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ON THE IWASAWA THEORY OF CAYLEY GRAPHS

SOHAN GHOSH AND ANWESH RAY

Abstract. This paper explores Iwasawa theory from a graph theoretic perspec-
tive, focusing on the algebraic and combinatorial properties of Cayley graphs.
Using representation theory, we analyze Iwasawa-theoretic invariants within Zℓ-
towers of Cayley graphs, revealing connections between graph theory, number
theory, and group theory. Key results include the factorization of associated
Iwasawa polynomials and the decomposition of µ- and λ-invariants. Addition-
ally, we apply these insights to complete graphs, establishing conditions under
which these invariants vanish.

1. Introduction

1.1. Background and motivation. Fix a prime number ℓ throughout. Let’s
consider a number field K, and let Zℓ denote the ring of ℓ-adic integers. An
infinite abelian extension K∞/K is said to be a Zℓ-extension if Gal(K∞/K) is
isomorphic to Zℓ as a topological group. For each integer n ≥ 0, set Kn/K to
be the extension contained in K∞ of degree ℓn. Classical Iwasawa theory studies
Zℓ-extensions of number fields and the asymptotic behavior of certain arithmetic
invariants for the fields Kn. In the late 1950s, Iwasawa [Iwa59] investigated the
growth of class groups over these Zℓ-extensions of K, which laid the foundation
for Iwasawa theory. Denote by Cl(Kn) the class group of Kn and hKn := #Cl(Kn)
its class number.

Theorem (Iwasawa). Let K be a number field, K∞ be a Zℓ-extension of K and
for n ∈ Z≥0 denote by ℓen the exact power of ℓ that divides hKn. Then there exist
invariants λ, µ ∈ Z≥0 and ν ∈ Z, depending on ℓ and independent of n, such that
en = λn + µℓn + ν for n≫ 0.

A natural example of a Zℓ-extension ofK is the cyclotomic Zℓ-extension, denoted
by Kcyc. For K∞ = Kcyc, we simply denote the Iwasawa invariants by µℓ(K),
λℓ(K), and νℓ(K). Iwasawa famously conjectured that µℓ(K) = 0 for all number
fields K. This conjecture has been proved for abelian number fields by Ferrero and
Washington [FW79]. In case of general number fields, this is still an open problem.
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The Iwasawa theory of graphs was introduced by Vallières [Val21] and Gonet
[Gon21, Gon22]. They explored Zℓ-towers of multigraphs and demonstrated par-
allels to Iwasawa’s theorem regarding the asymptotic variation of graph complex-
ities along these towers, cf. Theorem 3.7 for further details. The Zℓ-towers
of multigraphs exhibit associated µ, λ, and ν-invariants, as well as a graph-
theoretic interpretation of the Iwasawa polynomial. Interest in Iwasawa theory
of graphs has recently gained momentum, cf. for instance, the following works
[MV23, MV24, DV23, KM22, RV22, DLRV24, LM24].

In this article, we take a closer look at Cayley graphs associated to finite abelian
groups. There exists a captivating relationship between the algebraic properties
of the Artin-Ihara L-functions associated with these graphs and the representa-
tion theory of their underlying groups. We analyze Iwasawa-theoretic invariants
associated to Cayley graphs and show that there is an analogous relationship with
representation theory. This leads to intriguing connections between graph theory,
number theory, and group theory.

1.2. Main results. Let us describe our main results in greater detail. Let G be
a finite abelian group G and S ⊆ G be a subset such that

• S generates G,
• S = S−1,
• 1 /∈ S.

Set Ĝ to denote the group of characters Hom
(
G,C×

)
. The Cayley graph Cay(G, S)

of the group G with respect to the generating set S is a graph where:

• The vertex set V consists of elements of G, i.e., V = {vg | g ∈ G}.
• There is an edge from vertex g1 to vertex g2 (denoted as e(g1, g2)) if and

only if g1g
−1
2 ∈ S.

The eigenvalues of the adjacency matrix of a Cayley graph are closely related to
the irreducible representations of the group G. We mention here that these Cayley
graphs are related to a sightly different construction, namely Cayley–Serre graphs.
These graphs are obtained as voltage assignments on bouquet graphs. For further
details, we refer to [Val21, p.445]. When G is abelian, we show that Iwasawa
polynomials associated to a Cayley graph can be factored in a natural way, where

each character ψ ∈ Ĝ gives rise to a factor. Let β : S → Zℓ be a function such
that the following conditions are satisfied

(1) the image of β generates Zℓ,
(2) β(s−1) = −β(s) and β(1G) = 0,
(3) the image of β lies in Z,
(4) there is a tuple (h1, . . . , hm) ∈ Sm such that h1h2 . . . hm ∈ S and

(1.1) β(h1h2 . . . hm) 6≡
m∑

i=1

β(hi) (mod ℓ).
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Then associated to such a function is a Zℓ-tower of connected graphs

(1.2) X ← X1 ← X2 ← . . .← Xk ← . . .

over X = Cay(G, S), this is made precise in subsection 3.1. Let fX(T ) be the
associated Iwasawa polynomial (see Definition 3.5).

Theorem A (Theorem 4.5). There are explicit polynomials Pψ(T ) (see (4.2)) such
that up to multiplication by a unit in ZℓJT K, the Iwasawa polynomial fX(T ) is equal
to the product

∏
ψ∈Ĝ Pψ(T ).

Moreover, the µ- and λ-invariants associated to the Zℓ-tower (1.2) decompose
into a sum of µ- and λ-invariants associated to Pψ(T ). In greater detail, Pψ(T )
is a polynomial with coefficients in a valuation ring O with uniformizer ̟. Write
Pψ(T ) = ̟µψQψ(T )uψ(T ), where Qψ(T ) is a distinguished polynomial and uψ(T )
is a unit in ZℓJT K. Set λψ to denote the degree of Qψ(T ). Set e ∈ Z≥1 to denote
the ramification index, defined by the relationship (ℓ) = (̟e).

Theorem B (Theorem 4.7). Let κℓ(Xn) denote the ℓ-primary part of the com-
plexity of Xn. Then, for large enough values of n, we have that κℓ(Xn) = ℓen,
where

en = µℓn + nλ + ν,

where

µ =
1

e

∑

ψ

µψ and λ =
∑

ψ

λψ − 1,

for the ramification constant e ∈ Z≥0 defined above.

Next, we show that the Iwasawa invariants associated to the factor polynomials
Pψ(T ) can be suitably calculated. Under some very explicit combinatorial criteria,
it is shown that µψ and λψ vanish. More specifically, we refer to Lemma 4.8,
Lemma 4.9 and Proposition 4.10.

Finally, our findings on Cayley graphs are utilized to examine the Iwasawa theory
of complete graphs. Consider a positive integer n and let Kn represent the complete
graph with no self-loops on n vertices. Denote by Cn the cyclic group of order n,
and define C ′

n = Cn \ {1}. The complete graph Kn is then the Cayley graph
associated to the pair (Cn, C

′
n). We factor the Iwasawa polynomial, and obtain the

following result on the vanishing of the µ-invariant.

Theorem C (Theorem 4.12). For β : C ′
n → Zℓ, and n ∈ Z≥1 let µn (resp. λn) be

the µ-invariant (resp. λ-invariant) associated to the tower over Kn. Suppose that
ℓ ∤ n and

∑
s∈C′

n
β̄(s)2 6= 0. Then, µn = 0 and λn = 1.

In our final section, we illustrate our results through two concrete examples. In
fact, we are able to draw the graphs in towers, which makes them come to life,
cf. (5.1) and (5.2). We note that an undirected Cayley graph X = Cay(G, S) can
be interpreted as a Galois cover of a bouquet. The formula fX(T ) =

∏
ψ∈Ĝ Pψ(T )

in Theorem 4.5 has parallels with [RV22, (4.5) on p. 20]. The latter formula,
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due to the second author and Daniel Vallieres, emerges in the context of prov-
ing an analogue of Kida’s formula for cyclic groups within the graph-theoretic
framework. This coincidence indicates that broader generalizations of our work
are worth exploring. Such generalizations may encompass more general types of
graphs, higher-dimensional analogues, or new classes of groups G.

1.3. Organization. The article is structured into five sections. Section 2 cov-
ers foundational concepts and establishes relevant notation, including the formal
definition of a multigraph, discussion on the Galois theory of graph covers, and
introduction of Artin-Ihara L-functions associated with graphs. Section 3 focuses
on establishing the Iwasawa theory of graphs, which involves a specific combi-
natorial framework for parameterizing connected Zℓ-towers over a graph. This
section details the Iwasawa polynomial and its connection to the asymptotic com-
plexity growth of graphs within Zℓ-towers, encapsulated by the Iwasawa µ- and
λ-invariants. In section 4, the main results of the article are proven. These results
are illustrated through an example presented in section 5.

Data availability. The manuscript has no associated data.

Conflict of interest. There is no conflict of interest that the authors wish to
report.

Acknowledgement. We would like to thank the referees for the careful review
of the manuscript and the comments and corrections.

2. Preliminaries

In this section, we recall some preliminary notions and set up relevant notation.
The notation we use is consistent with [Val21, MV23, MV24, RV22, DLRV24]. In
order to be consistent with previous work, we discuss generalities for multigraphs.
The Cayley graphs we consider in this article are undirected graphs, with no self
loops.

2.1. Galois theory of covers. We fix a prime number ℓ and set Zℓ to denote the
ℓ-adic integers. Let X be a finite multigraph; recall that this means that X can
be described as a quadruple (VX , E

+
X , i, ι), where

• VX = {v1, . . . , vgX} is a finite set of vertices,
• E+

X is a collection of edges between vertices.
• The set of edges is equipped with an incidence function

i : E+
X → VX × VX .

Here, the interpretation is that an edge e starts at vi and ends at vj if
i(e) = (vi, vj),
• ι : E+

X → E+
X is the inversion map.

In addition, it is required that the following compatibility relations hold

(1) ι2 is the identity on E+
X ,
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(2) ι(e) 6= e for all e ∈ E+
X ,

(3) i(ι(e)) = τ(i(e)),

where τ : VX×VX → VX×VX is the map defined by τ(e1, e2) := (e2, e1). We write
e ∼ e′ if e′ = ι(e), and denote by EX the set of equivalence classes for this relation.
We think of E+

X as edges with orientation (or directed edges) and EX as undirected
edges. The map π : E+

X → EX is the map that assigns to e its equivalence class.
When using the word "edge" we shall mean an element in E+

X . We shall henceforth
simply use the term "graph" to refer to a multigraph. An edge from vi to vi is
referred to as a loop. We also define the incidence matrix AX = (ai,j) of the graph
X, where ai,j is the number of edges from vi to vj . We define source and target
maps o, t : E+

X → VX to be the compositions of i with the projections to the first
and second factor of VX × VX respectively. Observe that the source map o assigns
to each directed edge its starting vertex, while the target map t assigns to each
edge its ending vertex. In particular, e is a loop precisely if o(e) = t(e). Note that
(VX , EX) is an undirected graph. For v ∈ VX , let E+

X,v := {e ∈ E+
X | o(e) = v},

i.e., the set of directed edges emanating from v. The degree of v is defined as the
number of edges emanating from v, i.e., deg(v) := #E+

X,v. The betti numbers of
X are defined as follows

bi(X) := rankZHi(X,Z).

The Euler characteristic is defined as follows χ(X) := b0(X) − b1(X). When X
is connected, b0(X) = 1 and b1(X) = #EX − #VX + 1. We have that χ(X) =
#VX −#EX .

Assumption 2.1. It will be assumed throughout that all our multigraphs are
connected with no vertices having degree equal to 1. Moreover, we assume that
χ(X) 6= 0, i.e., the graph is not a cycle graph.

The divisor group Div(X) consists of formal sums of the form D =
∑

v∈VX
nvv,

where nv ∈ Z for all v. It is the free abelian group on the vertices VX of X. The
degree of D is the sum deg(D) :=

∑
v nv ∈ Z, which defines a homomorphism

deg : Div(X)→ Z,

the kernel of which is denoted Div0(X). Let M(X) be the abelian group of Z-
valued functions on VX . We note that M(X) can be freely generated by the
characteristic functions χv defined by

χv(v
′) :=

{
1 if v′ = v;

0 otherwise.

Set div(χv) :=
∑

w∈VX
ρw(v)w, where

ρw(v) :=

{
valX(v)− 2 · number of loops at v if w = v;

− number of edges from w to v if w 6= v.
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With this notation in hand, we extend div(χv) to a map div :M(X) → Div(X)
as follows. For f ∈M(X), one has that

div(f) = −
∑

v

mv(f) · v,

where
mv(f) =

∑

e∈E+

X,v

(
f(t(e))− f(o(e))

)
.

Note that div(f) has degree 0. We let Pr(X) be the image of div, and set
Pic0(X) := Div0(X)/Pr(X). Set κX to be the cardinality of Pic0(X). This quan-
tity is analogous to the notion of the class number of a number ring and referred
to in the literature as the complexity of X. For a more comprehensive account, see
[CP18].

We come to the notion of a Galois cover of graphs. First, we introduce the
notion of a morphism f : Y → X between graphs. This consists of a pair (fV , fE),
where fV : VY → VX and fE : E+

Y → E+
X are functions satisfying the following

compatibility relations:

(a) fV (o(e)) = o(fE(e)),
(b) fV (t(e)) = t(fE(e)),
(c) ι

(
fE(e)

)
= fE

(
ι(e)
)
.

We use f to denote fV or fE , depending on the context.

Definition 2.2. Let X and Y be two graphs and f : Y → X be a graph morphism.
If f satisfies the following conditions:

(a) f : VY → VX is surjective,
(b) for all w ∈ VY , the restriction f |E+

Y,w
induces a bijection

f |E+

Y,w
: E+

Y,w
≈→ E+

X,f(w),

then f is said to be a cover. The cover f : Y → X is called Galois if the following
two conditions are satisfied.

(1) The graphs X and Y are connected.
(2) The group Autf(Y/X) := {σ ∈ Aut(Y ) : f ◦ σ = f} acts transitively on

the fiber f−1(v) for all v ∈ VX .

We denote a Galois cover f : Y → X also by Y/X and suppress the role of the
covering map. Moreover, we set Gal(Y/X) := Autf (Y/X).

2.2. Artin–Ihara L-functions. Before introducing the Iwasawa theory of graphs,
we discuss the role of Artin-Ihara L-functions. These are essentially graph-theoretic
analogs of Artin L-functions. The standard reference for the content of this sub-
section is [Ter11].

Let X be a graph and a1, . . . , ak ∈ E+
X such that for i < k, one has that

t(ai) = o(ai+1). Then, the sequence a1, . . . , ak gives rise to a walk w = a1a2 . . . ak.
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Here, k is the length of w and is denoted by l(w). The walk w is said to have a
backtrack if ι(ai) = ai+1 for some i < k. It is said to have a tail if ak = ι(a1). A
cycle is a walk such that o(a1) = t(ak). A cycle c is said to be a prime if it has no
backtrack or tail, and there is no cycle u and integer f > 1 for which c 6= uf . In
other words, c is a prime if one can go around it only once. Let Y/X be a Galois

cover with abelian Galois group G := Gal(Y/X). Set Ĝ := Hom(G,C×) to be the

group of characters of G. Given a character ψ ∈ Ĝ, the Artin-Ihara L-function is
defined as follows:

LY/X(u, ψ) :=
∏

c

(
1− ψ

(
Y/X

c

)
ul(c)

)−1

.

In the above product, c runs over all primes of X and
(
Y/X
c

)
∈ G refers to the

Frobenius automorphism at c (cf. [Ter11, Definition 16.1]). When Y → X is the

identity X
Id−→ X, we recover the Ihara zeta function ζX(u) := LX/X(u, 1).

Given a connected graph X, let χ(X) denote its Euler characteristic, which is
defined as follows:

χ(X) = |VX | − |EX |.
It follows from the Assumption 2.1 that χ(X) < 0.
Let Y/X represent a covering of graphs with the property that it is abelian,

having an automorphism group denoted as G. Suppose, for each i from 1 to gX ,
wi is a specific vertex chosen from the fiber of vi. Considering σ as an element of
G, we define the matrix A(σ) as a gX × gX matrix, with its entries denoted by
ai,j(σ). This is determined as follows:

ai,j(σ) =

{
Twice the number of loops at the vertex wi, if i = j and σ = 1;

The number of edges connecting wi to wσj , otherwise.

For ψ ∈ Ĝ (the character group of G), we define Aψ as the twisted sum of the
A(σ) matrices

Aψ = Aψ,X :=
∑

σ∈G

ψ(σ) · A(σ).

Let D be the matrix (di,j) with

di,j :=

{
0 if i 6= j;

deg(vi) if i = j.

If Y/X serves as an abelian covering of multigraphs and ψ represents a character
of G = Gal(Y/X), then according to the three-term determinant formula from
[Ter11, Theorem 18.15] applied to the Artin-Ihara L-function, we have:
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(2.1) LY/X(u, ψ)
−1 = (1− u2)−χ(X) · det(I − Aψu+ (D − I)u2).

We let hX(u, ψ) := det
(
I −Aψu+ (D − I)u2

)
and for ease of notation, set hX(u) :=

hX(u, 1). The result below gives us an explicit relationship between the derivative
of hX and the complexity of X.

Theorem 2.3. For a graph X satisfying Assumption 2.1, one has that

h′X(1) = −2χ(X)κX .

Proof. For a proof of the result, we refer to [Nor98] or [HMSV24, Theorem 2.11].
�

For abelian covers, the Artin-Ihara L-functions described satisfy a relation as a
consequence of the Artin formalism, as the following result shows.

Theorem 2.4. Let Y/X be an abelian Galois cover of graphs with G = Gal(Y/X),
then one has

ζY (u) = ζX(u)×
∏

ψ∈Ĝ,ψ 6=1

LY/X(u, ψ),

where 1 ∈ Ĝ denotes the trivial character.

Proof. For a proof of this result, see [Ter11, Corollary 18.11]. �

The Artin formalism described above gives us a formula for the complexity of
Y . This formula is expressed in terms of the complexity of X and a product of
special values of the twisted polynomials hX(u, ψ).

Corollary 2.5. Let X be a graph satisfying Assumption 2.1 and Y/X be an abelian
Galois cover of X with G := Gal(Y/X). Then, the following relationship holds

|G|κY = κX
∏

ψ∈Ĝ,ψ 6=1

hX(1, ψ).

Proof. The result is an immediate consequence of Theorem 2.3 and Theorem 2.4,
see [Val21, p.440] for further details. �

Remark 2.6. Some remarks are in order.

(1) It follows from the above relation in particular that hX(1, ψ) 6= 0 for all

ψ ∈ Ĝ such that ψ 6= 1.
(2) The special value of the Artin-Ihara L-function at u = 1 has been studied

by Hammer, Mattman, Sands and Vallieres, cf. [HMSV24].

3. Iwasawa theory of graphs

The Iwasawa theory of graphs is a branch of mathematics that combines topol-
ogy, combinatorics, and the Galois theory of covers of graphs. In this section, we
summarize the key ideas and set up relevant notion. For a comprehensive account,
please see [Val21, Gon21, MV23, MV24].
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3.1. Zℓ-covers of graphs. Throughout this section, we choose a section

γ : EX → E+
X

of π and set S := γ(EX). This set S is referred to as an orientation of X, the
understanding here is that for any edge, the orientation prescribes a direction to
this edge.

Definition 3.1. Let G be a finite group, a voltage assignment valued in G is a
function α : S → G. We extend α to all of E+

X by setting α(ι(e)) := α(e)−1.

Let (S, α) be a pair consisting of an orientation S and a voltage assignment
α : S → G. Let (S ′, α′) be another pair. Then we define as equivalence (S, α) ∼
(S ′, α′) if the extensions of α and α′ to E+

X coincide. Given a pair (S, α) and another
orientation S ′, then it is easy to see that there is a unique voltage assignment
α′ : S ′ → G such that (S, α) ∼ (S ′, α′). Associated to the datum (G,S, α) is a
graph X(G,S, α), which we describe as follows. The set of vertices of X(G,S, α)
is VX × G. On the other hand, the set of edges is identified with the set E+

X × G,
where (e, σ) ∈ E+

X ×G is the edge that connects (o(e), σ) to (t(e), σ ·α(e)). On the

other hand, the inversion map is given by (e, σ) =
(
ι(e), σ · α(e)

)
. It is clear that

if (S, α) ∼ (S ′, α′), then X(G,S, α) = X(G,S ′, α′).
This operation is functorial and results in Galois covers of X. Consider a voltage

assignment α : S → G and a group homomorphism f : G → G1. Then, there is a
natural morphism of multigraphs denoted f∗ : X(G,S, α)→ X(G1,S, f ◦ α). This
morphism is defined on vertices and edges as follows

f∗(v, σ) = (v, f(σ)) and f∗(e, σ) = (e, f(σ)).

If both X(G,S, α) and X(G1,S, f ◦α) are connected, and f is surjective, then f∗ is
a cover according to Definition 2.2. Moreover, it is a Galois cover, with the group of
covering transformations being isomorphic to ker(f). In particular, if f : G → {1}
represents the group morphism into the trivial group and both X and X(G,S, α)
are connected, then a Galois cover, denoted f∗ : X(G,S, α)→ X, is obtained, with
the group of covering transformations isomorphic to G.

We now recall the notion of a Zℓ-tower of multigraphs.

Definition 3.2. Let ℓ be a rational prime, and let X be a connected graph. A
Zℓ-tower over X consists of a series of covers of connected graphs

X = X0 ← X1 ← . . .← Xn ← . . .

such that for every positive integer n, the cover Xn/X obtained by composing the
covers is Galois with Galois group Gal(Xn/X) isomorphic to Z/ℓnZ.

We call a function α : S → Zℓ a Zℓ-valued voltage assignment. Let α/n denote
the mod-ℓn reduction of α. This yields a Zℓ-tower over X:

X ← X(Z/ℓZ,S, α/1)← X(Z/ℓ2Z,S, α/2)← . . .← X(Z/ℓkZ,S, α/k)← . . . .
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It turns out that all Zℓ-towers arise from voltage assignments, cf. [RV22, section
2.3] for details. Setting t := #S, we choose an ordering S = {s1, . . . , st} and
represent α as a vector α = (α1, α2, . . . , αt) ∈ Ztℓ, where αi denotes α(si). To
relate growth patterns in Picard groups to Iwasawa invariants, it is necessary to
impose certain conditions on the multigraphs X(Z/ℓnZ,S, α/n).
Assumption 3.3. We assume that the derived multigraphs X(Z/ℓnZ, S, α/n) are
connected for all n ≥ 0.

We describe an explicit condition thatX(G,S, α) is connected. If w = a1a2 . . . an
is a walk in X, then we define

α(w) = α(e1) · . . . · α(en) ∈ G.
Recall that α : S → G satisfies the condition that α(ι(e)) = α(e)−1. This implies
that if c1 and c2 are homotopically equivalent, then α(c1) = α(c2). Choose a vertex
v0 ∈ VX , and let π1(X, v0) be the fundamental group of X with base-point v0. We
deduce that α induces a group homomorphism

(3.1) ρα : π1(X, v0)→ G,
defined by ρα([γ]) = α(γ).

Theorem 3.4. Assume that X is a connected graph. Then, X(G,S, α) is connected
if and only if ρα is surjective.

Proof. For a proof of this result, cf. [RV22, Theorem 2.11]. �

3.2. The Iwasawa polynomial. Let X be a connected graph. The matrix DX =
(di,j) is the gX × gX matrix for which

di,j :=

{
deg(vi) if i = j;

0 if i 6= j.

The difference matrix QX := DX − AX is referred to as the Laplacian matrix.
The rings Zℓ[x] and ZℓJT K denote the polynomial ring and formal power series

ring with coefficients in Zℓ, respectively. The ring Zℓ[x;Zℓ] consists of expressions
in the form f(x) =

∑
a cax

a, where a ∈ Zℓ and the coefficients ca belong to Zℓ. Let
α : S → Zℓ be a function and extend α to E+

X such that α(ι(e)) = −α(e). The
matrix M(x) associated to the pair (X,α) has entries in Zℓ[x;Zℓ] and is defined
by

(3.2) M(x) =MX,α(x) := DX −




∑

e∈E+

X

i(e)=(vi,vj)

xα(e)




(i,j)

.

We also introduce the notation
(
b
n

)
for b(b−1)...(b−n+1)

n!
, and define (1 + T )b as the

formal power series
∑∞

n=0

(
b
n

)
T n.
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Definition 3.5. With respect to notation above, the Iwasawa polynomial associ-
ated to the Zℓ-tower defined by α is defined as follows

fX,α(T ) := detM(1 + T ) ∈ ZℓJT K.

As defined above, the fX,α(T ) is not in general a polynomial, however, becomes
one upon multiplication by a suitably chosen unit in ZℓJT K. This unit can be taken
to be a suitably large power of (1 + T ).

Let ζℓn be a primitive ℓn-th root of unity. For the tower
(3.3)

X ← X(Z/ℓZ,S, α/1)← X(Z/ℓ2Z,S, α/2)← . . .← X(Z/ℓnZ,S, α/n)← . . .

related to α, for any positive integer n, it follows from [MV24, Corollary 5.6] that

(3.4) fX,α(1− ζℓn) = hX(1, ψn),

where ψn denotes the character of Z/ℓnZ, defined by ψn(1̄) = ζℓn .

Lemma 3.6. The Iwasawa polynomial fX,α(T ) is divisible by T .

Proof. We find that fX,α(0) = det
(
M(1 + 0)

)
= det (QX). It is easy to see that

QX is a singular matrix, indeed, u := (1, 1, . . . , 1)t is in its null-space. Therefore,
fX,α(0) = 0, in other words, T divides fX,α(T ). �

Note that fX,α(T ) is a Laurent series in (1 + T ). In light of the above result, we
write fX,α(T ) = (1 + T )−mTgX,α(T ), where m ∈ Z≥0 is the smallest number such
that gX,α(T ) above is a polynomial. Of significance are the Iwasawa invariants that
are associated to the Iwasawa polynomial. We recall that a polynomial g(T ) ∈
Zℓ[T ] is a distinguished polynomial if it is a monic polynomial and all the non-
leading coefficients of g(T ) are divisible by ℓ. It follows from the ℓ-adic Weierstrass
Preparation theorem, that there is a factorization of the Iwasawa polynomial

gX,α(T ) = ℓµP (T )u(T ),

where P (T ) is a distinguished polynomial and u(T ) is a unit in ZℓJT K. Since u(T )
is a unit in ZℓJT K, the constant term u(0) is a unit in Zℓ. In particular, we have
that deg g ≥ 1. The invariants µℓ(X,α) := µ and λℓ(X,α) := degP (T ) are the µ-
and λ-invariant associated to the tower (3.3).

Theorem 3.7 (Gonet [Gon21, Gon22], Vallieres [Val21], McGown–Vallieres [MV23,
MV24]). Let X be a graph and α a Zℓ-valued voltage assignment such that As-
sumptions 2.1 and 3.3 are satisfied. For n ∈ Z≥1, set Xn := X(Z/ℓnZ,S, α/n) and
κℓ(Xn) denote the ℓ-primary part of the complexity of Xn. Let µ := µℓ(X,α) and
λ := λℓ(X,α). Then, there exists n0 > 0 and ν ∈ Z such that for all n ≥ n0,

κℓ(Xn) = ℓ(ℓ
nµ+nλ+ν).

Proof. The result above is [MV24, Theorem 6.1]. �
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Remark 3.8. Vallieres proved a restricted version of the above result for certain
Zℓ-towers consisting of Cayley–Serre multigraphs [Val21, Theorem 5.6]. This result
was subsequently generalized by McGown and Vallieres. The result was proven
independently via a different method by Gonet.

4. Cayley graphs and Iwasawa theory

4.1. A factorization of the Iwasawa polynomial. Let G be a finite abelian
group and S be a subset of G such that

• S generates G,
• S = S−1,
• 1 /∈ S.

We shall set r := #S. Associated with the pair (G, S) is a Cayley graph, denoted
by X := Cay(G, S). This Cayley graph is defined by taking the vertex set V =
{vg | g ∈ G} as the elements of G and connecting two vertices g1 and g2 by an edge
e(g1, g2) if g1g

−1
2 ∈ S. Since S = S−1, it follows that there is an edge e starting at

g1 and ending at g2, precisely if there is an edge ι(e) starting at g2 and ending at
g1. Since 1G /∈ S, it follows that Cay(G, S) has no loops. Throughout, we assume
that the Assumption 2.1 is satisfied.

Definition 4.1. We shall consider voltage assignments that arise from functions
on S. Let ℓ be a prime number and β : S → Zℓ be a function such that:

(1) the image of β generates Zℓ (as a Zℓ-module),
(2) β(s−1) = −β(s) and β(1G) = 0,
(3) the image of β lies in Z,
(4) there exists m > 0 and a tuple (h1, . . . , hm) ∈ Sm such that h1h2 . . . hm ∈ S

and

(4.1) β(h1h2 . . . hm) 6≡
m∑

i=1

β(hi) (mod ℓ).

We define a Zℓ-valued voltage assignment α = αβ : E+
X → Zℓ by α (e) := β(g1g

−1
2 )

where e is the edge joining vg1 to vg2.

Remark 4.2. The condition (1) above is a consequence of (4). It follows from (2)
that α(ι(e)) = β(g2g

−1
1 ) = −β(g1g−1

2 ) = −α(e). Condition (3) simplifies some of
our calculations, see for instance in the definition of mβ in the formula for Pψ(T )
in (4.2). Finally, (4) is used in the Proposition below to establish connectedness of
the graphs in towers.

Proposition 4.3. With respect to notation above, the graphs X(Z/ℓk, S, α/k) are
connected for all k ≥ 0 (i.e. the Assumption 3.3 is satisfied).

Proof. We deduce the result from Theorem 3.4 by showing that the homomorphism
ρkα : π1(X, v0) → Z/ℓkZ is surjective for all k ≥ 1. Fix a tuple (h1, . . . , hm) such
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that

β(h1h2 . . . hm) 6≡
m∑

i=1

β(hi) (mod ℓ).

We take v0 to be the vertex v1G . Consider the sequence of elements

a0 := 1G, a1 := h1, a2 := h1h2, . . . , am := h1h2 . . . hm.

The sequence of elements gives rise to a loop γ starting and ending at v0 = va0
traversing the vertices va1 , . . . , vam . For i = 1, . . . , m, let ei be the edge joining
ai−1 to ai and em+1 be the edge joining am back to a0. We find that

α(ei) =

{
−β(hi) if i < m+ 1;

β(h1 . . . hm) if i = m+ 1.

Therefore, ρkα(γ) = −
∑m

i=1 β(hi) + β(h1 . . . hm) and thus, ρkα(γ) ∈
(
Z/ℓkZ

)×
.

Therefore, the map ρkα is surjective for all k ≥ 1. �

The condition (4.1) can be specialized to a neater condition as follows.

Proposition 4.4. Let β : S → Zℓ be a function satisfying the conditions (1)-(3)
of Definition 4.1. Assume moreover that there exists h ∈ S with order M > 1 such
that the following conditions are satisfied

(1) (M, ℓ) = 1,
(2) β(h) 6≡ 0 mod ℓ.

Then, the congruence condition (4.1) is satisfied.

Proof. Taking h1 = h2 = · · · = hM−1 = h, the congruence condition becomes

β(hM−1) 6≡ (M − 1)β(h) (mod ℓ).

Note that hM−1 = h−1 and hence is contained in S. The condition becomes
−β(h) 6≡ (M − 1)β(h) (mod ℓ), i.e., ℓ ∤ Mβ(h). Since (M, ℓ) = 1, and β(h) 6≡ 0
(mod ℓ), the result follows. �

We choose an ordering and write G = {g1, . . . , gn} and set vi := vgi. For g ∈ G,
set

δS(g) :=

{
1 if g ∈ S;
0 if g /∈ S.

Recall that a voltage assignment α : E+
X → Zℓ gives rise to a Zℓ-tower over X and

that

fX,α(T ) = det
(
MX,α(1 + T )

)
= det

(
di,j − δS(gig−1

j )(1 + T )β(gig
−1

j )
)
i,j

is the associated Iwasawa polynomial.
Let Q̄ (resp. Q̄ℓ) be a choice of algebraic closure of Q (resp Qℓ). Choose an

embedding of Q̄ into Q̄ℓ and thus view any algebraic number as an element in Q̄ℓ.
Let K be the field generated by |G|-th roots of unity in Q̄ℓ. Set O to denote its
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valuation ring and ̟ its uniformizer. Thus any character ψ ∈ Ĝ takes values in
O×. Take k to denote the residue field O/(̟) and set ψ̄ : G → k× to denote the

mod-̟ reduction of ψ. Recall that r := #S. For ψ ∈ Ĝ, set

(4.2) Pψ(T ) = PX,α,ψ(T ) := (1 + T )mβr −
∑

s∈S

(1 + T )mβ−β(s)ψ(s) ∈ O[T ],

where mβ := max
{
β(s) | s ∈ S

}
. Given elements f, g ∈ OJT K, write f ∼ g to

mean that f = ug for some unit u of OJT K.

Theorem 4.5. Let G be a finite abelian group and S a subset of G such that

• S generates G,
• S = S−1,
• 1 /∈ S.

Let X = Cay(G, S) be the associated Cayley graph. Let β : S → Zℓ be a function
satisfying the conditions (1)–(4) of Definition 4.1 and

α = αβ : E+
X → Zℓ

be the associated Zℓ-valued voltage assignment. Then, we have that

fX,α(T ) ∼
∏

ψ∈Ĝ

Pψ(T ).

Proof. For ψ ∈ Ĝ, set vψ = (ψ(g1), . . . , ψ(gn)) observe that
(
MX,α(x)vψ

)
i
= rψ(gi)−

∑

j;gig
−1

j ∈S

xβ(gig
−1

j )ψ(gj) = rψ(gi)−
∑

s∈S

xβ(s)ψ(gis
−1).

Therefore,

(4.3) MX,α(x)vψ =


r −

∑

s∈S

xβ(s)ψ(s−1)


 vψ.

Choose an enumeration of Ĝ = {ψ1, . . . , ψj , . . . , ψn}, and let F :=
(
ψj(gi)

)
i,j

. It fol-

lows from the orthogonality relations that F is invertible with F
−1 =

(
1
n
ψ̄i(gj)

)
i,j

.

The relation (4.3) implies that vψ1
, . . . , vψn is a basis of eigenvectors and F is the

change of basis matrix. Thus, (4.3) can be rephrased as follows

MX,α(x) = FBX,α(x)F
−1,

where
BX,α(x) =

(
bi,j(x)

)
,

where

bi,j(x) =




0 if i 6= j;(
r −

∑
s∈S x

β(s)ψi(s
−1)
)

if i = j.
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Therefore,

fX,α(T ) = det
(
MX,α(1 + T )

)

=det
(
DX,α(1 + T )

)

=
∏

ψ∈Ĝ


r −

∑

s∈S

(1 + T )−β(s)ψ(s)


 ,

=(1 + T )−mβn
∏

ψ∈Ĝ

Pψ(T );

since (1 + T ) is a unit in ZℓJT K, the result follows. �

Remark 4.6. Let β, β ′ : S → Zℓ be functions satisfying the conditions of Definition
4.1. Suppose that there is a constant c ∈ Z such that ℓ ∤ c and β(s) = cβ ′(s) for
all s ∈ S. Let α := αβ and α′ := αβ′ be the associated Zℓ-valued functions. Then,
it is easy to see that

fX,α′(T ) = fX,α
(
(1 + T )c − 1

)
.

Note that T ∼ (1 + T )c − 1 and thus it follows from an application of the ℓ-adic
Weierstrass preparation theorem that

µℓ(X,α) = µℓ(X,α
′) and λℓ(X,α) = λℓ(X,α

′).

Thus, as far as the computation of Iwasawa invariants is concerned, we may as
well assume that there are no common divisors of the values {β(s) | s ∈ S} (other
than ±1).

4.2. The Iwasawa invariants µψ and λψ and their properties. Write Pψ(T ) =
̟µψQψ(T )uψ(T ), where Qψ(T ) is a distinguished polynomial and uψ(T ) ∈ OJT K×.
Set λψ to denote the λ-invariant of Pψ(T ), defined as follows λψ := deg

(
Qψ(T )

)
.

Let e denote the ramification index, defined by (ℓ) = (̟e) in O. Note that
P1(0) = r −

∑
s∈S 1(s) = r − r = 0, and thus, T divides P1(T ). In particular,

λ1 ≥ 1.

Theorem 4.7. With respect to notation above,

µℓ(X,α) =
1

e



∑

ψ∈Ĝ

µψ


 ;

λℓ(X,α) =



∑

ψ∈Ĝ

λψ


− 1.

In particular, if µℓ(X,α) = 0 if and only if µψ = 0 for all ψ ∈ Ĝ.
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Proof. By Theorem 4.5,

TgX,α(T ) = fX,α(T ) ∼
∏

ψ∈Ĝ

Pψ(T ),

and therefore
TgX,α(T ) ∼ ̟

∑
ψ∈Ĝ

µψ
∏

ψ∈Ĝ

Qψ(T ).

Therefore,
∑

ψ

µψ = eµℓ(X,α),

∑

ψ

λψ = 1 + λℓ(X,α),

from which the result follows. �

For each j ∈ [0, 2mβ], let

Sj := β−1{(mβ − j)} = {s ∈ S | β(s) = mβ − j}.
From (4.2), we deduce that

Pψ(T ) =

2mβ∑

j=0

aj,ψ(1 + T )j,

where

(4.4) aj,ψ :=

{
−∑s∈Sj

ψ(s) if j 6= mβ;

r −
∑

s∈Sj
ψ(s) if j = mβ.

Also note that Pψ(0) = r −∑s∈S ψ(s). Recall that ψ̄ is the mod-̟ reduction of
ψ. Set r̄ to denote the mod-ℓ reduction of r.

Lemma 4.8. Let ψ be a nontrivial character of G, then the following are equivalent

(1) µψ = 0 and λψ = 0,
(2) Pψ(T ) is a unit in OJT K,
(3)

∑
s∈S ψ̄(s) 6= r̄.

Proof. The equivalence of the conditions (1) and (2) is an easy consequence of the
ℓ-adic Weierstrass preparation theorem. The power series Pψ(T ) is a unit if and
only if its constant term Pψ(0) is a unit in O. Since Pψ(0) = r −

∑
s∈S ψ(s), it

follows that (2) and (3) are equivalent. �

Lemma 4.9. With respect to notation above, λ1 ≥ 2. Moreover, the following
conditions are equivalent

(1) µ1 = 0 and λ1 = 2,
(2) P ′′

1 (T ) is a unit in OJT K,
(3)

∑
s∈S β̄(s)

2 6= 0.
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Proof. Note that P1(0) = 0 and hence P1(T ) is divisible by T . Recall that from
(4.2), we have that

P1(T ) = (1 + T )mβr −
∑

s∈S

(1 + T )mβ−β(s)

and thus,

P ′
1(0) = mβr −

∑

s∈S

(mβ − β(s)) =
∑

s∈S

β(s).

Since β(s−1) = −β(s) and S = S−1, it follows that P ′
1(0) = 0. Hence, T 2 divides

P1(T ) and λ1 ≥ 2.
We find that

P ′′
1 (0) =mβ(mβ − 1)r −

∑

s∈S

(mβ − β(s))(mβ − β(s)− 1)

=mβ(mβ − 1)r −
∑

s∈S

(
mβ(mβ − 1)− 2β(s)mβ + β(s)2 + β(s)

)

=(1− 2mβ)
∑

s∈S

β(s) +
∑

s∈S

β(s)2 =
∑

s∈S

β(s)2.

It is an immediate consequence of the ℓ-adic Weierstrass preparation theorem that
(1) and (2) are equivalent. We find that P ′′

1 (T ) is a unit in OJT K if and only if
P ′′
1 (0) is not divisible by ℓ. On the other hand, note that P ′′

1 (0) =
∑

s∈S β(s)
2 and

therefore, (2) is equivalent to (3). �

Proposition 4.10. Let β : S → Zℓ be a function satisfying the conditions of
Definition 4.1. Moreover, assume that there exists j 6= 0 such that Sj is a singleton.
Then, the following assertions hold

(1) µψ = 0 for all ψ ∈ Ĝ,
(2) µ(X,α) = 0.

Proof. It follows from Theorem 4.7 that the assertions (1) and (2) are equivalent.

Thus, it suffices to show that µψ = 0 for all ψ ∈ Ĝ. From (4.4), we find that

aj,ψ = ψ̄(s),

where Sj = {s}. Since ψ̄(s) is a root of unity, it follows therefore that aj,ψ 6= 0.
This implies that the mod-̟ reduction of Pψ(T ) is nontrivial, which in turn implies
that µψ = 0. �

4.3. Complete graphs. In this section, we let n be a positive integer and Kn be
the complete graph on n vertices. Let Cn be the cyclic group of order n and and
C ′
n := Cn \ {1}. Then, we find that Kn = Cay(Cn,C

′
n), we apply the results of the

previous subsection to study the µ- and λ-invariants of Kn. Let β : C ′
n → Zℓ be a

function satisfying the conditions of Definition 4.1. Let µn and λn be the Iwasawa
invariants associated to (Kn, α). Let µn,ψ and λn,ψ be the Iwasawa invariants µψ
and λψ introduced in the previous section.
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Lemma 4.11. Assume that ℓ ∤ n. Then, for all nontrivial characters ψ,

µn,ψ = λn,ψ = 0.

Proof. Recall that Lemma 4.8 asserts that

µn,ψ = λn,ψ = 0

if

r̄ 6=
∑

s∈C′
n

ψ̄(s).

Since ψ is nontrivial,
∑

s∈C′
n
ψ̄(s) = −1 and r̄ = (n− 1). Since ℓ ∤ n, the result

follows. �

Theorem 4.12. Suppose that ℓ ∤ n and
∑

s∈C′
n
β̄(s)2 6= 0. Then, µn = 0 and

λn = 1.

Proof. It follows from Lemma 4.11 that µn,ψ = λn,ψ = 0 for all nontrivial ψ ∈ Ĝ.
On the other hand, µn,1 = 0 and λn,1 = 2 by Lemma 4.9. Therefore, it follows
from Theorem 4.7 that µn = 0 and λn = 1. �

5. Illustrative examples

In this section, we illustrate our results through two examples.

5.1. Example 1. Let G = Z/4Z := {0, 1, 2, 3}, S = {1, 2, 3}, X := Cay(G, S) and
ℓ := 3. Note that the condition S = S−1 is satisfied. Moreover, the Assumption
2.1 is satisfied and χ(X) = −2. Now, define the function β : S → Z3 as follows

β(s) =





1, if s = 1;

0, if s = 2;

−1, if s = 3;

and α : E+
X → Z3 the associated function. We check that the conditions (1)–(4) of

Definition 4.1 are all satisfied.

(1) The image of β is {−1, 0, 1} and clearly generates Z3.
(2) The condition β(−s) = −β(s) is easy to verify.
(3) By definition, the image of β lies in Z.
(4) We apply Proposition 4.4 to verify the condition (4). Indeed setting h := 1,

this element has order m = 4. We note that (m, ℓ) = 1 and β(h) = 1. Also,
h, h2 and h3 are contained in S.

The matrix M(1 + T ) (see (3.2)) is given by



3 −(1 + T )−1 −1 −(1 + T )
−(1 + T ) 3 −(1 + T )−1 −1
−1 −(1 + T ) 3 −(1 + T )−1

−(1 + T )−1 −1 −(1 + T ) 3
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Let ψ ∈ Ĝ be the character which is defined by ψ(n) := exp
(

2πin
4

)
= i

n, where

i is a squareroot of −1. Set Pj(T ) := Pψj (T ) for j = 0, . . . , 3; note that mβ = 1.
Setting x := (1 + T ), we find that

Pj(T ) =− i
3jx2 + (3− i

2j)x− i
j

=





−(x− 1)2 if j = 0;

(ix2 + 4x− i) if j = 1;

(x+ 1)2 if j = 2;

(−ix2 + 4x+ i) if j = 3.

On the other hand, a computation of the determinant yields

fX,α(T ) =det(M(x))

=x−4




3x −1 −x −x2
−x2 3x −1 −x
−x −x2 3x −1
−1 −x −x2 3x




=− x−4(x+ 1)2(x− 1)2(x4 + 14x2 + 1)

=x−4(x+ 1)2(x− 1)2(ix2 + 4x− i)(−ix2 + 4x+ i)

=x−4
3∏

j=0

Pj(T ).

This illustrates the Theorem 4.5.
Set Kψ = Q3(i), and O (resp. ̟) be the valuation ring (resp. unformizer) of

Kψ. We have that ̟ = (3). By Theorem 4.7, we have that

µ3(X,α) =




3∑

j=0

µψj


 ;

λ3(X,α) =




3∑

j=0

λψj


− 1.

(5.1)

For j ∈ {1, 2, 3}, then Lemma 4.8 asserts that the following are equivalent

(1) µψj = 0 and λψj = 0,
(2) i

j + i
2j + i

3j 6≡ 0 (mod 3).

Since i
j + i

2j + i
3j = −1, it follows that for j ∈ {1, 2, 3},

µψj = 0 and λψj = 0.

We have that P0(T ) = −T 2, hence, µ1 = 0 and λ1 = 2. Thus, from (5.1), we have
that

µ3(X,α) = 0 and λ3(X,α) = 1.
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One can visualize the Z3-tower as follows:

←− ←− ←− ←−

5.2. Example 2. We consider another example where µ(X,α) > 0. Let G =
Z/6Z := {0, 1, 2, 3, 4, 5}, S = {1, 2, 3, 4, 5}, X = Cay(G, S) and ℓ = 2. Clearly, the
condition S = S−1 and the Assumption 2.1 are satisfied. Now, define the function
β : S → Z2 as follows:

β(s) =





1, if s = 1

1, if s = 2

0, if s = 3

−1, if s = 4

−1, if s = 5;

and α : E+
X → Z2 the associated function. We check that the conditons (1)–(4) of

Definition 4.1 are all satisfied.

(1) The image of β is {−1, 0, 1} and clearly generates Z2.
(2) The condition β(−s) = −β(s) is easy to verify.
(3) By definition, the image of β lies in Z.
(4) Consider the tuple (1, 1, 1) ∈ S3. Then β(1 + 1 + 1) = β(3) = 0, β(1) +

β(1) + β(1) = 3 and hence β(1 + 1 + 1) 6≡ 3β(1) (mod 2).

Now, the matrix M(1 + T ) is given by




5 −(1 + T )−1 −(1 + T )−1 −1 −(1 + T ) −(1 + T )
−(1 + T ) 5 −(1 + T )−1 −(1 + T )−1 −1 −(1 + T )
−(1 + T ) −(1 + T ) 5 −(1 + T )−1 −(1 + T )−1 −1
−1 −(1 + T ) −(1 + T ) 5 −(1 + T )−1 −(1 + T )−1

−(1 + T )−1 −1 −(1 + T ) −(1 + T ) 5 −(1 + T )−1

−(1 + T )−1 −(1 + T )−1 −1 −(1 + T ) −(1 + T ) 5




Let ψ ∈ Ĝ be the character which is defined by ψ(n) := exp
(

2πin
6

)
. Let ω :=

exp
(

2πi
6

)
. Therefore, ψ(n) = ωn. Note that ω3 = −1, ω2+ω = i

√
3 and ω2−ω =

−1, where i is the square root of -1.
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Set Pj(T ) := Pψj (T ) for j = 0, . . . , 5; note that mβ = 1. Setting x := (1 + T ),
we find that

Pj(T ) =5x− (ωj + ω2j + ω3jx+ ω4jx2 + ω5jx2)

=





−2(x− 1)2 if j = 0;

6x− i
√
3(1− x2) if j = 1;

4x+ x2 + 1 if j = 2;

6x if j = 3.

4x+ x2 + 1 if j = 4;

6x+ i
√
3(1− x2) if j = 5;

Now a computation of the determinant gives us

fX,α(T ) = det(M(x))



5 x−1 x−1 −1 x x
x 5 x−1 x−1 −1 x
x x 5 x−1 x−1 −1
−1 x x 5 x−1 x−1

x−1 −1 x x 5 x−1

x−1 x−1 −1 x x 5




=− 36x−5(x− 1)2(x2 + 4x+ 1)2(x4 + 10x2 + 1)

=x−6
5∏

j=0

Pj(T ).

This again illustrates the Theorem 4.5.
Set Kψ = Q2(ω), and O (resp. π) be the valuation ring (resp. unformizer) of

Kψ. We have that π = (2). Again, by Theorem 4.7, we have that

µ2(X,α) =




5∑

j=0

µψj


 ;

λ2(X,α) =




5∑

j=0

λψj


− 1.

(5.2)

Now, we calculate each of these µψj ’s and λψj ’s.

(1) For P0 = −2T 2, µψ0 = 1, λψ0 = 2.

(2) For P1 = i
√
3(T 2 + 2T (1−

√
3)− 2i

√
3), µψ = 0, λψ = 2.

(3) For P2 = T 2 + 6T + 6, µψ2 = 0, λψ2 = 2.
(4) For P3 = 6(T + 1), µψ3 = 1, λψ3 = 0.
(5) For P4 = T 2 + 6T + 6, µψ4 = 0, λψ4 = 2.

(6) For P5 = −i
√
3(T 2 + 2T (1−

√
3)− 2i

√
3), µψ5 = 0, λψ5 = 2.
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Now, using equation (5.2), we get

µ2(X,α) = 2 and λ2(X,α) = 9.

One can visualize the Z2-tower as follows:

←− ←− ←−

References

[CP18] Scott Corry and David Perkinson. Divisors and sandpiles. American Mathematical
Society, Providence, RI, 2018. An introduction to chip-firing.

[DLRV24] Cédric Dion, Antonio Lei, Anwesh Ray, and Daniel Vallières. On the distribution of
Iwasawa invariants associated to multigraphs. Nagoya Math. J., 253:48–90, 2024.

[DV23] Sage DuBose and Daniel Vallières. On Zd
ℓ -towers of graphs. Algebr. Comb., 6(5):1331–

1346, 2023.
[FW79] Bruce Ferrero and Lawrence C. Washington. The Iwasawa invariant µp vanishes for

abelian number fields. Ann. of Math. (2), 109(2):377–395, 1979.
[Gon21] Sophia R. Gonet. Jacobians of finite and infinite voltage covers of graphs. ProQuest

LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–The University of Vermont and State
Agricultural College.

[Gon22] Sophia R. Gonet. Iwasawa theory of Jacobians of graphs. Algebr. Comb., 5(5):827–
848, 2022.

[HMSV24] Kyle Hammer, Thomas W. Mattman, Jonathan W. Sands, and Daniel Vallières. The
special value u = 1 of Artin-Ihara L-functions. Proc. Amer. Math. Soc., 152(2):501–
514, 2024.

[Iwa59] Kenkichi Iwasawa. On Γ-extensions of algebraic number fields. Bull. Amer. Math.
Soc., 65:183–226, 1959.

[KM22] Sören Kleine and Katharina Müller. On the growth of the Jacobian in Zl
p-voltage

covers of graphs. Preprint, arxiv:2211.09763, 2022.
[LM24] Antonio Lei and Katharina Müller. On the zeta functions of supersingular isogeny

graphs and modular curves. Arch. Math. (Basel), 122(3):285–294, 2024.
[MV23] Kevin McGown and Daniel Vallières. On abelian ℓ-towers of multigraphs II. Ann.

Math. Qué., 47(2):461–473, 2023.
[MV24] Kevin McGown and Daniel Vallières. On abelian ℓ-towers of multigraphs III. Ann.

Math. Qué., 48(1):1–19, 2024.
[Nor98] Sam Northshield. A note on the zeta function of a graph. J. Combin. Theory Ser. B,

74(2):408–410, 1998.
[RV22] Anwesh Ray and Daniel Vallières. An analogue of Kida’s formula in graph theory.

Preprint, arXiv:2209.04890, 2022.
[Ter11] Audrey Terras. Zeta functions of graphs, volume 128 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, Cambridge, 2011. A stroll through
the garden.

[Val21] Daniel Vallières. On abelian ℓ-towers of multigraphs. Ann. Math. Qué., 45(2):433–452,
2021.



IWASAWA THEORY OF CAYLEY GRAPHS 23

(Ghosh) Harish Chandra Research Institute, A CI of Homi Bhabha National
Institute, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211 019 India

Email address : ghoshsohan4@gmail.com

(Ray) Chennai Mathematical Institute, H1, SIPCOT IT Park, Kelambakkam,
Siruseri, Tamil Nadu 603103, India

Email address : anwesh@cmi.ac.in


	1. Introduction
	1.1. Background and motivation
	1.2. Main results
	1.3. Organization
	Data availability
	Conflict of interest
	Acknowledgement

	2. Preliminaries
	2.1. Galois theory of covers
	2.2. Artin–Ihara L-functions

	3. Iwasawa theory of graphs
	3.1. Z-covers of graphs
	3.2. The Iwasawa polynomial

	4. Cayley graphs and Iwasawa theory
	4.1. A factorization of the Iwasawa polynomial
	4.2. The Iwasawa invariants  and  and their properties
	4.3. Complete graphs

	5. Illustrative examples
	5.1. Example 1
	5.2. Example 2

	References

