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FedCoSR: Personalized Federated Learning with
Contrastive Shareable Representations for

Label Heterogeneity in Non-IID Data
Chenghao Huang, Xiaolu Chen, Yanru Zhang, and Hao Wang

Abstract—Heterogeneity resulting from label distribution skew
and data scarcity can lead to inaccuracy and unfairness in intelli-
gent communication applications that mainly rely on distributed
computing. To deal with it, this paper proposes a novel personal-
ized federated learning algorithm, named Federated Contrastive
Shareable Representations (FedCoSR), to facilitate knowledge
sharing among clients while maintaining data privacy. Specifi-
cally, parameters of local models’ shallow layers and typical local
representations are both considered shareable information for the
server and aggregated globally. To address poor performance
caused by label distribution skew among clients, contrastive
learning is adopted between local and global representations
to enrich local knowledge. Additionally, to ensure fairness for
clients with scarce data, FedCoSR introduces adaptive local
aggregation to coordinate the global model involvement in each
client. Our simulations demonstrate FedCoSR’s effectiveness in
mitigating label heterogeneity by achieving accuracy and fairness
improvements over existing methods on datasets with varying
degrees of label heterogeneity.

Index Terms—Personalized federated learning, label hetero-
geneity, contrastive learning, representation learning, intelligent
communication

I. INTRODUCTION

A. Background and Motivation

In today’s connected world, Intelligent Communication (IC)
plays a pivotal role in enabling data-driven applications. From
personalized recommendations on smartphones to real-time
health monitoring via wearable devices, these systems rely
heavily on large volumes of data collected from distributed
sources, such as mobile devices or sensors, which can form
complex and diverse systems through Internet-of-Things (IoT),
data centers, and cloud servers [1]–[5]. Since data-driven solu-
tions based on IC have empowered industries like healthcare,
smart homes, and finance to provide tailored services, they
also raise privacy concerns, as personal and sensitive data are
frequently involved [6], [7].

To address privacy issues, Federated Learning (FL) has
emerged as a promising paradigm. Rather than centraliz-
ing sensitive data in one location, FL allows distributed
clients—such as smartphones, IoT devices, or edge servers—to
collaboratively train machine learning models while keeping
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their data locally stored [8]. This distributed approach helps
preserve user privacy while leveraging the computational
capabilities of these distributed devices. However, while the
classical FL algorithm, FedAvg [8], performs well on Inde-
pendent and Identically Distributed (IID) data, real-world data
generated by distributed clients is often non-IID, also known
as statistical heterogeneity [9]. This statistical heterogeneity
arises due to varying user behaviors, preferences, and envi-
ronments across devices, making it challenging for a single
global model to generalize effectively across all clients.

In this paper, we focus on two major forms of statistical
heterogeneity below.

• Label distribution skew refers to the FL situation
where the distribution of labels varies significantly across
different clients [10]. Due to the imbalance in label
distribution, it is challenging to train one global model
that generalizes well across all clients. For instance, in
smart home devices, geographic location, user interests,
and lifestyle differences can result in vastly different user
behavior patterns captured by devices.

• Data scarcity in a distributed system, also known as
data quantity skew among clients, poses an additional
challenge on fairness [11], [12]. On one hand, the labels
of scarce data are sometimes unique and important, such
as rare anomalies in industrial applications or survey
results of minority groups. Unfairness may arise from
the failure to integrate valuable knowledge contained in
scarce data into the global model. On the other hand,
scarce data is highly susceptible to causing overfitting,
impeding personalization. This usually occurs in sce-
narios with monopolized clients and minority clients,
or newly participating clients with few historical data,
resulting in challenges in integrating these data globally.

Consequently, such statistical heterogeneity presents sub-
stantial challenges to FL, demanding solutions that balance
generalizability, personalization, and fairness. Note that, since
we mainly study the labels of scarce data, data scarcity is
also regarded as a kind of label skew in this paper. Thus,
we collectively refer to the above two types of statistical
heterogeneity as label heterogeneity, clarified in Fig. 1.

To deal with label heterogeneity, Personalized Federated
Learning (PFL) has emerged as an extension of traditional
FL and received attention [9], [12]. PFL tailors personalized
models for each client within a collaborative training paradigm
to achieve robust performance on heterogeneous datasets.

ar
X

iv
:2

40
4.

17
91

6v
2 

 [
cs

.L
G

] 
 2

2 
N

ov
 2

02
4



2

Client 1

Label types

Ineffective global model

Poor personalization

Inaccuracy

Unfairness

Distribution

Client 2

Client 3

Label
distribution skew

Data scarcity

Client 4

Label heterogeneity Transmission

Server

Cause

Belong to

Poor generalizability

Feature ignorance

...

...

Clarification of label heterogeneity Notation

RQ1

RQ2

Constitute

Fig. 1: Clarification of label heterogeneity.

Notably, it has been proven that it is effective to coordinate
the distance between the global model and local models
through regularizing the local training objective [13]–[15].
Furthermore, a substantial body of research has focused on
splitting the model structure into representation layers, serving
as a common feature extractor, and projection layers which
address specific tasks [16]–[19]. Despite these advancements,
the above methods only improve clients’ performance through
generic model parameters but ignore more fine-grained charac-
teristics inherent in data, especially label distribution skew. On
the other hand, recent studies have explored data quantity skew
problems [20], but they have not adequately addressed co-
existence of label distribution skew and data scarcity, leaving
a research gap.

Thanks to the close correlation between data and representa-
tions [21], [22], shareable representations are introduced in FL
to improve personalization while preserving privacy [23], and
further integrated with the global model to facilitate knowledge
integration [24], [25]. However, these methods primarily focus
on same-label representation alignment, limiting generalizabil-
ity, especially with skewed label distributions. In light of this,
Contrastive Representation Learning (CRL) which emphasizes
deriving knowledge from label-agnostic representations [26],
offers a promising perspective. We believe that utilizing shared
representations among clients can further contribute to miti-
gating label heterogeneity.

B. Main Work and Contributions of FedCoSR

This paper introduces a novel approach leveraging CRL [26]
on shareable representations among clients, aiming to address
the label heterogeneity caused by label distribution skew and
data scarcity in distributed ML scenarios. The brief process of
the proposed PFL framework is illustrated in Fig. 2.

Globally, the server receives and separately aggregates local
model parameters and typical representations of each client.
Then, the server sends the global model parameters and the
global representations, which provide additional knowledge for
performance improvement, to all clients for personalization.

During the local update, each client conducts personaliza-
tion primarily through local aggregation and local training.
For local training, CRL is adopted to foster similarity among
representations with the same label and dissimilarity among
those with different labels. To both mitigate label distribution
skew and enhance knowledge of data-scarce clients, the global
representations are used to construct positive and negative
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Fig. 2: Brief diagram of FedCoSR, the proposed PFL framework
aiming to deal with label heterogeneity.

sample pairs for the local representations. Moreover, for local
aggregation, a loss-wise weighting mechanism is introduced
to coordinate personalization among clients with data quan-
tity skew, especially for data-scarce clients. This mechanism
ensures that, when the local model’s contrastive loss is high,
indicating its poor capability of distinguishing samples with
different labels, the global model contributes more to drive
advancement. Conversely, when the local model’s contrastive
loss is low, the global model participates less to avoid a
compromise on personalization.

The contributions of this work are as follow.
• We consider a challenging FL scenario that simultane-

ously encompasses both label distribution skew and data
scarcity. By effectively tackling these two challenges,
we aim to enhance the practicality of our FL algorithm,
enabling more robust and equitable performance across
diverse and data-limited IC applications in real world.

• We propose Federated Contrastive Shareable Repre-
sentation (FedCoSR) to guide personalization among
clients with heterogeneous labels and data quantity
skew, thus enhancing overall performance and fairness
among clients. Specifically, through contrastive learning
on shareable representations, FedCoSR effectively uti-
lizes local data with label distribution skew to provide
additional knowledge for each client model. Moreover,
an adaptive local aggregation principle according to con-
trastive loss is proposed to adjust the proportion of global
model participation to ensure fairness, preventing local
models with larger datasets from harming the personal-
ized knowledge of those with smaller datasets.

• We provide the theoretical analysis of the effectiveness
of the designed local loss function and the communi-
cation convergence of the proposed FL algorithm. In
our experiments on image classification with varying
data heterogeneity, we demonstrate the superiority of
FedCoSR compared to other methods addressing the two
major forms of heterogeneity.

This paper consists of six sections. Section II reviews
the related work of FL and CRL. Section III presents the
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formulation of PFL, representation sharing, and the developed
FedCoSR algorithm. Section IV analyzes the effectiveness of
the designed loss function and the non-convex convergence
of the developed algorithm. The experimental results and
discussions are provided in Section V. Section VI concludes
the whole paper.

II. LITERATURE REVIEW

A. Popular FL Frameworks

Traditional FL methods like FedAvg [8], which learn a
single global model for all clients, excel with IID data but
struggle with non-IID data. FedProx [13] and Ditto [15]
mitigate the impact of heterogeneity by regulating the L2
distance between local models and the global model, while
pFedMe [14] learns an additional model for each client. To
deal with device heterogeneity, PerFedAvg integrates meta
learning with FL [27]. However, these methods become less
effective with heterogeneous data or numerous clients.

Model splitting has gained traction in FL, and representative
works include FedPer [16], LG-FedAvg [17], and FedRep [19],
which split model layers for global aggregation. Besides, ex-
ploration into client-tailored aggregations, like FedAMP [28]
and FedALA [29], aligns with our method. While effective
in managing data heterogeneity, these methods only conduct
personalization based on model parameters instead of features
inherent in raw data. Notably, in MOON [18] and its inspiring
variants [30], [31], CL is applied to clients, but only between
the local model and global model, neglecting the interactions
between clients.

B. Contrastive Representation Learning

Contrastive Representation Learning (CRL), an emergent
field in self-supervised learning, effectively captures knowl-
edge from unlabeled data [26], [32]. Its effectiveness hinges on
the principle of minimizing the distance between representa-
tions with identical labels (positive pairs) and maximizing that
between representations with different labels (negative pairs).

Drawing from representation learning [21], FedProto [23]
proposes sharing local representations between clients and one
server and using them for regularization, while FedGH [24]
uploads local representations to train a global projection layer.
FedPAC [25] leverages representations to optimize local clas-
sifier combination. Both FedPCL and FedProc [33], [34] adopt
a prototypical contrastive learning framework, where local
prototypes are shared between clients and the server to align
local training with global knowledge, mitigating the effects of
non-IID data. FedSeg [35] applies pixel-level CRL to address
class heterogeneity in semantic segmentation. CreamFL [36]
extends CRL to multimodal settings, using inter-modal and
intra-modal contrasts to bridge modality and task gaps, show-
casing its adaptability to diverse data challenges.

C. Distinguish of Our Work

Though the potential of CRL in FL has been studied in
some works, research gaps remain. First of all, due to the
self-supervised nature [37], CRL is capable of dealing with

data scarcity in FL by extracting minority features from small-
dataset clients. Since the distinctiveness of data has yet not
been adequately considered in FL communications, CRL built
among different label types of all clients is promising to
bridge this gap by guiding models to learn distinctive and
fine-grained features from small datasets, while maintaining
coherence with the global model. Moreover, the reviewed
works overlook model-level information, which contains a
wealth of knowledge but needs to be properly accessed. To
balance the trade-off between the generalization of the global
model and the personalization of local models, adaptively
deriving parameters from the global model is a reasonable
approach. The measure of CRL can serve as a guide, as it
dynamically reflects the local model’s ability to distinguish
between label types, helping determine the extent of assistance
from the global model.

Thus, we propose FedCoSR, which shares label-wise knowl-
edge among clients through transmitting typical local represen-
tations to the server, and then uses contrastive learning loss
to regularize local training and adaptively guide the fusion
between global and local models.

III. OUR PROPOSED FEDERATED CONTRASTIVE
SHAREABLE REPRESENTATION

A. Problem Statement

We consider N clients, and for the ith client, a local model
θi is deployed to conduct training on a dataset Di. For each
sample-label pair (xi,yi) ∼ Di, the local model fθi , where
θi : Rd → Y is the parameter set, maps xi ∈ Rd to predict
ŷi = fθi(xi) ∈ Y to approximate the true label yi. All
clients have the same objective to improve the performance,
in specific, to minimize the empirical risk over local datasets:

F := E(xi,yi)∼DiL(xi,yi; θi), (1)

where L : Y ×Y → R is the loss function of the specific ML
task to penalize the distance between yi and ŷi. The primary
goal of the server is to personalize {θi}Ni=1 for each client to
minimize F . Thus, the global objective is to find a set of local
model parameters Θ∗ = {θi∗}Ni=1 that satisfy

Θ∗ = argmin
Θ∗

1

N

N∑
i=1

F i, (2)

where F i := F(θi∗,Di) is the personalized objective of the
ith client.

B. Representation Sharing in FL

Heterogeneous data distributed across tasks may share a
common representation despite having different labels [21].
Inspired by insights from [19], [23] that representations shared
among clients, e.g., shared features across many types of
images or across word-prediction tasks, may provide auxiliary
information without privacy intrusion, we consider utilizing
shared representations to assist local adaptive aggregation and
local personalized training.

Briefly, we let fθi = [fϕi ; fπi ], where fϕi(·) ∈ Rd×k is the
representation layers of the ith local model used to generate
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representations, and fπi(·) ∈ Rk is the projection layers for
the output, where d is the data input dimension, and k is the
dimension of fϕi ’s output, known as a representation. Next,
the definition of label-centroid representations is provided as
follows, which is critical to the holistic framework proposal:

Definition 1 (Label-Centroid Representations). For the ith
client, a local label-centroid representation ω̄i

c ∈ Rk is the
mean value of the representations with the label type c ∈ Ci,
where Ci encompasses all label types existing in Di. Then, we
denote Di

c as the subset of Di which only contains samples
with the label type c, and ωi = fϕi(xi) ∈ Rk as the represen-
tation of xi. Formally, the label-centroid representation of the
label type c can be calculated as:

ω̄i
c =

1

|Di
c|

∑
xi∈Di

c

ωi, c ∈ Ci. (3)

Thereby, the local label-centroid representation set of the ith
client can be denoted as:

Ω̄i = {ω̄i
c|c ∈ Ci}. (4)

To obtain the final prediction, fπi(·) maps ωi to the label
space. In other words, fθi(xi) equals to fπi(ωi).

C. Our Developed FedCoSR

At each iteration, the server conducts global aggregation
on local models and local representations to generate the
global parameters and global representations. Then all clients
download the global information for local updates. The main
processes of the local update include two parts: local adaptive
aggregation by loss-wise weighting and local personalized
training by CRL. The overall architecture of FedCoSR is
shown in Fig. 3.

1) Global Aggregation: Shallow layers can learn more
generic information and they are more suitable for shar-
ing [38]. In FedCoSR, clients only send the parameters of
representation layers ϕ to the server for aggregation and keep
the parameters of projection layers π local for maintaining
the personalization. Also, it is robust for privacy preservation
to drop the last one or multiple layers to avoid reverse engi-
neering [39]. Unlike traditional global model aggregation [8],

the server in FedCoSR aggregates {ϕi
t}Ni=1 at iteration t as

follows:

ϕGlobal
t =

N∑
i=1

|Di|
|D|

ϕi
t, (5)

where D = {Di}Ni=1 contains all clients’ datasets.
Beside the parameter aggregation, all clients upload local

label-centroid representations to the server for aggregation as:

Ω̄Global
t =

{ ∑
i∈Nc

|Di
c|∑

i |Di
c|
ω̄i
c,t

∣∣c ∈ C} ∈ RC×k, (6)

where Nc denotes the set of clients owning samples with the
label type c, and C =

⋃N
i=1 Ci encompasses all label types

existing in all clients. Rather than averaging, the label volume-
wise weighting is adopted for the global label-centroid repre-
sentation aggregation by considering the size of Di

c, mitigating
the compromise on the global knowledge aggregation caused
by local label-centroid representations of scarce samples.

2) Local Adaptive Aggregation: When completing the
global aggregation at iteration t, we start the local update
at iteration t + 1, which begins with the initial step of
local adaptive aggregation. This mechanism guides each local
model to aggregate a proportion of global model parameters
while referring to their own model performance, in order to
achieve adaptive personalization. Different from traditional
FL overwriting local models by the global model, the ith
client aggregates ϕi

t with ϕGlobal
t . In advance, we introduce the

contrastive loss Li
Reg,t at iteration t, which will be elaborated

in Section III-C3. To conduct local adaptive aggregation, a
weighting factor τt+1 is determined by exponentially scaling
Li

Reg,t into [0, 1]. Then, the ith client conducts local aggrega-
tion and obtains the aggregated local model f

θ̂i
t+1

for further
local training, formulated as follows:

τt+1 = e−γLi
Reg,t ∈ [0, 1], γ > 0, (7)

ϕ̂i
t+1 = τt+1ϕ

i
t + (1− τt+1)ϕ

Global
t , (8)

fθ̂i
t+1

= [fϕ̂i
t+1

; fπi
t
], (9)

where γ is a hyperparameter to control the sensitivity of
scaling. When Li

Reg,t is higher, τt+1 becomes smaller to draw
on more parameters from the global model for knowledge
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enhancement. On the other hand, when Li
Reg,t is lower, the

local model becomes less dependent on acquiring knowledge
from the global model. The exponential design provides a
type of nonlinear mapping, guiding the ith client to deal with
iterations with high loss by learning from the global model.

The reason for choosing the contrastive loss as the basis
for weighting, rather than the supervised loss, is that the con-
trastive loss directly reflects the model’s ability to distinguish
among multiple samples with different label types. On the
other hand, although the supervised loss can reflect the model’s
recognition capability for individual samples, it tends to result
in severe overfitting in clients with scarce data, leading to
low training loss but poor predictive performance. Therefore,
using the contrastive loss can objectively reflect the capability
of each local model without being affected by data scarcity.

3) Local Personalized Training: The data distributions are
significantly different among clients due to heterogeneity. So
it is necessary to consider both personalization for adapting
patterns of local datasets and regularization for properly ac-
quiring external information.

Personalization: For the ith client, we use L in Eq. (1) as
the personalization objective Li

Per based on the local dataset.
In the context of classification task, we firstly randomly divide
Di into batches Di

b,t+1 for training efficiency, each of which
has b samples. Then we use the expectation of cross entropy
to denote this objective at iteration t+ 1:

Li
Per,t+1 = EDi

b,t+1∼DiE(xi
j ,y

i
j)∼Di

b,t+1

[
H(yi

j , ŷ
i
j)
]
,

H(yi
j , ŷ

i
j) = −

C∑
c=1

yij,c log(ŷ
i
j,c), (10)

yi
j = (yij,1, ..., y

i
j,C), ŷi

j = fθ̂i
t+1

(xi
j) = (ŷij,1, ..., ŷ

i
j,C).

Through personalization, each client cares about local patterns
and can adjust the distance between θi and θGlobal.

Regularization: To utilize useful external information while
maintaining the local personalization, we adopt CRL on rep-
resentations for regularization.

Inspired by [26], CRL, an ML technique aiming to learn
representations by contrasting positive pairs (similar samples)
against negative pairs (dissimilar samples), can be utilized
between the local representations and the global label-centroid
representations to assist personalization. Specifically, at iter-
ation t + 1, the ith client receives the global label-centroid
representations Ω̄Global

t from the server. We assume that the
labels unseen to Di can provide external knowledge for fθi .
We let b be the batch size, and representations at iteration t+1
can be obtained by forwarding {xi

j}bj=1 towards fϕ̂i
t+1

:

Ωi
t+1 = {ωi

j,t+1}bj=1. (11)

Then, we construct positive pair and negative pairs for the
ωi
j,t+1 by ω̄Global

c,t and {ω̄Global
ĉ,t |ĉ ∈ C\c}, respectively, where

the label type of ωi
j,t+1 is c.

Definition 2 (Positive and Negative Pairs of Representations).
Intuitively, for ωi

j,t+1 whose label type is c, we consider
the global label-centroid representation ω̄Global

c,t as the positive
sample, which has the same label type. On the other hand, the

remaining global label-centroid representations with different
label types are considered as negative samples. Thereby, one
positive pair p+j,t+1 and |C| − 1 negative pairs {p−j,t+1} are
constructed as:

p+j,t+1 = (ωi
j,t+1, ω̄

Global
c,t ),

{p−j,t+1} = {(ω
i
j,t+1, ω̄

Global
ĉ,t )|ĉ ∼ C\c},

yij = c, i ∈ {1, ..., N}, j ∈ {1, ..., b}.
(12)

We adopt InfoNCE [26] as the form of regularization loss
function, aiming to maximize the similarity of positive pairs
and minimize the similarity of negative pairs. For the ith
client, according to Definition. 2, the regularization loss can
be expressed as:

Li
Reg,t+1 := EDi

b,t+1∼DiE(xi
j ,y

i
j)∼Di

b,t+1[
− log

e

[
D(p+

j,t+1)/τCL

]
e

[
D(p+

j,t+1)/τCL

]
+
∑

ĉ∈C\c e

[
D(p−

j,t+1)/τCL

] ],
D(ωi

j,t+1, ω̄
Global
c,t ) =

ωi
j,t+1 · ω̄Global

c,t

||ωi
j,t+1||2 · ||ω̄Global

c,t ||2
∈ [−1, 1],

(13)

where τCL is the temperature of CRL which controls the
attention on positive samples or negative samples, and D(·)
is cosine similarity. Then, the ith client calculates its local
label-centroid representations Ω̄i

t+1 referring to Eq. (4).
Note that, the batch size b in Eq. ( 13) not only affects

training effect but also impacts the computational overhead,
because a larger b means more negative instances are utilized.
For contrastive learning, more negative instances can bring
about more knowledge enhancement, thereby improving the
training effect but increasing the computational overhead,
which needs to be carefully balanced.

Final Objective:
As a result, we obtain the final objective function for locally

updating θi at iteration t:

Li
t+1 := Li

Per,t+1(Di; θ̂it+1) + αLi
Reg,t+1(Ω

i
t+1, Ω̄

Global
t ).

(14)

The process of local updates can be expressed as follows:

θit+1 ← θ̂it+1 − η∇θ̂i
t+1
Li
t+1(Di; θ̂it+1; Ω

i
t+1, Ω̄

Global
t ), (15)

where α is the hyperparameter for trading off personalization
and regularization, and η is the learning rate.

Algorithm 1 presents the entire training process of Fed-
CoSR, including 1) global aggregation for both model param-
eters and label-centroid representations (line 11-13); 2) local
aggregation between each model and the global model (line
17-18); and 3) local training on the aggregated local model
(line 20-22). 4) All local information is uploaded to the server
(line 24-25). This loop is ended until all the optimal local
parameters are found.

IV. THEORETICAL ANALYSIS

Before conducting experiments, we provide a theoretical
analysis of the developed FedCoSR algorithm. Firstly, we
focus on the effectiveness of the local loss function incor-
porating cross entropy and InfoNCE, as the local training is
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Algorithm 1 FedCoSR Framework
1: Input: The server and N clients; {Di}Ni=1: datasets of N clients; θGlobal

0 :
the initial global model; η: the learning rate; α: the trade-off factor
between personalization and regularization.

2: Output: θ1∗, ..., θN∗: Optimal local model parameters.
3: Initialization:
4: The server sends θGlobal

0 to all clients to initialize {θ̂i0}Ni=1 by overwriting,
rather than local aggregation in Eq. (8).

5: Clients train {θ̂i0}Ni=1 by Eq. (15) in parallel, where α = 0. Then clients
get {θi1}Ni=1.

6: Clients collect {Ω̄i
1}Ni=1 by Eq. (3) and Eq. (4).

7: Clients upload {ϕi
1}Ni=1 and {Ω̄i

1}Ni=1 to the server.
8: FL Communication:
9: for iteration t = 1, ..., T do

10: Server: ▶ 1 Global aggregation
11: The server aggregates {ϕi

t}Ni=1 to get ϕGlobal
t by Eq. (5).

12: The server aggregates {Ω̄i
t}Ni=1 to get Ω̄Global

t by Eq. (6).
13: The server sends ϕGlobal

t and Ω̄Global
t to all clients. ▶ 2

14: Clients:
15: for the ith client in parallel do ▶ Local Update
16: Local Aggregation: ▶ 3
17: Calculate τt+1 based on Li

Reg,t by Eq. (7).
18: Obtain local aggregated model fθ̂it+1

by Eq. (9).

19: Local Training: ▶ 4
20: Construct positive pairs and negative pairs by Eq. (12).
21: Calculate Li

t+1 by Eq. (14) for both personalization and regu-
larization.

22: Train θ̂it+1 by Eq. (15) and clip it into [0, 1] for normalization to
get fθit+1

= [fϕi
t+1

; fπi
t+1

].

23: Upload: ▶ 5
24: Collect Ω̄i

t+1 by Eq. (3) and Eq. (4).
25: Upload ϕi

t+1 and Ω̄i
t+1 to the server.

26: end for
27: end for
28: return θ1∗, ..., θN∗.

the core part of the personalization of FedCoSR. We explain
that FedCoSR minimizes InfoNCE to maximize the mutual
information between the local representations and global label-
centroid representations, thus enhancing the distinguishing
capability of each local model. Secondly, both global model
aggregation and local model aggregation linearly change the
model parameters, which may cause deviations in the loss
expectation during each iteration. If the deviation remains
unbounded, the convergence of FedCoSR may not be guar-
anteed. Therefore, we characterize the overall communication
between the server and the clients to establish an upper
bound on the loss expectation deviation, thereby ensuring the
convergence of FedCoSR. Note that due to the non-convexity
of the local loss induced by InfoNCE, we focus on non-convex
settings. Moreover, we also present the relationship between
the convergence rate and key hyperparameters.

A. Effectiveness of Local Loss Function

Referring to Eq. (14), the local loss function is a linear
combination of LPer and LReg. Since LPer is in the form
of cross entropy, its convexity and good convergence are
known [40]. But the non-convexity of InfoNCE LReg may lead
to sub-optimum of the training objective for each local model.
Thus, we focus on analyzing LReg to explain the demonstrate
of the local loss function.

To quantify the enhancement brought by the InfoNCE loss
LReg, we introduce the manifestation of mutual information in
contrastive learning as follows.

Definition 3 (Mutual Information in Contrastive Learning). To
construct contrastive learning task, mutual information I(·) is
introduced between anchor samples X and the similar samples
X+ which is also known as positive samples:

I(X+;X) =
∑

x+∈X+,x∈X

p(x+, x) log

[
p(x+|x)
p(x+)

]
, (16)

where p(·) is the notation of probability.

Based on Definition 3, we present the following theorem to
illustrate the effectiveness of the local loss function design.

Theorem 1 (InfoNCE Minimization in FedCoSR). For each
data batch of the ith client, minimizing InfoNCE equals
to maximizing the mutual information between each anchor
representation in this batch and its positive representation,
and meanwhile minimizing the mutual information between it
and its negative representations, formulated as follows, where
b is the batch size:

Li
Reg,t+1 ≥ −

1

b

b∑
j=1

I(ω̄Global
c,t , ωi

j) + log(C). (17)

Intuitively, we have Ī(·) ≥ log(C) − LReg, where Ī(·) is
the mean value of the mutual information. When C becomes
larger, the lower bound of similar representations increases,
improving the performance of the ith local model. Theorem 1
indicates that optimizing the regularization term Li

Reg can
enlarge the information acquisition for the ith client, showing
the effectiveness of combining LPer and LReg. Due to the page
limitation, the proof of Theorem 1 is omitted from the current
paper.

B. Convergence of FedCoSR

The convergence conditions for the ith client is explained in
this part. For ease of discussion, we denote the total number
of local training epochs as R, which is set to 1 in this paper.
Specifically, we define tR+ r as the rth epoch at iteration t,
tR as the end of iteration t (end of the local training), tR+0
as the beginning of iteration t (local aggregation), and tR+ 1

2
as the utilization of global label-centroid representations at
iteration t (after local aggregation).

Before showing the convergence of FL communication, we
make three assumptions which are widely used in literature:
Assumption 1: Lipschitz Smoothness ensuring consistency in
gradient changes [13], [23], [27], [28], Assumption 2: Unbi-
ased Gradient and Bounded Variance providing stable gradi-
ent estimates [13], [23], [27], and Assumption 3: Bounded
Variance of Representation Layers guaranteeing an acceptable
variance between the global model and each local model.

Assumption 1 (Lipschitz Smoothness). The ith local loss
function is L1-Lipschitz smooth, leading to that the gradient
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of the local loss function is L1-Lipschitz continuous, where
L1 > 0, ∀r1, r2 ∈ {0, 1

2 , 1, ..., R}, and (xi,yi) ∈ Di:

||∇Li
tR+r1(x

i,yi; θ̂itR+r2)−∇L
i
tR+r2(x

i,yi; θ̂itR+r2)||2
≤ L1||θ̂itR+r1 − θ̂itR+r2 ||2.

(18)

Assumption 2 (Unbiased Gradient and Bounded Vari-
ance). The stochastic gradient ∇Li

tR(θ̂
i
tR;Di

b,tR) is an un-
biased estimator of the local gradient, and the variance of
∇Li

tR(θ̂
i
tR;Di

b,tR) is bounded by σ:

Var[∇Li
tR(θ̂

i
tR;Di

b,tR)] ≤ σ2. (19)

Assumption 3 (Bounded Variance of Representation Layers).
The variance between f i

tR and fGlobal
tR is bounded, whose

parameter bound is:

E[||f i
tR − fGlobal

tR ||22] ≤ ε2. (20)

Based on the above assumptions, the deviation in loss expec-
tation for each iteration is bounded, as shown in Theorem 2,
serving as the foundation of our algorithm’s convergence.

Theorem 2 (One-Iteration Deviation). For the ith client,
between the iteration t and the iteration t+ 1, we have:

E[Li
(t+1)R+ 1

2
] ≤ E[Li

tR+ 1
2
]−

(
η − L1η

2

2

) R∑
r= 1

2

||∇Li
tR+r||22

+
RL1η

2σ2

2
+

L1(ε
2 + ε)

2
+

2α

τCL
. (21)

Theorem 2 indicates that, the deviation in the loss expec-
tation for the ith client is bounded from the iteration t to the
iteration t+ 1, which leads to the following corollary for the
convergence of FedCoSR in non-convex settings.

Corollary 1 (Non-Convex FedCoSR Convergence). The loss
function of the ith client monotonously decreases between the
iteration t and the iteration t + 1, when the learning rate at
iteration r′ satisfies:

ηr′ <
S+

√[
S
]2 − (L1S+RL1σ2)(L1ε2τCL+L1ετCL+4α)

τCL

L1S+RL1σ2
, (22)

where r′ = 1
2 , 1, ..., R, and briefly, S =

∑r′

r= 1
2
||∇Li

tR+r||22.

Corollary 1 indicates that as long as the learning rate is small
enough at iteration r′, FedCoSR will converge. Furthermore,
the convergence rate of FedCoSR can be also obtained as
follows.

Theorem 3 (Non-Convex Convergence Rate of FedCoSR).
Given any ϵ > 0, after T iterations, the ith client converges
with the rate:

1

TR

T∑
t=1

R∑
r= 1

2

E[||∇Li
tR+r||22] < ϵ, (23)

when

T >

2τCL(Li
1
2
− Li,∗)

(2η − L1η2)ϵτCLR − L1η2σ2τCLR − τCLL1(ε2 − ε) − 4α
, (24)

η <
2ϵτCLR +

√
4ϵ2τ2

CLR
2 − 4L1τCLR(ϵ + σ2)(τCLL1(ε2 + ε) + 4α)

2L1τCLR(ϵ + σ2)
,

(25)

α <
ϵ2

4L1(ϵ + σ2)
−

τCLL1

4
(ε

2
+ ε). (26)

Theorem 3 outlines the specific conditions for convergence.
To ensure the algorithm converging with a rate, the minimal
training iterations T should be determined. Correspondingly,
the upper bounds for two hyperparameters, η and α, are also
presented. Due to the page limit, the proofs of Theorem 2,
Corollary 1, and Theorem 3 are omitted from the paper.

V. EXPERIMENTS AND DISCUSSION

A. Experiment Setup

1) Dataset Description: We consider three popular datasets
of image classification for evaluation: CIFAR-10 consists of 10
categories of items, each containing 6,000 images; EMNIST
consists of 47 categories of handwritten characters, each
containing 2,400 images; and CIFAR-100 consists of 100
categories of items, each containing 600 images. Based on
these datasets, we evaluate the performance of our method in
tasks with different scales of label classes.

2) Heterogeneity Setting on Datasets: We simulate label
distribution skew and data scarcity with two widely adopted
settings. The first setting is informed by [29], called prac-
tical setting, using the Dirichlet distribution Dir(β), where
β ∈ (0, 1]. We set β = 0.1 as the default value, since smaller
β results in more heterogeneous simulations. The second
setting is the pathological setting [8], [41], which samples
2, 10, and 20 label categories from CIFAR-10, EMNIST,
and CIFAR-100, respectively. While both settings can lead to
differences in label distributions among clients, the difference
is: in the practical setting, the Dirichlet distribution controls
the proportion of labels assigned to each client, with varying
levels of skewness based on the value of β, allowing all clients
to potentially receive all labels but in different proportions.
In contrast, the pathological setting enforces a hard limit
on the number of label categories each client can receive,
leading to more extreme label distribution heterogeneity. Thus,
the practical setting results in more gradual label distribution
shifts, while the pathological setting imposes rigid category
constraints.

For evaluation, we ensure that all clients receive datasets
of approximately similar sizes, which are about from 8,000
to 10,000 samples. 75% of the local data forms the training
dataset, and the remaining 25% is used for testing. Fig. 4
shows the data distribution visualization of the default settings
for the three datasets. The corresponding results are presented
and analyzed in Section. V-B1 and Section. V-B2.

3) Scarcity Setting on Datasets: To evaluate the perfor-
mance of the proposed method under data scarcity, we design
the following two experiments based on the default hetero-
geneity settings:
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EMNIST: Pathological (N=20, label class amount=20)1
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Fig. 4: The data distribution of CIFAR-10, EMNIST, and CIFAR-
100 in the default settings.

TABLE I: Taxonomy of compared baselines.
Algorithm Type Main technique RQ1 RQ2
FedAvg [8] FL Standard ✗ ✗

FedProx [13] FL Regularization ✗ ✗
MOON [18] FL Contrastive learning ✓ ✗
pFedMe [14] PFL Regularization ✓ ✗

Ditto [15] PFL Multi-task learning ✗ ▲
PerFedAvg [27] PFL Meta learning ✓ ✗

FedRep [19] PFL Model splitting ✓ ✗
LG-FedAvg [17] PFL Model splitting ✓ ✗

FedPer [16] PFL Model splitting ✓ ▲
FedAMP [28] PFL Model collaboration ✓ ✗
FedALA [29] PFL Local aggregation ✓ ✗
FedProto [23] PFL Representation sharing ✓ ▲
FedPAC [25] PFL Representation sharing ✓ ✗
FedGH [24] PFL Representation sharing ✓ ✗

Our proposed PFL Representation sharing ✓ ✓

• Fairness for New Participation: Under the default
CIFAR-10 settings where 20 clients are set, we reduce the
data size of the last five clients to 10% of their original
amounts while keeping the data distribution unchanged.

• Robustness against Model Degradation: Additionally,
to explore the robustness of the FL algorithms in a
scenario where all clients’ data is scarce, we reduce
the data size for each client to between 5% and 25%,
maintaining the same data distribution.

The corresponding results are presented and analyzed in
Section. V-B3 and Section. V-B4.

4) Baselines for Comparison: We compare FedCoSR with
individual local training and 14 popular FL methods, catego-
rized in Table I, where ▲ means fairness is discussed but data
scarcity is not considered. By default, we adopt the optimal
hyperparameters recorded in each work for our comparison.

5) Other Settings: We implement all experiments using
PyTorch-1.12 on an Ubuntu 18.04 server with two Intel Xeon
Gold 6142M CPUs with 16 cores, 24G memory, and one
NVIDIA 3090 GPU. For simplicity, we construct a two-layer
Convolutional Neural Network (CNN) followed by two Fully-
Connected (FC) layers for all datasets. Each CNN includes a
convolution operation, a ReLU activation, and a max-pooling
step. The output of the second CNN is flattened and passed
through a FC layer with k output features, where k is the
dimension of shareable representations. Finally, the k features

are mapped by the second FC layer to |C| label classes, where
C includes all label classes in the FL scenario. In FedCoSR,
the representation layers ϕ consists of the two-layer CNN and
the first FC layer, and the second FC layer is the projection
layer π. Additionally, for reliability, five-time experiments are
conducted to calculate the mean and standard deviation, where
the mean reflects the overall trend of the results and the
standard deviation quantifies the variability.

B. Result Analysis and Discussion on Research Questions

1) RQ1-Label Distribution Skew: Effectiveness: As shown
in Table II, FedCoSR achieves the highest test accuracy across
all three datasets in both the practical and pathological set-
tings, demonstrating the effectiveness of our method. FedProto
achieves the second best performance, just below FedCoSR,
demonstrating that FedCoSR’s knowledge gained from both
representations (data-level) and model parameters (model-
level) leads to its superior performance over other methods,
particularly with heterogeneous clients.

Another observation is that FedCoSR achieves better perfor-
mance when the number of label classes increases. As shown
in Table II, we can see that FedCoSR’s improvement over the
second best method becomes more significant with an increase
in label classes within two heterogeneous settings: CIFAR-100
(3.54%/4.01%) and CIFAR-10 (1.36%/1.73%). The reason can
be that, according to [26], if the labels are fully reliable, the
lower bound of the mutual information between positive pairs
estimated by InfoNCE will be tighter when the number of
negative samples is larger, which usually contributes to model
performance improvements. Thus, we can infer that contrastive
learning applied to different clients’ representation centroids
is more effective in tackling heterogeneity, particularly in
scenarios with a larger number of label classes. However, we
are unsure where the marginal benefits of contrastive learning
for FL lie, and further experiments on more diverse datasets
may be needed.

Furthermore, we study learning efficiency based on training
curves of FedCoSR and other compared methods with rela-
tively high performance in Fig. 5. Specifically, we conduct
averaging smooth on original curves whose moving window
length is 50. As shown in Fig. 5, FedCoSR achieves the
highest accuracy convergence in both practical and patholog-
ical settings. Though several methods, such as FedPer and
FedRep, achieve higher convergence at the beginning, after a
short period of fluctuation, FedCoSR demonstrates an upward
trend in accuracy, while others exhibit a prolonged decline
in accuracy overtime. This advantage of consistent learning
can be attributed to the knowledge enhancement provided
by CRL adopted in local personalized training. Although the
convergence speed of various algorithms is similar, FedCoSR
exhibits more stable trends in both accuracy and loss curves
with stability kept by the local adaptive aggregation.

2) RQ1-Label Distribution Skew: Robustness to Varying
Heterogeneity: For evaluating FedCoSR’s capability of han-
dling varying levels of heterogeneity, we adjust β of the
Dirichlet distribution to control practical heterogeneity on
CIFAR-10 and change label classes held by each client to
adjust the pathological heterogeneity on CIFAR-100, as shown
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TABLE II: The accuracy and standard deviations of the three datasets in the practical and pathological heterogeneous setting. We use
superscripts ∗, †, and ‡, to emphasize the 1st, 2nd, and 3rd best values in each column, respectively. Green means better and red means
worse than the averaged result.

Method
Practical heterogeneous (β = 0.1, N = 20) Pathological heterogeneous (N = 20)

CIFAR-10 EMNIST CIFAR-100 CIFAR-10 EMNIST CIFAR-100
Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%)

Local 69.90 ↓ 9.44 ↓ 91.80 ↓ 4.50 ↓ 35.12 ↓ 6.25 ↓ 61.94 ↓ 11.56 ↓ 81.21 ↓ 7.25 ↓ 30.66 ↓ 6.33 ↓
FedAvg 61.51 ↓ 11.23 ↓ 83.59 ↓ 10.98 ↓ 30.88 ↓ 3.46∗ ↑ 51.72 ↓ 17.72 ↓ 74.19 ↓ 13.36 ↓ 25.84 ↓ 6.32 ↓
FedProx 62.91 ↓ 9.75 ↓ 85.33 ↓ 7.54 ↓ 32.45 ↓ 3.69† ↑ 62.09 ↓ 7.01 ↑ 84.32 ↓ 6.09 ↓ 31.23 ↓ 4.28‡ ↑
MOON 82.96 ↓ 10.19 ↓ 93.61 ↓ 4.77 ↓ 48.04 ↑ 5.11 ↑ 86.88 ↑ 13.49 ↓ 95.24 ↑ 7.40 ↓ 51.31 ↑ 5.91 ↓
pFedMe 84.75 ↑ 9.55 ↓ 95.55 ↑ 1.47 ↑ 46.20 ↓ 6.89 ↓ 85.72 ↑ 9.63 ↓ 95.78 ↑ 3.03 ↑ 46.88 ↑ 4.76 ↑

Ditto 87.53 ↑ 8.92 ↓ 96.53 ↑ 1.17‡ ↑ 46.40 ↓ 4.81 ↑ 89.08 ↑ 7.37 ↑ 96.48 ↑ 2.24 ↑ 48.81 ↑ 4.51 ↑
PerFedAvg 88.95 ↑ 6.98 ↑ 94.63 ↑ 1.72 ↑ 48.80 ↑ 5.32 ↓ 89.45 ↑ 7.69 ↑ 93.95 ↑ 2.47 ↑ 48.03 ↑ 4.23† ↑

FedRep 90.66‡ ↑ 6.28† ↑ 97.00† ↑ 1.21 ↑ 52.06 ↑ 5.15 ↑ 91.47 ↑ 7.43 ↑ 96.59† ↑ 2.58 ↑ 53.12 ↑ 4.90 ↑
LG-FedAvg 88.72 ↑ 8.05 ↑ 95.90 ↑ 1.50 ↑ 48.19 ↑ 6.25 ↓ 91.35 ↑ 7.15 ↑ 94.21 ↑ 1.95∗ ↑ 46.67 ↓ 5.84 ↓

FedPer 89.94 ↑ 6.51‡ ↑ 96.18 ↑ 1.61 ↑ 53.42‡ ↑ 5.23 ↓ 91.23 ↑ 6.83 ↑ 94.82 ↑ 2.56 ↑ 53.34 ↑ 5.25 ↓
FedAMP 89.27 ↑ 7.38 ↑ 96.32 ↑ 1.30 ↑ 51.62 ↑ 5.88 ↓ 91.42 ↑ 6.78‡ ↑ 95.99 ↑ 2.42 ↑ 51.27 ↑ 5.83 ↓
FedALA 83.33 ↓ 9.81 ↓ 92.37 ↓ 3.21 ↓ 40.41 ↓ 3.98 ↑ 83.88 ↓ 13.47 ↓ 92.24 ↓ 3.87 ↑ 45.31 ↓ 5.20 ↓
FedProto 89.82 ↑ 7.18 ↑ 96.82‡ ↑ 1.21 ↑ 53.47† ↑ 6.00 ↓ 91.58† ↑ 6.52† ↑ 96.49‡ ↑ 2.25 ↑ 53.52‡ ↑ 5.09 ↑
FedPAC 90.79† ↑ 6.72 ↑ 96.66 ↑ 1.02∗ ↑ 53.14 ↑ 4.27 ↑ 91.55‡ ↑ 7.52 ↑ 95.95 ↑ 2.15‡ ↑ 53.59† ↑ 4.44 ↑
FedGH 88.95 ↑ 7.54 ↑ 96.01 ↑ 1.46 ↑ 46.85 ↑ 6.27 ↓ 91.39 ↑ 7.04 ↑ 95.66 ↑ 2.58 ↑ 48.65 ↑ 5.44 ↓

FedCoSR 92.15∗ ↑ 5.57∗ ↑ 97.98∗ ↑ 1.15† ↑ 57.01∗ ↑ 3.76‡ ↑ 93.31∗ ↑ 6.05∗ ↑ 97.85∗ ↑ 2.01† ↑ 57.60∗ ↑ 4.07∗ ↑
Averaged 83.83 8.21 94.13 2.86 46.43 5.15 83.95 9.00 92.59 4.02 46.34 5.15
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Fig. 5: The smoothed learning curves of well-performing methods
in the default settings.

in Table III. We find that most PFL methods achieve better per-
formance in more heterogeneous settings, with our FedCoSR
consistently ranking in the top three. An interesting trend
is that almost all methods degrade in accuracy but achieve
improved stability when the heterogeneity becomes moderate.
This can be attributed to the reduced performance gap between
clients with abundant data and those with scarce data, when
the setting becomes less heterogeneous. Specially, FedPAC is
not applicable on practical CIFAR-10 with β = 0.01, whose
optimization problem among clients may not have feasible so-
lutions due to the extreme scarcity of label classes. In contrast,
FedCoSR shows a stronger robustness to both extreme and
moderate label heterogeneity than the other methods.

3) RQ2-Data Scarcity: Fairness Maintenance: In Fig. 6,
the performance of FedAvg and the algorithms discussing

fairness is assessed under an FL scenario where the data
size for the last five clients (Clients 16-20) is significantly
reduced to 10% of their original amounts. The goal is to
evaluate how well different algorithms handle fairness in
terms of model performance for clients with very little data.
FedCoSR stands out by maintaining a high level of fairness,
even with data scarcity. It achieves a mean accuracy of 90.08%
with a standard deviation of 5.92%, the best among the
methods. This is due to FedCoSR’s ability to enhance shared
representation through contrastive learning and utilize local
adaptive aggregation, which helps compensate for the reduced
data size and allows for better personalization.
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FedAvg, mean: 54.59%; std.: 15.61%
Ditto, mean: 79.59%; std.: 12.49%
FedProto, mean: 87.57%; std.: 8.18%

FedPer, mean: 87.81%; std.: 7.55%
FedCoSR, mean: 90.08%; std.: 5.92%

Fig. 6: Performance of each client on CIFAR-10 with practical
heterogeneity using different FL methods. The client number in red
means its dataset size is much smaller than the others.

FedPer and FedProto show strong results, effectively miti-
gating heterogeneity through model splitting and personalized
aggregation, but still fall short of the fairness achieved by
FedCoSR. Ditto demonstrates moderate performance, indicat-
ing its regularization strategy struggles in data-scarce environ-
ments. Meanwhile, FedAvg performs the worst, highlighting
its limitations in managing client heterogeneity and data im-
balance due to its sole reliance on model aggregation without
personalization.

Additionally, we also analyze the standard deviations in
Tables II and III. In all experiments, FedCoSR consistently
ranks in the top three for fairness, showing smaller differences
among client groups. Traditional FL methods like FedProx and
Ditto are often the fairest due to their focus on generalization,
while PFL methods like FedRep and PerFedAvg also achieve



10

70

80

90 CIFAR-10: Practical

FedCoSR FedPer FedProto Ditto FedAvg

70

80

90 CIFAR-10: Pathological

5 10 15 20 25
Client Data Size Ratio (%)

40
50

5 10 15 20 25
Client Data Size Ratio (%)

40
50

Te
st

 A
cc

ur
ac

y 
(%

)

Te
st

 A
cc

ur
ac

y 
(%

)
80

90
EMNIST: Practical

80

90
EMNIST: Pathological

5 10 15 20 25
Client Data Size Ratio (%)

30
40
50

5 10 15 20 25
Client Data Size Ratio (%)

30
40
50

Te
st

 A
cc

ur
ac

y 
(%

)

Te
st

 A
cc

ur
ac

y 
(%

)

30
40
50 CIFAR-100: Practical

30
40
50 CIFAR-100: Pathological

5 10 15 20 25
Client Data Size Ratio (%)

10

20

5 10 15 20 25
Client Data Size Ratio (%)

10

20

Te
st

 A
cc

ur
ac

y 
(%

)

Te
st

 A
cc

ur
ac

y 
(%

)

Fig. 7: Robustness to the scenario where the data sizes of all clients
are small.

good fairness by balancing global and local updates. FedCoSR
strikes a better balance between generalization and personal-
ization, resulting in both high accuracy and fairness, making
it effective for clients with scarce data and diverse labels.

Overall, the results demonstrate that FedCoSR provides
the most balanced performance across clients, thanks to its
privacy-preserving knowledge sharing and local adaptation
techniques.

4) RQ2-Data Scarcity: Robustness against Model Degrada-
tion: We test our FedCoSR with varying local dataset sizes on
CIFAR-10 under the two scenarios. As shown in Fig. 7, clients
of varying local dataset sizes consistently reap the advantages
of engaging in FL, while our method achieves the best perfor-
mance. Compared with results in Table II, small local datasets
indeed cause substantial performance degradation. Despite all
methods have decreasing trends when the local dataset size
becomes smaller, the degree of decline under FedCoSR is
less than that of other methods, demonstrating FedCoSR’s
strongest robustness to data scarcity. This can be attributed to
that the information embedded in the shared representations
is effectively enhanced through contrastive learning among
clients, compensating for the lack of data volume.

C. Result Analysis and Discussion on Practicality

1) Scalability: In Table III, we study the scalability by
increasing the number of clients N to 100. Compared to the
results when N = 20 in Table II, most methods experience
significant degradation when N increases, with about 6−20%
degradation in performance. This is attributed to the challenges
arising from label scarcity and label distribution skew in patho-
logical setting sbecoming more extreme with increasing N . As
such, these methods encounter difficulties in personalization.

Overall, model splitting-based methods and representation
sharing-based methods demonstrate good scalability. FedCoSR
shows only a 6% drop in the practical setting and still achieves
the best in both settings, highlighting its strong scalability and
the advantage of applying CRL among shared representations.

2) Communication Overhead: We evaluate the communica-
tion overhead per client in single iteration. We denote φ(·) as
the number of parameters. Based on Eq. (9) where θ is concate-
nated by ϕ and π, most methods incur the same computational
overhead as FedAvg, which uploads and downloads only
one entire model, denoted as 2φ(θ). FedProto only transmits
representations, thus in general (we suppose a representation
is much smaller than a model), it has the least communication
overhead denoted as 2φ(Ω̄). FedGH uploads representations
and downloads projection layers, costing φ(Ω̄)+φ(π), but also
takes time for global training on the server. Since FedCoSR
uploads and downloads parameters of representation layers and
averaged representations of each label, its overhead can be
regarded as 2[φ(ϕ) + φ(Ω̄)], where the depth of ϕ is |θ| − 1.
This communication overhead is similar to the major overhead
2φ(θ) and thus deemed acceptable.

3) Privacy Concerns: In FL, the risk of data privacy
leakage is inevitable due to reverse engineering techniques,
such as gradient inversion [42]. However, specific strategies
can mitigate these risks without significantly affecting system
performance. In our work, we adopt the following approaches
to reduce privacy leakage:

• Partial model parameter sharing: By uploading only
a portion of the local model parameters, we reduce the
amount of information available for potential exploitation,
avoiding the risk of full data reconstruction.

• Parameter-only uploads: We avoid sharing the model
structure itself, limiting the server’s ability to exploit
model-specific details for data inference.

• Uploading mean values of representations: Instead of
uploading raw embeddings, we only share mean values of
representations. This abstracts the data further, reducing
the potential for inversion attacks.

In addition to these methods, Differential Privacy (DP) can be
employed on model parameters and representations to further
reduce privacy risks [43]. DP adds noise to the shared data,
but this comes with a trade-off between privacy and model
utility, as too much noise may degrade performance.

D. Result Analysis and Discussion on Methodology

1) Ablation Study: To validate the effectiveness of main
techniques employed in FedCoSR, we remove them and create
three variants (“w/o” is short for “without”): (1) FedCoSR
w/o LA: w/o loss-wise local aggregation; (2) FedCoSR w/o
Sep: w/o separating the representation layer f and the linear
layer g; (3) FedCoSR w/o CRL: w/o CRL loss term in local
training. The results are shown in Fig. 8.

The ablation results show that removing LA leads to a
notable performance drop, indicating that our loss-wise lo-
cal aggregation effectively enhances model performance by
leveraging model-level information. When Sep is disabled,
the performance decline is minimal, but variance increases
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TABLE III: The accuracy of changing N of CIFAR-10 for scalability evaluation, β of CIFAR-10 for practical heterogeneity evaluation, and
label classes of each client of CIFAR-100 for pathological heterogeneity evaluation. We use superscripts ∗, †, and ‡, to emphasize the 1st,
2nd, and 3rd best values in each column, respectively. Purple + means improvement on previous settings, e.g., N = 100 v.s. N = 20, and
β = 0.01 v.s. β = 0.1 in Table II, while blue − means degradation. Green ↑ means better and red ↓ means worse than the averaged result.

Method
Scalability (CIFAR-10) Heterogeneity (CIFAR-10 practical) Heterogeneity (CIFAR-100 pathological)

Prac. N = 100 Path. N = 100 β = 0.01 β = 1 Classes/Client= 10 Classes/Client= 50

Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%) Acc. (%) Std. (%)
Local 65.72 - ↓ 18.47 - ↓ 67.44 + ↓ 15.90 - ↓ 44.25 - ↓ 20.77 - ↓ 77.57∗ + ↑ 6.82 + ↓ 30.13 - ↓ 7.12 - ↓ 34.89 + ↑ 6.80 - ↓

FedAvg 57.86 - ↓ 10.34‡ + ↑ 59.80 + ↓ 13.80 - ↓ 30.45 - ↓ 22.34 - ↓ 71.23 + ↑ 4.26 + ↑ 20.94 - ↓ 6.24 - ↓ 31.19 + ↓ 2.59 + ↑
FedProx 60.82 - ↓ 8.81∗ - ↑ 65.26 - ↑ 7.69‡ - ↑ 46.13 - ↓ 13.93 - ↓ 70.31 + ↑ 4.11‡ + ↑ 28.84 - ↓ 4.08‡ - ↑ 33.37 + ↑ 1.85∗ + ↑
MOON 80.05 - ↑ 16.80 - ↓ 74.15 - ↓ 15.33 - ↓ 95.92 + ↓ 12.55 - ↑ 66.32 - ↓ 4.97 - ↑ 57.62 + ↑ 4.99 + ↓ 23.47 - ↓ 4.58 + ↓
pFedMe 80.22 - ↑ 13.99 - ↑ 76.09 - ↑ 8.65 - ↑ 98.82 + ↑ 8.98‡ + ↑ 69.01 - ↓ 4.39 + ↑ 59.22 + ↑ 4.66 + ↑ 28.15 - ↓ 2.84 + ↑

Ditto 82.68 - ↑ 15.78 - ↓ 74.85 - ↓ 8.48 + ↑ 99.05 + ↑ 8.60† + ↑ 65.03 - ↓ 4.86 + ↑ 57.21 + ↑ 4.59 - ↑ 27.70 - ↓ 2.90 + ↑
PerFedAvg 84.03 - ↑ 12.95 - ↑ 79.30 - ↑ 8.55 + ↑ 99.02 + ↑ 8.28∗ - ↑ 73.93 - ↑ 4.07† + ↑ 63.46 + ↑ 4.93 + ↓ 36.17† - ↑ 2.50‡ + ↑

FedRep 86.08† - ↑ 13.23 - ↑ 82.31‡ - ↑ 7.44† - ↑ 99.18 + ↑ 9.06 - ↑ 71.84 -↑ 4.59 + ↑ 68.85† + ↑ 4.16 + ↑ 33.71 - ↑ 3.83 + ↓
LG-FedAvg 82.87 - ↑ 16.44 - ↓ 76.72 - ↑ 8.80 + ↑ 99.17 + ↑ 22.72 - ↓ 61.38 -↓ 6.04 + ↓ 62.45 + ↑ 7.53 + ↓ 24.52 - ↓ 5.17 + ↓

FedPer 84.43‡ - ↑ 13.60 - ↑ 82.08 - ↑ 8.04 - ↑ 98.70 + ↑ 12.58 - ↑ 73.00 - ↑ 4.16 + ↑ 68.35 + ↑ 4.28 + ↑ 35.84 - ↑ 4.04 + ↓
FedAMP 82.26 - ↑ 13.25 - ↑ 75.03 - ↓ 13.04 - ↓ 99.25‡ + ↑ 15.82 - ↓ 61.58 - ↓ 9.65 - ↓ 67.51 + ↑ 4.80 + ↑ 28.89 - ↓ 4.34 + ↓
FedALA 79.27 - ↑ 15.71 - ↓ 70.44 - ↓ 15.28 - ↓ 97.09 + ↑ 10.26 - ↑ 72.99 - ↑ 4.78 + ↑ 30.84 - ↓ 4.67 + ↑ 30.82 - ↓ 4.29 + ↓
FedProto 83.61 - ↑ 15.96 - ↓ 78.01 - ↑ 8.20 - ↑ 99.32† + ↑ 11.21 - ↑ 62.92 - ↓ 5.17 + ↓ 68.81‡ + ↑ 4.56 + ↑ 31.48 - ↓ 4.64 + ↓
FedPAC 70.80 - ↓ 20.04 - ↓ 82.33† - ↑ 9.59 - ↑ - - 74.84‡ - ↑ 3.44∗ + ↑ 63.30 + ↑ 2.93∗ + ↑ 36.12‡ - ↑ 3.60 + ↑
FedGH 82.64 - ↑ 15.66 - ↓ 76.98 - ↑ 8.52 - ↑ 99.23 + ↑ 22.45 - ↓ 61.16 - ↓ 5.25 + ↓ 65.50 + ↑ 4.74 - ↑ 27.55 - ↓ 3.98 + ↓

FedCoSR 87.57∗ - ↑ 12.26‡ - ↑ 84.81∗ - ↑ 7.37∗ - ↑ 99.40∗ + ↑ 10.78 - ↑ 76.59† - ↑ 4.17 + ↑ 72.44∗ + ↑ 3.56† + ↑ 42.78∗ + ↑ 2.17† + ↑
Averaged 78.12 14.58 75.28 10.29 86.98 13.35 69.24 5.04 55.24 4.86 31.48 3.75
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Fig. 8: The accuracy of FedCoSR and its ablated variants under the
default settings.

Raw CIFAR10: practical
0
1
2
3
4
5
6
7
8
9

FedAvg CIFAR10: practical

0
1
2
3
4
5
6
7
8
9

LG-FedAvg CIFAR-10: practical
0
1
2
3
4
5
6
7
8
9

FedGH CIFAR-10: practical
0
1
2
3
4
5
6
7
8
9

FedProto CIFAR-10: practical

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

FedCoSR CIFAR-10: practical

Fig. 9: Practical setting: Visualization of the raw data, representations
of FedCoSR and other four baselines through t-SNE.

significantly, highlighting that model separation helps pre-
serve local knowledge without disrupting the global model’s
convergence, and enhances fairness by maintaining balanced
learning. Lastly, removing CRL harms both accuracy and
fairness, which can validate that CRL effectively integrates
label-wise information across clients into each local model,
thereby enhancing overall prediction accuracy in a fair manner.

2) Visualization of Representations: We visualize the
CIFAR-10 dataset using t-SNE. Fig. 9 shows that while

FedAvg achieves some clustering, PFL demonstrates more
distinct clusters based on data patterns. Model splitting-based
methods like LG-FedAvg and FedGH mix at least two label
types within clusters due to incomplete aggregation, hinder-
ing effective fusion of representation and projection layers,
making model-splitting suboptimal. In contrast, FedProto and
FedCoSR more clearly separate representations into uniform
clusters, with FedProto showing some overlap between differ-
ent labels, especially in the pathological setting. This occurs
because FedProto lacks model-level information and focuses
only on local personalization, whereas FedCoSR combines
model aggregation with shared representation learning, bal-
ancing generalization and personalization.

VI. CONCLUSION AND FUTURE WORK

This paper presents FedCoSR, a PFL framework that applies
contrastive learning to shareable representations to deal with
label heterogeneity, including label distribution skew and data
scarcity. It enhances local model training by leveraging global
representations to form sample pairs, thereby enriching the
knowledge of clients, especially those with limited data. The
proposed loss-wise weighting model aggregation dynamically
balances local and global models, ensuring personalized per-
formance. Experiments demonstrate that FedCoSR outper-
forms compared methods in various heterogeneous settings,
showing its effectiveness and fairness with heterogeneous or
scarce data. In future work, we intend to extend the practicality
of FedCoSR by studying its potential for addressing other
forms of statistical heterogeneity, including feature condition
skew, where clients exhibit similar label distributions but
distinct sample distributions.
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