently improve its ability on this
domain with more training steps and epochs. In addition, we
tested if the trending is related to number of shots used in
evaluation. It turns out that the trends are very similar for
zero-shot, 3-shot, and 5-shot tests.

MMLU

Commonsense Reasoning

World Knowledge

4 o 41 £ oshots
’g ’g 35 3 shots
= 40 5 {:) ~—F— 5 shots
g g g
=35 ~ 56 2 25
> > E
[®) 1) -
© © 54 O 20
L 30 o ©
> > X 15
O O 52 w
g 25 é—t) 10
50
5
250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750
Tokens (in Billions) Tokens (in Billions) Tokens (in Billions)
(@) () (©
BoolQ GSM8K Code
72.5 10 - pass@1
30 pass@10
70.0 s) —— pass@100
Ters o %zs
© © 6 € 20
5 65.0 55 OC)
Y625 Y O 15
Q - Q 4 =
60.0 < EOL) 10
57.5 2 5 //‘w
330 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750
Tokens (in Billions) Tokens (in Billions) Tokens (in Billions)
(d) ©) ()
Fig. 3: Intermediate model performance with number of seen tokens for HLAT-7B.
MMLU Commonsense Reasoning World Knowledge
70 " 55
60 § 66 5
a’ 8 64 o
@© 50 ~ 45
5 >62 €
v 40 8 60 Jd
o o @ 40
< 3 ss 5
30 1%}
<C 56 35
250 500 750 1000 1250 1500 1750 3 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750
Tokens (in Billions) Tokens (in Billions) Tokens (in Billions)
(@ (b) ©
o BoolQ GSM8K Code
50 501 —— pass@l
pass@10
80 £ 40
(9]
5‘ 48 c’40
© ;5 © 3 8
o IS C 30
3 — o]
] 0 20 =
70 @© 20
<< bs &
W 10
65 10
0
250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750 200 400 600 800 1000 1200 1400 1600 1800

Tokens (in Billions)

(d)

Tokens (in Billions)

(e)

Tokens (in Billions)

®

Fig. 4: Intermediate model performance with number of seen tokens for HLAT-70B.

Those observations indicate the necessity of a set of eval-
uation tasks covering a wide range of domains for LLM
pre-training. A single validation set or evaluation tasks from
narrow domains may not fully reflect the actual over- or under-
fitting of the model for general downstream performance.

C. Upsampling

During HLAT-70B training, we upsampled the training
dataset in last 400B tokens. Specifically, we use 35.47% web
data, 41.27% math data, and 23.26% coding data with more
details listed in Table [l In Figure @ we plot the evalua-
tion performance of HLAT-70B with seen training tokens.
In upsampling training stage, that is, after 1400B tokens,

TABLE III: Upsampling dataset composition for HLAT-70B.

Datasets Size Percentage
(billions of tokens)
Wikipedia [21]]
‘Web Data c4 [21) 90 35.47%
StackExchange
Domain Arxiv [21]
Specific Open-Web-Math [23] 0% 41.27%
PeS20 [22]
Code Github [21] 59 23.26%
Total - 253.7 15.16%

we observe significant model performance improvement over
math, coding, and MMLU performance. It improved math by
10% and coding by 5%. This is consistent with the findings
in LLaMA-3 [10], where the researchers found significant
improvement of LLaMA-3 8B model on math problems.
However, they mentioned such method did not help much for
405B models. Our experiment fills the model size gap, and
shows that upsampling still helps for a 70B model.

D. Checkpoint Averaging

For HLAT-70B, we average the last two checkpoints used
in pre-training to generate a checkpoint for final evaluation
[10], [33]]. Table |I_V| compares the individual checkpoints
with 1740B training tokens and 1800B training tokens, as
well as the averaged checkpoints. The averaged checkpoints
outperforms individual checkpoints on average performance,
as well as some individual tasks.

TABLE 1V: Evaluation of HLAT-70B
averaged checkpoints.

with individual and

Checkpoint MMLU RC WK CR Math Code Avg.
1740B 64.5 675 54 83.1 473 18.3 60.3
1800B 64.2 669 54 82.1 472 21.8 60.2
Average 65.1 673 545 826 485 214 60.8

E. Truthfulness and Bias

We report the model’s truthfulness and bias using Truth-
fulQA [50] and CrowS-pairs [51]. TruthfulQA presents a
collection of meticulously crafted questions spanning diverse
domains such as health, law, finance, and even politics. These
queries deliberately target areas where human intuition and
personal biases can lead to incorrect responses, and measure
an LLM’s resistance to misinformed or erroneous knowledge.
CrowS-Pairs is a benchmark designed to probe LLMs for
social biases across nine categories, including gender, reli-
gion, race/color, sexual orientation, age, nationality, disability,
physical appearance and socioeconomic status. Each example
is composed of a stereotype and an anti-stereotype.

TABLE V: Model Truthfulness and Bias evaluation. CrowS-
pairs (CSP) uses percentage of stereotypes as metric and
TruthfulQA (TQA) uses multiple choice accuracy as metric.

Dataset Size CSP(]) CSP TQA (1) TQA
Tasks - english french mcl mc2
OpenLLaMA-1 7B 64.6 50.1 23.1 35.1
OpenLLaMA-2 7B 65.6 51.7 22.6 34.6
LLaMA-1 7B 53.7 475 22.0 34.1
LLaMA-2 7B 66.9 54.9 252 39.0
HLAT-7B 7B 65.2 54.5 23.6 37.2
LLaMA-1 65B 69.3 58.3 27.9 42.6
LLaMA-2 70B 69.8 63.5 30.6 44.8
HLAT-70B 70B 68.1 59.1 323 45.9

We present the results in Table [V] with O shot inference. For
TruthfulQA, we measure the multiple-choice score, and higher
score shows better truthfulness. For CrowS-Pairs, it measures

the percentage of models choosing answers of stereotypes, so
lower scores indicates smaller bias. Overall, HLAT performs
similar to other open-source models.

FE. Efficiency and Scalability

We describe the training efficiency in terms of Cost per
4-million tokens (CPT) and scalability reported in [52]]. The
CPT is defined as CPT = ﬁ x 4e, where C is instance
cost per hour ($21.50 for Trainium, and $32.77 for GPU), T is
training throughput (tokens per second). CPT quantifies both
the training speed and also hardware cost. We use this metric
to compare training efficiency of Trainium and GPU.

= trnl, 78
10 p4d, 78
== trnl, 70B
= pad, 708

Normalized CPT

4 8

16 32 64
Number of nodes

Fig. 5: Normalized cost per 4 million tokens (CPT) for 7B
and 70B models on AWS TRAINIUM with various number
of nodes. CPT of GPU baseline (p4d, 7B) with 4 nodes is
normalized to 100%. 70B models ran into out-of-memory on
4 nodes.

For comparison, the GPU baseline is established using
p4d.24xlarge instances and NeMo 23.08 [25]] (available inside
NeMo docker container with tag 23 . 08) software stack. Fig-
ure [3] plots the normalized CPT of training on TRAINIUM and
scaling. The TRAINIUM CPT is normalized, such that the CPT
of the GPU baseline (p4d, 7B) on 4 nodes is 100%. Overall,
the training cost on frnl is approximately 60% of GPU, and
is consistent with the number of nodes. In addition, the CPTs
on 70B models are roughly 10 times of those on 7B models.

G. Model Limitation

We note some limitations of HLAT in this section. Similar
as other LLMs, HLAT suffers a set of limitations such as
hallucinations, potential non-factual generations, biases, and
toxicity [53]. For example, although comparable with other
open-source pre-trained models, the bias of HLAT is still
relative high on some subjects such as sexual orientation,
physical appearance, religion, and socioeconomic (see Table
[V). This is partially due to the usage of publicly available
datasets. More importantly, as a pre-trained model, HLAT has
not gone through a supervised finetuning and human prefer-
ence alignment. Those fine-tuning methods have been shown
to be able to alleviate some limitations of pre-trained LLMs
[Ol. Another limitation is that our training is stopped after 1.8
trillion tokens. As is suggested by LLaMA-3 [10]], HLAT may
be able to further improve on certain tasks, such as math, world
knowledge, MMLU, and coding, with more training tokens.

VI. BEST PRACTICES & FUTURE DIRECTIONS

In this section, we share some best practices we observed
for training on AWS TRAINIUM, and raise open questions for
future research.

Parallelism: NxDT supports TP up to 32 degrees and
pipeline parallelism. For a 7B model, we found that the
combination of TP=8 and PP=1 provides the highest training
throughput, but not for HLAT-70B. So the optimal parallelism
configuration varies with model sizes and architectures. To
achieve the highest training throughput, parallelism configu-
ration needs to be jointly optimized with choice of activation
checkpointing method, gradient accumulation steps, and train-
ing precision, to balance memory and communication costs.

Training Precision: NxDT supports various training pre-
cision configurations, including full precision (FP32), BF16
with and without SR, standard mixed precision training, etc.
Full precision training is often memory-wise infeasible for
multi-billion LLMs. We compared multiple training strategies
for HLAT: pure BF16, BF16 with SR and standard mixed
precision training. Empirically, we found that training loss of
pure BF16 diverges. BF16 with SR shows similar training
loss as mixed precision on HLAT-7B model, but converges
slower on HLAT-70B. We finally chose BF16 with SR for
higher throughput on HLAT-7B, but standard mixed precision
on HLAT-70B. For models of other sizes and architecture,
warm-up study may be needed to decide the optimal training
precision. Usually, the divergence can be observed in first few
thousands of steps.

Choice of [2: We observed that using 52 = 0.99 causes
training instability and slower convergence. This is related to
the choice of BF16 with SR training precision. A large [
fails to capture the gradient explosion at current and recent
steps, and hence does not effectively reduce the gradients in
occurrence of gradient explosion. Switching to B2 = 0.95
addresses the above-mentioned problem.

Weight decay: We applied weight decay to all layers.
Empirically, weight decay is not applied to normalization and
bias layers [54]. In our experiment, we did not found much
performance-wise difference of those two methods.

Pre-compilation: TRAINIUM requires pre-compiling the
scripts to graphs. The compilation takes some time, especially
for large models. Debugging on training scripts (e.g., printing
out intermediate tensors) may require re-compilation. Instead
of directly developing on a large model, we found it more
efficient to develop and test on a smaller model and scale up
afterwards.

VII. RELATED WORK

LLM pre-training: After the Transformer architecture [/1]]
was introduced, BERT [54] was proposed to pre-train a
language model on a large corpus of unlabeled data. Fol-
lowing the success of BERT model on various NLP tasks,
many pre-trained language models are later introduced with
different architectures and training methods, such as GPT-2
[55], RoBERTa [56], BART [57]], and so on [6]. Studies later
observed significant performance improvement of language

models by increasing model size and training data [58]]. Such
abilities are further demonstrated in LLMs such as GPT-3 [7]],
PalLM [59], LLaMA [8]-[10]], Falcon [60], Gemini [[61]], Phi
[48]], etc. Pre-trained on trillions of tokens, LLMs with tens
or hundreds of billions parameters show remarkable ability
in generating creative text contents, as well as a variety of
downstream tasks, such as question answering, summarization,
machine translation, programming, etc. [6].

AT accelerators: Most models are trained on NVIDIA GPU
accelerators, such as GPT [7]], [62] and LLaMA [8], [9].
Falcon-180B [60] was trained on AWS SageMaker, with up to
4,096 A100 40GB GPUs using p4d instances. However, the
landscape of hardware accelerators for deep learning train-
ing has blossomed in recent years, with established players
like NVIDIA GPUs facing fierce competition from custom
offerings like Google’s TPU and AWS TRAINIUM. PaLM-
2 [59] and OpenLLaMA [29] have demonstreated successful
LLM pre-training on Google TPU. Recently, OLMo [49] is
an open-source model developed by AI2. It has two models
trained on AMD and Nvidia GPUs, separately. The two
models have nearly identical performance on their evaluation
suite by 2T tokens. AWS TRAINIUM is a machine learning
accelerator developed for deep learning training with high
performance and cost-competitiveness. Our work is the first
demonstration of end-to-end multi-billion LLM pre-trained on
AWS TRAINIUM. Ultimately, the optimal choice depends on
the specific needs of the training task, with further research
required to fully explore the potential of each accelerator and
their possible convergence in future architectures.

VIII. CONCLUSION

In this paper, we pre-train HLAT, a family of 7 bil-
lion and 70 billion parameter large language models, using
AWS TRAINIUM over ~1.8 trillion tokens. HLAT follows
the decoder-only architecture and is trained with up to 256
Amazon EC2 trnl.32xlarge instances. We evaluate the per-
formance of HLAT against popular open-source baseline
models including LLaMA and OpenLLaMA on a variety of
popular benchmarking tasks. We find that HLAT achieves
model quality on par with these baseline models of similar
sizes. This work demonstrates, for the first time, that AWS
TRAINIUM with NxDT is able to successfully pre-train high-
quality LLMs with high efficiency and low cost.

REFERENCES

[11 A. Vaswani, N. Shazeer et al., “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998-6008.

[2] J. Li, T. Tang et al., “Pretrained language models for text generation: A
survey,” arXiv preprint arXiv:2201.05273, 2022.

[3] A. Hendy, M. Abdelrehim et al., “How good are gpt models at
machine translation? a comprehensive evaluation,” arXiv preprint
arXiv:2302.09210, 2023.

[4] Y. Zhu, H. Yuan et al., “Large language models for information retrieval:
A survey,” arXiv preprint arXiv:2308.07107, 2023.

[5]1 B. Roziere, J. Gehring et al., “Code llama: Open foundation models for
code,” arXiv preprint arXiv:2308.12950, 2023.

[6] W. X. Zhao, K. Zhou et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[7]

[8]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]

[32]

[33]

T. Brown, B. Mann et al., “Language models are few-shot learners,”
in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato et al., Eds., vol. 33. Curran Associates, Inc., 2020, pp.
1877-1901.

H. Touvron, T. Lavril et al., “Llama: Open and efficient foundation
language models,” arXiv preprint arXiv:2302.13971, 2023.

H. Touvron, L. Martin et al., “Llama 2: Open foundation and fine-tuned
chat models,” arXiv preprint arXiv:2307.09288, 2023.

A. Dubey, A. Jauhri et al., “The llama 3 herd of models,” 2024.

J. Rasley, S. Rajbhandari er al., “Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3505-3506.

M. Shoeybi, M. Patwary et al., “Megatron-Im: Training multi-billion
parameter language models using model parallelism,” arXiv preprint
arXiv:1909.08053, 2019.

FairScale authors, “Fairscale: A general purpose modular pytorch li-
brary for high performance and large scale training,” https://github.com/
facebookresearch/fairscale, 2021.

Y. Zhao, A. Gu et al., “Pytorch fsdp: experiences on scaling fully sharded
data parallel,” arXiv preprint arXiv:2304.11277, 2023.

D. Hendrycks, C. Burns et al., “Aligning ai with shared human values,”
Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2021.

M. Abadi, A. Agarwal et al., “TensorFlow: Large-scale machine learn-
ing on heterogeneous systems,” 2015, software available from tensor-
flow.org.

T. Chen, B. Xu et al., “Training deep nets with sublinear memory cost,”
arXiv preprint arXiv:1604.06174, 2016.

V. A. Korthikanti, J. Casper et al., “Reducing activation recomputation
in large transformer models,” Proceedings of Machine Learning and
Systems, vol. 5, pp. 341-353, 2023.

S. Rajbhandari, J. Rasley et al., “Zero: Memory optimizations toward
training trillion parameter models,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2020, pp. 1-16.

D. A. Hudson and C. D. Manning, “Gqa: A new dataset for real-world
visual reasoning and compositional question answering,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 6700-6709.

T. Computer, “Redpajama: an open dataset for training large
language models,” 2023. [Online]. Available: https://github.com/
togethercomputer/RedPajama-Data

L. Soldaini and K. Lo, “peS20 (Pretraining Efficiently on S20RC)
Dataset,” Allen Institute for AI, Tech. Rep., 2023.

K. Paster, M. D. Santos et al., “Openwebmath: An open dataset of high-
quality mathematical web text,” arXiv preprint arXiv:2310.06786, 2023.
A. Arrow, “Apache arrow, a crosslanguage development platform for
in-memory analytics.” https://arrow.apache.org/, 2020.

E. Harper, S. Majumdar et al., “NeMo: a toolkit for Conversational Al
and Large Language Models.” [Online]. Available: https://github.com/
NVIDIA/NeMo

P. Micikevicius, S. Narang et al., “Mixed precision training,” arXiv
preprint arXiv:1710.03740, 2017.

S. Gupta, A. Agrawal et al., “Deep learning with limited numerical
precision,” in Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ser. ICML’15.
JMLR.org, 2015, p. 1737-1746.

N. Shazeer, “Glu variants improve transformer,” arXiv preprint
arXiv:2002.05202, 2020.

X. Geng and H. Liu, “Openllama: An open reproduction of llama,”
May 2023. [Online]. Available: https://github.com/openlm-research/
open_llama

S. Takase, S. Kiyono et al., “Spike no more: Stabilizing the pre-training
of large language models,” arXiv preprint arXiv:2312.16903, 2023.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2019.

A. Borzunov, M. Ryabinin et al., “Distributed inference and fine-
tuning of large language models over the internet,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

P. Izmailov, D. Podoprikhin et al., “Averaging weights leads to wider
optima and better generalization,” arXiv preprint arXiv:1803.05407,
2018.

(35]
[36]
[37]
[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[40]
[47]
[48]
[49]
[50]

[51]

[52]

(53]

[54]

[55]
[56]

(571

[58]
[59]
[60]
[61]

[62]

G. Penedo, Q. Malartic et al., “The RefinedWeb dataset for Falcon LLM:
outperforming curated corpora with web data, and web data only,” arXiv
preprint arXiv:2306.01116, 2023.

R. Li, L. B. Allal et al., “Starcoder: may the source be with you!” 2023.
Y. Chang, X. Wang et al., “A survey on evaluation of large language
models,” ACM Transactions on Intelligent Systems and Technology,
2023.

M. Chen, J. Tworek et al., “Evaluating large language models trained
on code,” arXiv preprint arXiv:2107.03374, 2021.

L. Gao, J. Tow et al, “A framework for few-shot language model
evaluation,” Version v0. 0.1. Sept, 2021.

D. Hendrycks, C. Burns et al., “Measuring massive multitask language
understanding,” Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2021.

Y. Bisk, R. Zellers et al., “Piga: Reasoning about physical commonsense
in natural language,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 34, no. 05, 2020, pp. 7432-7439.

R. Zellers, A. Holtzman et al., “Hellaswag: Can a machine really finish
your sentence?” arXiv preprint arXiv:1905.07830, 2019.

K. Sakaguchi, R. L. Bras et al., “Winogrande: An adversarial winograd
schema challenge at scale,” Communications of the ACM, vol. 64, no. 9,
pp. 99-106, 2021.

P. Clark, I. Cowhey et al., “Think you have solved question answering?
try arc, the ai2 reasoning challenge,” ArXiv, vol. abs/1803.05457, 2018.
T. Kwiatkowski, J. Palomaki e al, “Natural questions: a benchmark
for question answering research,” Transactions of the Association of
Computational Linguistics, 2019.

M. Joshi, E. Choi et al, “Triviaga: A large scale distantly super-
vised challenge dataset for reading comprehension,” arXiv preprint
arXiv:1705.03551, 2017.

C. Clark, K. Lee et al., “Boolq: Exploring the surprising difficulty of
natural yes/no questions,” in NAACL, 2019.

K. Cobbe, V. Kosaraju et al., “Training verifiers to solve math word
problems,” arXiv preprint arXiv:2110.14168, 2021.

S. Gunasekar, Y. Zhang et al., “Textbooks are all you need,” arXiv
preprint arXiv:2306.11644, 2023.

D. Groeneveld, 1. Beltagy et al., “Olmo: Accelerating the science of
language models,” arXiv preprint arXiv:2402.00838, 2024.

S. Lin, J. Hilton, and O. Evans, “Truthfulqa: Measuring how models
mimic human falsehoods,” arXiv preprint arXiv:2109.07958, 2021.

N. Nangia, C. Vania et al., “CrowS-Pairs: A Challenge Dataset for
Measuring Social Biases in Masked Language Models,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing, Nov. 2020.

X. Fu, Z. Zhang et al., “Distributed training of large language models on
aws trainium,” in Proceedings of the 2024 ACM Symposium on Cloud
Computing, 2024.

Y. Zhang, Y. Li et al., “Siren’s song in the ai ocean: A survey on hal-
lucination in large language models,” arXiv preprint arXiv:2309.01219,
2023.

J. Devlin, M.-W. Chang et al., “Bert: Pre-training of deep bidirectional
transformers for language understanding,” in North American Chapter
of the Association for Computational Linguistics, 2019.

A. Radford, J. Wu et al., “Language models are unsupervised multitask
learners,” OpenAl blog, vol. 1, no. 8, p. 9, 2019.

Y. Liu, M. Ott et al., “Roberta: A robustly optimized bert pretraining
approach,” ArXiv, vol. abs/1907.11692, 2019.

M. Lewis, Y. Liu et al., “BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehen-
sion,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, D. Jurafsky, J. Chai et al., Eds. Association
for Computational Linguistics, Jul. 2020, pp. 7871-7880.

J. Hoffmann, S. Borgeaud et al., “Training compute-optimal large
language models,” arXiv preprint arXiv:2203.15556, 2022.

R. Anil, A. M. Dai et al., “Palm 2 technical report,” arXiv preprint
arXiv:2305.10403, 2023.

E. Almazrouei, H. Alobeidli et al., “The falcon series of open language
models,” arXiv preprint arXiv:2311.16867, 2023.

G. Team, R. Anil et al., “Gemini: a family of highly capable multimodal
models,” arXiv preprint arXiv:2312.11805, 2023.

OpenAl, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.

https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arrow.apache.org/
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

	Introduction
	Background - Distributed Training on AWS Trainium
	Method
	Model Architecture and Hyperparameters
	Training Dataset and Dataloader
	Orchestration
	Training Efficiency

	Training Process
	Training Curves
	Hardware and System Failures
	Training Convergence and Instability

	Evaluation
	Performance against open-source Models
	Intermediate Model Performance
	Upsampling
	Checkpoint Averaging
	Truthfulness and Bias
	Efficiency and Scalability
	Model Limitation

	Best Practices & Future Directions
	Related Work
	Conclusion
	References

