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We use the quark potential model to calculate the mass spectrum of the S-wave fully heavy tetraquark sys-
tems with different flavors, including the bcb̄c̄, bbc̄c̄, ccc̄b̄ and bbb̄c̄ systems. We employ the Gaussian expansion
method to solve the four-body Schrödinger equation, and the complex scaling method to identify resonant states.
The bcb̄c̄, bbc̄c̄, ccc̄b̄ and bbb̄c̄ resonant states are obtained in the mass regions of (13.2, 13.5), (13.3, 13.6),
(10.0, 10.3), (16.5, 16.7) GeV, respectively. Among these states, the bcb̄c̄ tetraquark states are the most promis-
ing ones to be discovered in the near future. We recommend the experimental exploration of the 1++ and 2++

bcb̄c̄ states with masses near 13.3 GeV in the J/ψΥ channel. From the root-mean-square radii, we find that all
the resonant states we have identified are compact tetraquark states.

I. INTRODUCTION

Hadron physics provides an excellent platform for studying
the non-perturbative properties of quantum chromodynamics
(QCD). In the past decades, tens of exotic hadrons beyond
conventional mesons and baryons have been observed in ex-
periments, which greatly advances the hadron spectroscopy.
Many interpretations are proposed to understand these ex-
otic states, including hadronic molecules, compact multiquark
states, hybrid states, etc. More details can be found in recent
reviews [1–11].

Among various exotic hadrons, the fully heavy tetraquarks
QQQ̄Q̄ (Q = b, c) have attracted great attention. Theoreti-
cally, they stand out as relatively clean systems, less affected
by the creation and annihilation of the light quarks. In the
absence of the long-range light meson exchange mechanism,
the interactions between heavy quarks are dominated by the
short-range gluon exchange and confinement. Therefore, the
fully heavy tetraquark systems might have a tendency to form
compact tetraquark states. Experimentally, great efforts and
progress have been made in the search for the fully heavy
tetraquark states. In the fully bottomed sector, bbb̄b̄ candidates
were searched for by the CMS [12, 13] and LHCb [14] col-
laborations, but no significant signal was found. In the fully
charmed sector, the LHCb discovered the first fully charmed
tetraquark candidate X(6900) [15], which was confirmed by
the CMS [16] and ATLAS [17] collaborations. Meanwhile,
more fully charmed tetraquark candidates were reported, in-
cluding X(6600), X(7200) by the CMS [16] and X(6400),
X(6600), X(7200) by the ATLAS [17]. Moreover, the CMS
also observed triple J/ψ production [18], which may shed
light on the future exploration of fully charmed hexaquarks.

The existence of the fully charmed tetraquark candidates
implies that similar tetraquark states may also exist in other
fully heavy tetraquark systems, including the bcb̄c̄, bbc̄c̄, ccc̄b̄
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and bbb̄c̄ systems. Among these systems, bcb̄c̄ may be the
most promising for experimental observation, since it only
requires the production of two heavy quark-antiquark pairs.
Some theoretical studies have been conducted on the fully
heavy tetraquark systems with different flavors [19–39]. How-
ever, few works consider both compact diquark-antidiquark
and molecular dimeson spatial configurations simultaneously
and perform comprehensive dynamical calculations to iden-
tify genuine resonant states. In our previous work [36], we in-
corporated both diquark-antidiquark and dimeson spatial con-
figurations, employing various quark models and few-body
methods to conduct benchmark calculations for tetraquark
bound states. Our results indicate that the Gaussian expansion
method [40] is highly efficient in exploring tetraquark states,
and that there are no bound states in the fully heavy tetraquark
systems.

In this study, we further investigate the S-wave fully
heavy tetraquark resonant states with different flavors
(bcb̄c̄, bbc̄c̄, ccc̄b̄, bbb̄c̄). We apply the complex scaling
method [41–43] to identify genuine resonant states from
meson-meson scattering states. We employ the Gaussian ex-
pansion method [40] to solve the four-body Schrödinger equa-
tion, taking both diquark-antidiquark and dimeson spatial con-
figurations into account. This framework has been success-
fully used to investigate theQsq̄q̄ andQQQ̄Q̄ (Q = b, c) sys-
tems [44, 45]. For consistency, we adopt the AP1 quark poten-
tial model [46, 47], which was also used in our previous work
on the fully heavy tetraquarkQQQ̄Q̄ systems [45]. Moreover,
we analyze the spatial structures of the tetraquark states by
calculating the root-mean-square radii, which allow us to dis-
tinguish between the compact and molecular tetraquark states.
We also improve the numerical stability of the rms radii results
from our previous work [45]. This study may aid experimen-
tal exploration in the future.

This paper is organized as follows. In Sec. II, we introduce
the theoretical framework, including the tetraquark Hamilto-
nian, the calculation methods, and the approach to analyzing
the spatial structures. In Sec. III, we present the numerical
results and discuss properties of fully heavy tetraquark states
with different flavors. In Sec. IV, we give a summary of our
findings.
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II. THEORETICAL FRAMEWORK

A. Hamiltonian

The nonrelativistic tetraquark Hamiltonian in the center-of-
mass frame reads

H =

4∑
i=1

(mi +
p2i
2mi

) +

4∑
i<j=1

Vij , (1)

where the first two terms represent the mass and kinetic energy
of the i-th (anti)quark and the last term represents the two-
body interaction. In our previous study [45], we adopted three
different quark potential models to study the fully charmed
tetraquark systems and found that they give qualitatively con-
sistent results. In this work, without prejudice to generality,
we use the AP1 potential to study the fully heavy tetraquark
systems with different flavors. The AP1 potential includes the
one-gluon-exchange interaction and a 2/3 power quark con-
finement interaction,

Vij = − 3

16
λi · λj

(
− κ

rij
+ λr

2/3
ij − Λ

+
8πκ′

3mimj

exp
(
−r2ij/r20

)
π3/2r30

Si · Sj

)
,

(2)

where λi is the SU(3) color Gell-Mann matrix, and Si is the
spin operator. The parameters of the AP1 model were deter-
mined by fitting the meson spectra, and we do not introduce
any new free parameters. They are taken from Ref. [47] and
listed in Table I. The theoretical masses of the heavy mesons
as well as their root-mean-square (rms) radii are listed in Ta-
ble II. It can be seen that the theoretical masses are in ac-
cordance with the experimental ones up to tens of MeV. We
expect the errors for the tetraquark states to be of the same
order.

B. Calculation methods

To obtain possible bound and resonant states, we apply the
complex scaling method (CSM). In the CSM [41–43], the co-
ordinate r and its conjugate momentum p are transformed as

U(θ)r = reiθ, U(θ)p = pe−iθ. (3)

Under such a transformation, the complex-scaled Hamiltonian
is no longer hermitian, which can be written as

H(θ) =

4∑
i=1

(mi +
p2i e

−2iθ

2mi
) +

4∑
i<j=1

Vij(rije
iθ). (4)

According to the ABC theorem [41, 42], the eigenenergies
of the scattering states, bound states and resonant states can
be obtained by solving the complex-scaled Schrödinger equa-
tions. The scattering states line up along rays starting from
threshold energies with Arg(E) = −2θ. The bound states

are located on the negative real axis in the energy plane. The
resonant states with mass MR and width ΓR can be detected
at ER = MR − iΓR/2 when the complex scaling angle
2θ > |Arg(ER)|. Both the bound states and the resonant
states remain stable as θ changes.

To solve the complex-scaled four-body Schrödinger equa-
tion, we apply the Gaussian expansion method (GEM) [40].
The wave functions of the S-wave tetraquark states with total
angular momentum J are expanded as

ΨJ(θ) = A
∑
jac

∑
α,ni

C(jac)
α,ni

(θ)χJ
αϕn1(rjac)ϕn2(λjac)ϕn3(ρjac),

(5)
where A is the antisymmetric operator of identical parti-
cles. We consider three sets of spatial configurations (dime-
son and diquark-antidiquark), which are denoted by (jac) =
(a), (b), (c). In each configuration, there are three indepen-
dent Jacobian coordinates rjac, λjac, ρjac, as shown in Fig. 1.
The spatial wave function ϕni(r) takes the Gaussian form,

ϕni
(r) = Nni

e−νni
r2 ,

νni = ν1γ
ni−1,

(6)

whereNni is the normalization factor. For the color-spin wave
function χJ

α, we choose a complete set of basis given by

χJ
3̄c⊗3c,s1,s2

=
[
(Q1Q2)

s1
3̄c

(
Q̄3Q̄4

)s2
3c

]J
1c
,

χJ
6c⊗6̄c,s1,s2

=
[
(Q1Q2)

s1
6c

(
Q̄3Q̄4

)s2
6̄c

]J
1c
,

(7)

for all possible combinations of s1, s2, J . Finally, the expan-
sion coefficients C(jac)

α,ni (θ) are determined by solving the en-
ergy eigenvalue equation,

H(θ)ΨJ(θ) = E(θ)ΨJ(θ). (8)
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FIG. 1. The Jacobian coordinates for two types of spatial configura-
tions: (a), (b) for the dimeson configurations, and (c) for the diquark-
antidiquark configuration.

C. Spatial structures

The quark model does not make a priori assumptions about
the structures of multiquark states, allowing both compact and
molecular states. The root-mean-square (rms) radius is a com-
monly used criterion to distinguish between the compact and
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TABLE I. The parameters in the AP1 quark potential model.

κ λ[GeV5/3] Λ[GeV] κ′ mc[GeV] mb[GeV] r0c[GeV−1] r0b[GeV−1]

0.4242 0.3898 1.1313 1.8025 1.8190 5.206 1.2583 0.8928

TABLE II. The theoretical masses (in MeV) of heavy mesons, com-
pared with the experimental results taken from Ref. [48]. The theo-
retical rms radii (in fm) are listed in the last column.

Mesons mExp. mTheo. rrms
Theo.

ηc 2984 2982 0.35
ηc(2S) 3638 3605 0.78
ηc(3S) - 3986 1.15
J/ψ 3097 3102 0.40
ψ(2S) 3686 3645 0.81
ψ(3S) 4039 4011 1.17
ηb 9399 9401 0.20

ηb(2S) 9999 10000 0.48
ηb(3S) - 10326 0.73

Υ 9460 9461 0.21
Υ(2S) 10023 10014 0.49
Υ(3S) 10355 10335 0.74
Bc 6274 6269 0.30

Bc(2S) 6871 6854 0.66
B∗

c 6329 6338 0.32
B∗

c (2S) - 6875 0.68

molecular tetraquark states. In our previous works [44, 45],
we argued that the rms radii calculated using the complete
wave functions could be misleading due to the antisym-
metrization of identical particles. In order to eliminate the
ambiguity arising from antisymmetrization, we proposed a
new approach to calculate the rms radii. For systems with
no identical particle (bcb̄c̄), such ambiguity does not exist and
we can calculate the rms radii using the complete wave func-
tion directly. For systems with one pair of identical particles
(ccc̄b̄, bbb̄c̄), we decompose the complete antisymmetric wave
function as

ΨJ(θ) =[(Q1Q̄3)1c(Q2Q̄
′
4)1c ]1c ⊗ |ψ1(θ)⟩

+ [(Q2Q̄3)1c(Q1Q̄
′
4)1c ]1c ⊗ |ψ2(θ)⟩

=A [(Q1Q̄3)1c(Q2Q̄
′
4)1c ]1c ⊗ |ψ1(θ)⟩

≡AΨJ
nA(θ).

(9)

For systems with two pairs of identical particles (bbc̄c̄), we
decompose the complete antisymmetric wave function as

ΨJ(θ) =
∑

s1≥s2

(
[(Q1Q̄

′
3)

s1
1c
(Q2Q̄

′
4)

s2
1c
]J1c ⊗ |ψs1s2

1 (θ)⟩

+ [(Q1Q̄
′
3)

s2
1c
(Q2Q̄

′
4)

s1
1c
]J1c ⊗ |ψs1s2

2 (θ)⟩
+ [(Q1Q̄

′
4)

s1
1c
(Q2Q̄

′
3)

s2
1c
]J1c ⊗ |ψs1s2

3 (θ)⟩
+ [(Q1Q̄

′
4)

s2
1c
(Q2Q̄

′
3)

s1
1c
]J1c ⊗ |ψs1s2

4 (θ)⟩
)

=A
∑

s1≥s2

[(Q1Q̄
′
3)

s1
1c
(Q2Q̄

′
4)

s2
1c
]J1c ⊗ |ψs1s2

1 (θ)⟩

≡AΨJ
nA(θ),

(10)

where s1, s2 sum over spin configurations with total angular
momentum J . Instead of using the complete wave function
ΨJ(θ), we use the non-antisymmetric component ΨJ

nA(θ) to
define the rms radius:

rrms
ij ≡ Re

√ ⟨ΨJ
nA(θ)|r2ije2iθ|ΨJ

nA(θ)⟩
⟨ΨJ

nA(θ)|ΨJ
nA(θ)⟩

 . (11)

The new definition of the rms radius is useful for inves-
tigating the spatial structures of the tetraquark states. For a
hadronic molecular state, rrms

13 and rrms
24 are expected to be the

sizes of the constituent mesons, and much smaller than the
other rms radii. For a compact tetraquark state, all rms radii
in the four-body system should be of the same order. More
discussions of the rms radii can be found in Refs. [44, 45].

It should be emphasized that the inner products in the CSM
are defined using the c-product [49],

⟨ϕn | ϕm⟩ ≡
∫
ϕn(r)ϕm(r)d3r, (12)

where the square of the wave function rather than the square
of its magnitude is used. The rms radius calculated by the c-
product is generally not real, but its real part can still reflect
the internal quark clustering behavior if the width of the reso-
nant state is not too large, as discussed in Ref. [50].

III. RESULTS AND DISCUSSIONS

We investigate the S-wave fully heavy tetraquark systems
with different flavors, including the bcb̄c̄, bbc̄c̄, ccc̄b̄ and bbb̄c̄
systems. With the CSM, we calculate the complex energies of
these systems. We choose varying complex scaling angles θ
to identify genuine resonant states. The meson-meson scat-
tering states rotate along the continuum lines starting from
the threshold energies, while bound states and resonant states
do not shift with θ. We obtain a series of resonant states in
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all these systems, but no bound state exists below the lowest
threshold. For convenience, we label the tetraquark resonant
states obtained in our calculations as TQ1Q2Q̄3Q̄4,JP (C)(M),
where Q1Q2Q̄3Q̄4 is the quark content and M is the mass of
the state.

A. bcb̄c̄

The bcb̄c̄ tetraquark is a neutral system with defi-
nite charge parity. For the S-wave neutral tetraquark
systems, possible quantum numbers include JPC =
0++, 1+−, 2++, 0+−, 1++, 2+−. In Ref. [45], we introduced
a method to determine the C-parity of the neutral tetraquark
states by decomposing the Hilbert space.

The complex energies of the bcb̄c̄ systems are shown in
Fig 2. We obtain a series of resonant states, whose complex
energies, proportions of different color configurations and rms
radii are summarized in Table III. The bcb̄c̄ resonant states
are located in the mass region (13.2, 13.5) GeV. The different
rms radii of these states are of the same order, approximately
matching the sizes of the corresponding 2S mesons. This in-
dicates that they are compact tetraquark states.

In order to obtain good numerical convergence of the rms
radii of the resonant states, it is important to choose appropri-
ate complex scaling angles θ so that the continuum lines are
not too close to the resonant states, as discussed in Ref. [50].
Otherwise, the rms radii results could be affected by the scat-
tering states, becoming numerically unstable and potentially
leading to false conclusions. To illustrate this, we use differ-
ent angles to calculate the rms radii of Tbcb̄c̄,1++(13255) and
Tbcb̄c̄,1+−(13289), which are respectively denoted by rrms1

and rrms2 and shown in Fig. 4. The values of rrms1 are
numerically unstable for θ = 9◦ ∼ 15◦, since the state
Tbcb̄c̄,1++(13255) is located too close to the B∗+

c (2S)B∗−
c

continuum line for these angles. Therefore, we need to choose
larger angles (θ = 21◦, 24◦) for the 1++ system to obtain con-
vergent rms radii results. But for other resonant states such as
Tbcb̄c̄,1+−(13289), we can see from Fig. 2 that they are not lo-
cated close to the continuum lines. As a result, we can obtain
good convergent values of rrms2 using θ = 9◦ ∼ 15◦.

9 12 15 18 21 24

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

r 
[f

m
]

θ [Deg]

FIG. 4. The rms radii (in fm) of Tbcb̄c̄,1++(13255) (solid lines) and
Tbcb̄c̄,1+−(13289) (dashed lines) calculated using different complex
scaling angles.

We also use the same method to improve our previous rms
radii results of the fully charmed tetraquark states [45]. In our
previous work, we suggested that three ccc̄c̄ resonant states,
including two X(7200) candidates, might have a molecular
configuration, but their rms radii were less numerically accu-
rate. By choosing larger angles, we obtain more numerically
stable results, which are compared with the previous ones in
Table IV. With the improved results, we find that these three
states actually have compact tetraquark configuration.

Among all the fully heavy tetraquark systems with differ-
ent flavors, the bcb̄c̄ tetraquark is the most promising one
to be discovered in experiments, since it only requires the
production of two heavy quark-antiquark pairs. Moreover,
the 1++ and 2++ bcb̄c̄ tetraquark resonant states, including
the Tbcb̄c̄,1++(13255), Tbcb̄c̄,1++(13276), Tbcb̄c̄,1++(13310),
Tbcb̄c̄,1++(13318), Tbcb̄c̄,1++(13355) and Tbcb̄c̄,2++(13333),
can decay into the J/ψΥ channel, which can be efficiently
reconstructed in experiments. Therefore, we recommend ex-
perimental exploration of the 1++ and 2++ bcb̄c̄ states with
masses near 13.3 GeV in the J/ψΥ channel.

B. bbc̄c̄

The complex eigenenergies of the 0+, 1+ and 2+ bbc̄c̄ sys-
tems are shown in Fig. 3. We obtain some resonant states,
whose complex energies, proportions of different color con-
figurations and rms radii are summarized in Table V. The
bbc̄c̄ resonant states are located in the mass region (13.3, 13.6)
GeV. The different rms radii of these states are of the same or-
der, indicating that they are compact tetraquark states.

Unlike the ccc̄c̄ and bbb̄b̄ systems, the bbc̄c̄ system does not
have definite C-parity. However, when compared with our
previous work on the fully heavy tetraquark QQQ̄Q̄ (Q =
b, c) systems [45], we still find some similarities in the bbc̄c̄
system. For example, in the ccc̄c̄ system with JP = 2+,
there exist two resonant states with positive C-parity and one
zero-width state with negative C-parity below the ψ(3S)J/ψ
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FIG. 2. The complex energy eigenvalues of the bcb̄c̄ states with varying θ in the CSM. The solid lines represent the continuum lines rotating
along Arg(E) = −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.
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FIG. 3. The complex energy eigenvalues of the bbc̄c̄ states with varying θ in the CSM. The solid lines represent the continuum lines rotating
along Arg(E) = −2θ. The resonant states do not shift as θ changes and are highlighted by the orange circles.

threshold, as shown in Fig. 5. Similarly, in the 2+ bbc̄c̄ sys-
tem, we obtain two resonant states with nonzero widths and
one zero-width state below the B∗

c (3S)B
∗
c threshold. Com-

paring Fig. 3.(3) and Fig. 5, it is evident that the 2+ bbc̄c̄ en-
ergy plot shares a similar pattern with the superposition of the
2++ and 2+− ccc̄c̄ energy plots. Such similarities also ex-
ist in JP = 0+ and 1+ systems. In our previous work [45],
we identified two resonant states with JPC = 0++ and 2++

as candidates of X(6900). Their analogs in bbc̄c̄ systems are
Tbbc̄c̄,0+(13439) and Tbbc̄c̄,2+(13460).

C. ccc̄b̄ and bbb̄c̄

The complex eigenenergies of the ccc̄b̄ and bbb̄c̄ systems
are shown in Fig. 6 and Fig. 7, respectively. We obtain a se-
ries of resonant states in these systems, whose complex en-
ergies, proportions of different color configurations and rms
radii are summarized in Table VI and Table VII. The ccc̄b̄ res-
onant states lie within the mass region (10.0, 10.3) GeV, while
the bbb̄c̄ resonant states lie within the mass region (16.5, 16.7)
GeV. The different rms radii of these states are of the same or-
der, falling between the sizes of the corresponding 1S and 2S
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TABLE III. The complex energies (in MeV), the proportions of different color configurations and the rms radii (in fm) of the bcb̄c̄ resonant
states.

JPC M − iΓ/2 χ3̄c⊗3c χ6c⊗6̄c rrms
bb̄ rrms

cc̄ rrms
bc̄ = rrms

cb̄ rrms
bc = rrms

b̄c̄

0++ 13290− 17i 56% 44% 0.58 0.73 0.46 0.57

13322− 18i 56% 44% 0.38 0.63 0.65 0.48

1+− 13289− 5i 48% 52% 0.32 0.71 0.60 0.61

13311− 15i 53% 47% 0.50 0.70 0.53 0.58

13328− 16i 54% 46% 0.30 0.59 0.60 0.50

13364− 1i 49% 51% 0.43 0.58 0.56 0.56

2++ 13333− 14i 53% 47% 0.44 0.68 0.53 0.53

0+− 13289− 3i 47% 53% 0.32 0.70 0.60 0.61

13308− 7i 46% 54% 0.36 0.52 0.54 0.49

13362− 1i 50% 50% 0.42 0.58 0.56 0.55

13400− 1i 67% 33% 0.41 0.59 0.53 0.56

13432− 1i 64% 36% 0.43 0.61 0.54 0.58

1++ 13255− 11i 35% 65% 0.32 0.70 0.60 0.60

13276− 8i 45% 55% 0.31 0.70 0.59 0.60

13310− 16i 56% 44% 0.50 0.71 0.52 0.57

13318− 7i 48% 52% 0.41 0.55 0.55 0.53

13355− 3i 45% 55% 0.41 0.56 0.54 0.54

2+− 13289− 9i 41% 59% 0.57 0.85 0.61 0.78

13364− 2i 45% 55% 0.42 0.58 0.56 0.56

TABLE IV. The previous (P.) and improved (I.) results for the complex energies (in MeV) and rms radii (in fm) of the ccc̄c̄ resonant states
in Ref. [45]. The previous results are taken from Ref. [45]. The last column shows the spatial configurations of the states, where C. and M.
represent the compact tetraquark and molecular configurations, respectively.

JPC M − iΓ/2 rrms
c1c̄3 rrms

c2c̄4 rrms
c1c̄4=rrms

c2c̄3 rrms
c1c2=rrms

c̄3c̄4 Configurations
P. 0++ 7173− 20i 0.89 0.89 2.31 2.28 M.
I. 7167− 19i 0.91 0.91 0.90 0.67 C.
P. 1+− 7191− 32i 0.71 1.08 2.09 2.08 M.
I. 7181− 27i 0.91 0.93 0.87 0.61 C.
P. 2++ 7214− 30i 0.92 0.92 1.93 1.88 M.
I. 7204− 29i 0.94 0.94 0.85 0.62 C.

TABLE V. The complex energies (in MeV), the proportions of different color configurations and the rms radii (in fm) of the bbc̄c̄ resonant
states.

JP M − iΓ/2 χ3̄c⊗3c χ6c⊗6̄c rrms
b1c̄1

rrms
b2c̄2

rrms
b1b2

rrms
c̄1c̄2 rrms

b1c̄2
rrms
b2c̄1

0+ 13306− 2i 35% 65% 0.50 0.50 0.53 0.65 0.56 0.56

13349− 1i 70% 30% 0.51 0.51 0.50 0.64 0.55 0.55

13439− 37i 89% 11% 0.68 0.68 0.28 0.61 0.65 0.65

1+ 13344 85% 15% 0.53 0.49 0.49 0.62 0.52 0.54

13402− 3i 77% 23% 0.52 0.55 0.41 0.59 0.57 0.57

13429− 13i 32% 68% 0.55 0.57 0.38 0.62 0.62 0.61

13448− 34i 83% 17% 0.67 0.68 0.39 0.68 0.70 0.69

2+ 13359 86% 14% 0.52 0.52 0.49 0.63 0.54 0.54

13460− 36i 82% 18% 0.67 0.67 0.47 0.75 0.73 0.73

13547− 4i 80% 20% 0.76 0.76 0.50 0.76 0.80 0.80
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TABLE VI. The complex energies (in MeV), the proportions of different color configurations and the rms radii (in fm) of the ccc̄b̄ resonant
states.

JP M − iΓ/2 χ3̄c⊗3c χ6c⊗6̄c rrms
c1c̄ rrms

c2 b̄
rrms
c1c2 rrms

c̄b̄ rrms
c1 b̄

rrms
c2c̄

0+ 10059− 2i 44% 56% 0.70 0.45 0.67 0.56 0.70 0.63

10130− 11i 65% 35% 0.59 0.55 0.66 0.54 0.55 0.69

10144− 4i 81% 19% 0.72 0.45 0.57 0.66 0.58 0.68

10180− 4i 43% 57% 0.61 0.59 0.71 0.57 0.59 0.69

1+ 10068− 0.5i 38% 62% 0.71 0.45 0.69 0.57 0.71 0.64

10135− 8i 73% 27% 0.58 0.56 0.68 0.51 0.56 0.66

10151− 5i 76% 24% 0.78 0.31 0.46 0.72 0.53 0.69

10155− 5i 92% 8% 0.65 0.54 0.67 0.58 0.57 0.66

10162− 9i 84% 16% 0.64 0.56 0.67 0.56 0.56 0.73

10174− 4i 37% 63% 0.60 0.59 0.72 0.55 0.60 0.69

2+ 10169− 10i 75% 25% 0.70 0.50 0.58 0.59 0.53 0.76

10170− 1i 95% 5% 0.65 0.53 0.68 0.60 0.57 0.63

10260− 24i 84% 16% 0.77 0.70 0.67 0.53 0.72 0.81

TABLE VII. The complex energies (in MeV), the proportions of different color configurations and the rms radii (in fm) of the bbb̄c̄ resonant
states.

JP M − iΓ/2 χ3̄c⊗3c χ6c⊗6̄c rrms
b1 b̄

rrms
b2c̄

rrms
b1b2

rrms
b̄c̄ rrms

b1c̄
rrms
b2 b̄

0+ 16511− 5i 61% 39% 0.38 0.51 0.41 0.52 0.53 0.51

16521− 2i 30% 70% 0.35 0.55 0.46 0.58 0.57 0.42

16546− 6i 55% 45% 0.39 0.54 0.41 0.53 0.56 0.49

16563− 2i 77% 23% 0.40 0.51 0.49 0.48 0.50 0.42

1+ 16515− 1i 28% 72% 0.40 0.48 0.48 0.51 0.51 0.48

16530− 3i 64% 36% 0.34 0.56 0.40 0.56 0.57 0.46

16542− 8i 46% 54% 0.34 0.58 0.35 0.61 0.61 0.45

16550− 1i 67% 33% 0.36 0.55 0.46 0.53 0.54 0.43

16554− 12i 59% 41% 0.42 0.51 0.41 0.48 0.54 0.45

16564− 7i 100% 0% 0.44 0.47 0.50 0.42 0.48 0.42

2+ 16554− 7i 49% 51% 0.31 0.61 0.31 0.64 0.63 0.42

16574− 6i 95% 5% 0.45 0.47 0.50 0.41 0.48 0.42

16647− 16i 88% 12% 0.56 0.64 0.34 0.50 0.67 0.56
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FIG. 5. The complex energy eigenvalues of the 2+ ccc̄c̄ states with
varying θ in the CSM. The solid lines represent the continuum lines
rotating along Arg(E) = −2θ. The resonant states do not shift as θ
changes and are highlighted by the orange circles.

mesons. This indicates that all of these resonant states have
compact tetraquark configuration.

We observe a great resemblance between the ccc̄b̄ and bbb̄c̄
systems. There are four resonant states with JP = 0+, six
resonant states with JP = 1+ and three resonant states with
JP = 2+ in both systems. In each system, the masses of the
resonant states with the same quantum number are very close
to each other. The emergence of a large number of resonant
states (especially in the 1+ systems) may result from the cou-
pling between numerous near-degenerate dimeson thresholds.

In Ref. [31], the authors adopted a different quark potential
model to investigate the ccc̄b̄ and bbb̄c̄ systems and applied the
real scaling method (RSM) to identify genuine resonant states.
In each system, they found three resonant states with differ-
ent quantum numbers. It is worth mentioning that the CSM
and the RSM share similar physical principles, as the energy
eigenvalues of bound and resonant states do not change under
complex or real scaling transformations. Additionally, even
with different quark potential models, the masses and widths
of the lowest resonant states obtained in our calculations are in
fair agreement with the results from Ref. [31], as shown in Ta-
ble VIII. The CSM makes it easier to identify resonant states
and calculate their widths. Our calculations have identified
more resonant states and obtained more stable width values
compared with Ref. [31].

TABLE VIII. The masses M and widths Γ (in MeV) of the lowest
ccc̄b̄ and bbb̄c̄ resonant states in our calculations and in Ref. [31].

Systems JP This work Ref. [31]
M Γ M Γ

ccc̄b̄ 0+ 10059 4 10079 6.7 ∼ 8.4

1+ 10068 1 10081 1.4 ∼ 7.2

2+ 10169 20 10177 9.1 ∼ 11.1

bbb̄c̄ 0+ 16511 10 16474 2.2 ∼ 6.1

1+ 16515 2 16474 2.2 ∼ 6.9

2+ 16554 14 16541 5.3 ∼ 8.5

IV. SUMMARY

In summary, we calculate the mass specturm of the S-
wave fully heavy tetraquark systems with different flavors
(bcb̄c̄, bbc̄c̄, ccc̄b̄, bbb̄c̄) using the AP1 quark potential model,
which was also adopted to study the fully charmed and fully
bottomed tetraquark systems in our previous study [45]. We
apply the complex scaling method to identify genuine reso-
nant states from meson-meson scattering states, and the Gaus-
sian expansion method to solve the four-body Schrödinger
equation.

We obtain a series of resonant states in all these sys-
tems with different quantum numbers. Specifically, the
bcb̄c̄, bbc̄c̄, ccc̄b̄, bbb̄c̄ states are predicted to lie within the
mass regions of (13.2, 13.5), (13.3, 13.6), (10.0, 10.3),
(16.5, 16.7) GeV, respectively. They all lie above the
M(1S)M ′(2S) dimeson thresholds, with two-body strong
decay widths ranging from less than 1 MeV to around 70
MeV. Among these states, the bcb̄c̄ tetraquark states may be
the most promising ones to be discovered experimentally in
the near future. We recommend experimental exploration of
the 1++ and 2++ bcb̄c̄ states in the J/ψΥ channel, including
the Tbcb̄c̄,1++(13255), Tbcb̄c̄,1++(13276), Tbcb̄c̄,1++(13310),
Tbcb̄c̄,1++(13318), Tbcb̄c̄,1++(13355) and Tbcb̄c̄,2++(13333).

We calculate the root-mean-square (rms) radii to analyze
the spatial structures of the tetraquark states. We find that
all fully heavy tetraquark resonant states with different flavors
obtained in our calculations are compact tetraquark states.
Moreover, we improve the rms radii results of the fully
charmed tetraquark states in our previous work [45]. With the
improved results, we reidentify three fully charmed tetraquark
resonant states as compact tetraquark states. As a result, we
find that all fully heavy tetraquark states in our calculations
have compact tetraquark configuration.
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