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We propose a new approach to study the transition between different topological states, based on
the assessment of the vibrational resonances in infrared spectra. We consider the Haldane and Kane-
Mele models finding that Born effective charges are nearly quantized, with a discontinuous jump
concomitant with the topological phase transition. In particular, Born effective charges display a
finite value in the trivial phase and a null one in the nontrivial one. This is rooted in the connection
between Born effective charges and electronic Berry curvature at the band edges. Finally, at the
topological phase transition of the Haldane model, we also observe a nearly quantized jump of the
chiral splitting of the zone-center phonon frequencies, induced by time-reversal symmetry breaking.

Introduction— Chiral phonons have recently been ob-
served in non-equilibrium phases of topologically trivial
states by using circularly polarized light carrying angular
momentum [1–4]. An equilibrium, intrinsic, chiral nature
of phonons originates by the breaking of time-reversal
symmetry [5]. Here, the molecular Berry curvature in-
duces an anomalous contribution to the phonon eigen-
value equation acting as an effective classical Lorentz
force, that breaks the energetic equivalence between dif-
ferently polarized phonons at zone center [6–9]. Intrinsic
chiral phonons have been related to the nontrivial topol-
ogy of the Haldane model [6], a prototype for the Quan-
tum Anomalous Hall (QAH) insulating state [10]. In-
deed, chiral phonon splittings have been proposed as ex-
perimental markers for transitions to topological phases
not protected by time-reversal symmetry [11]. On the
other hand, the detection of topological nontrivial states
in systems displaying time-reversal, such as the Quan-
tum Spin Hall (QSH) states [12, 13], has been based
so far on either charge transport measurements probing
the longitudinal resistance in Hall bar geometry [14–16]
or discriminating conductive edge states from insulating
bulk by directly imaging the local conductivity [17–23].
The challenge of experimental identification of different
topological states [24] motivated theoretical proposals for
alternative detection methods, e.g., measuring collective
excitations such as plasmons [25, 26] or the Ruderman-
Kittel-Kasuya-Yosida interaction with magnetic impuri-
ties [27]. More recently discontinuous changes of piezo-
electric response in 2D time-reversal invariant systems
[28, 29] as well as the Hall viscosity in 2D Chern in-
sulators [30] have been theoretically suggested as direct
probes of topological transitions.

In this work, we propose a different measurable quan-
tity to detect the transition between trivial and nontriv-
ial topological phases of matter, namely the Born effec-
tive charges. Quantifying the polarization change due
to atomic displacements, Born effective charges can be
experimentally accessed, e.g., from the mode oscillator

strengths of vibrational resonances in infrared spectra
[31–38]. We first investigate their properties for the Hal-
dane model where time-reversal is broken by complex
next-nearest-neighbor hoppings [39]. We find that Born
effective charges display nearly quantized values in the
trivial phase, while they almost vanish in the nontrivial
one, at odds with chiral phonon splitting displaying an
opposite dependence on topology [6]. This behaviour is
well understood via a low-energy expansion of the Hal-
dane model, where the Born effective charge is deter-
mined by the difference of Chern numbers evaluated at
non-equivalent KKK and K’K’K’ points, while the chiral phonon
splitting depends on their sum. Superimposing two Hal-
dane models with opposite next-nearest-neighbor hop-
ping restores time-reversal symmetry, thus preventing the
occurrence of chiral phonon splitting in the whole phase
diagram; still, Born effective charges display quantized
jump between different phases. A realistic realization
of a topological system retaining time-reversal symme-
try is the Kane-Mele model [12] that includes a Rashba
coupling term induced either by a perpendicular electric
field or by the interaction with a substrate, for which
we numerically confirm that the Born effective charge
can be used as a marker to individuate the onset of the
Z2 topological order, corresponding to the QSH insula-
tor [40]. Among the recently proposed materials realizing
the Kane-Mele model, germanene has been shown to host
a QSH state at experimentally accessible temperatures,
with a topological transition to a trivial state induced by
a critical perpendicular electric field Ez,c ∼ 1.95 V/nm
[23]. Jacutingaite, a natural occurring layered and exfoli-
able mineral, has also been predicted to host a large-gap
QSH state when in monolayer form, also tunable by an
applied perpendicular field [41]. Our proposal could as
well be relevant for the experimental investigation of 3D
weak topological insulators comprising weakly coupled
QSH monolayers effectively described by the Kane-Mele
model, whose topological surfaces are usually not cleav-
able and hard to access using standard surface-sensitive

ar
X

iv
:2

40
4.

18
32

9v
3 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
3 

N
ov

 2
02

4



2

techniques [42, 43].
Berry curvatures— The relationship between topological
properties, Born effective charges and chiral phonons can
be rationalized in terms of Berry curvatures, encoding
the geometric properties of electronic wavefunctions in a
crystal. In a periodic crystal the electronic and nuclear
degrees of freedom can be decoupled following the Born-
Oppenheimer approximation. The nuclei are located at
their positions uuus(RRR) = RRR + τs, where RRR is a Bravais
lattice vector and τs indicates the position of the atom
s within the cell. The electrons are then described in
a mean field framework by a single-particle Hamiltonian
Hkkk, kkk being the quasi-momentum, which parametrically
depends on the atomic positions. For a generic couple of
parameters (ζ, λ), we define the Berry curvature of the
occupied manifold as [44–47]

Ωζλ(kkk) = −2Im

occ∑
n

⟨∂ζυnkkk|∂λυnkkk⟩

= −2Im

occ∑
n

empty∑
m

⟨υnkkk| ∂ζHkkk |υmkkk⟩ ⟨υmkkk| ∂λHkkk |υnkkk⟩
(εnkkk − εmkkk)2

,

(1)

where εnkkk and |υnkkk⟩ are the eigenvalues and eigenfunc-
tions of Hkkk, and the sum over n and m run on the mani-
fold of occupied and empty bands, respectively. If ζ and
λ are atomic positions, then Eq. 1 determines the molec-
ular Berry curvature of the system. As shown in Ref.
[6] for the Haldane model, the molecular Berry manifests
as a non-local effective magnetic field in the equations of
motion of the ion [48], inducing a chiral splitting of the
zone-center phonon frequencies. The anomalous contri-
bution to the phonon eigenvalue equation at zone cen-
ter is, in the limit where the phonon frequency is much
smaller than the band gap [8], proportional to

Fsα,rβ =
ℏ2√
MsMr

A

(2π)2

∫
BZ

d2kkkΩusαurβ
(kkk), (2)

where r, s are atomic indexes and α, β = x, y are Carte-
sian coordinates, Ms/r the ion masses and A is the unit
cell area. usα is an atomic displacement equal in each
cell of the crystal, so that the RRR dependence is dropped.
Beside the atomic positions, Hkkk is also parametrically

dependent on the quasi-momentum. If we identify ζ and
λ with the quasi-momentum, Eq. 1 then describes the
electronic Berry curvature. This is related to nontrivial
topological properties, such as the QAH Conductivity,
via the total Chern number [44, 49]

C =
1

2π

∫
BZ

d2kkkΩkxky (kkk). (3)

The Born effective charges can be decomposed as ZB
s,αβ =

Zionδαβ +Z∗
s,αβ where Zion is the contribution due to the

rigid ionic charge displacement. In ab initio framework

the latter term coincide with the charge of the ion [50],
while in a tight-binding approach it contains both the
ionic charge and the static electronic density contribu-
tion, as discussed in the Supplemental Material [51]. The
mixed derivative where ζ is the quasi-momentum and λ is
the atomic position is instead related to the Z∗

s,βα in the
same limit where the phonon frequency is much smaller
than the band gap [52]

Z∗
s,βα =

A

(2π)2

∫
BZ

d2kkkΩkαusβ
(kkk). (4)

As shown in the Supplemental Material [51], Zion is small
with respect to Z∗

s,βα in the trivial phase and it does not
depend on the electronic topological state. Therefore, we
neglected this contribution focusing only on the Z∗

s,βα,
which are referred in the following as the Born effective
charges. Great attention has been devoted to the study
of the molecular and electronic Berry curvatures for ma-
terials displaying topological properties. In this context,
the mixed derivative of Eq. (4) has been analyzed mostly
in connection with the piezoelectric response mediated by
the electron-strain coupling [28, 29], while little attention
has been given to Born effective charges of topological
states, that will be the focus of this work.
Haldane Model— We consider the Haldane model, de-
scribed by a tight-binding spinless Hamiltonian on a 2D
honeycomb lattice with two atoms per unit cell [51], one
atomic orbital per atom and one electron in each orbital

Hel =
∆

2

∑
i

lic
†
i ci + t1

∑
⟨ij⟩

c†i cj + it2
∑
⟨⟨ij⟩⟩

lijc
†
i cj . (5)

ci, c
†
i are the electronic creation and annihilation opera-

tors, where i is a short-hand notation indicating both the
cell and the sublattice index. ∆/2 is the on-site energy,
t1 and t2 are real quantities and li = 1,−1 is the sub-
lattice index of the site i. ⟨⟩ means sum on first nearest
neighbours and ⟨⟨⟩⟩ on the second ones. Each term in the
sum over ⟨⟨⟩⟩ enters with a sign lij = 1,−1, determined
accordingly to the direction of the vector connecting the
sites [39, 44]. We adopt the lattice parameter and t1
hopping parameters of graphene, i.e. a = 2.46 Å and
t1 = 3.4eV [53], and the atomic masses are the ones of
carbon, for which we set Ms = M .

The model describes a two-band system with bro-
ken time-reversal symmetry due to the imaginary next-
nearest-neighbors hopping term it2. One band is occu-
pied and one is empty, so that we can easily drop the
summation over electronic states. The topological phase
diagram of the Haldane model in the parameter space
(∆/t1, t2/t1) is represented in the bottom panel of Figure
1, where the trivial and nontrivial phases are identified
by the total Chern number being C = 0 and C = ±1,
respectively, as computed via Eq. 3. The phases are sep-
arated by a metallic state, where the gap closes. The
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coupling between electrons and lattice vibrations is ob-
tained considering the variation of the hopping constants
following an atomic displacement. We assume that only
the t1 term contributes to the electron-phonon coupling,
and that the variation of t1 depends only on longitudi-
nal bond stretchings. The electron-phonon interaction
for zone-center lattice vibrations can then be quantified
by the coupling parameter ξ [54] as [53, 55–57]

δHe-ph = −t1ξ
∑
⟨ij⟩

bbbij · (δuuuj − δuuui) c
†
i cj . (6)

The complete Hamiltonian is H = Hel + δHe-ph, so the
derivative of Hamiltonian with respect to the atomic po-
sitions correspond to the derivative of the term in Eq.
(6). Here bbbij = uuuj −uuui is the vector connecting the sites
i and j, while the coupling constant is set to the value
obtained for graphene, ξ = 1.2 Å−2.
Beside the electronic properties, the nontrivial topol-
ogy also affects the ion dynamics. In particular, in the
nontrivial phases the double degenerate optical phonon
modes at the Γ point split into two circularly polarized
modes with opposite chirality and different energies [6].
For anomalous contributions that are small with respect
to the dynamical matrix, the phonon splitting is given by
∆ω = 2|Fsx,sy| ([6]). The full Fsα,rβ matrix further con-
tains the information of which chiral phonon is highest in
energy. For this reason, we consider for each atom s the
quantity Fsx,sy = lsF . As shown in the upper panel of
Fig. 1, F is almost null in the trivial topological phase,
while it displays a finite and fairly constant value in dif-
ferent nontrivial ones, with an almost quantized jump in
correspondence with the metallic phase. The sign of F
changes when passing from the C = 1 to the C = −1
phases, i.e., when changing the t2 sign. Finally, we study
Eq. 4 for the Haldane model. Due to symmetry and
charge neutrality, the Born effective charge tensor can
be written as Z∗

s,αβ = Z∗lsδαβ . As shown in the cen-
tral panel of Fig. 1, Z∗ appears as almost quantized,
with a nearly vanishing values in the nontrivial phase
and a finite value in the trivial one. The value of Z∗

changes when reversing the ∆ sign. Interestingly, the
nearly quantization of Z∗ extends to larger portions of
the topological space as compared to F .

The above results are rationalized thanks to a low-
energy expansion of the tight-binding model. This ap-
proximation holds well for small gap values such that the
Berry curvatures are mostly localized around KKK and K’K’K’
points in reciprocal space [50, 51]. Therefore, the ob-
servables are expected to closely follow the predictions
of the low-energy model, which we obtain by expanding
the Hamiltonian for small quasi-momenta ppp around the
non-equivalent KKK and K’K’K’. We refer to the sets of points
near KKK and K’K’K’ as belonging to different ‘valleys’, labeling
them as Dη with η = ±1. In this description, the cou-
pling between electrons and phonons can be expressed as

FIG. 1. (Upper) F and (middle) Z∗ display nearly quantized
values in topologically different zones of the phase diagram of
the Haldane model in the plane (∆/t1, t2/t1) for t1 = 3.4 eV.
(Lower) Analytical topological phase diagram of the Haldane
model. The horizontal orange line corresponds to the region
of parameter space further expanded in Fig. 2.

a function of the ‘gauge’ field

AAA =
∑
s

AAAs, AAAs = lsẑzz × δuuus. (7)

AAA enters the low-energy Hamiltonian of each valley η
mimicking a minimal coupling [50, 58], as
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Hη = ℏvF

(
ηpx + ξAx, py + ηξAy,

∆/2− η3
√
3t2

ℏvF

)
· σσσP,

(8)

where ℏvF =
√
3t1a
2 and σσσP = (σP

x , σ
P
y , σ

P
z ) is the vec-

tor of Pauli matrices in the pseudospin space, the two
pseudo-spinor components corresponding to the ampli-
tude of the periodic part of the Bloch state |υnkkk⟩ on the
two atom sites in the unit cell [45].

For the low-energy model, the integration over all the
Brillouin zone is replaced by the sum of the two valleys
integrals as

∫
BZ

d2kkk →
∑

η=±1

∫
Dη

d2ppp. Then, the Chern

number of Eq. 3 is expressed as the sum of two valley
Chern numbers Cη = 1

2π

∫
Dη

d2pppΩpxpy
(ppp) as

C =
∑
η=±1

(η)0Cη. (9)

In the trivial phase the valley fraction Chern numbers are
Cη = sgn(∆)η2 and cancel out in the sum, while in the
topological phase they are both equal to Cη = sgn(t2)

1
2 .

To evaluate also Z∗ and F , we notice that in the low-
energy model of Eq. 8 the derivative with respect to the
phonon perturbation transforms in the derivative with
respect to the crystalline quasi-momentum as

∂Hppp

∂usx
= ls

∂Hppp

∂Asy
= lsηξ

∂Hppp

∂py
, (10)

∂Hppp

∂usy
= −ls

∂Hppp

∂Asx
= −lsηξ

∂Hppp

∂px
. (11)

As a consequence, Z∗ and F are directly related to the
electronic Berry curvatures, and thus to the Chern num-
ber, as

Z∗ =
A

2π
ξ
∑
η=±1

(η)1Cη = sgn(∆)
A

2π
ξ(1− |C|), (12)

F = − ℏ2

M

A

2π
(ξ)

2
∑
η=±1

(η)2Cη = − ℏ2

M

A

2π
(ξ)

2
C. (13)

Moreover, the Born Effective charges provide a direct
measure of the valley Chern number CV =

∑
η η Cη [50].

Hence, the nearly quantized properties for the Haldane
model are almost all due to the topological properties of
its low-energy model, and as such they are quite robust
to modification of the electronic band structure, as shown
also in the SI [51]. Notice that C, Z∗ and F are written
in the low-energy model as sums over growing powers of
η. Substituting both phonon derivatives with electronic
ones for F results in an higher degree of approximation
in the description of the tight-binding model and, thus,
in a less pronounced quasi quantization with respect to
the Z∗. The result for F is in agreement with Ref. [6].
Kane-Mele model— In the Haldane model describing

spinless electrons the time-reversal symmetry operation
on the Hamiltonian corresponds to the change of the sign
of t2. The inversion symmetry, on the other hand, is
equivalent to a sign change of the onsite energy ∆. As
plotted in Figure 1, both C and F change sign under the
time-reversal symmetry operation, while Z∗ is invariant.
The behaviour with respect to the inversion symmetry is
opposite, since C and F are invariant while Z∗ changes
sign. By combining two Haldane models with opposite
sign of t2, i.e., two time-reversed copies of the system, we
expect Z∗ to sum up and C and F to vanish. This sys-
tem actually coincide with the Kane-Mele model without
Rashba coupling [12, 59], with a proper identification of
the spin-orbit coupling term with t2. Here, the two time-
reversed copies of the Haldane model correspond to the
two different ↑ and ↓ spin components of the system, each
copy displaying a Chern number such that C↑ = −C↓ as
a consequence of time-reversal symmetry. In spite of dis-
playing a null total Chern number, the Kane-Mele model
still presents a topologically nontrivial phase according to
the Z2 classification [40]. It follows that the low-energy
expression of the Born effective charge in the Kane-Mele
model without Rashba coupling reads:

Z∗ = sgn(∆)
A

2π
ξ(2− |C↑| − |C↓|). (14)

We then expect Z∗ to retain its nearly quantized value
discerning between the trivial and the nontrivial Z2 topo-
logical phases, in analogy of what happens for the Z topo-
logical Haldane model.
A full description of the Kane-Mele model requires the
inclusion of the Rashba term, mixing spin components.
Introducing the coupling constant λR, the Rashba cou-
pling reads:

HR =iλR

∑
⟨ij⟩,ρρ′

li c
†
iρ

[(
b̂bbij × ẑzz

)
· σσσS

]
ρρ′

cjρ′ , (15)

where ρ, ρ′ are spin indexes, b̂bbij is the nearest neighbour
distance normalized to the unity, σσσS = (σS

x, σ
S
y , σ

S
z ) is the

vector containing Pauli matrices in spin space. Being
time-reversal symmetric, the Rashba term preserves the
topological properties as long as the system is adiabati-
cally connected to the QSH phase at λR = 0, i.e., until
the band-gap closes [40]. Acting on λR, e.g. by applying
a perpendicular electric field, the system can be driven
from the topological to the trivial phase and viceversa
by crossing the metallic line, as shown in the lower panel
of Fig. 2 for t2 = 0.02 eV. The corresponding evolution
of Z∗ is displayed in the upper panel, confirming the ex-
pected nearly quantized behavior of the effective charge.
We numerically checked the relationship between Born
effective charge, valley Chern number and the topologi-
cal index Z2, as shown in SI [51].
Discussion and conclusions—We showed that in the Hal-
dane and Kane-Mele models the Born effective charges
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FIG. 2. (Upper) Z∗ with nearly quantized values in the topo-
logically different regions of the phase diagram of the Kane-
Mele model in the (∆/t2, λR/t2) plane for t2 = 0.02 eV. We
set t2 as the energy unit to ease the comparison with Ref.
[40]. (Lower) Numerical topological phase diagram of the
Kane-Mele model. The blue region indicates where QSH is
realized. The white region numerically identifies band gaps
close to metallization. The parameters indicated by the hor-
izontal orange line are the same of the orange line of Fig. 1,
where we adopted t1 as the energy unit; the Rashba coupling
is zero along this line, and the Kane-Mele model reduces to
two time-reversal related copies of the Haldane model.

display an almost quantized jump between different topo-
logical phases. Its origin can be ascribed to the electron-
phonon coupling entering as a gauge field in the low-
energy Hamiltonian that captures the topological phase
transition, such that both molecular and mixed Berry
curvatures, accounting for chiral phonon splitting and
Born effective charges respectively, can be expressed in
terms of electronic Berry curvature accounting for the
topological character of the band structure. In the con-
sidered models Born effective charges can be explicitly
related to the valley Chern number, a well defined and
meaningful quantity when approaching the transition
point as the electronic Berry curvature gets strongly lo-
calized around valley points [51]. Nevertheless, a topo-
logical transition between two insulating states can be
generally described by an effective Hamiltonian of mas-

sive Dirac fermions analogous to Eq. (8) [28, 60, 61],
displaying a discontinuous jumps of electronic Berry cur-
vature across the transition point[44, 58]. Under general
assumptions it can be shown that the e-ph coupling to
optical phonons can always display a gauge-field compo-
nent when the effective Hamiltonian matrix is defined in
a pseudospin space accounting for sublattice degrees of
freedom [51, 62], suggesting that discontinuous jump of
Born effective charges could manifest across other topo-
logical transitions beyond the models considered here as,
e.g., in the (Pb,Sn)Te material class of topologically crys-
talline insulators [63, 64]. We remark that, at odds with
‘deformation potential’ contributions to electron-phonon
interaction, gauge-field terms are unaffected by electronic
screening [57], hinting to further robustness of the pro-
posed effect. Finally, we emphasize the analogy with
the predicted discontinuous changes of piezoelectric re-
sponse in 2D time-reversal invariant systems, recently
proposed as experimental markers of topological tran-
sitions [28, 29], also relying on well-defined valley Chern
numbers and on the electron-strain coupling acting as a
gauge field [50, 65, 66].
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