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Abstract

Background: Magnetic resonance imaging (MRI) offers excellent soft tissue
contrast essential for diagnosis and treatment, but its long acquisition times
can cause patient discomfort and motion artifacts.

Purpose: To propose a self-supervised deep learning-based compressed sens-
ing MRI (DL-based CS-MRI) method named “Self-Supervised Adversarial Dif-
fusion for MRI Accelerated Reconstruction (SSAD-MRI)” to accelerate data
acquisition without requiring fully sampled datasets.

Materials and Methods: We used the fastMRI multi-coil brain axial T2-
weighted (T2-w) dataset from 1,376 cases and single-coil brain quantitative
magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE) T1

maps from 318 cases to train and test our model. Robustness against domain
shift was evaluated using two out-of-distribution (OOD) datasets: multi-coil
brain axial postcontrast T1-weighted (T1c) dataset from 50 cases and axial T1-
weighted (T1-w) dataset from 50 patients. Data were retrospectively subsam-
pled at acceleration rates R ∈ {2×, 4×, 8×}. SSAD-MRI partitions a random
sampling pattern into two disjoint sets, ensuring data consistency during train-
ing. We compared our method with ReconFormer Transformer and SS-MRI, as-
sessing performance using normalized mean squared error (NMSE), peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM). Statistical tests
included one-way analysis of variance (ANOVA) and multi-comparison Tukey’s
Honesty Significant Difference (HSD) tests.

Results: SSAD-MRI preserved fine structures and brain abnormalities visually
better than comparative methods at R = 8× for both multi-coil and single-coil
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datasets. It achieved the lowest NMSE at R ∈ {4×, 8×}, and the highest PSNR
and SSIM values at all acceleration rates for the multi-coil dataset. Similar
trends were observed for the single-coil dataset, though SSIM values were com-
parable to ReconFormer at R ∈ {2×, 8×}. These results were further confirmed
by the voxel-wise correlation scatter plots. OOD results showed significant (p
≪ 10−5) improvements in undersampled image quality after reconstruction.

Conclusions: SSAD-MRI successfully reconstructs fully sampled images with-
out utilizing them in the training step, potentially reducing imaging costs and
enhancing image quality crucial for diagnosis and treatment.

keywords: k -space sampling, fastMRI, accelerated MRI, reconstruction, adap-
tive partitioning

1 Introduction

Magnetic Resonance Imaging (MRI) provides excellent soft tissue contrast, playing a
vital role in diagnosis, treatment, and follow-up. However, prolonged acquisition times
can lead to patient discomfort and increase the likelihood of motion artifacts, which
compromise image quality. Additionally, the requirement for highly sampled k-space
data to achieve high-resolution MRI images inherently extends acquisition times, re-
ducing imaging throughput and limiting patient access to MRI services. This issue is
particularly significant in low- and middle-income countries, where the recent Lancet
Oncology Commission highlighted severe shortages of MRI and other medical imag-
ing devices, potentially resulting in 2.5 million preventable deaths worldwide [1, 2].
Globally, only about seven MRI scanners are installed per million people, largely due
to the high costs of installation, operation, and maintenance. Therefore, developing
techniques that can accelerate MRI acquisition without sacrificing image quality is
crucial for improving accessibility, reducing operational costs, and enhancing patient
care worldwide [3].

The MRI acquisition can be accelerated by reducing the sampled k -space data, but
this is limited by the Nyquist criteria. Compressed sensing (CS) and parallel imaging
(PI) techniques aim to recover fully sampled images from under-sampled images by
exploiting data in a sparse transformed space and redundant data acquired using
uncorrelated radiofrequency coils, respectively [4, 5]. However, at high acceleration
rates, PI and CS methods suffer from noise amplification [6] and residual artifacts [7],
respectively.

Deep learning (DL) algorithms have been extensively used to reconstruct accel-
erated high-resolution MRI images. DL-based compressed sensing MRI (CS-MRI)
approaches often blend data-driven learning with physics-guided modeling [8]. Data-
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driven methods focus on learning mappings from under-sampled k-space data to fully-
sampled images or k -space representations [9, 10, 11, 12], while physics-guided meth-
ods incorporate knowledge of the MRI acquisition process, such as coil sensitivity
profiles and under-sampling patterns, to enforce data consistency and address the
ill-posed nature of the inverse problem.

Many state-of-the-art methods integrate both approaches, leveraging the strengths
of data-driven learning and physics-based constraints. For instance, unrolled opti-
mization methods [13, 14, 15] mimic iterative reconstruction algorithms by alternating
between data consistency enforcement and learned regularization in a fixed number
of iterations. These methods often incorporate data consistency layers (DC layers)
within deep neural networks to ensure that the reconstructed images adhere to the
acquired k-space measurements [16, 17, 18].

Classic works such as Deep ADMM-Net [19] and the variational network [20] exem-
plify this integration by unrolling iterative algorithms and embedding physics-based
constraints within DL frameworks. Similarly, approaches like deep density priors [21]
and deep Bayesian estimation [22, 23] combine data-driven learning with probabilistic
modeling to capture complex image priors while respecting the underlying physics of
MRI acquisition.

These methods are typically trained under supervised frameworks where the ref-
erence fully sampled images were utilized to train a model. However, obtaining the
fully sampled images might be impractical in imaging scenarios such as cardiovascu-
lar MRI due to excessive involuntary movements, or diffusion MRI with echo planar
imaging due to quick T2* signal decay [24]. Additionally, acquiring high-resolution
anatomical brain MRI images can be prohibitively long.

In this study, we propose an self-supervised adversarial diffusion model to re-
construct fully sampled images without requiring them in the training step. Our
proposed SSAD-MRI model is based on an adversarial mapper to reconstruct fully
sampled MRI images. Our proposed method was evaluated using both single-coil and
multi-coil MRI data, as well as two out-of-distribution (OOD) datasets. Our method
leverages a recently proposed ReconFormer transformer [25] as a generator and is
compared with two state-of-the-art models. Our contributions are as follows:

• To our knowledge, SSAD-MRI is the first study proposing a self-supervised
method using an adversarial mapper.

• The proposed method performs the backward diffusion process in smaller steps
that improve sampling efficiency.

• The proposed method’s robustness against domain shift was evaluated at the
test time,
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• To our knowledge, It is the first self-supervised method aimed at reconstructing
fully sampled quantitative magnetization prepared 2 rapid acquisition gradient
echoes (MP2RAGE) T1 map,

2 Materials and Methods

2.1 Compressed sensing MRI

Let Y ∈ CN denote the observed subsampled k -space measurement corresponding
to the subsampled image y ∈ CN , while x ∈ CM represents the unobserved fully
sampled data. Hereafter, we adopt the convention that lowercase letters denote data
in the image domain, whereas uppercase letters represent data in the Fourier (k -space)
domain. The compressed sensing formulation is expressed as follows:

Y = AΩx + δ (1)

where δ ∈ CN is the additive acquisition noise and AΩ ∈ CN×M → CN give N ≪ M
represents the encoding operator. AΩ is composed of a coil sensitivity map S, a
Fourier transform F , and a sampling map with the specified pattern Ω controlling
the acceleration rate (R). The mathematical expression for the encoding operator
is AΩ = Ω ⊙ F ⊙ S. The MRI reconstruction is formulated as an unconstrained
optimization problem as follows [15, 18, 26],

arg min
x,φ

∥ x− fSSAD-MRI(y | φ) ∥22 +λ ∥ Y −AΩx ∥22 (2)

where fSSAD-MRI represents our proposed model parametrized by φ. The first and
second terms represent the regularization and data consistency, and λ > 0 is a scalar
regularization weight that balances between the data consistency and regularization
terms.

2.2 Diffusion model

The diffusion model inspired by nonequilibrium thermodynamics aims to approximate
complex and intractable distributions with a tractable one like normal Gaussian [27].
It consists of two process: the forward process and the reverse process.

Forward process:

The forward process utilizes a noise scheduler to add Gaussian noise to the noise-
free y0 using a first-order Markov process q(yt|yt−1) in a large number of steps T ,
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eventually converting yT to a normal multivariate Gaussian yT ∼ N (yT ; 000, I). This
step employs the first-order Markov process to calculate q(yt|yt−1) as follows [28]:

yt =
√

1 − βtyt−1 +
√

βtϵ

q(yt | yt−1) = N (yt;
√

1 − βtyt−1, βtI)
(3)

where ϵ ∼ N (ϵ; 000, I) and βt ∈ (0, 1) with β1 = 10−4 is the noise variance. Assuming
additive Gaussian noise, sampling yt in an arbitrary step t can be calculated in closed
form as follows:

q(yt | y0) = N (yt;
√
ᾱty0, (1 − ᾱt)I) (4)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs.

Reverse process:

The reverse process gradually learns to remove the added noise in yT to recover noise-
free y0. This process of training a network pφ to generate y0 from Gaussian noise yT .
The reverse process will follow the forward process trajectories but in the reverse
direction for small β values as follows [27, 29, 30]:

arg min
φ

T∑
t=2

Eq(yt|y0) [DKL (q(yt−1 | yt, y0) ∥ pφ(yt−1 | yt))] (5)

This is a denoising matching term where it learns the desired denoising transition
step pφ(yt−1 | yt) as an approximator to tractable, ground-truth denoising transition
step q(yt−1 | yt, y0) given in (6), where it is modeled as a Gaussian.

q(yt−1 | yt, y0) = N (yt−1;µq(yt, y0), σq(t)I)

µq(yt, y0) =

√
αt(1 − ᾱt−1)yt +

√
ᾱt−1y0

1 − ᾱt

σq(t) =
(1 − αt)(1 − ᾱt−1)

1 − ᾱt

(6)

Furthermore, all the α terms are frozen at each timestep, it was shown that the
loss function given in (5) becomes as follows:

 L = arg min
φ

1

2σ2
q (t)

[
∥ µq(yt, y0) − µφ(yt) ∥22

]
(7)

where µφ(yt) is the estimated average recovered image as follows:

5



µφ(yt) =

√
αt(1 − ᾱt−1)yt +

√
ᾱt−1yφ(yt)

1 − ᾱt

(8)

where yφ(yt) is parameterized by our DL model to recover y0 from noisy image yt at
a given step t.

We employed an adversarial mapper to implicitly capture the conditional dis-
tribution for the reverse process steps. The generator fSSAD-MRI is used to sample
ŷt ∼ pφ(yt | yt+k). At the same time, a discriminator Dθ differentiates between sam-
ples ŷt and actual sample yt sampled from the true denoising distribution q(yt | yt+k).
Our discriminator was coupled with a gradient penalty to improve learning [16, 30]:

To improve the efficiency of modeling the reverse diffusion process, we propose an
adversarial mapper that implicitly learns the conditional distribution between time
steps without the need for an explicit formulation. This mapper consists of a generator
and a discriminator that train simultaneously. The generator, denoted as fSSAD-MRI, is
designed to estimate the conditional distribution pφ(yt | yt+k) by generating samples
ŷt that closely approximate the true intermediate states yt, given the future states
yt+k. This process effectively facilitates the mapping from yt+k back to yt.

The discriminator, represented as Dθ, is trained to differentiate between the out-
puts produced by the generator, denoted as ŷt, and the true samples yt drawn from
the denoising distribution q(yt | yt+k). Its purpose is to evaluate the authenticity
of the generated samples and provide essential feedback to the generator, thereby
improving its capability to produce realistic approximations of yt.

The adversarial training process is formulated as a minimax optimization between
the generator and the discriminator. The generator aims to produce samples that the
discriminator cannot distinguish from real data, while the discriminator strives to
accurately classify the generated samples as synthetic and the true samples as real.
To stabilize the training and promote convergence, we incorporate a gradient penalty
term into the discriminator’s loss function. This penalty enforces smoothness in the
discriminator’s output with respect to its input. The gradient penalty is formulated
following techniques proposed in recent studies [16, 30], thereby bolstering learning
efficiency and improving the model’s robustness.

LD =
∑
t≥0

(Eq(y0,yt)Eq(yt+k|yt) [− log (Dθ(yt, yt+k))]

+ Eq(yt+k)ENφ(µφ,σφ) [− log(1 −Dθ(ŷt, yt+k))]

+ Eq(y0,yt)Eq(yt+k|yt)

[
1

2
∥ ∇ytDθ(ŷt, yt+k) ∥22

]
)

(9)

where Nφ(µφ, σφ) is our generator parameterized by φ to reconstruct mean and vari-
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ance. The generator loss becomes:

LG =
∑
t≥0

Eq(yt+k)ENφ(µφ,σφ) [− log(Dθ(yt, yt+k))] (10)

2.3 Proposed self-supervised framework and training details

Acquiring fully sampled data can be impractical due to constraints such as voluntary
and involuntary motions, lengthy acquisition times, and signal decay. These con-
straints hinder the application of supervised DL-based CS-MRI approaches. Thus,
we proposed a self-supervised approach that randomly divided the sampling pattern
Ω into two sets ℵ and Υ as given in (11). These two sets have no elements in common
except the center of k -space.

Ω = ℵ ∨ Υ (11)

We used an under-sampling pattern ℵ to train our proposed model and define our
DC layer as follows.

Ŷ SSAD-MRI
t (k) =

{
Ŷ SSAD-MRI
t (k), if k ∈ ℵ
X(k), if k /∈ ℵ (12)

where capital letters refer to the Fourier transform of the corresponding parameters.
In other words, our method updates the k -space lines that were under-sampled and
keeps the original k -space lines that were not sampled during image acquisition.

Finally, our proposed method defined the loss function given in (7) using a sam-
pling pattern Υ as follows:

 LΥ = arg min
φ

1

2σ2
q (t)

(1 − αt)
2

(1 − ᾱt)αt

[
∥ ϵ− ϵ̂Υφ (yt) ∥22

]
(13)

The final loss function is composed of discriminator loss, generator loss, and re-
construction loss as follows:

Lfinal =  LΥ + λ(LD + LG) (14)

where λ = 0.1 was used to scale and control the ratio between the losses. Our
proposed method used the indices specified by ℵ to reconstruct k -space at indices
given by Υ. Figure 1 illustrates the flowchart of our proposed method. Then the
loss function was calculated at the location indicated by the Υ pattern. In other
words, our self-supervised network was trained to decrease the discrepancy between
the predicted images yℵ and the acquired measurement yΥ that was not seen in the
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training. At the inference step, the test unseen under -sampled data using a sampling
pattern Ω was used to reconstruct the fully sampled data.

This self-supervised scenario is similar to the cross-validation concept used to
reduce bias and the likelihood of overfitting. Cross-validation partitions the dataset
into at least two sets where one set is used to train a model and another set is used
to evaluate the model. However, unlike cross-validation in machine learning, which
performs partitioning once for all data, our method performs random partitioning per
image slice.

In the inference step, we did not start from complete noise. Instead, we set the
Gaussian noise covariance to 0.1 and then used them directly as initial inputs. This
approach has been previously employed to reconstruct high-resolution MR images
from under-sampled k -space data and remove MRI motion artifacts [31, 32].

We used the original implementation of the recently proposed transformer, named
ReconFormer∗, as a generator. It incorporates the pyramid structures, enabling scale
processing at each pyramid unit, while the globally columnar structure maintains
high-resolution information [25]. The discriminator consisted of four convolution
layers with kernel size (3 × 3) and padding one. Each convolution layer was followed
by a ReLu activation layer and a batch normalization layer.

Our proposed method was trained using the Adam optimizer with a learning rate
of 2 × 10−4 to minimize the loss function, employing a batch size of four over 25
epochs. Training was performed on our server using a single NVIDIA A100 GPU
with CUDA Toolkit 12.2 and the PyTorch framework version 2.1.2 [33]. The total
training time was approximately 175 hours. The inference time for reconstructing a
single image slice was about 14 seconds. While we used an A100 GPU for training,
the model can also be trained on GPUs with less memory, such as an NVIDIA RTX
3090, by adjusting the batch size to accommodate the available GPU memory.

2.4 Sampling masks

We employed a 1d random sampling pattern Ω where the k -space center was excluded
from sampling.The center fraction excluded from sampling was set to 4% of the k -
space lines in the horizontal direction. Our proposed SSAD-MRI divides the acquired
sampling mask Ω into two disjoint sets ℵ and Υ with except four k -space lines at the
center of dataset. Figure S1 in the supplementary document presents the Ω, ℵ, and
Υ sampling masks across different values of ρ ∈ 0.3, 0.5, 0.7 with a fixed acceleration
rate of R = 4×.

The sampling pattern Υ was randomly sampled for each different slice to train the
model. Therefore, our subsampled data using Υ will be able to simulate the ghosting

∗https://github.com/guopengf/ReconFormer
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Figure 1: The flowchart of our proposed self-supervised adaptive diffusion model
is illustrated. The coil sensitivity S, random sampling mask Ω, and k -space were
illustrated as inputs. Firstly, the random sampling pattern Ω is divided into two
non-overlapping sampling masks ℵ and Υ that were used in the training path and
loss path as given in (13), respectively. Then, the adversarial mapper was trained as
given in (9) and (10) using the data sampled in step t + k. The sample yt+k used to
recover ŷ0 where was used to calculate ŷt in a given step t Equation (4).

that is present in zero-filled datasets retrospectively subsampled using Ω masks. We
investigated a uniformly random selection among elements of Ω to create subsampled
patterns ℵ and Υ. The sampling ratio ρ = |ℵ|

|Υ| ∈ {0.3, 0.5, 0.7} was used to train

and test the proposed model, where | • | is the number of elements. In other words,
ρ = 0.3 means 30% of Ω was randomly assigned to ℵ to train the model and the rest
were assigned to Υ sampling pattern to define loss function as given in Equation (13).

2.5 Dataset

We utilized publicly available single-coil and multi-coil brain MRI datasets. Both
datasets were retrospectively under-sampled using a random sample provided in the
fastMRI database, with acceleration rates (R) equal to 2, 6, and 8 [34, 35].
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2.5.1 Single-coil data:

The brain MPI-Leipzig Mind-Brain-Body dataset [36, 37] was used to train and test
our proposed model. We utilized high-resolution MP2RAGE T1 maps of 318 patients
that were split into two non-overlapping sets: training (250 patients) and testing (68
patients). The sagittal acquisition orientation of volumetric MP2RAGE T1 maps
with 176 slices were acquired with the imaging parameters: TR = 5000 ms, TR =
2.92 ms, TR = 700 ms, TI2 = 2500 ms, FA1 = 4◦, FA2 = 5◦, pre-scan normalization,
echo spacing = 6.9 ms, bandwidth = 240 Hz/pixel, FOV = 256 mm, voxel size = 1
mm isotropic, GRAPPA acceleration factor = 3, slice order = interleaved, duration
= 8 min 22 s.

2.5.2 Multi-coil data:

The brain datasets used in the preparation of this article were obtained from the
NYU fastMRI Initiative database† that was approved by the NYU School of Medicine
Institutional Review Board [34, 35]. We utilized T2-weighted (T2-w) images of 1051
patients’ data for training and 325 patients’ unseen data for testing. In addition, we
evaluated the robustness of our model to domain shift using two out-of-distribution
(OOD) unseen datasets, T1-weighted (T1-w) and postcontrast T1-w (T1c), using 50
patients’ data for each MRI sequence.

The sensitivity maps S were generated from 24 × 24 center of k -space using ES-
PIRiT ‡ [38] with a kernel size 6 × 6 and the calibration matrix and eigenvalue
decomposition threshold 0.02 and 0.95, respectively.

2.6 Quantitative analysis

To evaluate the performance of the proposed SSAD-MRI model, we compared it
against two benchmark models: SS-MRI [39] and ReconFormer [25], which were
trained under our proposed sampling approach.

Three quantitative metrics were employed: normalized mean square error (NMSE),
peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM), utilizing
the PyTorch Image Quality library § [40]. The NMSE compared reconstructed ŷ with
ground truth y as follows:

NMSE(y, ŷ) =
∥ y − ŷ ∥22
∥ y ∥22

(15)

†fastmri.med.nyu.edu
‡https://mrirecon.github.io/bart/
§https://piq.readthedocs.io/en/latest/index.html
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where ∥ • ∥2 is the squared Euclidean distance. Lower NMSE values indicate better
image reconstruction. However, it might be in favor of blurry images [34].

The PSNR defined below utilizes a logarithmic scaling that makes the quantifica-
tion results more aligned with human perception [41].

PSNR(y, ŷ) =
y2max

1
N

∑N
i=1(yi − ŷi)2

(16)

where ymax is the maximum signal intensity of ground truth images. Higher PSNR
indicates better image reconstruction.

The SSIM quantifies the structural similarity between the reconstructed ŷ and
ground truth y is defined as follows:

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ2

ŷ + c1)(σ2
y + σ2

ŷ + c2)
(17)

where µy and µŷ are the average voxel values of y and ŷ images, σy σŷ are the variance,
and σyŷ is the covariance between y and ŷ images. The constants c1 and c2 stabilize
the division, we used c1 = 0.01ymax and c2 = 0.03ymax. SSIM ranges between -1 and
+1, with the best similarity achieved by an SSIM equal to +1.

2.7 Statistical analysis

The quantitative metrics were compared using one-way analysis of variance (ANOVA)
to evaluate the null hypothesis that the mean values of each method were the same.
The differences with p < 0.05 was considered statistically significant. Additionally,
a multi-comparison Tukey’s honestly test difference (HSD) was performed to eval-
uate pairwise differences between the methods, with p < 0.05 indicating statistical
significance.

We reported the average values of the quantitative metrics. In addition, we cal-
culated the 95% confidence intervals (CIs) on the average values using the percentile
bootstrap method (with n = 10000 iterations) with the bias-adjusted and accelerated
bootstrap method [42].

3 Results

In this section, we present the comprehensive evaluation of our proposed SSAD-MRI
model for MRI reconstruction. The results are organized to highlight the model’s
performance across different datasets and under various conditions.
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We assess the within-domain multi-coil T2-w reconstruction and single-coil MP2RAGE
T1 map reconstruction capabilities of SSAD-MRI using both qualitative and quan-
titative metrics. The model’s ability to preserve fine structures and reduce artifacts
is demonstrated through visual comparisons and statistical analysis. The impact of
loss mask partitioning on the performance of the proposed method is demonstrated.

We also evaluate the robustness of SSAD-MRI against domain shifts using OOD
datasets. This analysis illustrates the model’s adaptability to new and unseen data.

3.1 Within-domain reconstruction

Our proposed SSAD-MRI was evaluated for within-domain reconstruction at R = 2×,
4×, and 8× with a partitioning rate ρ = 0.5. We conducted both qualitative and
quantitative comparisons with the ReconFormer Transformer and SS-MRI models.

3.1.1 Qualitative Results

Multi-coil dataset: Figures 2 and S2 present the qualitative results of within-
domain T2-w multi-coil images for two subjects. Figure 2(a) shows results for a
healthy volunteer, highlighting that our method recovers more details, particularly
in the gold boxed regions, compared to the ReconFormer model trained with our
framework. Difference maps in Figure 2(b) illustrate that our method better preserves
gray matter and edges, indicated by the gold and red boxes.

Figure S2 displays results for a patient with brain abnormalities. Our proposed
method could recover the abnormality boundary shown by a red box close to the
ground truth. Furthermore, our method reconstructed details better (gold boxes)
compared with the SS-MRI method.

Single-coil dataset: Figure 3 presents the qualitative results for high-resolution
single-coil MP2RAGE T1 quantitative map for a healthy volunteer at R = 2×, 4×,
and 8× with a partitioning rate ρ = 0.5. Our method could preserve the small
structure shown by gold boxes as well as the Putamen and Caudate nuclei shown
by red boxes with better spatial contrast than the comparative models, as shown in
Figure 3(a) and the difference map shown in Figure 3(b).

3.1.2 Quantitative Results

Tables 1 and 2 summarize the quantitative metrics for multi-coil and single-coil
datasets, respectively, at different acceleration rates. The ANOVA test indicated
statistically significant differences (p ≪ 10−5) between the average values of the
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Figure 2: Within-domain axial T2-w image reconstruction at R = 2×, 4×, and 8×
and ρ = 0.5 are illustrated. (a) illustrates the results for a healthy subject and (b)
illustrates the difference map between the reconstructed and ground truth images.
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Figure 3: Reconstruction of within-domain MP2RAGE T1 quantitative maps at ac-
celeration factors R ∈ {2×, 4×, 8×} with ρ = 0.5. (a) Reconstructed images for a
representative subject. (b) Corresponding pixel-wise difference maps between the re-
constructed images and the ground truth images.14



methods. The results of the Tukey’s HSD multi-comparison are presented in the text
and tables.

Multi-coil dataset: The quantitative results are listed in Table 1 at R = 2×,
4×, and 8× and ρ = 0.5. The ANOVA test indicated p ≪ 10−5 for all metrics
indicating that there are statistically significant differences between average values.
Our method got the lowest NMSE for all acceleration rates except for R = 2× and
R = 4×. The ReconFormer method achieved the lowest NMSE value at R = 2×,
nonetheless, it was not statistically significantly different from our method (p = 0.65).
Although our method achieved the lowest NMSE value for R = 8×, but it was not
statistically significantly different from ReconFormer (p = 0.83). Our proposed self-
supervised method achieved the highest PSNR and SSIM values for all acceleration
rates, demonstrating the lowest remaining spatial distortion, like ghosting, and the
highest structural similarities between the ground truth and reconstructed images,
respectively.

Single-coil dataset: The quantitative metrics for the within-domain single-coil
high-resolution MP2RAGE T1 map are summarized in Table 2. One-way ANOVA
tests indicated significant differences (p ≪ 10−5) between methods for all metrics.
Tukey’s HSD test confirmed that SSAD-MRI performed significantly better than
comparative methods for most metrics. Our method achieved the lowest NMSE values
that were statistically different from the comparative methods for all acceleration
rates except with R = 2 where our method achieved a performance that did differ
statistically significant (p-value = 0.97) from ReconFormer. Our method achieved the
highest PSNR values for all acceleration rates that were statistically significantly (p
< 0.05) from comparative methods. Furthermore, our proposed method achieved the

Table 1: Within-domain performance for multi-coil axial T2-w fastMRI at R ∈
{2×, 4×, 8×} and ρ = 0.5 are provided. The arrows indicate directions of better
performance.

Zero filled Reconformer SS-MRI Ours
2× 14.99 (12.95 - 17.14) 0.47 (0.45 - 0.50)∗ 0.52(0.50 - 0.56)∗ 0.51 (0.48 - 0.54)
4× 26.38 (24.43 - 28.41) 1.51 (1.42 - 1.64) 4.87 (4.76 - 4.98) 1.26 (1.18 - 1.35)NMSE (95% CI) [%] ↓
8× 30.78 (28.49 - 33.11) 3.34 (3.14 - 3.63)∗ 5.16 (5.06 - 5.26) 3.26 (3.08 - 3.51)
2× 17.75 (17.64 - 17.86) 38.80 (38.65 - 38.96) 39.05 (38.90 - 39.20) 39.93 (39.78 - 40.09)
4× 17.64 (17.53 - 17.77) 34.23 (34.10 - 34.37) 27.93 (27.79 - 28.06) 35.44 (35.31 - 35.58)PSNR (95% CI) [dB] ↑
8× 18.75 (18.62 - 18.87) 27.54 (27.43 - 27.65) 30.65 (30.52 - 30.76) 31.67 (31.55 - 31.79)
2× 81.53(81.06 - 81.98) 96.10(96.02 - 96.17) 96.33 (96.15 - 96.49) 98.14 (98.06 - 98.21)
4× 70.89(70.44 - 71.36) 93.36(93.19 - 93.51) 76.72 (76.32 - 77.15) 95.55 (95.38 - 95.69)SSIM (95% CI) [%] ↑
8× 65.17(64.65 - 65.68) 89.72 (89.49 - 89.93) 77.01 (76.63 - 77.39) 91.67 (91.45 - 91.89)

∗ indicates p-value > 0.05 of Tukey’s HSD.
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highest SSIM at R = 4× that differed statistically significantly higher (p < 0.05) than
the other methods. Nonetheless, our method and ReconFormer performed similarly
in terms of the SSIM index at R = 2× and 8× with p of 0.15 and 0.61, respectively.

Table 2: Within-domain performance for single-coil high resolution MP2RAGE T1
map at R ∈ {2×, 4×, 8×} and ρ = 0.5 are provided. The arrows indicate directions
of better performance.

Zero filled Reconformer SS-MRI Ours
2× 15.37 (13.46 - 17.49) 0.53 (0.52 - 0.55)∗ 5.18 (4.97 - 5.40) 0.56 (0.54 - 0.57)
4× 22.43 (20.65 - 24.33) 2.04 (1.99 - 2.09) 8.75 (8.36 - 9.18) 1.87 (1.82 - 1.93)NMSE (95% CI) [%] ↓
8× 33.17 (31.79 - 34.72) 3.99 (3.90 - 4.10) 10.76 (10.42 - 11.13) 3.65 (3.56 - 3.75)
2× 15.46 (15.39 - 15.53) 35.42(35.31 - 35.53) 23.07(22.98 - 23.16) 36.15(36.03 - 36.26)
4× 15.35 (15.28 - 15.43) 29.46(29.37 - 29.56) 21.31(21.21 - 21.40) 30.51(30.42 - 30.61)PSNR (95% CI) [dB] ↑
8× 16.31 (16.23 - 16.40) 26.54(26.45 - 26.65) 20.75(20.66 - 20.85) 27.94(27.84 - 28.04)
2× 73.83(73.43 - 74.21) 95.75(95.68 - 95.81)∗ 85.12(84.57 - 85.65) 95.31(95.25 - 95.38)
4× 68.62(68.29 - 68.94) 89.11(88.96 - 89.26) 80.47(80.06 - 80.89) 89.80(89.63 - 89.95)SSIM (95% CI) [%] ↑
8× 66.13(65.83 - 66.42) 84.55(84.32 - 84.78)∗ 77.17(76.75 - 77.62) 84.77(84.53 - 84.99)

∗ indicates p-value > 0.05 of Tukey’s HSD.

3.1.3 Voxel-wise correlation

We visualized the scatter plot for 80 randomly selected within-domain multi-coil and
single-coil data to visualize and quantify the agreement between reconstructed images
at R = 8× and ρ = 0.5 with the ground truth reference images (see Figure S3). For
the single-coil dataset, our method reconstructed images shown in Figure S3(c) with
better conformity with the references markedly better than SS-MRI shown in Figure
S3(a) and comparable to ReconFormer shown in Figure S3(b). The same results were
achieved for multi-coil data where the SS-MRI performed better than itself trained
using the single-coil dataset. Still there is a noticeable gap between our proposed (see
Figure S3(f)) method and SS-MRI (see Figure S3(d)). Furthermore, ground truth
voxel-wise shown in Figure S3(e) and (f) confirms that our method might be able to
generate images that are more similar to the ground truth.

3.1.4 Effect of Sampling Mask Ratio

Our proposed method split the sampling mask Ω randomly into two non-overlapping
masks ℵ and Υ, which were used in train and loss paths, respectively (see Figure 1).

The ratio ρ = |ℵ|
|Υ| plays a role in the network’s performance. We trained and tested

the network for varying ρ ∈ {0.3, 0.5, 0.7} (see Figure S1 in the supplementary for the
sampling masks). The effect of network training with different ρs on the quantitative
metrics NMSE, PSNR, and SSIM are shown in Figure S4 at three acceleration rates
R ∈ {2, 4, 8} that were acquired using multi-coil axial T2-w images. Our method
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achieved better performance at ρ = 0.5 in terms of PSNR and SSIM at R = 2× and
R = 4×. However, it performed similarly to ρ = 0.7 at R = 8×. Furthermore, NMSE
metrics indicate that our method achieved the best performance when trained using
ρ = 0.5 than other splitting ratios ρ ∈ {0.3, 0.7}.

3.2 Out-of-domain reconstruction

We evaluated our model performance in OOD reconstructions where our proposed
method was trained using multi-coil axial T2-w fastMRI images and then tested
using axial T1c and T1-w shown, respectively, in first and second rows of Figure 4
at R ∈ {2×, 4×, 8×}. Our method statistically significant (p ≪ 10−5) improved
quantitative metrics.

Our method achieved significantly lower NMSE values (p ≪ 10−5), indicating
high voxel-wise similarity between the reconstructed and ground truth images for T1-
w and T1c illustrated in Figures 4(a) and (d), respectively. In addition, high PSNR
values confirm minimal remaining spatial distortion in the reconstructed images for
T1-w and T1c illustrated in Figures 4(b) and (e), respectively. Finally, The high SSIM
values demonstrate a remarkable resemblance between the reconstructed and ground
truth images (see Figures 4(c) and (f)).
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Figure 4: Out-of-distribution reconstruction quantitative results are illustrated for
multi-coil axial T1-w and T1c in the first and second rows, respectively, for three
difference acceleration rates. The red stars indicate statistically significant differences
(p < 0.05).
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4 Discussion

This study introduces the Self-supervised Adversarial Diffusion (SSAD-MRI) model,
a novel self-supervised deep learning-based compressed sensing MRI (DL-based CS-
MRI) method designed to mitigate the challenges associated with prolonged MRI
acquisition times and the necessity for fully sampled datasets. Our approach leverages
the synergy between CS and DL to accelerate MRI acquisition without compromising
image quality.

The SSAD-MRI model’s primary innovation lies in its use of an adversarial map-
per within a self-supervised framework, eliminating the dependence on fully sampled
training datasets. This advancement is particularly significant for clinical scenarios
where acquiring fully sampled data is impractical. By integrating a diffusion model,
our method enhances sampling efficiency and reconstruction quality. The backward
diffusion process, executed in smaller steps, contributes to robust and efficient image
sampling. Extensive testing on OOD datasets demonstrated significant improvements
in NMSE, PSNR, and SSIM metrics. These results highlight the model’s ability to
generalize across various MRI sequences and patient-specific conditions, underscoring
its versatility for clinical use.

The majority of DL-based CS-MRI methods use supervised learning to train net-
works [15, 17, 18, 25, 31]. However, acquiring fully sampled can be challenging in some
practical applications due to the long acquisition time, physiological constraints, and
signal decay. For instance, fully sampled high-resolution brain MP2RAGE T1 maps
can take around 24 minutes to acquire, which is impractical for large-scale studies
and may lead to patient discomfort unless using acceleration approaches. Such a long
acquisition time increases the likelihood of patient movements, which could substan-
tially reduce the image quality. Thus, being able to use self-supervised DL-based CS
MRI approaches is imperative to broaden their applications where acquiring such data
are challenging. By integrating a diffusion model, our method enhances reconstruc-
tion quality. The backward diffusion process, executed in smaller steps, contributes
to robust and efficient image sampling. Extensive testing on within domain and OOD
datasets demonstrated significant improvements in NMSE, PSNR, and SSIM metrics.
These results highlight the model’s ability to generalize across various MRI sequences
and patient-specific conditions, underscoring its versatility for clinical use.

Several self-supervised studies have been proposed to train models without using
fully sampled data. For instance, a data-driven method of de-aliasing was proposed
for single-coil data that performed an image-to-image translation [43]. However, it
did not encode the operator and used similar sampling patterns for training and
loss that increased noise during test time. Alternatively, a self-supervised study was
proposed, assuming data acquired using two different sampling patterns [44]. Further-
more, physics-driven methods that unroll the training process were also proposed [26].
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However, the unrolling nature of the method might increase the test burden and time.
Our self-supervised method uses a DC layer that was trained end-to-end and

utilizes the sampling pattern that is feasible to implement clinically. Our experiment
using the multi-coil and single-coil datasets enabled us to recover target ground truth
images at markedly lower acquisition times (see Figures 2 - 3). Specifically, our
method could recover fine details highlighted by gold and red boxes better than the
comparative models. The negligible amount of remaining aliasing in the reconstructed
images was confirmed by Figures 2 - 3. Furthermore, this observation was confirmed
by the low NMSE and high PSNR achieved in Tables 1 and 2.

Although our method could achieve the best performance for ρ = 0.5, Figure S4
suggests that our method might be resilient to variations in the hyper-parameter ρ
around ρ = 0.5. In addition, out-of-domain reconstruction indicated in Figure 4 with
significantly better performance (p ≪ 10−5) indicates reasonable robustness against
domain shifts. However, the results indicate that our method performed better on
T1-w (first row in Figure 4) images than when tested on T1c (second row in Figure 4).
That might be due to contrast agent enhancement in T1c in the image regions that
are not evident in T2-w images.

Despite the promising outcomes, several limitations need to be addressed. Our
model was not tested on prospectively undersampled raw k -space datasets acquired
under parallel imaging frameworks. Future work should explore the application of
SSAD-MRI to these datasets to validate its clinical utility further. In addition, we
did not train our method using raw multi-coil high-resolution 3D MRI, such as T1

magnetization-prepared rapid acquisition gradient echoes MRI images because they
are not readily available to the end-user. Expanding the training dataset to include
such data could enhance the model’s performance.

Addressing these limitations will enhance not only the model’s performance but
also its clinical applicability. By reducing acquisition times through high accelera-
tion factors—potentially up to 8-fold. Integrating our method into existing clinical
workflows is feasible because it does not require fully sampled training datasets; it
can be incorporated into the reconstruction pipelines of current MRI systems without
major alterations to imaging protocols. Focusing on model generalizability, compu-
tational efficiency, and adherence to regulatory standards will be crucial for clinical
deployment. Collaboration between researchers, clinicians, and industry partners
will facilitate the optimization of our method for image reconstruction and ensure
its effectiveness across diverse clinical scenarios. Ultimately, this approach has the
potential to lead to improved patient outcomes and enhanced diagnostic capabilities
by providing high-quality images more efficiently.
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5 Conclusions

Our self-supervised adversarial diffusion model significantly improves the quality of
reconstructed MRI images from undersampled data without requiring fully sampled
training datasets, offering a promising solution for accelerating MRI acquisition. The
proposed method has the potential to enhance clinical MRI practices by reducing
scan times and improving image quality, which is crucial for accurate diagnosis and
treatment planning. By decreasing imaging time and the likelihood of motion arti-
facts, our approach may benefit a wide range of applications where rapid and reliable
MRI is essential.
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