
ar
X

iv
:2

40
5.

15
40

8v
1 

 [
m

at
h.

D
G

] 
 2

4 
M

ay
 2

02
4

SU(2) STRUCTURES IN FOUR DIMENSIONS AND PLEBANSKI

FORMALISM FOR GR

NIREN BHOJA AND KIRILL KRASNOV

Abstract. An SU(2) structure in four dimensions can be described as a triple of 2-forms
Σi ∈ Λ2(M), i = 1, 2, 3 satisfying Σi ∧ Σj ∼ δij . Such a triple defines a Riemannian signature
metric on M . An SU(2) structure is said to be integrable if the holonomy of this Riemannian
metric is contained in SU(2). It is well-known that this is the case if and only if the 2-forms are
closed dΣi = 0. The main purpose of the paper is to analyse the second order in derivatives
diffeomorphism invariant action functionals that can be constructed for an SU(2) structure.
The main result is that there is a unique such action functional if one imposes an additional
requirement that the action is also SU(2) invariant, with SU(2) acting on the triple Σi as in
its vector representation. This action functional has a very simple expression in terms of the
intrinsic torsion of the SU(2) structure. We show that its critical points are SU(2) structures
whose associated metric is Einstein. The action we describe has also a first order in derivatives
version, and we show how this is related to what in the physics literature is known as Plebanski
formalism for GR.
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1. Introduction

A G-structure on a smooth manifold M is a reduction of the principal GL(n,R) bundle of
frames on M to a G-subbundle. Most interesting geometric structures on M can be rephrased
in the language of G-structures. For example, a Riemannian metric on M is an O(n) structure,
an almost complex structure J : TM → TM, J2 = −I on a manifold of dimension 2n is a
GL(n,C) structure.

Many interesting examples of G-structures come from spinors and can be called ”spinorial”.1

This is the case when G = Stabψ ⊂ Spin(n) is a subgroup that stabilises a spinor ψ ∈ S.
When n is even, the spinor representation S of Spin(n) splits into two irreducible components
S = S+ ⊕ S−, and in this case it is natural to consider a semi-spinor ψ ∈ S+. Given that

dim(GL(n,R)/G) = dim(GL(n,R)/O(n)) + dim(Spin(n)/G), (1.1)

we see that the GL(n,R) orbit of G-structures of the same type can be viewed as the space of
Riemannian metrics together with a spinor of algebraic type that has G as the stabiliser. Thus,
heuristically, we can say

{spinorial G-structure} = {metric}+ {spinor}. (1.2)

What is very interesting about the spinorial G-structures is that they can be expected to be
encodable into a collection of differential forms on M . Thus, given a spinor ψ in S or in S+,
a certain collection of differential forms arises as spinor bilinears constructed from ψ with ψ,
or possibly with ψ and ψ̂, where ψ̂ is an appropriate Spin(n) invariant complex conjugation.
Indeed, the tensor product of the spin representation S with itself contains the spaces of all
degree differential forms on M

S ⊗ S = Λ•(M). (1.3)

As is seen from a large collection of examples, taking a sufficient number of differential forms
obtained as spinor bilinears constructed from ψ and ψ̂ is sufficient to reproduce both the metric
on M , and the spinor ψ (the latter always mod Z2 sign ambiguity).

Some of the known examples of such an encoding are as follows.

• {0}-structures in 3D. In this case Spin(3) = SU(2), and the spinor is a 2-component

spinor S ∼ C
2. Taking a unit such spinor 〈ψ̂, ψ〉 = 1, and constructing a real one-form

e3 ∈ Λ1 via e3(X) := 〈ψ̂,Xψ〉, and a complex-valued one-form e(X) := 〈ψ,Xψ〉, where
a vector X ∈ TM acts on ψ by the Clifford multiplication, we get an orthonormal co-
frame e1,2,3, where e = e1+i e2. In turn, starting with a co-frame e1,2,3 one recovers the
metric via ds2 = (e1)2 + (e2)2 + (e3)2.

• SU(2)-structures in 4D. In this case Spin(4) = SU(2)×SU(2). Taking a unit 〈ψ̂, ψ〉 =
1 spinor ψ ∈ S+, its stabiliser is the other SU(2) that does not act on it. The construction

of all possible differential forms returns one real 2-form ω(X,Y ) = 〈ψ̂,XY ψ〉, and a com-
plex 2-form Ω(X,Y ) = 〈ψ,XY ψ〉. These objects satisfy ΩΩ = 0,Ωω = 0, (1/2)ΩΩ̄ = ω2.
Alternatively, decomposing Ω := Σ1 + iΣ2 and renaming ω := Σ3 we get a triple of 2-
forms satisfying ΣiΣj ∼ δij , i, j = 1, 2, 3. In turn, taking such a triple of 2-forms as
the basic geometric data, one can recover the Riemannian metric gΣ (together with an
orientation of M) via

gΣ(X,Y )volΣ =
1

6
ǫijkiXΣ

iiY Σ
jΣk. (1.4)

Here volΣ is the volume form of the metric gΣ.

1But it should be emphasised that there are also interesting G-structures that are not spinorial. For example,
the almost complex structure is not spinorial in the sense we use.
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• SU(3)-structures in 6D. We now have Spin(6) = SU(4), and S+ = C
4. The stabiliser

of a semi-spinor ψ ∈ S+ is SU(3). Taking a unit spinor 〈ψ̂, ψ〉 = 1, the construction

of differential forms returns a real 2-form ω(X,Y ) = 〈ψ̂,XY ψ〉, and a complex 3-form
Ω(X,Y,Z) = 〈ψ,XY Zψ〉. This 3-form is decomposable, and also satisfies Ωω = 0, as
well as ΩΩ̄ = (4i /3)ω3. In this case it is sufficient to take as the basic geometric data
the non-degenerate 2-form ω, as well as a real 3-form Re(Ω). The metric on M , as well
as an almost complex structure in which Ω ∈ Λ3,0, are then recovered from these data
by a procedure explained in e.g. [1].

• G2-structures in 7D. In this case there are real spinors ψ̂ = ψ. Taking a real unit
spinor ψ ∈ S, 〈ψ,ψ〉 = 1, the stabiliser Stabψ = G2. The construction of possible
differential forms returns the 3-form C(X,Y,Z) = 〈ψ,XY Zψ〉. There is also a 4-form,
and a 7-form produced, but these are not independent and are determined by C. The
3-form C produced by this construction is non-degenerate in a suitable sense. Moreover,
the GL(7) orbit of 3-forms of this type is open in Λ3. Taking a non-degenerate C ∈ Λ3

as the basic geometric data, the metric (and orientation) of M is recovered via

gC(X,Y )volC =
1

6
iXCiY CC. (1.5)

• Spin(7)-structures in 8D. In this dimension we again have real semi-spinors ψ̂ =
ψ. Taking a unit real semi-spinor ψ ∈ S+, the stabiliser is Stabψ = Spin(7). The
construction of differential forms returns a 4-form Φ(X,Y,Z,W ) = 〈ψ,XY ZWψ〉. This
is a 4-form of a special algebraic type, whose GL(8) stabiliser is Spin(7). Taking this 4-
form as the basic geometric data, the metric gΦ is recovered by the procedure explained
in [2].

Other examples are possible, but we refrain from enlarging our list.
The purpose of this article is to analyse the case of SU(2) structures in dimension four, in

the same spirit as was done recently for the case of G2 in [3]. More precisely, our aim is to
analyse the structure of the intrinsic torsion of an SU(2) structure in 4D, and derive a formula
for the (part of the) Riemann curvature tensor as determined by the intrinsic torsion. This
links to the classical decomposition of the Riemann curvature tensor in 4D into its self-dual and
anti-self-dual components. Our other aim is to analyse the possible (second order in derivatives)
action functionals that can be written for SU(2) structures, as well as the corresponding Euler-
Lagrange equations.

The geometry of SU(2) structures in dimension four is known. At the same time, there
appears to be no reference that treats this geometry from the perspective of the intrinsic torsion.
One of the aims of this paper is to fill in this gap, and show that the story in 4D completely
parallels the other better understood cases, in particular the case of G2 structures as treated
in [3], and possibly even more closely the geometry of Spin(7) structures as discussed recently
in [4] and [5]. The geometry of SU(2) structures in dimension four is also the subject of an
ongoing work by other authors, see [6].

At the same time, it is important to emphasise that there are several aspects of the story
SU(2) that do not have an analog in the case of other G-structures. This, in particular, makes
our treatment very different to that in [6]. For any G-structure we have so(n) = g⊕ g

⊥, where
g is the Lie algebra of G. However, the exceptional phenomenon that occurs only in 4D2 is that
g
⊥ is also a Lie algebra, namely g

⊥ = su(2). Because of this, even though the GL(4) stabiliser
of a triple of 2-forms Σi satisfying ΣiΣj ∼ δij is SU(2), the other SU(2) leaves its remnant in the
structure of the theory. Indeed, the object Σi viewed as a map Σ : R3 → Λ3 can be interpreted
as an SU(2) equivariant map

Σ : R3 → Λ+. (1.6)

Equipped with this interpretation, to be explained in details below, one realises that the SU(2)
whose Lie algebra is g

⊥ stabilises Σ, viewed as the map (1.6). Thus, when appropriately

2This is also the case for any {0}-structure.
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interpreted, the structure group in the case of an SU(2) structure in dimension four is actually
full Spin(4). What this implies is that all the tensors need to be decomposed into irreducible
representations of Spin(4) rather than those of just SU(2). These aspects of the story do not
have an analog in the case of the other G-structures. The requirement that the Σ is an SU(2)
equivariant map puts additional constraints on the type of objects that can be considered. This
is the main difference with the treatment in [6]. With this requirement imposed, the construction
becomes much more rigid. In particular, the decomposition of spaces of various differential forms
into the irreducible components contains fewer summands. There is also much less freedom in
possible diffeomorphism invariant actions that can be written for an SU(2) structure.

When G ⊂ O(n), a G-structure is called integrable if the holonomy of the Levi-Civita con-
nection for the metric defined by the G-structure is contained in G. It is well-known that an
SU(2) structure is integrable if and only if the triple of 2-forms Σi is closed dΣi = 0. This gives
a natural set of first-order PDE’s for the SU(2)-structure Σi. What is less known is that there
is also a natural set of second-order PDE’s that can be imposed on an SU(2)-structure, and
that this PDE’s are satisfied if and only if the metric defined by Σi is Einstein.

Given that this is one of the main statements of this paper, we would like to explain it already
in the Introduction. This is best done as a series of propositions. Let E = R

3. We view an
SU(2) structure as an E-valued 2-form, thus Σ ∈ E ⊗ Λ2.

Theorem 1.1. The intrinsic torsion of an SU(2) structure, which measures its non-integrability,
can be described as an E-valued 1-form Aiµ. We have

∇µΣ
i
ρσ = −ǫijkAjµΣ

k
ρσ. (1.7)

To understand the next statement, we note that there is a natural action of diffeomorphisms
on SU(2) structures. In addition, there is also a natural action of SU(2), which acts on E = R

3

as its spin one representation. At the infinitesimal level, both actions are described by the
following formulas

δXΣ
i = diXΣ

i + iXdΣ
i, δφΣ

i = [φ,Σ]i. (1.8)

Here X ∈ TM is a vector field, and φ ∈ E is a section of a vector bundle over M with E as the
fibre. The vector space E = R

3 is naturally a Lie algebra, with the Lie bracket given by the
cross-product, and [·, ·] in the above formula stands for this Lie bracket.

Theorem 1.2. There is a unique (up to an overall multiple) action functional S[Σ] that is
second order in derivatives of Σ and that is both diffeomorphism and SU(2) invariant, i.e.
invariant under both transformations in (1.8). It is given by

S[Σ] = −
1

2

∫

Σi[A,A]i. (1.9)

Here A is the intrinsic torsion of the SU(2) structure Σi, which is an E-valued 1-form, as
determined by (1.7). The wedge product of differential forms is implied. The coefficient in front
of the action is chosen for future convenience and will be explained in the main text.

The next proposition describes the critical points of this action functional.

Theorem 1.3. The critical points of (1.9) are SU(2) structures whose associated metric is
Einstein.

There is also a first order in derivatives version of (1.9), which is a functional of both Σ
and an additional set of E-valued 1-form fields, which, after one imposes their Euler-Lagrange
equations, become identified with the intrinsic torsion. As we shall see, this first order version
of the action principle is what is known in the physics literature as the Plebanski formalism for
General Relativity, see [7].

It is clear from our analysis, as well as the analysis in [3], that many of the steps here have
analogs for any other (spinorial) G-structure. It is then very interesting whether there are
also analogs of the Plebanski functional for an arbitrary (spinorial) G-structure, and whether
there are some ”best” second-order PDE’s that can be imposed on such a G-structure, the later
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ideally being the conditions for a critical point of the action. Some steps in this direction in
the case of Spin(7) structures in dimension eight were taken in [4], but there are many other
settings that are also interesting to analyse, in particular those from the list of examples given
above. Another interesting and important question is to analyse the geometric flows that arise
as the gradient flows of the natural action functionals. In the case of SU(2) structures this is
the gradient flow of the action functional (1.9). We emphasise that our functional (1.9) is not
the same as the energy functional considered in [6]. Some information about its gradient flow
can be easily extracted from the results in the main text, but we leave the complete treatment
to a separate work.

The organisation of this paper is as follows. We start by describing SU(2) structures in more
detail, and show how an SU(2) structure on M defines a metric. There is some new material
in this section, in particular we give a new formula (2.15) for the metric in terms of an SU(2)
structure. We discuss how an SU(2) structure can be viewed as an an SU(2) equivariant map
in Section 3. We then proceed to a description of how spaces of E-valued 1- and 2-forms on
M split into their irreducible components with respect to the action of SU(2) × SU(2). Some
of the material here is new, in particular the decomposition of E ⊗ Λ2 using the operator
J2. We then discuss, in Section 5, the notion of the intrinsic torsion of an SU(2) structure.
We also characterise how (a part of the) Riemann curvature is determined by the intrinsic
torsion, and how the Einstein condition can be imposed in this language. We analyse and
construct diffeomorphism and SU(2)-invariant functionals that are second order in derivatives
and quadratic in perturbations of an SU(2) structure in Section 6. The key result of this section
is that there is a unique diffeomorphism and SU(2)-invariant action functional. We construct
non-linear action functionals in Section 7. This section contains proofs of all the statements
described in the Introduction.

2. SU(2) structures in four dimensions

Definition 2.1. A triple of 2-forms Σi ∈ Λ2(M), i = 1, 2, 3 satisfying ΣiΣj ∼ δij will be called
an SU(2) structure on a 4-dimensional manifold M .

The meaning of the equation ΣiΣj ∼ δij needs to be clarified further. First, this paper uses
the convention that the product of differential forms is always the wedge product, with the wedge
product symbol omitted. Second, the proportional to symbol means equal up to multiplication
by an arbitrary (non-zero) top form on M . The top form needed on the right-hand side of this
relation to make it into an equation can be obtained by taking i = j and summing up over the
indices. One gets

ΣiΣj =
δij

3
(
∑

k

ΣkΣk). (2.1)

Alternatively, this equation can be interpreted as saying that Σ1Σ1 = Σ2Σ2 = Σ3Σ3 6= 0, while
all products ΣiΣj with i 6= j are equal to zero.

We note that there are 5 relations in ΣiΣj ∼ δij , and so the dimension (per point) of the
space of SU(2) structures on M is 18 − 5 = 13. This is the same as the dimension of the coset
space GL(4,R)/SU(2). The fact the GL(4,R) stabiliser of an SU(2) structure on M is one of
the two SU(2)’s in SU(2)×SU(2)/Z2 = SO(4) ⊂ GL(4,R) follows from the following statement.

Theorem 2.1. An SU(2) structure on M determines a Riemannian metric on M together
with two orientations volΣ, vol

′
Σ on M . The metric together with one of the orientations is

determined according to the following formula

gΣ(X,Y )vol′Σ = −
1

6
ǫijkiXΣ

iiY Σ
jΣk. (2.2)

The orientation vol′Σ is such that the signature of the metric defined this way is mostly plus.
The other orientation is defined via

volΣ =
1

6
ΣiΣi. (2.3)
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The 2-forms Σi are self-dual with respect to the Hodge star operator corresponding to gΣ, in
the orientation volΣ. There exists a choice of a co-frame e1,2,3,4 such that when orientations
coincide volΣ = vol′Σ we have the following canonical expression for Σi

Σ1 = e41 − e23, Σ2 = e42 − e31, Σ3 = e43 − e12. (2.4)

When the two orientations are opposite of each other volΣ = −vol′Σ we have instead

Σ1 = e41 − e23, Σ2 = e42 − e31, Σ3 = −e43 + e12. (2.5)

Proof. Let us form Ω = Σ1 + iΣ2. The algebraic relations satisfied by Σi imply that ΩΩ = 0,
which then means that it is decomposable. Let us denote by u, v some complex one-forms such
that Ω = uv. Because ΩΩ̄ 6= 0, it is clear that u, v, ū, v̄ span Λ1(M). The real 2-form Σ3 satisfies
Σ3Ω = Σ3Ω̄ = 0, and is therefore of the form

Σ3 =
1

2i
αuū+

1

2i
βvv̄ +

1

2i
γuv̄ +

1

2i
γ̄vū, α, β ∈ R, γ ∈ C. (2.6)

Alternatively

Σ3 =
1

2i

(

u v
)

(

α γ
γ̄ β

)(

ū
v̄

)

. (2.7)

Moreover

Σ3Σ3 =
1

2
(αβ − |γ|2)uvūv̄. (2.8)

But we must have Σ3Σ3 = (1/2)ΩΩ̄, and so αβ − |γ|2 = 1. At the same time, the one-forms
u, v are defined modulo

(

u v
)

→
(

u v
)

(

a b
c d

)

, a, b, c, d ∈ C, ad− bc = 1. (2.9)

The Hermitian unimodular matrix that appears in (2.7) can always be brought by a SL(2, C)
transformation into the form ±I. This means that there is a choice of u, v such that

Ω = Σ1 + iΣ2 = uv, Σ3 = ±

(

1

2i
uū+

1

2i
vv̄

)

, (2.10)

where both signs in the expression for Σ3 are possible. The 1-forms u, v are defined modulo an
SU(2) transformation, which leaves Σ3,Ω invariant. This shows that the triple of 2-forms Σi

satisfying ΣiΣj ∼ δij defines the Riemannian signature metric

gΣ = |u|2 + |v|2, (2.11)

as well as the canonical orientation of M given by ΩΩ̄ = uvūv̄.
We now choose a real basis of co-vectors

u = e4 − i e3, v = e1 + i e2, (2.12)

so that Σi take the following form

Σ1 = e41 − e23, Σ2 = e42 − e31, Σ3 = ±(e43 − e12), (2.13)

the metric is

gΣ =
4

∑

I=1

(eI)2, (2.14)

and the orientation determined by Σi is e1234. It is clear that Σi are self-dual 2-forms with
respect to the Hodge star corresponding to the metric gΣ, in the orientation e1234. The formula
(2.2) can now be checked by a verification. Changing the sign of Σ3 changes the sign of the
orientation vol′Σ, and so indeed the canonical expression for Σ3 is decided by whether the two
orientations defined by Σ agree or disagree. �

Definition 2.2. We will say that an SU(2) structure is orientation preserving if volΣ = vol′Σ,
and orientation changing if volΣ = −vol′Σ.
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An alternative explicit expression for the metric, in the spirit of the 8D formula in [2], is as
follows.

Theorem 2.2. The expression

∓
1

2

(ǫijkiXΣ
iiXΣ

jiXΣ
k)(e1, e2, e3)

(iXΣiΣi)(e1, e2, e3)
, (2.15)

where e1,2,3 is an arbitrary triple of vectors that together with X span TM , is independent of
the choice of ei. It is homogeneity degree two in X, and equals the metric pairing gΣ(X,X).
The minus sign in this formula applies when Σi is orientation preserving, and plus sign in the
orientation changing case.

Proof. The homogeneity degree in X is obvious. To prove independence of ei, let us take some
other triple of vectors related to X, ei as

(ei)
′ = κiX + λi

jej . (2.16)

From iXΣ
iiXΣ

i = 0 it follows that the denominator is independent of κi. The numerator is
independent of κi because the insertion of two factors of X into Σi vanishes. To demonstrate
independence of λi

j we note

(ǫijkiXΣ
iiXΣ

jiXΣ
k)((e1)′, (e2)′, (e3)′) = det(λ)(ǫijkiXΣ

iiXΣ
jiXΣ

k)(e1, e2, e3). (2.17)

Similarly

(iXΣ
iΣj)((e1)′, (e2)′, (e3)′) = det(λ)(iXΣ

iΣj)(e1, e2, e3). (2.18)

The statement of independence of choice of ei follows. The statement that this expression
computes the metric pairing gΣ(X,X) follows by computing it for one of the frame vectors
when Σi is given by its canonical expressions (2.4),(2.5) in the co-frame basis. �

The statement that the GL(4,R) stabiliser of a triple Σi satisfying ΣiΣj ∼ δij is SU(2) now
follows from the facts established above. First, given that Σi define a Riemannian signature
metric, their GL(4,R) stabiliser is contained in O(4). Further, we have explicitly determined
this stabiliser to be the SU(2) that mixes the complex one-forms u, v and leaves Σ1,2,3 invariant.
The other SU(2) acts on Σ1,2,3 non-trivially, by mixing them. This fact suggests an alternative
viewpoint on SU(2)-structures, to which we now turn.

3. An SU(2) structure as an equivariant map

It turns out to be very convenient to introduce a vector space E ∼ R
3, equipped with the

usual inner product on R
3. We use the inner product to identify E with its dual E∗, and view

Σ1,2,3 as components of an E-valued 2-form Σ ∈ Λ2(M) ⊗ E. Alternatively, we can view Σ as
a map

Σ : E → Λ2(M). (3.1)

By construction of the metric gΣ, the image of the map Σ is identified with the space Λ+ of self-
dual 2-forms for gΣ. There is a natural wedge-product conformal metric on the space Λ2(M),
of signature (3, 3), defined via

(B1, B2)∧ = B1 ∧B2/vg, (3.2)

where vg is an arbitrary volume form onM . Restricted to the space Λ+(M) (for any Riemannian
signature metric onM), the wedge product metric is definite. The defining conditions Σi∧Σj ∼
δij can then be rephrased as follows.

Definition 3.1. (Alternative definition of an SU(2)-structure). An SU(2)-structure is a map
Σ : E → Λ2(M) from a 3-dimensional vector space E equipped with an inner product δ, such
that the pull-back of the wedge-product metric on Λ2 to E coincides with the inner product on
E: Σ∗((·, ·)∧) = δ.
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To rephrase this in yet a different way, an SU(2)-structure is a map Σ : E → Λ2(M) that is
an isometry on its image.

We can now explain in what sense the map Σ : E → Λ2(M) is SU(2) equivariant. The
vector space E is naturally a Lie algebra su(2), with the Lie bracket given by the cross-product.

Similarly, the vector space Λ+
∣

∣

∣

p
, p ∈ M is naturally identified with an su(2) subalgebra of

so(4) = Λ2(M)
∣

∣

∣

p
. The map Σ : E → Λ2(M), restricted to its image Λ+ ⊂ Λ2(M), is a

homomorphism of Lie algebras. This can be used to identify E ∼ Λ+
∣

∣

∣

p
∼ su(2).

The upshot of this discussion is that a choice of an SU(2)-structure Σ does not need to break
O(4) to an SU(2) subgroup that stabilises it. The other SU(2) is still there, and serves as the
group with respect to which Σ is equivariant. What this means is that all tensors should be
decomposed not just in representations of a single SU(2), but in representations of both SU(2)’s.
This phenomenon does not have an analog in the case of other G-structures. This aspect of
the story does not feature in the treatment in [6], which considers objects that are not SU(2)
covariant. In contrast, we imposes the requirement of SU(2) covariance, which severely restricts
that types of objects that are allowed. This becomes clear in the next section, which describes
the decomposition of the space of differential forms with values in E. This decomposition is
simpler than that in [6], because the second SU(2) is now at play as well.

4. Decomposition of E-valued differential forms

For any G-structure, the intrinsic torsion of a G-structure is an object that measures the
failure of this G-structure to be integrable. From general principles, it follows that the intrinsic
torsion is an object that takes values in Λ1(M) ⊗ g

⊥, see for example a discussion in the
subsection 4.2 of [8]. At the same time, the intrinsic torsion should be determinable from the
covariant derivative (computed with respect to the Levi-Civita connection) of the tensors that
define the G-structure.

In our case, g⊥ = su(2) = E, and so the intrinsic torsion must be an object with values in
Λ1(M)⊗E. The tensor that defines an SU(2) structure takes values in Λ2(M)⊗E, and so does
its covariant derivative ∇XΣ in any direction X ∈ TM . For this reason, we need to understand
the decomposition of the spaces Λ1(M) ⊗ E,Λ2(M) ⊗ E, into irreducible representations of
SU(2)× SU(2).

Irreducible representations of SU(2) are the spin k/2 representations that we denote by Sk.
They are of dimension dim(Sk) = k+1. As we have previously discussed, there are two different
SU(2)’s in the game. One SU(2) is the group with respect to which the 2-forms Σi are invariant.
We will choose to denote this copy of SU(2) by SU−(2), and the corresponding representations
by Sk−. The other SU(2) is one that acts non-trivially on Σi by mixing them, with the map
Σ : E → Λ2 being equivariant with respect to this copy of SU(2). We will denote it by SU+(2),
and the corresponding representations by Sk+. We then have

Λ1(M) = S+ ⊗ S−, Λ2(M) = S2
+ ⊕ S2

−, E = S2
+, (4.1)

and the decomposition of Λ1(M)⊗ E,Λ2(M)⊗ E into irreducibles is

Λ1(M)⊗ E = (S3
+ ⊗ S−)⊕ (S+ ⊗ S−), (4.2)

Λ2(M)⊗E = S4
+ ⊕ S2

+ ⊕ C∞(M)⊕ (S2
+ ⊗ S2

−).

4.1. Algebra of Σ’s. To obtain explicit formulas for the irreducible parts of E-valued differ-
ential forms, we need some identities satisfied by the 2-forms Σi. We will be using the index
notation, similar to e.g. [3], which is most suited for the type of calculations that need to be
done.

First, one of the two indices of these differential forms can be raised with the metric (that
they define), to convert these objects into those in End(TM). We then have a triple of such
endomorphisms of the tangent bundle, satisfying the algebra of the imaginary quaternions

Σiµ
αΣjα

ν = −δijδµ
ν + ǫijkΣkµ

ν . (4.3)
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There are also useful relations

ΣiµνΣ
i
ρσ = gµρgνσ − gµσgνρ + ǫµνρσ , (4.4)

ǫijkΣjµνΣ
k
ρσ = −2Σi[µ|ρ|gν]σ + 2Σi[µ|σ|gν]ρ. (4.5)

4.2. Decomposition of Λ1(M)⊗E. Given an SU(2) structure Σi, we can define the following
operator acting on Λ1(M)⊗ E

Λ1(M)⊗ E ∋ Aiµ → JΣ(A)
i
µ := ǫijkΣjµ

αAkα. (4.6)

A simple calculation using (4.3) shows that

J2
Σ = 2I+ JΣ. (4.7)

This means that the eigenvalues of JΣ are 2,−1. The eigenspaces of JΣ are precisely the
irreducibles appearing in the first line in (4.2). It is also easy to check that objects of the form

ξαΣiαµ ∈ Λ1(M)⊗E (4.8)

are eigenvectors of eigenvalue 2. We then have the following characterisation

(Λ1(M)⊗E)4 = (S+ ⊗ S−) = {ξαΣiαµ, ξ ∈ TM}. (4.9)

The space

(Λ1(M)⊗ E)8 = (S3
+ ⊗ S−) (4.10)

can then be characterised as the orthogonal complement of (4.9) in Λ1(M)⊗ E.

4.3. GL(4) orbit of Σ in Λ2(M) ⊗ E. To characterise some of the spaces appearing in the
decomposition of Λ2(M) ⊗ E we first consider the GL(4) orbit of the 2-forms Σi. Thus, we
consider E-valued 2-forms of the form h[µ

αΣi|α|ν]. Decomposing hµν ∈ GL(4) into its symmetric

and anti-symmetric parts, and noting that the anti-symmetric part is valued in Λ2(M) =
S2
+ ⊕ S2

−, we get the following list of irreducibles appearing

h[µ
αΣi|α|ν] ∈ S2

+ ⊕ C∞(M)⊕ (S2
+ ⊗ S2

−) ⊂ Λ2(M)⊗ E, (4.11)

which is all spaces in the second line of (4.2) apart from S4
+. These irreducibles in Λ2(M)⊗ E

can then be characterised as the images of the map hµν → h[µ
αΣi|α|ν].

One can also act on the index i of Σi 2-forms with a GL(3) transformation, i.e., consider the

orbit of E-valued 2-forms of the form hijΣjµν . Decomposing the matrix hij into symmetric and
anti-symmetric parts, one finds the following list of irreducibles

hijΣjµν ∈ S4
+ ⊕ S2

+ ⊕ C∞(M). (4.12)

In the opposite direction, given an object Bi
µν ∈ Λ2(M) ⊗ E, its irreducible parts can be

extracted as follows

B
(i
αβΣ

j)αβ −
1

3
δijBk

αβΣ
kαβ ∈ S4

+, (4.13)

ǫijkBj
αβΣ

kαβ ∈ S2
+,

Bk
αβΣ

kαβ ∈ C∞(M),

Bi
(µ|α|Σ

iα
ν) ∈ (S2

+ ⊗ S2
−).
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4.4. Decomposition of Λ2(M)⊗E. We can also describe the irreducible subspaces of Λ2(M)⊗
E as eigenspaces of a certain operator in E-valued 2-forms, similar to how we used JΣ to
decompose Λ1 ⊗ E. Let us introduce the following operator

J2 : Λ
2 ⊗ E → Λ2 ⊗ E, J2(B)iµν = ǫijkΣj

[µ
αBk

|α|ν], Bi
µν ∈ Λ2 ⊗ E. (4.14)

A computation gives

J2
2 (B)iµν =

1

2
Bi
µν +

1

2
ǫµν

αβBi
αβ +

1

2
J2(B)iµν +

1

2
Σi[µ

αΣj
ν]
βBj

αβ , (4.15)

J3
2 (B)iµν =

1

2
ǫµν

αβBi
αβ + 2J2(B)iµν +Σi[µ

αΣj
ν]
βBj

αβ ,

J4
2 (B)iµν =

1

2
Bi
µν +

3

2
ǫµν

αβBi
αβ +

5

2
J2(B)iµν +

5

2
Σi[µ

αΣj
ν]
βBj

αβ.

This implies

J4
2 − 2J3

2 − J2
2 + 2J2 = 0 or J2(J2 − 2)(J2 − 1)(J2 + 1) = 0, (4.16)

which implies that the eigenvalues of J2 are 2, 1,−1, 0.

To characterise the eigenspaces we consider an arbitrary 3×3 matrixM ij =M ij
s +M ij

a ,M
ij
s =

M
(ij)
s ,M ij

a =M
[ij]
a and compute

J2(M
ijΣjµν) = Tr(M)Σiµν −M jiΣjµν = Tr(M)Σiµν −M ij

s Σjµν +M ij
a Σjµν . (4.17)

This means that the eigenspace of J2 of eigenvalue 2 is spanned by multiples of Σiµν . The

eigenspace of eigenvalue 1 is S2
+ spanned by M ij

a Σjµν . The eigenspace of eigenvalue −1 is S4
+

spanned by M ij
s Σjµν with Tr(Ms) = 0.

We can also apply the operator J2 to objects of the type h[µ
αΣi|α|ν]. We get

J2(h[µ
αΣi|α|ν]) =

1

2
hα

αΣiµν . (4.18)

This means that the space S2
+ ⊗ S2

− spanned by h[µ
αΣi|α|ν] with tracefree hµν is eigenspace of

J2 of eigenvalue 0.
All in all, we get

Λ2 ⊗ E = (Λ2 ⊗ E)5 ⊕ (Λ2 ⊗ E)3 ⊕ (Λ2 ⊗ E)1 ⊕ (Λ2 ⊗ E)9. (4.19)

The last space here is (Λ2 ⊗ E)9 = Λ− ⊗ E.

5. Intrinsic torsion and the associated curvature

5.1. Intrinsic torsion. From general principles, it follows that the torsion of a G-structure
should be described by a an object valued in Λ1(M) ⊗ g

⊥, which in our case is Λ1(M) ⊗ E.
At the same time, the intrinsic torsion quantifies non-integrability of the G-structure, and thus
the failure of the tensors defining this G-structure to be parallel with respect to the Levi-
Civita connection. Thus, we expect that ∇µΣ

i
αβ should be expressible via the intrinsic torsion

Aiµ ∈ Λ1(M)⊗ E. The following proposition is a statement to this effect

Theorem 5.1. There exists a set of objects Aiµ ∈ Λ1(M)⊗ E such that

∇µΣ
i
αβ = −ǫijkAjµΣ

k
αβ. (5.1)

Proof. Comparing the right-hand side of the formula (5.1) with the set of objects that appear
in (4.13), we see that the statement is that there are no S4

+, C
∞(M), S2

+ ⊗ S2
− irreducible

components inXµ∇µΣ
i
αβ ∈ Λ2(M)⊗E,∀Xµ ∈ TM . The S4

+, C
∞(M) components are extracted

as

2Σ(i|αβ|∇µΣ
j)
αβ = ∇µ(Σ

i|αβ|Σjαβ) = 4∇µδ
ij = 0. (5.2)
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Here we have used the fact that the operation of raising-lowering of the indices commutes with
∇µ. Similarly, the S2

+ ⊗ S2
− component is extracted as

2Σi(µ
α∇ρΣ

i
ν)α = ∇ρΣ

i
µ
αΣiνα = 3∇ρgµν = 0. (5.3)

This shows that no undesired components are present in ∇µΣ
i
αβ and that (5.1) holds. �

5.2. Bianchi identity. Establishing a version of the formula (5.1) is one of the more laborious
parts of the analysis of a non-integrable G-structure. The rest of the analysis is much more
algorithmic. We take another covariant derivative and anti-symmetrise to get

2Rµν[ρ
αΣi|α|σ] = 2∇[µ∇ν]Σ

i
ρσ = −2ǫijk(∇[µA

j
ν]Σ

k
ρσ +Aj[ν∇µ]Σ

k
ρσ) = (5.4)

−2ǫijk(∇[µA
j
ν]Σ

k
ρσ +Aj[µǫ

klmAlν]Σ
l
ρσ) = −ǫijkF jµνΣ

k
ρσ,

where

F iµν := 2∇[µA
i
ν] + ǫijkAjµA

k
ν (5.5)

is the curvature of the connection Aiµ. Importantly, we observe that, in the case of SU(2)
structures in dimension four, the intrinsic torsion assembles itself into an su(2)-valued one-
form, or an SU(2) connection. This connection gives rise to its curvature 2-form (5.5).

The left-hand side in (5.4) is just the projection of the Riemann tensor that is valued in the
symmetric second power Λ2(M) ⊗S Λ2(M) onto E with respect to the second pair of indices.
So, there is no loss of information if we multiply both sides of (5.4) with ǫijkΣjρσ to get

Rµν
ρσΣkρσ = 2F kµν . (5.6)

This is the most useful form of the ”Bianchi identity” (5.4), using the terminology of [3]. In
words, the self-dual part of the Riemann curvature Rµνρσ with respect to the pair of indices ρσ
equals a multiple of the curvature tensor F iµν , which is also the curvature of the intrinsic torsion

Aiµ. The fact that the intrinsic torsion assembles itself into an SU(2) connection does not have
analogs in the case of other G-structures.

5.3. Ricci tensor. We can extract the Ricci tensor from (5.6) via

Σiµ
αRανρσΣ

i
ρσ = (gµρg

α
σ − gµσg

α
ρ + ǫµ

α
ρσ)Rανρσ = −2Rµν , (5.7)

where we used (4.4). On the other hand, applying this to the right-hand side of (5.6) we get

Rµν = −Σiµ
αF iαν . (5.8)

Thus, in particular,

R = ΣiµνF iµν . (5.9)

The inverse of the formula for the Ricci curvature is

F iµν = ΨijΣjµν −
R

6
Σiµν +R[µ

αΣi|α|ν]. (5.10)

Here Ψij is the matrix of components of the chiral half of the Weyl curvature. Using Rµν =

R̃µν +
1
4Rgµν , where R̃µν is the tracefree part of the Ricci curvature, we can also rewrite this as

F iµν = ΨijΣjµν +
R

12
Σiµν + R̃[µ

αΣi|α|ν]. (5.11)

The first two terms here are self-dual as 2-forms, the last is anti-self-dual.
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5.4. Einstein condition. As is well-known, the Riemann curvature viewed as a symmetric
endomorphism of Λ2(M), decomposed into its self-dual and anti-self-dual blocks, reproduces
the decomposition into Ricci and Weyl parts of the curvature. This is most usefully captured
by the following matrix representation

Riemann =

(

W+ +R Rc0

Rc0 W− +R

)

. (5.12)

Here W± are the two chiral halves of the Weyl curvature, and Rc0 is the tracefree part of the
Ricci tensor. The trace part is denoted by R and is the scalar curvature. The first row of
this matrix is the self-dual part of Riemann with respect to the second pair of indices, and
the second row is the anti-self-dual part. Similarly, the first (second) column is the self-dual
(anti-self-dual) part of Reimann with respect to the first pair of indices. We thus see that the
curvature F iµν of the intrinsic torsion encodes precisely the first row of the matrix (5.12), and

thus the self-dual part W+ if the Weyl curvature, as well as all of the Ricci curvature.
It is now clear that the Einstein condition can be encoded as one on the curvature F iµν . The

condition that F iµν is self-dual as a 2-form is equivalent to the condition that the tracefree part

Rc0 of Ricci vanishes

F i ∈ Λ+ ⇔ Rc0 = 0. (5.13)

The scalar curvature can then be set to any desired value by imposing a condition on the
self-dual part of F i. All in all, Einstein equations are most usefully stated as the condition

F iµν =

(

Ψij +
Λ

3
δij

)

Σjµν . (5.14)

Here Ψij is an arbitrary symmetric tracefree 3 × 3 matrix, which encodes the W+ part of the
curvature, and is not constrained by the Einstein equations. The constant Λ is a multiple of
the scalar curvature. The equation (5.14) is equivalent to Rµν = Λgµν Einstein condition.

6. Linearised analysis

The purpose of this section is to consider perturbations of SU(2) structures, and construct
the most general diffeomorphism invariant Lagrangian for such perturbations. This linearised
story provides a very good intuition for the non-linear story in the next section.

6.1. Perturbation of a SU(2) structure. The tangent space to the GL(4) orbit of Σi contains
irreducible representations (Λ2 ⊗ E)3+1+9. We can parametrise these spaces as

(Λ2 ⊗ E)1+9 ∋ 2h[µ
αΣi|α|ν], (Λ2 ⊗E)3 ∋ 2ǫijkΣjµνξ

k, (6.1)

with hµν being a symmetric tensor and ξi ∈ E. The role of the numerical factors chosen is to
simplify some formulas that follow. This means that perturbations of Σiµν , which we denote by

δΣiµν := σiµν can be parametrised as

σiµν = 2h[µ
αΣi|α|ν] + 2ǫijkΣjµνξ

k. (6.2)

The inverse is given by

hµν = −
1

2
σi(µ

αΣi|α|ν) −
1

12
ηµνΣ

iρσσiρσ, (6.3)

ξi = −
1

16
ǫijkΣjµνσkµν .
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6.2. Transformation properties under diffeomorphisms. Let us consider a background
of a constant triple of 2-forms Σi. The diffeomorphisms act δXΣ

i = LXΣ
i = iXdΣ

i+ diXΣ
i. In

the case of a constant triple of 2-forms we get δXσ
i = diXΣ

i. In index notation

δXσ
i
µν = 2∂[µX

αΣi|α|ν]. (6.4)

This means that

δXhµν = ∂(µXν), δXξ
i =

1

4
Σiµν∂µXν . (6.5)

6.3. Transformation properties under SU(2). In addition to diffeomorphisms, we can also
consider how quantities transform under the SU(2) transformations that rotate Σi. The infini-
tesimal version of these transformations is

δφσ
i
µν = 2ǫijkΣjµνφ

k. (6.6)

Under these transformations

δφhµν = 0, δφξ
i = φi. (6.7)

6.4. Second order action functional. We now determine the most general diffeomorphism
invariant action functional that can be written in terms of fields hµν and ξi, subject to the
transformation properties (6.5). We first write the general linear combination of all possible
terms. The types of terms are dictated by simple representation theory. First, we can write
the most general linear combination of terms that can be constructed solely from hµν . This is
standard and independent of the dimension. We write this as

ρ

2
(∂µhνρ)

2 +
α

2
(∂µh)

2 − βh∂µ∂νhµν − γ(∂µhµν)
2. (6.8)

We then need to determine all possible terms involving two copies of ξi, as well as hξ terms.
The field hµν lives in S2

+ ⊗ S2
− as well as C∞(M). The field ξi is in S2

+. We have the following
tensor products

(S2
+ ⊗ S2

−)⊗ S2
+ = (S4

+ ⊗ S2
−)⊕ (S2

+ ⊗ S2
−)⊕ S2

−, (6.9)

S2
+ ⊗s S

2
+ = S4

+ ⊕ C∞(M),

where ⊗s means symmetrised tensor product. We need to combine these irreducible pieces with
those arising from the symmetrised product of two partial derivatives, which is in S2

+⊗S2
−⊕C

∞.

This makes it clear that the only term that can be constructed from two copies of ξi is (∂µξ
i)2.

There is also just a single term that can be constructed from hµν and ξi, which is

(∂µhµν)(∂
αξi)Σiα

ν . (6.10)

This gives the following most general Lagrangian

L =
ρ

2
(∂µhνρ)

2 +
α

2
(∂µh)

2 − βh∂µ∂νhµν − γ(∂µhµν)
2 +

λ

2
(∂µξ

i)2 + µ(∂µhµν)(∂
αξi)Σiα

ν .

6.5. Diffeomorphism invariant Lagrangian. We now calculate the effect of a diffeomor-
phism on L, integrating by parts when necessary. We use the symbol ≈ to denote equality
modulo integration by parts. We have

δXL ≈ (ρ− γ +
µ

4
)∂2(∂µhµν)X

ν − (α+ β)∂2h(∂X) + (−β + γ +
µ

4
)(∂X)(∂µ∂νhµν)

−(
λ

4
+
µ

2
)∂2ξiΣiµν∂µXν .

Equating the coefficients in front of the independent terms to zero, and parametrising the
solution by ρ, µ we have

β = −α = ρ+
µ

2
, γ = ρ+

µ

4
, λ = −2µ. (6.11)

The most general diffeomorphism invariant Lagrangian is then

L = ρLGR + µL′, (6.12)
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with

LGR =
1

2
(∂µhνρ)

2 −
1

2
(∂µh)

2 − h∂µ∂νhµν − (∂µhµν)
2, (6.13)

L′ = −
1

4
(∂µh)

2 −
1

2
h∂µ∂νhµν −

1

4
(∂µhµν)

2 − (∂µξ
i)2 + (∂µhµν)(∂

αξi)Σiα
ν .

We note that this is a very similar story to what happens in the case of Spin(7) structures in
eight dimensions, see [4]. In that context, as here, the most general diffeomoprhism invariant
Lagrangian is also given by a linear combination of two terms.

6.6. Lagrangian that is also SU(2) gauge invariant. The Lagrangian (6.12) is diffeomo-
prhism invariant (modulo integration by parts). It is also invariant under global (i.e. rigid)
SO(3) rotations acting on E. However, it is clear that it is possible to demand also local SO(3)
invariance. From (6.7) we see that these transformations act only on ξi. It is clear that the
Lagrangian L′ is not invariant under such local transformations. Therefore, only LGR is both
diffeomorphism and SU(2) gauge invariant. It is therefore to be expected that there exists a
unique non-linear Lagrangian for Σiµν , which is second order in derivatives, and both diffeomor-
phism and SU(2) gauge invariant. We can also expect this non-linear action to have critical
points that are Einstein metrics. This is exactly what happens, as we shall now verify.

7. Action functionals

In preparation to the construction of the action, we will first show that the intrinsic torsion
is completely determined by the exterior derivative dΣi.

7.1. Torsion in terms of dΣi. In (5.1) we have related the torsion Aiµ to the covariant deriv-

ative ∇µΣ
i
αβ of the 2-forms Σi. We now explain that the knowledge of the exterior derivative

is sufficient

Theorem 7.1. The intrinsic torsion is determined by the exterior derivatives of the 2-forms
Σi. Specifically, we have

A =
1

4
(JΣ − I)(∗dΣi), (7.1)

where JΣ is the operator (4.6) and ∗dΣi is the Hodge dual of the 3-form dΣi.

Proof. We project the equation (5.1) to the space of 3-forms, anti-symmetrising over all 3 indices.
We have

∂[νΣ
i
αβ] = −ǫijkAj[νΣ

k
αβ]. (7.2)

We can write this in index-free differential form notations as

dΣi + ǫijkAjΣk = 0. (7.3)

To solve this, we multiply with the ǫ tensor and use the self-duality of Σiµν

ǫµναβ∂νΣ
i
αβ = −2ǫijkAjνΣ

kµν = 2(JΣ(A))
iµ, (7.4)

where JΣ is the operator on Λ1(M)⊗ E that was introduced in (4.6). We can write this in an
index-free way as

∗dΣi = 2JΣ(A). (7.5)

The JΣ operator is invertible, with the inverse given by

J−1
Σ =

1

2
(JΣ − I). (7.6)

This establishes (7.1). �

We have an immediate well-known corollary.

Corollary 7.1. An SU(2) structure is integrable if and only if dΣi = 0.
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7.2. Calculation of A. We can obtain an explicit expression for the intrinsic torsion in terms
of dΣi. We have

(∗dΣ)iµ = ǫµ
αβγ∂αΣ

i
βγ , (7.7)

and

Aiµ =
1

4
(JΣ − I)(∗dΣ)iµ = −

1

4
ǫµ
αβγ∂αΣ

i
βγ +

1

4
ǫijkΣjµ

αǫα
βγδ∂βΣ

k
γδ. (7.8)

We can can simplify the last term using

ǫµνρσΣiασ = 3δ[ραΣ
iµν]. (7.9)

This gives

Aiµ = −
1

4
ǫµ
αβγ∂αΣ

i
βγ −

1

4
ǫijkΣjαβ∂µΣ

k
αβ −

1

2
ǫijkΣjαβ∂βΣ

k
µα. (7.10)

This expression is useful for the action functionals described below.

7.3. Bianchi identity. A useful consequence of (7.3) is obtained by taking its exterior deriva-
tive. We get

ǫijkdAjΣk − ǫijkAjdΣk = 0. (7.11)

We now substitute dΣk from (7.3) as dΣk = −ǫklmAlΣm. We then use AjAl = (1/2)ǫjlsǫspqApAq

to rewrite

ǫijkAjǫklmAlΣm = ǫijk(
1

2
ǫjlmAlAm)Σk. (7.12)

All in all, we get

ǫijkF jΣk = 0, (7.13)

where F i is the curvature

F i = dAi +
1

2
ǫijkAjAk. (7.14)

We note that (7.13) can be interpreted as the statement that there is no S2
+ component in the

decomposition of the F ∈ E ⊗ Λ2 into its irreducible components.

7.4. Transformation properties under diffeomorphisms. Under diffeomorphisms δXΣ
i =

diXΣ
i + iXdΣ

i. We now assume that the intrinsic torsion solves (7.3) and determine how it
transforms under diffeomorphisms. Taking the variation of (7.3) we have

d(iXdΣ
i) + ǫijkδXA

jΣk + ǫijkAj(diXΣi + iXdΣ
i) = 0. (7.15)

We can also insert the vector field X into (7.3) to get

iXdΣ
i + ǫijk(iXA

j)Σk − ǫijkAjiXΣ
k = 0. (7.16)

Substituting iXdΣ
i from here into (7.15) we have

d(ǫijkAjiXΣ
k − ǫijk(iXA

j)Σk) + ǫijkδXA
jΣk + ǫijkAjdiXΣ

k (7.17)

+ǫijkAj(ǫklmAliXΣ
m − ǫklm(iXA

l)Σm) = 0.

The terms in the first line become

ǫijkdAjiXΣ
k − ǫijkd(iXA

j)Σk + ǫijk(iXA
j)ǫklmAlΣm + ǫijkδXA

jΣk, (7.18)

where we have used (7.3) again. The first term in the second line can also be simplified. We
again use AjAl = (1/2)ǫjlsǫspqApAq to get

ǫijkAjǫklmAliXΣ
m = ǫijk(

1

2
ǫjlmAlAm)iXΣ

k. (7.19)

This means that (7.17) can be rewritten as

ǫijkF jiXΣ
k + ǫijk(δXA

j − d(iXA
j))Σk + ǫijk(iXA

j)ǫklmAlΣm − ǫilkAlǫkjm(iXA
j)Σm = 0,
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where we changed the names of the dummy indices suggestively. The last two terms can be
simplified using the identity

ǫijkǫklm + ǫilkǫkmj + ǫimkǫkjl = 0. (7.20)

This gives

ǫijkF jiXΣ
k + ǫijk(δXA

j − d(iXA
j)− ǫjpqAp(iXA

q))Σk = 0. (7.21)

We can finally insert X into (7.13) to rewrite the first term here as −ǫijkiXF
jΣk. Overall,

this produces terms that are all of the type of operator JΣ acting on an E-valued 1-form. The
operator JΣ is invertible, which allows us to write

δXA
i = d(iXA

i) + ǫijkAj(iXA
k) + iXF

i. (7.22)

The first two terms here assemble into the covariant derivative of iXA
i computed using the

connection Ai. The last term is the insertion of X into the curvature F i. This is of course as
expected, because using the formula for F i and noting a cancelation this can be rewritten as

δXA
i = diXA

i + iXdA
i. (7.23)

This confirms that the torsion transforms covariantly under diffeomorphisms, and gives a very
useful formula (7.22).

7.5. Transformation properties under SU(2) gauge transformations. Let us also deter-
mine how the torsion transforms under the local SU(2) gauge transformations δφΣ

i = ǫijkφkΣk.
Taking the variation of (7.3) we have

d(ǫijkφjΣk) + ǫijkδφA
jΣk + ǫijkAjǫklmφlΣm = 0. (7.24)

The first term gives a contribution containing dφi, as well as one with dΣi. The latter can be
transformed using (7.3). This gives

ǫijk(δφA
j + dφj)Σk + ǫijkAjǫklmφlΣm − ǫijkφjǫklmAlΣm = 0. (7.25)

The last two terms can again be transformed using (7.20). This puts all terms in the same form
of JΣ acting on an E-valued 1-form. Because JΣ is invertible we get

δφA
i = −dφi − ǫijkAjφk, (7.26)

which is the usual gauge transformation with parameter −φi. This implies that the curvature
F i transforms covariantly

δφF
i = ǫijkφjF k. (7.27)

7.6. Diffeomorphism invariant action. We have confirmed that the torsion transforms co-
variantly under diffeomorphisms. This means that any action that is schematically of the type
∫

A2 is diffeomorphism invariant. Now, the representation theoretic decomposition (4.9), (4.10)
of A ∈ Λ1 ⊗ E shows that there are two irreducible components of the intrinsic torsion. This
means that there are only two quadratic invariants that can be constructed from A. One can
always take as a basis of such invariants the quantities (Aiµ)

2 and AiµJΣ(A)
iµ. It can be con-

firmed that the linearisation of this general diffeomorphism invariant action coincides with the
linearised action (6.12). This establishes that the most general diffeomorphism invariant action
for Σ, which is second order in derivatives and is also invariant under global SO(3) rotations of
Σ, is given by a linear combination of

∫

(Aiµ)
2 and

∫

AiµJΣ(A)
iµ.
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7.7. Diffeomorphism and SU(2) invariant action. Let us now impose the requirement that
the action is both diffeomorphism and SU(2) gauge invariant. At the linearised level, we have
seen that this has the effect that only one of the two diffeomorphism invariant terms survives,
and one gets linearised Einstein-Hilbert action. It is clear that from the two terms A2 and
AJΣ(A) the first one is not gauge invariant. Using physics terminology, this term is a mass
term for the connection, which cannot be gauge invariant. Let us discuss the other term. We
claim that it is both diffeomorphism and SU(2) invariant. To see this, it is best to rewrite it
using some integration by parts identities. Consider

∫

ΣidAi. Integrating by parts we have
∫

ΣidAi ≈ −

∫

dΣiAi = −

∫

ǫijkAiAjΣk. (7.28)

In the last equality we have used (7.3). The quantity on the right-hand side is a multiple of
AJΣ(A). This means that

∫

ΣiF i =

∫

Σi(dAi +
1

2
ǫijkAjAk) ≈ −

1

2

∫

ΣiǫijkAjAk. (7.29)

The integrand on the left is built from objects that transform covariantly under local SU(2)
gauge transformations and is invariant under them. The integral is then both diffeomorphism
and gauge invariant. This means that this is also the case for the object on the left-hand side.
This establishes that there is unique action for SU(2) structures in dimension four that is both
diffeomorphism and SU(2) gauge invariant. It is of the schematic type torsion squared, and is
given by

S[Σ] = −
1

2

∫

M

ΣiǫijkAj(Σ)Ak(Σ), (7.30)

where we now indicated that the connection (intrinsic torsion) is determined by Σ. This is
the action described in the Introduction, see (1.9). Our discussion above makes it clear that
the action (7.30) is ”the best” second order in derivatives action that can be written for SU(2)
structures. It is the best action because it is the unique action that in addition to diffeomorphism
invariance also possesses SU(2) gauge invariance. As we shall see below, it is also best in the
sense that its critical points are Einstein. One can substitute the expression for A(Σ) given by
(7.10) to obtain a second order in derivatives action for Σ.

7.8. Plebanski action and Einstein condition. We can now discuss the Plebanski action,
which is a first-order in derivatives version of (7.30). The idea is to write an action that is
a functional of both Σi and an independent E-valued one-form field Ai, such that the Euler-
Lagrange equations for Ai coincide with (7.3). A moment of reflect shows that this action is
∫

ΣiF i. This action is then to be supplemented by the constraint terms that guarantee that
Σi satisfy their algebraic constraints. One is also free to add to this action the volume term
with an arbitrary coefficient. This produces the action known in the literature as the Plebanski
action [7]. It is given by

S[Σ, A,Ψ] =

∫

M

Σi(dAi +
1

2
ǫijkAjAk)−

1

2

(

Ψij +
Λ

3
δij

)

ΣiΣj. (7.31)

Here Ψij is an arbitrary traceless symmetric 3× 3 matrix, whose components serve as Lagrange
multipliers to impose the constraints ΣiΣj ∼ δij . Indeed, the variation with respect to the field
Ψij gives ΣiΣj ∼ δij , which are the algebraic conditions that need to be satisfied by an SU(2)
structure defining 2-forms Σi. It is also not difficult to see that its Euler-Lagrange equation
arising by varying with respect to Ai is precisely (7.3), and the Euler-Lagrange equation arising
by varying with respect to Σi is precisely (5.14).

This establishes the following

Theorem 7.2. The critical points of (7.30), or equivalently of (7.31) are SU(2) structures whose
associated metric is Einstein.
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