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Abstract

The main objective of this paper is to tackle visual localization, which is
essential for the safe navigation of mobile robots. The solution we propose
employs panoramic images and triplet convolutional neural networks. We
seek to exploit the properties of such architectures to address both hierarchi-
cal and global localization in indoor environments, which are prone to visual
aliasing and other phenomena. Considering their importance in these archi-
tectures, a complete comparative evaluation of different triplet loss functions
is performed. The experimental section proves that triplet networks can be
trained with a relatively low number of images captured under a specific
lighting condition and even so, the resulting networks are a robust tool to
perform visual localization under dynamic conditions. Our approach has
been evaluated against some of these effects, such as changes in the lighting
conditions, occlusions, noise and motion blurring. Furthermore, to explore
the limits of our approach, triplet networks have been tested in different in-
door environments simultaneously. In all the cases, these architectures have
demonstrated a great capability to generalize to diverse and challenging sce-
narios. The code used in the experiments is available at https://github.
com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
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1. Introduction

Vision sensors are a suitable option to tackle robot localization, since they
can capture a large amount of information from the environment at a low
cost. Among these sensors, omnidirectional cameras stand out (Amorós et
al. [1]). These cameras have a field of view up to 360º, so they capture com-
plete information from the environment regardless of the robot orientation.
Omnidirectional views can be obtained with different alternatives, such as
multi-camera systems (Kneip et al. [2]), catadioptric systems (Lin et al. [3])
or the combination of a pair of fisheye cameras (Flores et al. [4]).

In order to describe the visual information from the scene, it can be
conducted by means of global or local description. First, holistic or global
description consists in working with the image information as a whole (Payá
et al. [5]), whereas the description based on local features only focuses on
those points or areas easily identifiable in an image, such as borders or corners
(Murillo et al. [6]). In the present approach, global description is used.

Traditionally, analytical techniques have been used to create visual de-
scriptors (Se et al. [7]). However, with the huge increase of computing power,
the use of deep learning tools has increased during the past few years. In
this context, Convolutional Neural Networks (CNNs) have revolutionized the
field of image processing (Nilwong et al. [8], Cebollada et al. [9]). This type
of neural networks apply filters to the image based on the convolution oper-
ation, and are able to extract features from the image with a high level of
abstraction.

Concerning the training of CNNs, architectures composed of several branches
of these networks have emerged in recent years, giving place to Siamese (Yin
et al. [10]) and triplet networks (Liu and Huang [11]), among others. Siamese
networks contain two identical neural networks, that is, they have the same
architecture and share their weights, and work in parallel, in such a way
that each of them receives a different input and provides a different output.
Meanwhile, triplet networks receive three inputs, commonly called anchor,
positive and negative, and provide three outputs. While siamese networks
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are typically used to learn if two inputs are similar or different, triplet net-
works are able to simultaneously learn similarities between the anchor and
positive inputs and differences between the anchor and negative data. In the
case of robot localization, triplet samples can be chosen in such a way that
two of them are captured from similar positions and the other is captured
from a different position. The fact of receiving three inputs permits the CNN
to adjust both to positive and negative examples during the training process.
Besides, since the number of possible combinations of three images is very
large, a fairly small number of images captured by the robot can be enough
to create a complete training set.

During the training process, the loss function compares the output pro-
vided by the CNN with the required output, and the optimization of this
function leads to more accurate predictions. As a function of the loss value,
the optimizer algorithm modifies the CNN weights to a greater or smaller
extent. Triplet loss functions (Hermans et al. [12]) seek to minimize the
difference between anchor and positive inputs and also seek to maximize
the difference between anchor and negative inputs. This type of loss func-
tions have some parameters that must be set before the training. The most
relevant is the margin, which permits adjusting the required similarity and
difference relationships between the data.

In this paper, a CNN model is used, which is adapted and retrained to
tackle visual localization in indoor environments with panoramic images, by
means of a triplet network. The experimental section shows the robustness
of such architectures to address localization, with a direct comparison to
siamese architectures. Thanks to it, a rapid training with a limited set of
images captured under a specific lighting condition is enough to obtain a
tool which is accurate and capable of adapting to adverse conditions with-
out the need of a data augmentation process. In addition, an exhaustive
comparative evaluation between several triplet losses has been performed in
both localization methods: hierarchical and global. To evaluate the perfor-
mance of triplet architectures in large indoor environments, which are prone
to visual aliasing, three different indoor environments have been employed
simultaneously to train and test the CNNs.

Therefore, the main contributions of this paper are:
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• A hierarchical localization approach which exploits the advantages of
triplet architectures in indoor environments is proposed.

• We conduct a complete comparative evaluation of the performance of
different triplet loss functions in the global and the hierarchical local-
ization.

• Triplet networks are trained with a limited set of images and thoroughly
evaluated against defying visual phenomena that appear often in mobile
robotics, such as changes in the lighting conditions, noise, occlusions
or motion blur. Beside, the ability of the tool to generalize to different
environments is assessed.

The rest of the manuscript is structured as follows. Section 2 reviews
the state of the art on robot localization, holistic visual description and the
use of deep learning to perform these tasks. Section 3 presents the CNN
architecture and the loss functions used in this research. In Section 4, the
two localization methods employed in this paper are detailed. Section 5
describes the experiments conducted. Finally, in Section 6 the conclusions
and future works are outlined.

2. State of the art

Nowadays, the use of vision systems for mobile robotics applications is
very common in the literature. Many researchers make use of cameras to
solve the localization and mapping problems. Among this type of sensors,
monocular cameras are the most extended option. For example, Xiao et al.
[13] addressed the SLAM problem in dynamic environments with a monocular
vision system. Other approaches make use of omnidirectional vision systems
as they can capture complete information from the scenario regardless of the
robot orientation. Flores et al. [4] perform localization with omnidirectional
and fisheye cameras.

With respect to visual description, there are some authors, such as Payá
et al. [5] or Cebollada et al. [14], that propose environment modeling tech-
niques with global-appearance descriptors. Moreover, some researchers make
use of such descriptors to tackle the loop closure problem, one of the most
critical parts of SLAM algorithms (Zhang et al. [15]). Also, local descriptors
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are commonly used as well to perform localization (Kallasi et al. [16]). Fur-
thermore, it is frequent to combine the two types of descriptors to address
mapping and/or localization (Li et al. [17], Su et al. [18]).

The increase of computing power has led to the rise of CNNs in the past
decade. When it comes to process visual information captured by a robot,
this type of networks proved to be able to extract features from the image
and therefore solve mobile robotics problems like visual localization. CNNs
were first proposed in [19], and further developed in subsequent studies, which
propose more complex architectures, such as VGG (Simonyan and Zisserman
[20]), GoogLeNet (Szegedy et al. [21]) or AlexNet (Krizhevsky et al. [22]),
all of them trained to classify a thousand different objects with the ImageNet
database (Deng et al. [23]). Although CNNs are the most extended choice,
lately other architectures have been proposed to process visual information.
This is the case of Visual Transformers (Dosovitskiy et al. [24]), which are
based on Transformers, commonly used in Natural Language Processing.
Besides, other approaches propose different networks that are able to process
3D point clouds (Komorowski [25]).

Focusing on CNNs, many recent studies use them to address visual local-
ization. For instance, Nilwong et al. [8] make use of local features obtained
with a CNN from RGB images captured in outdoor environments, and For-
oughi et al. [26] followed a similar procedure indoors. Others, such as Xu et
al. [27], make use of feature descriptors extracted from different convolutional
layers of the network. CNNs can also be trained to obtain global-appearance
descriptors from the image (Cabrera et al. [28]). Moreover, Chen et al. [29]
propose a two-step method by combining global and local features. First,
an image retrieval phase takes place by comparing global image descriptors.
Second, the robot pose is estimated by comparing the ORB keypoints of the
captured image with the keypoints in the two most similar images. Ros-
tkowska and Skrzypezynski [30], Ballesta et al. [31] and Cebollada et al.
[9] also perform a hierarchical localization by identifying in first place the
room where the robot has captured the image and later estimate the robot
coordinates inside the room predicted in the first step. Besides, Wozniak et
al. [32] train a CNN to classify images among 16 rooms.

Due to the success of CNNs, other approaches have implemented ad-
vanced architectures composed of several CNNs. Siamese networks are com-
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posed of two identical CNNs that work in parallel and share their weights.
Apart from being able to extract global features from the image, Siamese
networks can include some additional layers to evaluate the similarity be-
tween the two inputs. This ability can be used in mobile robotics tasks such
as place recognition (Leyva-Vallina et al. [33]), loop closure (Qiu et al. [34])
or visual localization (Oliveira et al. [35]). Other researchers have designed
siamese architectures to process other kinds of sensory data. For example,
Chen et al. [36] make use of a siamese network to evaluate LiDAR scan
similarity. Each network receives a LiDAR 3D point cloud and embeds the
representation into the Euclidean space to estimate their similarity.

Concerning triplet architectures, they have barely been used in visual
localization tasks, and only few approaches can be found in recent years.
Also, all of them used standard cameras or RGB-d cameras. Arandjelovic et
al. [37] designed a triplet network that aggregates the extracted local fea-
tures into a single descriptor using a VLAD layer. Yu et al. [38] also make
use of a VLAD layer to address the same problem. López-Antequera et al.
[39] proposed a triplet architecture to carry out a visual localization under
seasonal changes. Likewise, Olid et al. [40] make a comparative evaluation
of several CNN, siamese and triplet networks, obtaining the highest recall
with triplet architectures. Comparing to these works, in the present work
we propose a hierarchical localization approach, which exploits the advan-
tages of the triplet networks in challenging indoor environments. Also, we
explore the use of triplet networks along with panoramic images, obtained
from a catadioptric system mounted on the robot both to train and test the
architectures.

The development of triplet networks goes hand in hand with the design
of triplet loss functions. Several studies have focused on creating a loss
function that optimizes the training of their triplet architecture. Hermans
et al. [12] compare different triplet loss functions used to train a CNN for
people recognition. Cheng et al. [41] use a variant of the Triplet Margin
Loss, proposed in [12], to solve the same problem. Nevertheless, there have
been only few approaches that designed a triplet loss function to tackle visual
localization. In this sense, Liu et al. [42] created a triplet loss function and
compared it with other loss functions to solve a place recognition problem.
Also, Kim et al. [43] developed a triplet loss function to undertake a room
retrieval task. Notwithstanding that, triplet loss functions have not been
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thoroughly tested in visual localization tasks and in the present manuscript
we perform a complete comparative evaluation of the performance of such loss
functions and the influence of their parameters in the global and hierarchical
localization with panoramic images.

3. Architecture of the CNN and triplet losses

Triplet networks consist of three identical CNNs that work in parallel and
share their weights, but each of them receives a different input and therefore
will provide a different output. In some applications, triplet networks present
some advantages over siamese networks. First, they receive the same number
of positive and negative inputs, which allows the CNN to adjust equally to
similar and different data during the training process. This property can be
especially useful in localization tasks, especially in those indoor environments
which are prone to visual aliasing. Second, the number of possible input
combinations in the training process increases substantially compared with
siamese networks. This can be especially useful when just a scarce dataset is
initially available, because a reasonably high number of triplet samples can
be obtained to train the CNN even if no data augmentation is performed.
For these reasons, triplet architectures can play a remarkable role to solve
the visual localization of a mobile robot, and we address this problem in the
present approach.

In order to carry out localization by using a triplet architecture, we make
use of the VGG-16 model [20], since it has proven to have a great ability
to extract features despite its small number of parameters, which can be
especially useful to perform localization in real time. This model was orig-
inally designed to classify objects among 1000 different classes. In order to
adapt it to the localization task, we have modified its backbone as shown in
the Figure 1. In first place, given that the size of the panoramic images is
128x512x3 pixels, the first fully connected layer of the feature aggregation
stage must be adapted to this size (its original size was 224x224x3 pixels).
Additionally, we leave the convolutional layers intact, which correspond to
the feature extraction phase, and modify the remaining fully connected lay-
ers to obtain a five-element global-appearance descriptor. With the aim of
taking advantage of the knowledge already acquired by the VGG-16 model,
the transfer learning technique is employed on the convolutional layers.
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Figure 1. Original VGG-16 model (above) and our adaptation (below). Convolutional
and max pooling layers have been left intact, whereas the fully connected layers have been
modified in order to adapt the architecture to the size of the input images and obtain a
five-element global descriptor. ReLU layers have not been included so as to simplify this
figure.

During the training, the loss function compares the output provided by
the CNN with the required output. Later, the optimizer algorithm will mod-
ify the network weights according to the committed error to optimize the
value of the loss function and achieve a more accurate prediction. Therefore,
triplet losses minimize their value when the anchor and positive inputs are
predicted as similar and the negative input is predicted as different to the
other two inputs. During the training process, the chosen loss function is
expected to have an important influence on the performance of the trained
network. In this paper, an exhaustive study is conducted to assess the in-
fluence of the loss function in the accuracy of the CNN when it is trained to
solve the localization problem.

• Triplet Margin Loss (TL): This is the most renowned triplet loss.
It returns the average value of all the batch combinations:

L =
1

N

N∑
i=1

[Di
a,p −Di

a,n +m]+
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where Di
a,p is the Euclidean distance between the anchor and positive

descriptors in the i-th triplet, Di
a,n is the Euclidean distance between

the anchor and negative descriptors, [...]+ is the ReLU function, m is
the margin and N is the batch size (number of triplet samples that are
taken into account before updating the internal model parameters).

• Lifted Embedding Loss (LE): This loss, described in [12], is charac-
terized by not only taking into account the distance between the anchor
and positive inputs and the distance between the anchor and negative
inputs, but also trying to maximize the distance between the positive
and negative inputs:

L =
1

N

N∑
i=1

[
Di

a,p + ln
(
em−Di

a,n + em−Di
p,n

)]
+

where Di
p,n is the Euclidean distance between the positive and negative

descriptors in the i-th triplet sample.

• Lazy Triplet Loss (LT): This loss returns the hardest example of the
batch for the network learning process:

L =
[
max

(
D⃗a,p − D⃗a,n +m

)]
+

where D⃗a,p = (D1
a,p, D

2
a,p, ..., D

N
a,p) are the Euclidean distances between

each anchor-positive pair and D⃗a,n = (D1
a,n, D

2
a,n, ..., D

N
a,n) are the Eu-

clidean distances between each anchor-negative pair.

• Semi Hard Loss (SH): This loss is a Lazy Triplet Loss variant. It
calculates the average distance between the anchor and positive de-
scriptors, and the minimum distance between the anchor and negative
descriptors. In other words, it returns the hardest negative example of
the batch:

L =
1

N

N∑
i=1

[
Di

a,p −min
(
D⃗a,n

)
+m

]
+
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• Batch Hard Loss (BH): This loss is another variant of the Lazy
Triplet Loss. It returns the maximum distance between the anchor and
positive descriptors, and the minimum distance between the anchor
and negative descriptors. Therefore, it returns the hardest positive
and negative examples of the batch:

L =
[
max

(
D⃗a,p

)
−min

(
D⃗a,n

)
+m

]
+

• Circle Loss (CL): This loss, proposed in [44], makes use of the cosine
similarity metric instead of the Euclidean distance:

L = ln

(
1 +

N∑
j=1

eγα
j
ns

j
n +

N∑
i=1

e−γαi
ps

i
p

)

where,

αi
p =

[
Op − sip

]
+
;αj

n =
[
sjn −On

]
+
;Op = 1−m;On = m

where sip is the cosine similarity between the anchor and positive de-
scriptors, sjn is the cosine similarity between the anchor and negative
descriptors and γ is a scale factor.

• Angular Loss (AL): This loss, introduced in [45], seeks to minimize
the angle formed by the vector that connects the anchor and the nega-
tive descriptors and the vector that connects the positive and the neg-
ative descriptors. Thus, it minimizes the distance between the anchor
and positive inputs:

L = ln

(
1 +

N∑
i=1

ef
i
a,p,n

)

where,

f i
a,p,n = 4 tan2 α

(
xi
a + xi

p

)T
xi
n − 2

(
1 + tan2α

)
(xi

a)
Txi

p
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where xi
a is the anchor descriptor of the i-th triplet sample, xi

p is the
positive descriptor of the i-th triplet sample, xi

n is the negative descrip-
tor of the i-th triplet sample and α is an angular margin.

Moreover, the Contrastive Loss has been used to train a siamese archi-
tecture with the aim of comparing directly siamese and triplet architectures.
Its equation is defined below:

L =
1

N

∑[
(1− l) ∗D2

i + l ∗max(0, (m−D2
i )
]

where l is the label and Di is the Euclidean distance between the i-th pair of
descriptors.

4. Visual Localization

With the aim of addressing the localization problem, the present approach
makes use of omnidirectional images captured in indoor environments by a
catadioptric system mounted on a mobile robot. Subsequently, RGB images
are converted to a panoramic format with 128x512x3 pixels and split into
training, validation and test sets. Additionally, a visual model is generated
with the images used during the training process. For every image, the
coordinates of the capture points are known (ground truth), which allows us
to conduct a supervised training.

Afterwards, we conduct the training, validation and test of the CNN
proposed in Section 3. In every stage, a triplet architecture will be used to
train the model, in such a way that the model is trained with combinations of
three images Ia, Ip, In, where each of the branches that compose the network
receives an input image and outputs a descriptor of that image.

In order to perform the validation and test, the CNN model will be used to
embed each test image into a global-appearance descriptor d⃗test ∈ R5x1 that
will be compared with the rest of the image descriptors that constitute the
visual map, composed of the images used during the training process. These
descriptors are normalized and then compared using Euclidean distance or
cosine similarity. The nearest neighbor among the images of the visual model
will allow us to estimate the position of the robot when it captured the
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test image. The next subsections describe the two localization approaches:
hierarchical localization and global localization.

4.1. Hierarchical localization

Hierarchical localization involves estimating the coordinates where the
robot has captured an image in two steps (see Figure 2). First, we carry
out a coarse localization, in which the CNN identifies the room where the
robot is located. Second, a fine localization is performed, in which the CNN
determines the robot coordinates in the room that has been retrieved in the
first stage.

Figure 2. Hierarchical localization process performed in two steps: first, coarse localiza-
tion (room retrieval); second, fine localization (estimate the robot coordinates inside the
retrieved room).

• Coarse localization: in this stage, the CNN must determine in which
room the test image has been taken. To do that, the triplet network is
trained with combinations of three images Ia, Ip, In chosen randomly, in
such a way that the anchor and positive images belong to the same room
and the negative image must have been captured in a different room.
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The CNN is trained to output a global descriptor per input image, as
shown in Figure 1. Once trained, to test the CNN, the descriptor of
each test image d⃗test1 is compared with a set of descriptors that contain

a representative descriptor of every room DIr =
[
d⃗Ir1 , d⃗Ir2 , ..., d⃗IrM

]
.

The representative image of every room is the image captured from
the position which is the closest to the geometrical centre of the room,
where M is the number of rooms. If the predicted room matches the
actual room, it will be considered as a network success.

• Fine localization: Once a room has been retrieved, the CNN must
estimate the robot position inside the room. To do this part, an inde-
pendent triplet network is trained for each one of the rooms, starting
from the weights of the coarse-step model. In this case, all the training
images belong to the same room and a distance threshold is defined to
consider positive or negative pairs. In this stage, the distance between
anchor and positive images must be smaller than 0.3 m and the dis-
tance between anchor and negative images must be larger than 0.3 m.
This threshold has not been chosen arbitrarily, since it is the minimum
distance that permits every image to have at least one possible positive
pair in the training dataset. To conduct the test, the descriptor of every
test image d⃗test2 is compared with the descriptor of every image that be-
longs to the visual model (VM) of the room that has been retrieved dur-

ing the coarse localization DV M
Roomk

=
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
, where n

is the number of images in the visual model of the predicted room. The
coordinates of the nearest neighbor are considered an estimation of the
position of the robot when capturing the test image.

4.2. Global localization

Global localization consists in determining the robot position in the en-
tire map in one step (see Figure 3). A unique CNN is trained for the whole
environment, including images captured in all the rooms with random com-
binations. As in the fine localization, a distance threshold is set to create the
positive and negative pairs: the distance between anchor and positive images
must be smaller than 0.3 m and the distance between anchor and negative
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images must be larger than 0.3 m. In order to test the CNN, the descriptor
of every test image d⃗test is compared with the descriptors of the visual model

of the whole map DV M =
[
d⃗ VM
1 , d⃗ VM

2 , ..., d⃗ VM
n

]
, where n is the number

of images in the complete visual model. Likewise, the coordinates of the
nearest neighbor are considered an estimation of the position of the robot
(xpred, ypred) =

(
xVM
i , yVM

i

)
.

Figure 3. Global localization process performed in a unique step, which consists in esti-
mating the coordinates of an image by retrieving the most similar image from the visual
model.

The training of siamese architectures differs with respect to triplet networks.
Therefore, to compare the proposed framework, which employs triplet archi-
tectures, with siamese networks, the selection of the training samples and the
labeling method used in [46] have been followed to train the siamese network,
since an exhaustive evaluation of siamese architectures is conducted in their
study. Nevertheless, the rest of the training and test conditions have been
set the same with the aim to perform a fair comparison.

5. Experiments

This section describes the dataset and the results of the experimental
evaluation. In this manuscript, three experiments have been performed. Ex-
periment 1 addresses a comparative evaluation of the influence of the triplet
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loss function in the performance of the CNN in a specific environment un-
der different lighting conditions. Moreover, two localization approaches have
been tackled: hierarchical and global, as described in Section 4. Experiment
2 analyzes the robustness of the trained triplet network against challenging
effects. Finally, Experiment 3 evaluates the performance of triplet architec-
tures when multiple environments are considered at the same time.

5.1. Dataset

The images used in this paper belong to COLD database (Pronobis and
Caputo [47]). This dataset contains omnidirectional images captured by a
mobile robot that makes use of a catadioptric vision system with a hyperbolic
mirror. The robot follows different paths inside several buildings and goes
through different rooms, taking a picture every 0.08 s, with a gap of roughly
20 cm between them. Various types of rooms can be found inside the build-
ings, such as offices, kitchens, toilets or corridors that connect the different
rooms. In this dataset, images captured under three illumination conditions
can be found: cloudy, night and sunny. Besides, some images include people
moving or changes in the position of some pieces of furniture.

First, the Freiburg Part A environment (FR-A) from this dataset has
been used in Experiments 1 and 2 to assess the performance of the tool in
hierarchical and global localization, the influence of the triplet loss and the
robustness against different conditions. Second, in order to analyze the capa-
bility of generalization of triplet architectures, we have made use of three dif-
ferent environments in Experiment 3: Freiburg Part A (FR-A), Saarbrücken
Part A (SA-A) and Part B (SA-B). Despite the fact that two sets of images
have been captured in the Saarbrücken building, they do not share any room,
so they can be considered as two different environments.

Figure 4 shows some examples of images under each lighting condition and
some examples of images that belong to each environment. These Figures
illustrate some challenging cases that the network can find, such as changes
of appearance caused by lighting variations or visual aliasing due to similar
rooms that belong to different environments.

According to this philosophy, only cloudy images have been employed to
conduct the training and validation, since it is the most standard illumina-
tion and it presents the lower contrast between the pixels corresponding to
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Examples of images captured under different lighting conditions (a) Cloudy, c)
Night, e) Sunny) and examples of images captured in different environments (b) Freiburg,
d) Saarbrücken A, f) Saarbrücken B).

information indoors and outdoors. This training set has also been employed
as a visual map during the validation and the test. Meanwhile, all the illu-
mination conditions are used for the test, so as to prove the robustness of
the trained model against changes in the lighting conditions. The training,
validation and test sets do not share any of their images, that is, the vali-
dation and the test are carried out with images that the CNN has not seen
during the training process.

Table 1 shows the number of images from each image set used in Exper-
iment 1. For Experiment 2, the same image sets have been used, but in this
case the studied effects (noise, occlusions and motion blur) are applied to the
image sets.

Besides, Table 2 includes the number of images of each set employed in
Experiment 3, according to the environment where they have been captured.
The procedure has been the same as in Experiment 1, but two different
validation sets have been employed. Validation 1 set has been employed for
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Image set Illumination Freiburg
Train/Visual Model Cloudy 556

Validation Cloudy 586
Test 1 Cloudy 2595
Test 2 Night 2707
Test 3 Sunny 2114

Table 1. Size and lighting conditions of the training, validation and test sets used in
Experiment 1.

the coarse-step training, whereas validation 2 set has been used for the fine
step.

Image set Illumination FR-A SA-A SA-B TOTAL
Train/Visual Model Cloudy 556 586 321 1463

Validation 1 Cloudy 199 198 112 509
Validation 2 Cloudy 586 582 301 1469

Test 1 Cloudy 867 758 281 1906
Test 2 Night 905 759 292 1956
Test 3 Sunny 707 X 291 998

Table 2. Size and lighting conditions of the training, validation and test sets used in
Experiment 3 (X indicates that the original COLD dataset contains no image in this set).

5.2. Experiment 1. Influence of the loss function.

In this experiment, a comparative evaluation has been conducted among
different triplet loss functions (described in Section 3). For all localization
stages, a network has been trained with each triplet loss, giving different
values to the parameters of the loss function with the purpose of finding
their optimal value for each task. Moreover, a comparison with siamese
architectures is conducted in this experiment.

5.2.1. Hierarchical localization

a) Coarse localization

To train the model for the room retrieval task, the training process con-
sists of 5 epochs and 50000 triplet samples per epoch. In Table 3 the best
results obtained with each loss function are shown.
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Room Retrieval Accuracy (%)
Loss Function Cloudy Night Sunny Average
TL (m=1.25) 99.23 97.04 95.08 97.12
LE (m=0.25) 99.23 97.23 93.42 96.63
LT (m=1.25) 99.27 97.52 95.13 97.31
SH (m=1) 99.27 97.19 95.55 97.34

BH (m=0.75) 99.27 97.56 95.27 97.37
CL (γ=1, m=0) 99.38 97.64 93.05 96.69
AL (α=30º) 99.23 97.19 95.41 97.28
SNN (m=2) 99.11 97.30 94.18 96.86

Table 3. Test accuracy for each loss function in the coarse localization.

Table 3 reveals that the loss function that has output the best results is
the Batch Hard (97.37% average accuracy), and it arrives to a good balance
under cloudy, night and sunny conditions. The other variant of the Lazy
Triplet, i.e. the Semi Hard, and the Lazy Triplet itself have output similar
results as well. The Circle loss has obtained the best results under cloudy
and night conditions, but it has had a worst performance under the sunny
condition, which differs the most from the condition used during the training
of the CNNs, i.e. cloudy. In this sense, the Semi Hard loss has proved to have
less overfitting to the training condition than the rest of triplet losses. If the
results output by the CNNs trained with a triplet architecture and the ones
obtained with a siamese CNN are compared, in general terms, triplet loss
functions have lead to a better performance under every lighting condition,
especially with sunny images.

b) Fine localization

In this phase, a CNN is trained in order to estimate the robot position
inside the room retrieved in the previous stage. For every room, a model has
been trained with each loss function and its optimal parameters obtained in
the coarse localization stage, with a training length of 5 epochs and 10000
triplet samples per epoch. Table 4 reveals the average geometric error made
by the CNN. The error cannot be zero, because in order to happen that,
the training and test sequences should be exactly the same. The minimum
reachable error is the one that would be obtained if the image retrieved by
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the CNN always matches the actual closest image. In this experiment, the
minimum reachable error is around 0.12 m under every lighting condition.

Geometric error (m)
Loss Function Cloudy Night Sunny Average
TL (m=1.25) 0.257 0.281 0.468 0.335
LE (m=0.25) 0.255 0.275 0.562 0.364
LT (m=1.25) 0.240 0.274 0.513 0.342
SH (m=1) 0.239 0.275 0.395 0.303
BH (m=0.75) 0.245 0.279 0.417 0.314

CL (γ=1, m=0) 0.256 0.312 0.644 0.404
AL (α=30º) 0.260 0.300 0.471 0.344
SNN (m=2) 0.460 0.448 1.048 0.652

Table 4. Average geometric error (m) for each loss function in the hierarchical localization.

Table 4 reveals that the Semi Hard loss has output the best results in
the fine step. Likewise, a similar error is obtained with the Batch Hard.
The errors obtained with every triplet loss are fairly small for every lighting
condition considering the size of the building, especially under cloudy and
night conditions. The errors obtained under sunny conditions are larger
because the mistakes committed during the coarse localization penalize the
network performance in this stage. In this case, the siamese CNN has had
a fairly worse performance compared to the triplet CNNs, despite its good
results in the coarse step.

5.2.2. Global localization

To address the global localization problem, an exhaustive study of the
influence of the loss function and its parameters in the performance of the
CNN has been performed, as in the case of the coarse step of the hierarchical
localization. A model has been trained for each loss function and parameters
setting, with a training length of 5 epochs and 50000 triplet samples per
epoch. Table 5 reveals the average geometric error for each loss function.

From Table 5 it can be noticed that the loss function that has obtained the
best results is the Batch Hard, followed by the Angular and the Semi Hard
losses. The performance of the siamese CNN has dropped substantially in the
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Geometric error (m)
Loss Function Cloudy Night Sunny Average

TL (m=1) 0.303 0.324 0.633 0.420
LE (m=0.25) 0.304 0.313 0.642 0.420
LT (m=1) 0.298 0.292 0.543 0.378

SH (m=1.25) 0.286 0.305 0.497 0.363
BH (m=1) 0.250 0.282 0.492 0.341

CL (γ=1, m=0.25) 0.344 0.379 0.825 0.516
AL (α=30º) 0.262 0.275 0.513 0.350
SNN (m=2) 0.899 0.817 2.387 1.368

Table 5. Average geometric error (m) for each loss function in the global localization and
optimal parameters.

global method. This happens because this architecture has struggled more in
the image retrieval task than in the room classification. The difference with
the hierarchical localization is that, in the hierarchical method, the good
performance of the model trained for the coarse step has helped to reduce
the mistakes between rooms and therefore to reduce the geometric error.

In order to compare both localization approaches directly, Table 6 shows
the average geometric error committed with each loss function in the two
methods. Besides, Figure 5 contains maps with the predictions of the CNN
that had the best results: Semi Hard (m=1), for the hierarchical localization
and Batch Hard (m=1), for the global localization. The blue points represent
the visual map, whilst the rest of points represent the test images, which are
colored differently depending on the quality of the prediction. If the test
image is located correctly among the K=1 nearest neighbors, the point is
colored green, whereas if the image is not located among the K=20 nearest
neighbors, the point is colored red. Meanwhile, if a mistake in the room
prediction is made, the color will be brown. Intermediate values will take
yellow or orange colors. The lines connect every test image with the retrieved
image from the visual model.

Table 6 shows that the average errors tend to increase in the global local-
ization with every loss function, comparing to the hierarchical localization.
This is logical, since in this case the CNN tries to locate each image inside the
entire map in a single step, and this environment is prone to visual aliasing,
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Geometric Error (m)
Loss Function Hierarchical Loc. Global Loc.

TL 0.335 0.420
LE 0.364 0.420
LT 0.342 0.378
SH 0.303 0.363
BH 0.314 0.341
CL 0.404 0.516
AL 0.344 0.350
SNN 0.652 1.368

Table 6. Average geometric error (m) for each loss function in the hierarchical localization
and in the global localization.

so the hierarchical process is able to better retain the features that character-
ize and distinguish every room. In general terms, comparing to hierarchical
localization, the performance is slightly worse for cloudy and night, but the
error is larger for sunny (Tables 4 and 5).

By comparing the maps in Figure 5, it can be appreciated that the number
of errors between non-connected rooms is very small in both approaches (less
than 0.1% of all the test images). However, in the global localization, the
number of errors increases substantially in some rooms under sunny condi-
tions, concretely the toilet and the printer area. In both methods, the errors
take place more frequently in the transition zones or in junctions, where the
images contain visual information from different rooms.

If an overall comparison of all the triplet loss functions is made, the Lazy
Triplet and its variants, i.e. the Semi Hard and the Batch Hard, had a
great performance in the localization task. This can be explained because
of the fact that these losses penalize the largest errors of the CNN of every
training batch, which has allowed to perform a more challenging training
process. Also, the Angular loss has output good results in both localization
approaches.

21



(a) (b)

(c) (d)

(e) (f)

Figure 5. Maps with the predictions of the trained models for every test image in the
hierarchical localization (a) Cloudy, c) Night, e) Sunny) and in the global localization (b)
Cloudy, d) Night, f) Sunny).
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In order to study the feasibility of the implementation of the proposed al-
gorithms in real time, Table 7 includes the localization time of each method.
The localization time can be defined as the time gap since an image is cap-
tured until the coordinates of the image are obtained. All the experiments
have been carried out by means of an NVIDIA GeForce GTX 3090 GPU with
24GB of RAM.

Hierarchical localization Global Localization
Localization time (ms) 6.83 3.82

Table 7. Localization time (ms) for each localization method.

This table reveals that the hierarchical localization time is larger than
global localization time. This difference is due to the fact that in the global
localization, the image coordinates are retrieved in a single step by one net-
work, whereas in the hierarchical localization two steps are needed. In this
case, a single network is used during the coarse localization step and one
network for every room is used during the fine localization step. However,
in both cases the time is sufficiently low as to enable the robot to perform
localization with a reasonable frequency.

5.3. Experiment 2. Analysis of the robustness against dynamic effects.

In Experiment 1, two localization approaches have been compared under
different lighting conditions. Moreover, other challenging effects such as the
presence of people, changes in the position of objects or occlusions, e.g. the
structure that supports the mirror, are implicit in the images. Now, the
hierarchical method, which is the approach that has output the best results,
is tested against certain effects that appear frequently in images captured by a
mobile robot: occlusions, noise and motion blur. Figure 6 shows examples of
such effects applied on a panoramic image. In this experiment, no training is
conducted, since the models trained for Experiment 1 are directly evaluated
with the same test sets (cloudy, night and sunny), but with the different
effects applied on the images. To do that, the model of the loss function that
has output the best accuracy in the coarse step (Batch Hard) is employed
along with the models of the best loss function in the fine step (Semi Hard).
As in Experiment 1, a comparison with siamese architectures is performed.

23



(a) (b)

(c) (d)

Figure 6. Example of a panoramic image (a) with no effects applied on it, (b) with a
Gaussian noise of σ = 20, (c) with 128 columns occluded and (d) with motion blur with
a mask size of 7 pixels.

5.3.1. Noise effect

Frequently, when the robot captures an image, it contains a certain noise.
In order to apply this effect on the images, a Gaussian noise of different
magnitude (σ) has been added to each image of the test sequences and also
to the ones that compose the visual model. Table 8 shows the average error
committed with siamese and triplet networks for different values of σ.

Noise SNN (Contrastive Loss) Triplet Network (BH + SH)

Sigma
Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

0 96.86 0.652 97.37 0.325
5 96.65 0.707 97.06 0.328
10 95.51 0.896 96.64 0.393
15 93.69 1.024 95.29 0.499
20 91.92 1.176 88.27 1.104

Table 8. Average geometric error committed by each localization approach with Gaussian
noise applied to the images.

5.3.2. Occlusions effect

Another common situation that a mobile robot can face is that some parts
of the scene are occluded by other objects of the scene. In this experiment,
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these occlusions are generated by setting some columns of the panoramic
image to black. Table 9 contains the average error committed when the
number of occluded columns is modified.

Occlusions SNN (Contrastive Loss) Triplet Network (BH + SH)

N. columns
Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

0 96.86 0.652 97.37 0.325
16 96.16 0.777 96.98 0.373
32 95.80 0.859 96.50 0.432
64 95.28 0.940 96.15 0.501
128 92.76 1.256 93.68 0.806

Table 9. Average geometric error committed by each localization approach with occlusions
applied to the images.

5.3.3. Motion blur effect

This effects happens when images are captured while the robot is moving
at a certain speed or when it is turning. When this happens, the objects of
the scene appear blurred. To implement this effect, a convolution mask is
applied to the image, so that each pixel value is affected by the values of the
neighboring pixels along the horizontal axis. To increase the magnitude of
the effect, the size of the mask is modified. Table 10 shows the influence of
this effect on the performance of the CNN.

Blur SNN (Contrastive Loss) Triplet Network (BH + SH)

Mask size
Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

Coarse Loc.
Accuracy (%)

Fine Loc.
Error (m)

0 96.86 0.652 97.37 0.325
1 96.87 0.651 97.38 0.325
3 97.01 0.666 97.38 0.350
5 95.61 0.788 96.46 0.462
7 87.25 1.383 92.62 1.028

Table 10. Average geometric error committed by each localization approach with motion
blur applied to the images.

Tables 8, 9 and 10 reveal that, as expected, the performance of the proposed
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hierarchical method is affected by the visual effects studied in this experi-
ment. However, the errors do not increase substantially until the magnitude
of such effects is very pronounced. It must be stated that the magnitude of
the effects applied in this experiment is much larger that some variable effects
that already appear in the images (see Figure 6). The occlusion caused by
the structure that supports the mirror always appears in the images and it is
fairly noticeable, but the results obtained in Experiment 1 demonstrate that
it does not have a big negative impact on the performance of the localization
approach.

If the results obtained with siamese and triplet networks are compared,
it can be clearly appreciated that the triplet approach is more robust against
these effects. This fact supports the evidence that triplet architectures are
more suitable to tackle visual localization in adverse conditions.

5.4. Experiment 3. Hierarchical localization in different environments simul-
taneously

The objective of this experiment is to prove the ability of triplet networks
to address localization in larger and different environments, and to explore
the limits of the proposal. To do that, the same procedure has been followed
than in Experiment 1, with the difference that in this case, three image sets
corresponding to different environments have been jointly used: Freiburg,
Saarbrücken A and Saarbrücken B. Therefore, the CNNs to be trained are
facing a more challenging task, and the ability of the approach to general-
ize to different environments is assessed. A triplet architecture is retrained
for the four triplet loss functions that had the best performance in Exper-
iment 1 (Lazy Triplet, Semi Hard, Batch Hard and Angular loss) with the
optimal parameters obtained in Experiment 1. Besides, only the localization
method that had the best performance in Experiment 1 was tackled, i.e. the
hierarchical approach.

a) Coarse localization

In this stage, the ability of the CNN to retrieve the correct room is studied.
The procedure followed in this step has been the same as in the coarse step
in Experiment 1, but with the difference that in this case, more rooms are
taken into account, and many of them are of the same nature, which can
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aggravate the visual aliasing problem. In Table 11 the accuracy obtained
with each loss function is shown.

Room Retrieval Accuracy (%)
Loss Function Cloudy Night Sunny Average
LT (m=1.25) 97.90 92.84 93.89 94.88
SH (m=1) 97.85 95.30 91.48 94.88
BH (m=0.75) 97.90 91.10 92.79 93.93
AL (α=30º) 92.08 89.93 88.18 90.06

Table 11. Room retrieval accuracy with each loss function in the coarse localization.

As observed in Table 11, the accuracy is lower than in Experiment 1,
since now the CNN must distinguish among 22 rooms instead of 9, and
the visual aliasing problem is more present. It should be noted that, in
certain cases, the accuracy obtained under sunny conditions is higher than
under night, because the sunny test set only contains images captured in two
different environments (Freiburg and Saarbrücken B) and only 14 rooms are
considered. This is due to the fact that the dataset does not contain any
images captured under sunny conditions in Saarbrücken A. In this stage, the
Semi Hard and the Lazy Triplet losses have output the best results. The
Batch Hard has had a worse performance under night conditions. Besides,
Angular loss has suffered more overfitting than the rest of losses.

b) Fine localization

In this stage, a network per room is trained in order to determine the
robot coordinates inside the room retrieved in the coarse localization, as in
Experiment 1. For every room, a network has been trained with each loss
function. Table 12 shows the average geometric error made by the network.

From these graphics we can observe that the error committed is larger
than in Experiment 1. This is logical, since the CNNs have had a worse
performance in the room retrieval as the number of rooms increased. In this
case, the error committed under cloudy conditions is substantially lower than
under night or sunny. However, the errors are reasonable, given the difficulty
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Geometric error (m)
Loss Function Cloudy Night Sunny Average
LT (m=1.25) 0.379 1.431 0.517 0.775
SH (m=1) 0.379 0.848 0.504 0.577
BH (m=0.75) 0.328 1.306 0.771 0.802
AL (α=30º) 0.461 0.766 0.841 0.689

Table 12. Average geometric error made with each loss function in the fine localization.

of the task. Despite the fact that the number of errors between rooms has
increased, each of the fine-step models have fairly maintained their precision
when the room of the image is retrieved correctly. Consequently, the hierar-
chical method has permitted that the errors do not increase substantially.

In this case, the Semi Hard loss has had the best overall performance. On
the one hand, the smallest error under cloudy conditions have been obtained
with the Batch Hard, but the CNNs trained with this loss have struggled
more under night and sunny conditions. On the other hand, the Angular
loss has output the highest error under cloudy conditions, but it has had less
overfitting to the training conditions that the rest of losses.

5.5. Comparison with the state of the art

Finally, the proposed method is compared with similar approaches that
used global-appearance descriptors obtained with analytical techniques, such
as gist or HOG ([5]), and with CNNs models that have been adapted and
retrained in order to tackle hierarchical localization in the COLD-Freiburg
indoor environment. All the experiments have been conducted under the
same conditions: all of them used a training set composed of images cap-
tured under cloudy conditions and tested their models under three different
lighting conditions (cloudy, night and sunny), and no data augmentation is
performed. Besides, some of them have employed the sequence of the vi-
sual model also as a test set. This causes that the trajectory of the robot
is exactly the same and in both cases the exact same lighting condition is
present. Therefore, the error that they have obtained under cloudy condi-
tions is smaller than the minimum error that can be reached with our method
(0.12 m), and these values have not been included in Table 13 because they
cannot be comparable to our experimental setup in which the visual model
and the test images are in all cases different.
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Table 13 shows the geometric error made in the hierarchical localization
with each method. In the case of our method, the Semi Hard loss is con-
sidered, as it is the loss function that has output the best results in the
hierarchical approach.

Geometric Error (m)
Approaches Cloudy Night Sunny Average
HOG [9] - 1.065 0.884 -
Gist [9] - 0.451 0.820 -

AlexNet [9] - 0.321 0.517 -
SVM + K-NN [14] - 0.527 0.773 -

AlexNet [28] 0.293 0.288 0.690 0.424
EfficientNet [30] 0.240 0.330 0.440 0.337
ConvNext-L [48] 0.220 0.260 0.830 0.437

Triplet VGG-16 (ours) 0.239 0.275 0.395 0.303

Table 13. Comparison with other methods in the complete hierarchical localization.

Table 13 shows that the error obtained with our approach is similar to
the smallest error obtained under cloudy and night conditions, obtained by
means of the ConvNext-Large architecture, which was already very small
considering the dimensions of the environment. Besides, this model [48] has
a substantially heavier architecture than VGG-16 model, which can be a real
impediment for a real-time implementation.

However, under the sunny condition, which differs the most from the
training condition (cloudy), our method has obtained the smallest error by
far. This means that the model trained with a triplet architecture has suffered
less overfitting than the models trained with a single CNN or a siamese
architecture. Consequently, the smallest average error in the hierarchical
approach has been obtained with our approach, as it has arrived to a good
balance between the three lighting conditions.

6. Conclusions

Throughout this manuscript, two different localization approaches have
been tackled (hierarchical and global) in indoor environments, with the use
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of triplet neural networks along with panoramic images. The VGG-16 model
has been adapted and retrained to embed the panoramic images into global-
appearance descriptors. As the experimental section has proved, one of the
main advantages of using triplet networks in visual localization is that they
can be trained with a reduced set of images captured under a specific light-
ing condition (cloudy in this case) and with no need of data augmentation.
In general terms, the results show that the networks can be configured and
trained to present a good ability to generalize to different lighting condi-
tions (which were not seen during the training), proving to have a balanced
behavior under different conditions.

Moreover, Experiment 1 has addressed an exhaustive comparative evalu-
ation of several triplet loss functions for every localization stage. In general
terms, all the loss functions tend to present a high accuracy under cloudy
conditions. However, the results obtained with each loss function differ when
the network is facing a more challenging task such as global localization (due
to the fact that the environment used in the tests is prone to visual aliasing)
or lighting conditions that the network has never seen during the training
process. The loss functions that have shown the best performance are the
variants of the Lazy Triplet loss, i.e. the Semi Hard loss and the Batch
Hard loss. This can be explained as this loss functions penalize the biggest
errors of the batch, which has permitted to conduct a more demanding train-
ing process, and subsequently has enhanced the performance of the trained
models. The Angular loss, which employs the cosine similarity metric, has
also performed well both in the hierarchical and in the global localization.

Besides, Experiment 2 analyzes the robustness of the trained triplet net-
works against certain effects that appear frequently in images captured by
mobile robots, which can compromise the performance in localization. The
effects studied in this experiment are Gaussian noise, occlusions and motion
blur. In every case, the performance of the trained models has been quite
stable when the effects presents low to medium magnitude. The geometrical
error exceeds 1 m only when the magnitude of the effects is very pronounced,
which is not usual in real operation conditions.

Throughout both experiments, the results obtained with triplet networks
have been compared to a siamese architecture, by following the same train-
ing and test conditions. As expected, triplet networks have outperformed
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the siamese network in every experiment. The siamese architecture has per-
formed considerably well in the coarse step of the hierarchical localization,
but its performance has decreased substantially in the fine step and in the
global localization. Therefore, triplet networks prove to be able to cope with
visual aliasing and dynamic conditions.

Furthermore, in Experiment 3 triplet architectures have been evaluated
in multiple indoor environments simultaneously, which are especially prone
to visual aliasing. The experiments demonstrate that, despite the difficulty
of the task, the hierarchical approach has prevented that the errors increase
substantially. Therefore, the proposed approach is capable of generalizing to
diverse and challenging environments, keeping a good performance.

Finally, our method has been compared with similar approaches that have
addressed a hierarchical localization. Under cloudy and night conditions, our
method has led to low errors, similar to those obtained with other approaches.
However, the error made by our approach is significantly lower under sunny
conditions, which are the conditions that differ the most from the training
conditions. Consequently, our method has obtained the smallest average
error in the hierarchical localization.

All in all, triplet networks have proved to be a precise tool to address vi-
sual localization in challenging, repetitive and dynamic indoor environments.
Furthermore, they have demonstrated a great robustness against lighting
variations and other visual effects that are common in cameras mounted on
mobile robots. In future experiments, the proposed architecture will be ex-
tended to outdoor environments, which are more challenging and show bigger
changes of appearance. Furthermore, we will explore the use of more complex
architectures to tackle visual localization in larger indoor environments.
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The code used in the experiments is available at https://github.com/
MarcosAlfaro/TripletNetworksIndoorLocalization.git. The images of
the COLD database can be downloaded from their official website https:

//www.cas.kth.se/COLD/.

Acknowledgments

This research work is part of the project TED2021-130901B-I00 funded by
MCIN/AEI/10.13039/501100011033 and by the European Union “NextGen-
erationEU”/PRTR, and of the project PROMETEO/2021/075 funded by
Generalitat Valenciana.

References
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