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In this paper we study the dynamics of Tonks-Girardeau (TG) gases in a harmonic potential
driven by Gaussian pulse, which is a correspondence of the excitation dynamics of electrons in mat-
ters driven by ultrashort laser pulse. The evolving dynamics of TG gas are obtained with Bose-Fermi
mapping method combined with the numerical techniques. We calculate the evolving dynamics of
occupation distribution of single-particle energy levels, density distribution and momentum distri-
bution of the system. It is shown that the system arrived at a dynamically stable state at the end
of driving. At high-frequency regime TG gases return back to ground state while at low-frequency
regime the population inversion exhibits and all atoms occupy high levels.

I. INTRODUCTION

Since cold atoms were realized in experiments, ultra-
cold atoms have become a popular platform to investi-
gate basic physical processes in many fields including con-
densed matter physics, quantum information processing,
plasma physics, etc. Particularly, the rapid progress in
cold atoms techniques make it play crucial roles to simu-
late many body quantum system. The experimental de-
velopment of optical lattices deepens the understanding
of not only the ground state quantum phase transition
but also the non-equilibrium dynamics in periodical in-
teracting system [1]. Cold atoms in periodically driven
optical lattices were investigated as the important prac-
tical platform for Floquet engineering. The studies on
the artificial gauge fields [2], the dynamical localization
[3, 4], the dynamical quantum phase transition [5], topol-
ogy physics [6–8] have made great progress with the rapid
advance in experiment techniques in cold atoms. Besides
the dynamics in optical lattice [9–22], modulated dynam-
ics in harmonic trap [23], the temperature effect [24], the
disorder effect for strong periodic forced bose gas [25] and
the nonequilibrium quantum thermodynamics [24] were
also studied.

In cold atoms the atomic interaction can be tuned in
the whole interacting regime from the weak interaction
to the strong interaction with the Feschbach resonance
and confined induced resonance techniques [26, 27]. With
anisotropic trap or optical lattices the cold atoms can be
confined strongly in transverse direction and therefore
the system becomes an one dimensional (1D) quantum
system in the longitudinal direction [28–31]. The tunabil-
ity of atomic interaction, the controllability of dimension
and time-dependent parameters offer us new opportuni-
ties that the traditional research areas cannot arrive at.
The 1D cold atoms system has been paid great attentions
by both experimentalists and theorists [32–35].

For Bose-Einstein condensates (BECs) with weak in-
teraction we can obtain the ground state and dynam-
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ics by solving the Gross-Pitaevskii equation [36]. The
tunneling dynamics of BECs in a double-well can be de-
scribed by two coupled nonlinear equations [37]. When
the atomic interaction is strong the system that can be
solved analytically is very rare and the asymptotic ana-
lytical results exist only in specific limits. For example,
Scopa et al. [38] proposed an exact analytical formula for
the single particle density matrix of the non-equilibrium
Tonks-Girardeau (TG) gases [39, 40] at zero temperature
in the limit of largeN . Moreno et al. [41] showed that the
momentum distribution of TG gases at the high momen-
tum limit is a power law form of k−4, and their formula
can replace numerical simulation in the high momentum
region. For the 1D quantum system, non-perturbation
method is necessary for its strong correlation effect. The
generalized hydrodynamics method has been developed
for the integrable system [42–44] and is applicable in 1D
cold atoms. Another effective approach for 1D system is
the shortcuts to adiabaticity approach [45, 46].

Although the above experimental techniques and the-
oretical methods have have greatly stimulated the devel-
opment of cold atom research, the new experiment pro-
tocols and theoretical tools are still expected. One of the
important topics in the study on the quantum statisti-
cal physics, for example the eigenstates thermalization,
is the preparation of long-lived excited states [47, 48]. By
quenching the interaction across a confinement-induced
resonance, the highly excited super-TG gases can be real-
ized [47]. Further, the stable excited state away from res-
onance regime can be realized by adding a weak dipolar
repulsion among the atoms [48]. So far, the dynamics of
quantum gas are usually excited by quenching the atomic
interaction or quenching the potential trap [49–51]. Le
etc. apply a Bragg scattering pulse to observe the hy-
drodynamization and local prethermalization of 1D Bose
gases [52]. In the present paper, we will study the evolv-
ing dynamics of TG gases in a harmonic potential driven
by a Gaussian pulse, which is a correspondence of the
excitation dynamics of electrons in matters driven by ul-
trashort laser pulse. It will be shown that under the pulse
drive the TG gases will arrived at a dynamically stable
excited state and occupation distribution inversion ap-
pears at the end of the pulse. The pulse optical drive
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is expected to be a candidate tool to obtain the stable
excited state of TG gases.

In section II, we develop the numerical techniques
based on the Bose-Fermi mapping method. In Section
III, we show the explicit formula of the density distribu-
tion in coordinate space, the reduced one-body density
matrix, the momentum distribution in momentum space
and the occupation distribution of single particle levels.
The numerical result for them are displayed in section
IV. Finally, the conclusion are given in Sec. V.

II. MODEL AND METHOD

We consider the dynamics of N indistinguishable Bose
atoms of mass m in 1D that satisfy the following time-
dependent Schrödinger equation [53]

iℏ
∂ΨB

∂t
=

N∑
i=1

[
− ℏ2

2m

∂2

∂x2i
+ V (xi, t)

]
ΨB

+ g1D
∑

1≤i<j≤N

δ (xi − xj)ΨB ,

in which the external potential is a harmonic potential
superimposed by a drive potential, i.e.,

V (x, t) =
1

2
mω2

0x
2 − xS(t)θ(t),

where g1D and ω0 are the effective 1D interacting con-
stants and trapping frequency, respectively. The second
term xS(t) in V (x, t) is a time-dependent drive, which is
added to the system at time t = 0. θ(t) is unit step
function, which is 0 and 1 for t < 0 and t ≥ 0, re-
spectively. In the present paper, we will focus on the
strongly interacting limit g1D → +∞. The solution to
this system can be obtained with the Fermi-Bose map-
ping method from the wavefunction of noninteracting
fermions ΨF (x1, x2, · · · , xN ; t) [54]

ΨB (x1, · · · , xN ; t) = A (x1, · · · , xN )ΨF (x1, · · · , xN ; t)

with the mapping function

A (x1, · · · , xN ) =
∏

1≤i<j≤N

sign (xi − xj).

Its effect is to map the exchange antisymmetric wave
function of fermions into an exchange symmetric wave
function of bosons. sign(x) is sign function and is equal
to 1, 0, and -1, for x > 0, = 0, and < 0, respectively. We
just need to solve the Schrödinger equation,

iℏ
∂ΨF

∂t
=

N∑
i=1

[
− ℏ2

2m

∂2

∂x2i
+

1

2
mω2

0x
2
i − xiS(t)

]
ΨF (1)

with respect to ΨF (x1, · · · , xN ; t), and
ΨB (x1, · · · , xN ; t) is obtained by Bose-Fermi map-
ping.

The general wave function to the above time-
dependent problem can be formulated as

ΨF =
∑
n

cnψn (x1, · · · , xN ) e−iEnt/ℏ, (2)

where n specify different eigen functions ψn (x1, · · · , xN )
with En being the corresponding eigen energy and cn is
the superposition coefficient. The energies En are listed
in order from the smallest to the largest. Theoretically it
is a summation of infinite terms, but it is reasonable to
assume that in a finite time the probability is very small
for a particle to be excited to very high energy levels.
So we can truncate the infinite eigen space into a finite
space. The eigen function is compactly written in a form
of the Slater determinant,

ψn (x1, · · · , xN ) =
1√
N !

N

det
l,k=1

[φl−1 (xk)] ,

where φl(x) is the 1D harmonic oscillator eigenfunction.
The different eigen functions correspond to different atom
occupation configuration and can be simply denoted
by the Dirac symbol |ψ1⟩ = |0, 1 · · · , N − 2, N − 1⟩,
|ψ2⟩ = |0, 1, · · ·N − 2, N⟩, |ψ3⟩ = |0, 1, · · ·N − 2, N + 1⟩,
|ψ4⟩ = |0, 1, · · ·N − 3, N − 1, N⟩, and etc.. Here the set
of numbers in |n1, n2, · · · , nN ⟩ denote the occupied single
particle energy levels of harmonic trap.

Combining Eq. (2) with Eq. (1), we have

iℏċm = −
∑
n=1

cn(t)Γmne
−i(En−Em)t/ℏ

with the transition matrix elements

Γmn = S(t)

N∑
j=1

∫
ψmxjψn

N∏
i=1

dxi. (3)

It can be proved that Γ is a sparse matrix (Appendix A)

Γmn =

α0√
2
S(t)

N∑
i=1

√
ni + 1

∣∣∣∣∣∣
δn1,m1

δni+1,m1
δnN ,m1

δn1,mi
δni+1,mi

δnN ,mi

δn1,mN
δni+1,mN

δnN ,mN

∣∣∣∣∣∣
+
α0√
2
S(t)

N∑
i=1

√
ni

∣∣∣∣∣∣
δn1,m1

δni−1,m1
δnN ,m1

δn1,mi
δni−1,mi

δnN ,mi

δn1,mN
δni−1,mN

δnN ,mN

∣∣∣∣∣∣,
with α0 =

√
ℏ/mω0. It can be seen from the equations of

the transition matrix element that the transition process
of multiparticles is highly similar to that of single parti-
cle. The selection rule of the harmonic oscillator suggests
that a particle can only transit to its nearest neighboring
energy level, so dipole transition are not allowed. This
rule is expanded in the multi-particle transition process,
which is fundamentally due to the existence of a high
degenerate of simplicity of multi-particle energy levels in
a simple harmonic potential well, leading to an increase
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in the range of neighboring energy levels. For simplic-
ity, in the following numerical calculations we will take
m = ℏ = ω0 = α0 = 1 and the dimension of time is 1/ω0.

The present numerical approach based on Bose-Fermi
mapping method is applicable for TG gases drived by
arbitrary external potential besides the periodical driving
[55].

III. THE DENSITY PROFILE AND
MOMENTUM DISTRIBUTION

The density distribution of many particles in real space
is defined as

ρ(x, t) = N

∫
dx2dx3 · · · dxN (4)

×Ψ∗
B(x, x2, · · · , xN ; t)ΨB(x, x2, · · · , xN ; t).

Following the definition in Sec. II, the density distribu-
tion can be formulated as

ρ(x, t) = N

N∑
m=1

N∑
n=1

c∗mcnDmne
i(Em−En)t,

in which (see Appendix B for details)

Dmn =
1

N

N∑
i=1

N∑
j=1

φni
φmj

(x) (−1)
i+j

N∏
k,l ̸=i,j

δnk,ml
.

With the many-body wave function, the reduced one-
body density matrix (ROBDM) is formulated as

ρ(x, y, t) = N

∫
dx2dx3 · · · dxN

×Ψ∗
B(x, · · · , xN ; t)ΨB(y, · · · , xN ; t)

(5)

and following the same procedure as the above calcula-
tion of density distribution ρ(x, y, t) can be expressed as

ρ(x, y, t) = N

N∑
m=1

N∑
n=1

c∗mcnPmne
i(Em−En)t.

Here Pmn is the integral of different eigen functions

Pmn =

∫ N∏
i=2

dxisign (x− xi) sign (y − xi)

× ψm (x, · · · , xN )ψn (y, · · · , xN )

and the integral can be given in a concise form (see Ap-
pendix B for details) [56]

Pmn =

N∑
i=1

N∑
j=1

φni
(x)φmj

(y)Aij

with

Aij = (−1)i+j detMkl

and

Mkl(x, y) = δkl − 2

∫ y

x

φk(α)φl(α)dα.

While we obtain the ROBDM, the momentum distri-
bution can be obtained by its Fourier transformation

n(k, t) =
1

2π

∫
dx

∫
dyρ(x, y, t)e−ik(x−y).

It is also interesting to investigate the occupation dis-
tribution [57] evolution of the single particle eigen states
of harmonic potential induced by the external driving,
which is denoted by pj in the following. Obviously, sum-
ming the number of particles over all energy levels give
the total number of particles N . The relationship be-
tween pj and cn is

pj =
∑
n

|cn|2pnj ,

if the energy level j is a harmonic oscillator state of the
constituent quantum states |ψn⟩ then pnj = 1, otherwise
pnj = 0.

IV. NUMERICAL RESULTS

In this section, we will show the evolution of density
distribution, momentum distribution and occupation dis-
tribution of single particle energy levels induced by the
external drive potential. In order to solve the problem of
high computational cost because of the enormous eigen
space, we truncate the eigen space at a certain energy
threshold (the total energy of the specified eigen state of
many particles), and thus greatly reduce the dimension
of Hilbert space.
In the present paper we focus on a non-periodical driv-

ing to simulate the excited dynamics of matter radiated
by ultrashort pulse laser [58, 59]. For a general drive

pulse S(t) = SA exp
(
−(t− t0)

2
/∆
)
sin (ω(t− t0) + ϕ0),

where SA is the driving strength, ω/2π is the center or

carrier frequency and
√
∆/2 determines the bandwidth

of the pulse, such as the drive shown in Fig. 1a, in which
the blue solid lines display the pulse drive of a Gaussian
envelope (the red solid lines). In the subsequent calcula-
tion, we stipulate that t0 = 7 and ϕ0 = π/2, which are
not sensitive for the present study.
The occupations of single particle energy level, the den-

sity distributions, and momentum distributions for TG
gases of N = 4 are displayed in Fig. 1b-Fig. 1d. Ini-
tially, the TG gases stay at its ground state in which
four atoms occupy at the lowest four energy levels with
pj = 1 (j = 0, 1, 2, 3). Under the external drive, the atom
at the highest occupied energy level (HOEL) (j = 3 here)
is excited at first and the excitation of the atoms at lower
energy levels follow up. The occupations of initially occu-
pied levels decrease oscillatingly in the first half of Gaus-
sian drive and increase oscillatingly in the second half.
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FIG. 1: The evolving dynamics of TG gases with N = 4,
SA=3, ∆ = 5 and ω = 4 ω0. (a) The laser pulse S(t); (b)
The occupations of the initially occupied levels: pj for j = 0,
1, 2, and 3; (c) The occupations of the initially unoccupied
levels: pj for j = 4, 5, 6 and the total occupations pe; (d) The
density distribution ρ(x, t); (e) The momentum distribution
n(k, t).

The occupation distribution evolution of the initial un-
occupied levels is just the reverse. The lowest unoccupied
energy level (LUEL) (j = 4 here) is occupied firstly and
those higher unoccupied levels are occupied successively.
During the evolution the occupation of HOEL and LUEL
exhibit the larger amplitudes comparing with other ini-
tial occupied energy levels and unoccupied energy levels.

The total occupations of all single particle excited states
(pe =

∑
j≥N pj/N) are also ploted in red solid lines in Fig

1c (the total atom number is divided here to match the
whole figure). During the pulse drive the oscillation am-
plitude of occupations increase and decrease as the pulse
drive become strong and weak. All the evolution take
place during the pulse drive and the evolution dynamics
stop at the end of the pulse drive. It is interesting to
notice that the whole system evolves back into the initial
states completely once the pulse drive closes.
The density distribution (Fig. 1d) and momentum dis-

tributions (Fig. 1e) also oscillate strongly or weakly with
the change of the pulse drive amplitude. The center of
the distribution oscillates with the change of pulse drive
but both of them preserve their initial distribution prop-
erties. In the coordinate space the TG gases behave in
the same way as noninteracting fermions and exhibit a
shell structure of N peaks. While in momentum space
they display single peak structure that is a typical prop-
erty of bosons [60].

FIG. 2: The evolving dynamics of TG gases with N = 4,
SA=2, ∆ = ∞ and ω = 2ω0. (a) The occupations of the
initially occupied levels: pj for j = 0, 1, 2, and 3; (b) The
occupations of the initially unoccupied levels: pj for j = 4, 5, 6
and the total occupations pe; (c) The momentum distribution
n(k, t). The solid black line in (a) shows the scaling of the
drive S(t) over time.

In the following we investigate the evolution dynamics
under the drive potential in two limiting case, i.e., the
periodical drive S(t) = SA sin (ωt+ ϕ0) (in the infinite
bandwidth limit ∆ → ∞) and the Gaussian drive (in the
zero frequency limit ω → 0).

The density distribution in coordinate space will not
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be displayed because TG gases always oscillate as an en-
tity with the same properties as those of the pulse drive.
We plot the evolving dynamics of the occupations of sin-
gle particle energy levels and momentum distribution for
TG gases driven by the periodical potential in Fig. 2.
It is shown that all of them evolve periodically with the
period being twice that of the drive potential. It is same
as the case in Fig. 1, in which the occupation of HOEL
oscillate at first with a larger amplitude and that of other
lower initially occupied level start to oscillate later with
smaller amplitude. For the initial occupied levels, the
higher the level, the greater the amplitude and the earlier
the oscillation begins. For the initially unoccupied lev-
els, the lower the level, the greater the amplitude and the
earlier the oscillation begins. The occupation of LUEL
start to oscillate earliest and has the maximum ampli-
tude. The momentum distribution evolve periodically
with the same period as that of occupation. During the
evolution the momentum distribution preserve the typi-
cal single peak structure of bosons. The only difference
from those in Fig. 1 is that the dynamics are periodical
in the present situation. The above results are consis-
tent with those obtained by the analytical method [55],
which fully demonstrates the correctness of the present
numerical method and it can be calculated for arbitrary
external drive.

FIG. 3: The evolving dynamics of TG gases with N = 4, SA

= 3, ∆ = 5 and ω = 0. (a) The occupations of the initially
occupied levels: pj for j = 0, 1, 2, and 3; (b) The occupations
of the initially unoccupied levels: pj for j = 4, 5, 6 and the
total occupations pe; (c) The momentum distribution n(k, t).
The solid black line in (a) shows the scaling of the drive S(t)
over time.

When ω → 0, the pulse becomes a single Gaussian

pulse drive S(t) = SA exp
(
−(t− t0)

2
/∆
)
. The evolu-

tion of occupations and momentum distribution are plot-
ted in Fig. 3 for Gaussian drive. In this situation, the
evolution of occupation still begin at the HOEL and the
LUEL. The occupations of initially occupied levels are
shown in Fig. 3a. They decrease at the first half of the
Gaussian drive and arrive at the smallest as the Gaussian
drive approach to the strongest. Later the occupations
increase and reach the stable values at the end of the
pulse drive and the occupation of low level is higher than
that of high level. The occupation evolution of the ini-
tially unoccupied level is plotted in Fig. 3b. These levels
also arrive at a stable occupations at the end of drive.
It is interesting that the LUEL is not occupied with the
largest probability finally. The total occupation of all
initial unoccupied levels is also exhibited in Fig. 3b in
red solid lines, which arrive at the peak value near the
maximum drive and become stable as the Gaussian drive
terminates. In a word, the Gaussian pulse drive excite
the TG gases to the excited state in which atoms popu-
late in more energy levels with definite probabilities. In
this case the momentum distribution still exhibits the
typical single peak structure of bosons during the evolu-
tion, which is plotted in Fig. 3c. Because the TG gas is
excited, its momentum distribution oscillates periodically
around the zero momentum and arrives at a dynamical
stable state. This is obviously different from the cases in
Fig. 1 and in Fig. 2.

FIG. 4: The occupations for the TG gases with N = 2, SA=3
and ∆ = 5. (a) The final stable occupations dependence on
the pulse driving frequency; (b) The evolving occupation dis-
tribution for ω = ω0.

The numerical calculations demonstrate that occupa-
tion distribution of energy levels always arrive at stable
as long as the external drive come to the end. It is only
under the periodical drive that the occupation distribu-
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tion oscillates periodically. It is interesting to investigate
the final stable occupation distribution of different levels
after the end of pulse drive. We display the occupation
distribution dependence on the driving frequency ω in
Fig. 4a for N = 2, in which the occupation of lower
levels pj (j = 0, 1, 2, 3) and the total occupation of high
levels (j > 2) are plotted, and as a representative of high
levels p14 is also plotted. It is shown that under the high
frequency driving (ω > 3ω0) the TG gases return back
to the ground state and N atoms occupy the lowest N
levels with one atom being on one level. Under the low
frequency driving, the occupation inversion take place.
In the region of ω < 0.5ω0, atoms are excited to high
levels (j > N−1) with larger probability and occupy the
low levels (j = 0, ..., N − 1) with smaller probability. As
the driving frequency is close to trap frequency of har-
monic trap (0.5ω0 < ω < 1.5ω0) all atoms occupy high
levels (for example, the level j = 14) and pe arrive at 1,
while the lower levels are vacant (j = 0, 1, 2, 3). The ex-
citing process of atoms from the low levels to high levels
for ω = ω0 is displayed in Fig. 4b. In the first period
(around t < 6) the occupation of HOEL decreases at first
followed by the decrease of level j = 0, and the occupa-
tion of HUEL increases at first followed by the increase of
higher levels sequentially. In the second period (around
t = 9), atoms distribute on levels of 8 ≤ j ≤ 19 with
almost equal probability. Finally the occupation evolve
into two branches with upper levels around j = 24 and
down levels around j = 14.

FIG. 5: The occupations at the end of the pulse when ω = ω0

for different particle numbers: N = 3 (a) and N = 4 (b). The
blue bar is the calculated data, and the red line is the fitting
curve of Gaussian function.

When the driving frequency is close to the level space
of harmonic potential, i.e., ω ∼ ω0, no particle occu-
pies the lowest N levels and all atoms are completely
excited to high levels (complete excitation). The peak
number of final stable multi-peak structure is the number
of atoms. In Fig. 5 we display the occupation distribu-
tion of N=3 and 4. Each peak is a Gaussian, which can
be confirmed by fitting the occupations to the Gaussian

functions p(j) =
N∑
i=1

ai exp
(
−(j − bi)

2
/ci

)
. The fitted

lines are plotted in Fig. 5 in red solid lines. The special
occupation distribution is related with the larger transi-
tion coefficient for the higher energy level. The higher
transition result in the faster transition, so that after a

longer excitation, each particle displays a separate peak.
In complete excitation, the distribution of occupy num-

ber is no longer sensitive to the change of pulse parame-
ters, and always presents a Gaussian distribution. How-
ever, the higher the pulse intensity and pulse width, the
overall distribution will move to the higher energy level.
At the same time, due to the continuous increase of the
transition coefficient, the Gaussian distribution of the oc-
cupancy number will become shorter and wider (Fig. 6a),
and the distance between the multi-particle peak centers
will also increase (Fig. 6b).

FIG. 6: The final occupation: The orange bar doubles the
pulse intensity relative to the blue bar for N = 1 (a); The
orange bar doubles the pulse intensity and pulse width relative
to the blue bar for N = 2 (b).

V. CONCLUSION

We study the dynamics of TG gases confined in a
harmonic potential driven by a pulse driving. The
time-dependent many-body wave function is obtained
based on the Bose-Fermi mapping method combined
with numerical method. The occupation distribution of
single particle levels, and the density distribution and
momentum distribution are exhibited. It is shown that
during driving the density distribution always exhibits
a shell structure and momentum distribution exhibits a
typical single peak structure and the structures will not
deform. The TG gases oscillate around the initial posi-
tion as a whole with the change of driving potential. The
oscillation amplitude also increase and decrease with the
increase and decrease of the driving strength except that
under the periodical driving. The occupation evolution
of single particle energy levels always begin from the
HOEL and LUEL and both of them has the biggest
oscillation amplitude. It is interesting to note that under
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pulse drive TG gases always arrive at a dynamically sta-
ble state in which the momentum distribution oscillates
around the point k = 0 periodically and the occupation
distribution exhibit the behaviour of multi-Gaussian
distribution with peak number being the atom number.
Under the high-frequency driving TG gases return back
to ground state at the end of the driving and under the
low-frequency driving TG gases are excited to stable
excited states and occupation inversion is displayed. As
the driving frequency approximate to the trap frequency
atoms are excited completely and the lower levels will
not be occupied. In addition, the method used in this
paper has major limitations, the Bose-Fermi mapping
method can only be applied to bosonic systems in the
strong interaction limit, and its mathematical form can
no longer satisfy the equations for the case of finite
strong interactions. For the latter case we envision
the partial use of the Bose-Fermi mapping method to
construct orthogonal complete state spaces, so that the
dynamical processes can continue to be obtained along
the lines used in this paper. Finally, our work fills a
small gap in the non-equilibrium dynamics of TG gases,
and hope that the occupation distributions we obtain
for different external drives will lead to new ideas for
quantum state preparation.

Data availability
The authors confirm that the data supporting the find-
ings of this study are available within the article [and/or
its supplementary materials].

Appendix A: Calculation of transition matrix
elements

In this appendix, we will give a detailed derivation of
the transition matrix elements Γmn in section II. Let’s
first consider one of the integral terms,

Γj
mn =

∫
ψm (x1, · · · , xN )xjψn (x1, · · · , xN )

N∏
i=1

dxi

= ⟨m1m2 · · ·mN |xj |n1n2 · · ·nN ⟩

=
α0√
2
⟨m1m2 · · ·mN |

(
a+j + a−j

)
|n1n2 · · ·nN ⟩ ,

|n1n2 · · ·nN ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣
|n1⟩1 |n1⟩2 · · · |n1⟩N
|n2⟩1 |n2⟩2 · · · |n2⟩N
...

...
. . .

...
|nN ⟩1 |nN ⟩2 · · · |nN ⟩N

∣∣∣∣∣∣∣∣∣ ,
where subscripts inside Dirac symbols represent the or-
dering of quantum states, while subscripts outside Dirac
symbols represent the ordering of particles. The result of

xi acting on a N particles state |n1 · · ·ni · · ·nN ⟩ is

α0√
2N !

∣∣∣∣∣∣
|n1⟩1

√
n1 + 1|n1 + 1⟩i |n1⟩N

|ni⟩1
√
ni + 1|ni + 1⟩i |ni⟩N

|nN ⟩1
√
nN + 1|nN + 1⟩i |nN ⟩N

∣∣∣∣∣∣
+

α0√
2N !

∣∣∣∣∣∣
|n1⟩1

√
n1 + 0|n1 − 1⟩i |n1⟩N

|ni⟩1
√
ni + 0|ni − 1⟩i |ni⟩N

|nN ⟩1
√
nN + 0|nN − 1⟩i |nN ⟩N

∣∣∣∣∣∣ .
When taking the inner product of |m1 · · ·mi · · ·mN ⟩†

and xi |n1 · · ·ni · · ·nN ⟩, expand the determinant of the
first term above. This will result in (N − 1)! subterms
with coefficients

√
ni + 1. Let’s focus only on the sub-

terms with coefficients
√
n1 + 1,

γ1 =
α0√
2N !

√
n1 + 1|n1 + 1⟩i|n2 · · ·nN ⟩i,

|n2 · · ·nN ⟩i =

∣∣∣∣∣∣∣∣
|n2⟩1 |n2⟩i−1 |n2⟩i+1 |n2⟩N
|ni−1⟩1 |ni−1⟩i−1 |ni−1⟩i+1 |ni−1⟩N
|ni⟩1 |ni⟩i−1 |ni⟩i+1 |ni⟩N
|nN ⟩1 |nN ⟩i−1 |nN ⟩i+1 |nN ⟩N

∣∣∣∣∣∣∣∣ .
The inner product of |m1 · · ·mi · · ·mN ⟩† and γ1 is

α0√
2N

√
n1 + 1

∣∣∣∣∣∣
δn1+1,m1 δni,m1 δnN ,m1

δn1+1,mi δni,mi δnN ,mi

δn1+1,mN
δni,mN

δnN ,mN

∣∣∣∣∣∣
and after adding up all the different coefficient terms we
have

⟨m1m2 · · ·mN |xi |n1n2 · · ·nN ⟩

=
α0√
2N

N∑
i=1

√
ni + 1

∣∣∣∣∣∣
δn1,m1 δni+1,m1 δnN ,m1

δn1,mi δni+1,mi δnN ,mi

δn1,mN
δni+1,mN

δnN ,mN

∣∣∣∣∣∣
+

α0√
2N

N∑
i=1

√
ni + 0

∣∣∣∣∣∣
δn1,m1 δni−1,m1 δnN ,m1

δn1,mi δni−1,mi δnN ,mi

δn1,mN
δni−1,mN

δnN ,mN

∣∣∣∣∣∣.
Only the calculation of xi is given and the result in sec-
tion II can be obtained by summing over all xi.

Appendix B: Density distribution and ROBDM

The original expression of Eq. (4) is

Dmn =

∫ N∏
i=2

dxiψm (x, · · · , xN )ψn (x, · · · , xN )

=

∫ N∏
i=2

dxi
1

N !

(∑
P

εPφp1 (x) · · ·φpN
(xN )

)

×

∑
Q

εQφq1 (x) · · ·φqN (xN )

 ,
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where εP (εQ) is the signature of P = (p1, · · · , pN )
(Q=(q1, · · · , qN )) which corresponds to the permuta-
tion of the occupation configuration (n1, n2, · · · , nN ) (
(m1,m2, · · · ,mN )) for |ψm⟩ (|ψn⟩). Due to the orthog-
onality of the single particle wave function φl(x), the
integral will be not zero only in two cases. For the case
of |ψm⟩ = |ψn⟩, the summation term is nonzero only for
the term of P = Q. In other cases, N − 1 particles must
occupy in the same single particle levels for |ψm⟩ and
|ψn⟩, i.e., only one element in the set of ni is not same
as those in the set of mj .
Finally, we give a simple calculation of equation (5) as

following

Pmn =

∫
ψm (x, · · · , xN )ψn (y, · · · , xN )

N∏
j=2

sign (x− xj) sign (y − xj)

N∏
i=2

dxi

=

∫ N−1∏
j=2

sign (x− xj) sign (y − xj)

N−1∏
i=2

dxi∫ +∞

−∞
ψm (x, · · · , xN )ψn (y, · · · , xN )dxN

−2

∫ N−1∏
j=2

sign (x− xj) sign (y − xj)

N−1∏
i=2

dxi∫ y

x

ψm (x, · · · , xN )ψn (y, · · · , xN )dxN ,

where the signature on xN has been removed. Repeating

the above process we can have the formula in the main
text. To show the process of the above calculation more
clearly, we give the example P12 for two particles system,
i.e., |ψ1⟩ = |0, 1⟩ and |ψ2⟩ = |0, 2⟩

∫ +∞

−∞
ψ1 (x, x2)ψ2 (y, x2) sign (x− x2) sign (y − x2) dx2

=

∫ +∞

−∞
ψ1 (x, x2)ψ2 (y, x2) dx2

− 2

∫ y

x

ψ1 (x, x2)ψ2 (y, x2) dx2

= φ0 (x)φ0 (y)

[
0− 2

∫ y

x

φ1 (x2)φ2 (x2) dx2

]
− φ0 (x)φ2 (y)

[
0− 2

∫ y

x

φ1 (x2)φ0 (x2) dx2

]
− φ1 (x)φ0 (y)

[
0− 2

∫ y

x

φ0 (x2)φ2 (x2) dx2

]
+ φ1 (x)φ2 (y)

[
1− 2

∫ y

x

φ0 (x2)φ0 (x2) dx2

]
.
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