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This work introduces a method for determining the energy spectrum of lattice quantum chro-
modynamics (LQCD) by applying the Lanczos algorithm to the transfer matrix and using a boot-
strap generalization of the Cullum-Willoughby method to filter out spurious eigenvalues. Proof-of-
principle analyses of the simple harmonic oscillator and the LQCD proton mass demonstrate that
this method provides faster ground-state convergence than the “effective mass,” which is related to
the power-iteration algorithm. Lanczos provides more accurate energy estimates than multi-state fits
to correlation functions with small imaginary times while achieving comparable statistical precision.
Two-sided error bounds are computed for Lanczos results and guarantee that excited-state effects
cannot shift Lanczos results far outside their statistical uncertainties. Further, Lanczos results avoid
the exponential signal-to-noise degradation present in the power-iteration method / effective mass.

Determining the energy spectrum of quantum chromo-
dynamics (QCD) leads to hadron mass predictions and
is an essential first step towards predicting hadron and
nuclear structure, scattering amplitudes, and inputs to
new physics searches. Spectroscopy, the determination of
ground- and excited-state energies, is therefore a central
aspect of lattice QCD (LQCD) calculations. Accurately
disentangling ground- and excited-state effects is chal-
lenging for systems with small energy gaps and leads to
significant and hard-to-quantify uncertainties in state-of-
the-art LQCD calculations for example of nucleon axial
form factors [1–8] and baryon-baryon scattering [9–13].

Spectroscopy calculations typically rely on analyzing
the asymptotic decay rate of Euclidean correlation func-
tions, which is set by the lowest-energy state not orthog-
onal to those created by the relevant operators. However,
the signal-to-noise ratios (SNRs) of Euclidean correlation
functions also decay exponentially in Euclidean time with
a rate predicted by Parisi and Lepage [14, 15]. This so-
called SNR problem is a major challenge for proton and
other baryon correlation functions and becomes exponen-
tially more severe for nuclei [16–18].

The SNR problem has motivated the development of
methods to maximize the information that can be ex-
tracted from relatively precise correlation functions with
small imaginary times. Techniques based on solving
a generalized eigenvalue problem (GEVP) constructed
from a symmetric correlation-function matrix provide
both faster convergence and rigorous variational upper
bounds on energies [19–23], and their application has be-
come standard in LQCD spectroscopy for multi-hadron
systems with small energy gaps [24–26]. Prony’s method
for signal processing has also been applied to LQCD and
shown to improve ground-state convergence [27–31].

This work proposes a new approach to LQCD spec-
troscopy using the Lanczos algorithm [32] to compute
eigenvalues of the transfer matrix. The Lanczos algo-
rithm has been widely applied for decades to compu-
tational linear algebra [33–39], quantum Monte Carlo
calculations [40–42], and analysis of Dirac matrices in
LQCD [43–49]. However, direct application of the Lanc-
zos algorithm to the LQCD transfer matrix is challenging

because the transfer matrix is infinite-dimensional [50]
and not directly constructed in path-integral Monte
Carlo calculations.

Here, I show that the Lanczos algorithm can be applied
to the LQCD transfer matrix using recursive formulae
whose inputs are simply Euclidean correlation functions.
The Kaniel-Paige-Saad (KPS) bound [51–53] implies that
Lanczos energies converge exponentially faster than stan-
dard estimators near the continuum limit. Lanczos ap-
proximation errors can be estimated directly and provide
two-sided error bounds, improving upon the one-sided
variational bounds provided by GEVP solutions.

Proof-of-principle results are shown below for a quan-
tum simple harmonic oscillator (SHO) and the proton
mass in LQCD with close-to-physical quark masses. The
variance of Lanczos estimators is found to approach a
constant for large iteration counts, in contrast to al-
gebraic estimators based on “effective masses” whose
variance grows exponentially in accordance with Parisi-
Lepage scaling. An explanation for this behavior is pro-
posed based on the identification of Lanczos as a Krylov-
space projection method and anlysis of projection oper-
ator SNRs inspired by Della Morte and Giusti [54–56].
Of course, extending the maximum time included in a
multi-state fit offers the same improvement. Unlike fits,
however, Lanczos results are purely algebraic functions
of LQCD “data” and do not require any statistical infer-
ence, cuts on what subset of data is included, Bayesian
priors, or covariance matrix estimation.

Method: Lattice field theories do not have a contin-
uous time-translation symmetry to be used to directly
define a Hamiltonian operator H. The presence of dis-
crete time-translation symmetry, t→ t+a where a is the
lattice spacing, does allow a transfer matrix T = e−aH to
be defined that acts as an imaginary-time evolution op-
erator. The transfer matrix for LQCD with the Wilson
gauge and fermion actions has been explicitly constructed
as a Hilbert-space operator and shown to be Hermitian
and positive-definite [57]. A transfer matrix can also be
constructed for theories with improved actions that acts
as a positive-definite operator for low-energy states [58].

Euclidean correlation functions for a theory with tem-
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poral extent (inverse temperature) β and “interpolating
operators” ψ and ψ† are matrix elements of powers of T ,

C(t) ≡
〈
ψ(t)ψ†(0)

〉
=

〈
ψ
∣∣∣T t/a ∣∣∣ψ〉+ . . . , (1)

where |ψ⟩ ≡ ψ† |0⟩ with |0⟩ the vacuum state and ... de-
notes thermal effects detailed in the Supplemental Mate-
rial, which also includes Refs. [59, 60]. Inserting complete
sets of transfer-matrix eigenstates

∑
n |n⟩ ⟨n| leads to the

spectral representation

C(t) =
∑
n

λtn ⟨ψ|n⟩ ⟨n|ψ⟩ =
∞∑
n=0

|Zn|2e−Ent, (2)

where Zn ≡ ⟨n|ψ⟩ are overlap factors. Energies are de-
fined by En ≡ −(1/a) lnλn in terms of transfer matrix
eigenvalues λn ≡ ⟨n|T |n⟩ in the sector with quantum
numbers of ψ† |0⟩ ordered such that λ0 ≥ λ1 ≥ . . .. For
large t, correlation functions are dominated by contribu-
tions from the lowest-energy state that is not orthogonal
to |ψ⟩. The “effective mass” is an algebraic estimator for
the ground-state energy

E(t) ≡ −1

a
ln

[
C(t)

C(t− a)

]
= E0 +O

(
e−(t/a)δ

)
, (3)

where δ ≡ a(E1 − E0) is the excitation gap.
Estimating the ground-state energy using the effec-

tive mass can be viewed as an application of the power-
iteration method [61] to the transfer matrix as follows.
This method defines |bk⟩ ≡ T |bk−1⟩ /||T |bk−1⟩ || with

|b1⟩ = |ψ⟩ /
√
⟨ψ|ψ⟩ which leads to |bk⟩ ∝ T k−1 |ψ⟩. For

Hermitian T , the Hilbert-space norm satisfies ||T |ψ⟩ || =〈
ψ
∣∣T 2

∣∣ψ〉 = C(2a). The largest eigenvalue of T is then
approximated as

µk ≡ ⟨bk|T |bk⟩
⟨bk|bk⟩

=

〈
ψ
∣∣T 2k−1

∣∣ψ〉〈
ψ
∣∣T 2(k−1)

∣∣ψ〉 =
C((2k − 1)a)

C((2k − 2)a)
.

(4)
Taking the log gives the power-iteration energy estimate
after k iterations: −(1/a) lnµk. This estimate is identical
to the effective mass with t/a = 2k − 1.

The Lanczos algorithm [32] is widely appreciated to
be superior to the power-iteration method for the task
of approximating the largest eigenvalue of a matrix [33–
38, 62–65]. Both methods involve the Krylov space

K(m) = span{|ψ⟩ , T |ψ⟩ , . . . , Tm |ψ⟩}, (5)

and the approximation of eigenvectors as elements of
K(m). However, the Lanczos algorithm enables the ex-
plicit diagonalization of a Krylov-space approximation
to T that leads to faster convergence as discussed below.
Lanczos vectors are defined by the three-term recurrence

T |vj⟩ = αj |vj⟩+ βj |vj−1⟩+ βj+1 |vj+1⟩ . (6)

This guarantees that ⟨vi|vj⟩ = δij and therefore

{|v1⟩ , . . . , |vm⟩} provides an orthonormal basis for K(m).

The matrix elements of T in this basis, T
(m)
ij ≡ ⟨vi|T |vj⟩,

form a tridiagonal matrix by Eq. (6). Its eigenvalues

λ
(m)
n , called “Ritz values,” provide optimal Krylov-space

approximations to eigenvalues of T [33].
The LQCD transfer matrix is an infinite-dimensional

integral operator that cannot be explicitly represented
numerically without some form of Hilbert-space trunca-

tion. However, the elements of T
(m)
ij are scalars con-

structed from inner products involving |ψ⟩ and T . The

path integral definitions of T
(m)
ij can be related to those

for Euclidean correlation functions C(ka) using recursion
relations for Apj ≡ ⟨vj |T p |vj⟩ and Bpj ≡ ⟨vj |T p |vj−1⟩,

Apj+1 =
1

β2
j+1

[
Ak+2
j + α2

jA
p
j + β2

jA
p
j−1 − 2αjA

p+1
j

+2αjβjB
p
j − 2βjB

p+1
j

]
,

(7)

and

Bpj+1 =
1

βj+1

[
Ap+1
j − αjA

p
j − βjB

p
j

]
, (8)

where αj = A1
j , βj+1 =

√
A2
j − α2

j − β2
j , β1 = Bp1 = 0,

and p ∈ {1, . . . 2(m− j) + 1}. Similar recursions are dis-
cussed for Monte Carlo thermalization times in Ref. [66].
These recursions provide the non-zero matrix elements

T
(m)
ii = αi and T

(m)
i(i+1) = T

(m)
(i+1)i = βi+1. The m × m

matrix T
(m)
ij can be diagonalized straightforwardly to

provide λ
(m)
k and E

(m)
k ≡ −(1/a) lnλ

(m)
k with k ∈

{1, . . . ,m}. The m = 1 case simplifies to T
(1)
11 = α1 =

C(a)/C(0) and therefore E
(1)
0 = E(a).

The recursion relations shown here are applicable to
any C(t) admitting a spectral representation; see the
Supplemental Material for a proof. They further apply to

stochastic estimates of C(t) if T
(m)
ij ∈ C is permitted1 and

they are interpreted as applying oblique Lanczos [68–70]
to a non-Hermitian transfer matrix that exactly describes
C(t) at finite-statistics, as proven in Ref. [71].
Convergence: Cauchy’s interlacing theorem guaran-

tees that λ
(m)
k provides a lower bound on λk [33, 52, 72].

Therefore E
(m)
k provides a variational upper bound on

Ek. The KPS bound [51–53] further constrains the ap-
proximation errors of ground-state Ritz values:

λ0 − λ
(m)
0

λ0
≤

[
tan arccosZ0

Tm−1(2eδ − 1)

]2
, (9)

1 Non-spurious eigenvalues with β2
j ≈ 0 indicate that a Ritz value

has converged to an eigenvalue of T , see Refs. [33, 35, 52, 67].
After convergence has been achieved, statistical fluctuations can

easily lead to β2
j < 0 and therefore complex T

(m)
ij .
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FIG. 1. Relative errors of Lanczos and power-iteration (effec-
tive mass) applied to {C(0), . . . , C(ta)} versus t/a = 2m− 1
for the 20-state mock data described in the main text (includ-
ing the trivial extension of power-iteration to half-integer m).

The Kaniel-Paige-Saad bound, Eq. (9), is shown as a dotted
line. The residual bound, Eq. (11), is shown as a dashed line

for m ≥ 6 (E
(m)
0 is closer to En with n > 0 for smaller m).

where the Tk(x) are Chebyshev polynomials of the first
kind, Tk(cosx) = cos(kx). For large k, Tk(x) ≈ 1

2 (x +√
x2 − 1)k, and the KPS bound simplifies to

λ0 − λ
(m)
0

λ0
≲

4(1− Z2
0 )

Z2
0

×

{
e−2(m−1)δ δ ≫ 1

e−4(m−1)
√
δ δ ≪ 1

. (10)

For large δ, this resembles the O(e−(t/a)δ) asymptotic
error of the effective mass (power-iteration method) with
t/a ∝ 2m. For small δ, Lanczos converges exponentially

faster than the power-iteration method because
√
δ ≫ δ.

The latter region is the relevant one near the continuum
limit where δ = a(E1 − E0) ≪ 1.

Fig. 1 compares the practical convergence of E
(m)
0 with

that of E(t) for a 20-state correlation-function model de-
fined by Eq. (2) with Zn = (n+1) and aEn = 0.1(n+1)
for n = 0, . . . , 19. The Ritz values exactly reproduce the
complete energy spectrum after 20 iterations and for the
ground state are 5 orders of magnitude more accurate
than the standard effective mass after 12 iterations.

Remarkably, it is also possible to bound the difference

between E
(m)
k and an exact energy in terms of directly

calculable quantities [33, 35]. The approximation error
of T in the Lanczos basis is the residual norm βm+1 by
Eq. (6), and the change of basis relating this to the Ritz

basis is provided by the eigenvectors ω
(m)
n of T

(m)
ij . The

residual bound states that for any Ritz value λ
(m)
k there

exists an eigenvalue λ of T satisfying

min
λ∈{λn}

|λ(m)
k − λ|2 ≤ B

(m)
k ≡ |βm+1|2 |ω(m)

mk |
2 V

(m)
k , (11)

where ω
(m)
jk denotes the j-th component of ω

(m)
k . Here,

V
(m)
k ≡

〈
vm+1|vm+1

〉
/
〈
y
(m)
k |y(m)

k

〉
involves the Ritz vec-

tors
∣∣y(m)
n

〉
≡

∑
j

∣∣v(m)
j

〉
ω
(m)
jn and is equal to unity when

T
(m)
ij is Hermitian; its evaluation in the context of oblique

Lanczos is detailed in the Supplemental Material. Note

that it is not guaranteed that λ
(m)
k is close to λk — eigen-

vectors that have sufficiently small overlap with |ψ⟩ can
be “missed” by Lanczos [33, 64, 73] — but a two-sided
systematic uncertainty interval in which an eigenvalue of

T is guaranteed to exist can be computed for each λ
(m)
k .

This is a significant advantage over standard methods,
which can also miss energy eigenstates in practice [11, 74–
76] and for finite t only have one-sided systematic uncer-
tainty bounds arising from the variational principle.
It is noteworthy that an improved estimator based on

Prony’s method [27–31] gives results that are numerically

identical to the λ
(m)
k when applied to the 2m correlation-

function values {C(0), . . . , C((2m − 1)a)}. This corre-
spondence may provide further insight on both methods
and will be studied in detail in future work [77]. This
correspondence also implies that the Ritz values are nu-
merically identical to the solutions of the Prony general-
ized eigenvalue method (PGEVM) with n = m, τ0 = 0,
and ∆ = δt = 1, which by construction coincide with the
roots from Prony’s method. Here, I focus on important

properties of the λ
(m)
k —including the KPS and residual

bounds discussed above, as well as methods for filtering
between physical and spurious Ritz values in applications
to noisy data discussed below—that can be derived from
their Lanczos definitions and are not obvious from the
perspective of Prony’s method.2

Numerical Stability: Numerical artifacts in Lanczos
arising from finite-precision arithmetic have been studied
in detail and result in “spurious eigenvalues” that do not
converge towards definite values as well as multiple copies
of genuine eigenvalues [33, 52, 78, 79]. A simple yet ef-
fective [46, 80] method for filtering spurious eigenvalues
was introduced by Cullum and Willoughby [78, 79]. This
method is based on the non-trivial realization that large
differences between Ritz values and T eigenvalues can

only arise for a non-degenerate eigenvalue when λ
(m)
n is

also an eigenvalue of the matrix T̃
(m)
ij defined by deleting

the first row and column of T
(m)
ij [78, 79].

The threshold for when the distance d
(m)
k between an

eigenvalue of T
(m)
ij and the nearest eigenvalue of T̃

(m)
ij

should be considered zero — and thus the eigenvalue
spurious — is obvious in fixed-precision Lanczos appli-
cations without statistical noise [78, 79] but for Monte
Carlo results it depends on statistical precision. Since
spurious eigenvalues appear because of statistical fluctu-
ations and do not converge to definite values, the dis-

2 LQCD applications of Prony’s method have used fixed m in the
range m ≤ 4 [28–31] and noted that unphysical solutions arising
from noise become increasingly common as m is increased [29].
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tribution of Ritz values λ
(b,m)
k obtained using bootstrap

resampling [81–84] with b ∈ {1, . . . , Nboot} is useful for
identifying a threshold εCW for which eigenvalues with

d
(m)
k < εCW are deemed spurious as described below.
This construction does an imperfect job of filtering be-

tween spurious and non-spurious eigenvalues in the pres-
ence of noise. Using outlier-robust bootstrap statistics, in
particular the bootstrap median and its empirical boot-
strap confidence intervals, can mitigate the statistical
noise that results from misidentification.

Lanczos estimates for E0 are therefore obtained by:

1. Compute the Ritz values λ
(b,m)
k for Nboot bootstrap

samples using Lanczos recursions, Eq. (7)-(8). If

|argλ(b,m)
k | > εfloat ∼ 10−12, discard as spurious.

2. Place the Cullum-Willoughby threshold, εCW , be-
low all ln d(b,m) histogram bins with O(Nbootm)

counts.3 If d
(b,m)
k > εCW , discard as spurious.

3. E0 = − lnmedianb[λ
(b,mmax)
0 ], where λ

(b,m)
0 is

the largest non-spurious λ
(b,m)
k less than one and

mmax = (β − 1)/2 is the largest m where B
(b,m)
k is

computable.

4. To compute uncertainties, use a nested resampling
procedure wherein, for each “outer” bootstrap en-
semble, the median is taken over estimates com-
puted on Nboot “inner” bootstrap ensembles drawn
from the outer one. Empirical confidence intervals
of the outer bootstrap results provide (idiomatic)
bootstrap uncertainties for E0.

Lanczos estimates for B0 are computed from B
(b,mmax)
k

using an identical nested bootstrap procedure.
Simple harmonic oscillator: Complex scalar field

theory in (0 + 1)D with periodic boundary conditions,
φ(β) = φ(0), and action

S = a

β−1∑
t=0

{
φ(t)∗ [φ(t+ a)− 2φ(t) + φ(t− a)]

1

a2

+(aM)2|φ(t)|2
}
,

(12)

describes a system of non-interacting bosons with mass
aM at temperature 1/β. For β → ∞ it is equivalent to
a pair of simple harmonic oscillators. The theory has a
U(1) symmetry φ→ eiθφ whose conserved charge Q cor-
responds to φ particle number. Correlation functions for
systems with charge Q have ground-state energies Qm.
Since |φ|2 has Q = 0, the variances of charge Q corre-
lation functions are asymptotically constant. This gives

3 A precise recipe for defining εCW in terms of three hyperparam-
eters is given in the Supplemental Material; examples here use
∆ = 4, KCW = 3, and FCW = 10.
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FIG. 2. Lanczos results for E0 are compared with power-
iteration (effective mass) results after m iterations as a func-
tion of the maximum t/a = 2m−1 for which C(t) is included.
Multi-state fit results are shown as functions of the maximum
t for which C(t) is included. The exact result is a red line.

calculations of Q = 1 correlation functions an exponen-
tially severe SNR problem that is similar to the SNR
problem facing baryons in LQCD [85, 86].
A correlation function with Q = 1 that has overlap

with both ground and excited states can be defined as

Cφ(t) ≡
〈
φ(t)|φ(t)|3/2φ(0)∗|φ(0)|3/2

〉
. (13)

Results for E(t) and E
(m)
0 are shown in Fig. 2 for an

ensemble of 104 field configurations with aM = 0.1 and
β/a = 100 where Cφ(t) is averaged over all translations
of the origin. Blocking analysis shows that averaging over
Nblock = 10 configurations is sufficient to provide negligi-
ble autocorrelations. Uncertainties are calculated using
(nested) bootstrap confidence intervals withNboot = 200.

Lanczos results converge within uncertainties to the
exact result aE0 ≈ 0.09996 after m = 3 iterations, cor-
responding to t/a = 5, while E(t) reaches similar con-

vergence for t/a ∼ 10. Further, E
(m)
0 converges to the

true ground-state energy even in the presence of ther-
mal states, as proven in the Supplemental Material, and
Lanczos results remain consistent with aM for t > β/2.
The Lanczos SNR also converges to a constant value for
large m. This is very different from the power-iteration
(effective-mass) SNR, which decreases exponentially ac-
cording to Parisi-Lepage scaling. In this way Lanczos
SNR scaling offers the same improved SNR scaling of
multi-state fit results as a function of the maximum time
tmax included in fits, shown in Fig. 2 for comparison.
Applying Lanczos for the full mmax = (β − 1)/2 = 49

iteration count available gives E
(mmax)
0 = 0.0987(38). Af-

ter mmax iterations the two-sided window provided by
the residual bound is [0.051(11), 0.147(11)], where un-
certainties correspond to bootstrap empirical confidence

intervals for − ln(λ
(b,m)
k ±

√
B

(b,m)
k ). This window is an

order of magnitude larger than the statistical uncertainty

of E
(mmax)
0 but nonetheless provides a meaningful con-



5

straint on the possible size of excited-state effects.

This can be compared to standard multi-state fits to
Cφ(t) using the methodology detailed in Refs. [11, 87]:
a weighted average of multi-state fits with all minimum
t/a choices gives 0.1017(52). Lanczos and this weighted
average both agree with the exact result within 1σ; the
Lanczos uncertainties are ≈ 30% smaller. Particular fits
with small tmin achieve higher precision but can be inac-
curate even when χ2/dof < 1: one-state fits with tmin = 7
and tmax = 35 (chosen by a SNR cutoff) give 0.1079(17),
a 4σ discrepancy, with χ2/dof = 0.74. Weighted aver-
ages over all tmin choices but using small tmax can also
provide fit results that disagree with the exact result at
high significance, see Fig. 2.

This underscores the importance of the residual bound,
which is rigorously valid even for smallm. As an extreme

case E
(1)
0 = 0.1416(11) has clearly not converged within

uncertainties, but B
(1)
0 = 0.0045(4) still provides a two-

sided window [0.082(2), 0.202(2)] that includes the true
ground-state energy.

Lattice QCD: Correlation functions for baryons and
nuclei in LQCD have exponential SNR problems that can
make it difficult to isolate ground states. To test the ac-
curacy and precision of Lanczos methods for baryons, I
computed proton correlation functions Cp(t) = ⟨p(t)p(0)⟩
using point-like proton interpolating operators p(x) =
uT (x)Cγ5d(x)(1 + γ4)d(x) projected to zero spatial mo-
mentum for 64 sources on a single timeslice of 76 gauge-
field configurations with L/a = 48, β/a = 96, and
Nf = 2 + 1 dynamical quarks with light quark masses
corresponding to mπ ≈ 170 MeV and a ≈ 0.091(1)
fm [88, 89]. The action corresponds to the Lüscher-
Weisz gauge action [90] and clover-improved [91] Wil-
son fermion action with one step of stout smearing [92];
a Hermitian transfer matrix representation is therefore
only valid for low-energy states [58]. Results for C(t)
and C(−t) are averaged. Autocorrelations are found to
be negligible via blocking analysis.

Lanczos results give E
(mmax)
0 = 0.429(17) for mmax =

47 as shown in Fig. 3; see the Supplemental Material
for more details and pion results. The two-sided window
provided by the residual bound is [0.30(3), 0.56(4)]. A
high-statistics benchmark is provided by model-averaged
fits to correlation functions computed by the NPLQCD
Collaboration using the same action with Ncfg = 670
and 512 Gaussian-smeared sources per configuration:

aMbig
N = 0.4244(44). Lanczos results agree within 1σ.

Two-state fits to Cp(t) with t/a = 11 give 0.4383(86)
with χ2/dof = 0.71. A weighted average of multi-state
fits gives 0.443(12). These are 1.5σ and 1.6σ larger than

aMbig
N , respectively. For very large tmax ∈ [25, 48], multi-

state fits give accurate results 0.420(30) with larger un-
certainties than Lanczos.

The variance of E
(m)
0 is shown in Fig. 3. It approaches

an O(10−2) constant for t/a ≳ 20 with qualitatively
similar behavior to the multi-state fit variance. Large

correlations Corr[E
(m)
0 , E

(m′)
0 ] ∼ [0.5, 1] are visible for
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FIG. 3. Top: Proton E(t), E
(m)
0 , and multi-state fit results.

aMbig
N is shown as a red band; other details are as in Fig. 2.

Bottom: variances compared with Parisi-Lepage scaling ∝
e(MN− 3

2
mπ)t [14, 15] (red dashed line). Hatching indicates the

noise region where SNR ≤ 1 and variance estimates may be

unreliable, which ranges from VarE
(m)
0 = [E

(m)
0 ]2 to the finite-

statistics variance limit NsrcVarE(a) [85], where assuming
negligible autocorrelations Nsrc = 64× 76.

m,m′ ≳ 20 that suggest Lanczos results using bootstrap
median estimators are relatively insensitive to C(t) with
t ≳ 40 (using sample mean estimators, these correlations
are washed out by larger fluctuations related to spurious
eigenvalue misidentification; see the Supplemental Ma-
terial). This is in contrast to power-iteration/effective-
mass results, whose correlations do not saturate and
variance grows exponentially with Parisi-Lepage scaling.
Lanczos therefore provides an algebraic estimator that is
free from exponential SNR degradation.
Discussion: The method for applying the Lanczos

algorithm to infinite-dimensional transfer matrices intro-
duced here provides accurate predictions for simple har-
monic oscillator and LQCD ground-state energies. In
particular, Lanczos achieves higher accuracy and simi-
lar precision to multi-state fits involving small imaginary
times. A two-sided error bound further shows excited-
state effects cannot shift Lanczos results far outside their
statistical uncertainties. Challenges arise from spuri-
ous eigenvalues, but an implementation of the Cullum-
Willoughby test using bootstrap histograms and boot-
strap median estimators mitigate their effects in these ex-
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amples. Future refinements improving the robustness of
spurious eigenvalue removal could improve the statistical
precision of Lanczos energy results and residual bounds.

The fact that Lanczos SNR approaches a constant
at large m can be understood from the perspective
of the Lanczos algorithm as a Krylov-space projection
method [33]. Explicitly, projection operators can be con-

structed from the Ritz vectors as P
(m)
n ≡

∣∣y(m)
n

〉〈
y
(m)
n

∣∣
and are related to Ritz values as

λ(m)
n =

〈
y(m)
n

∣∣∣T ∣∣∣y(m)
n

〉
=

〈
ψ
∣∣∣P (m)

n TP
(m)
n

∣∣∣ψ〉
|ω(m)

1n |2 ⟨ψ|ψ⟩
, (14)

for a Hermitian subspace of non-spurious Ritz values [71].

P
(m)
n converges to the projection operator Pn ≡ |n⟩ ⟨n|

with finite-m corrections analogous to those appearing

the KPS eigenvalue bound, e.g. P
(m)
n = Pn+O(e−4m

√
δ)

for δ ≪ 1 [33, 53, 68]. This provides the Hilbert-space
operator relation ψPnTPnψ

† = |Zn|2e−aEn |n⟩ ⟨n| +
O(e−4m

√
δ). At finite statistics, P

(m)
n depends on the

gauge-field ensemble used and ψP
(m)
n TP

(m)
n ψ† provides

an observable whose finite-statistics expectation value co-

incides with λ
(m)
n . This suggests the variance of λ

(m)
n is

proportional to that of ψP
(m)
n TP

(m)
n ψ† in the limit of

large statistics. If the statistical ensemble and m are

both large, then P
(m)
n approaches Pn and in this limit

the variance of λ
(m)
n is proportional to the variance of

the projector |n⟩ ⟨n|.
The variances of projectors have appealing features in-

cluding the non-appearance of states with different quan-
tum numbers than the signal squared (e.g. three-pion
states in nucleon variances) [54–56]; the finiteness of the
variance of |n⟩ ⟨n| is already sufficient to ensure the vari-

ance of λ
(m)
n approaches a finite m-independent value.

Analogous arguments slow the variance of ω
(m)
1n is propor-

tional to that of ψP
(m)
n ψ† and likewise approaches a con-

stant at largem. The SNR of E
(m)
n = −1/a lnλ

(m)
n there-

fore approaches a non-zero constant for large m. This
should be contrasted with the power-iteration method,
for which E(2ma) is defined by a log-ratio of C(2ma)
and C((2m− 1)a), both of which have zero SNR at large
m. Since they are not perfectly correlated, the SNR of
E(2ma) vanishes (exponentially) at large m.

In conclusion, Lanczos provides rapidly convergent al-
gebraic energy estimators without SNR problems and
two-sided bounds on excited-state effects that could be
useful for a wide range of hadron spectroscopy calcula-
tions where isolating ground states is challenging, includ-
ing studies of nucleon, nuclear, and highly boosted sys-
tems.
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SUPPLEMENTARY MATERIAL

This Supplementary Material provides additional de-
tails on the implementation of the Lanczos algorithm
used to compute the results of the main text. A proof
that thermal effects can be described without modifying
the basic algorithm is presented in Sec. A. An imple-
mentation of the Cullum-Willoughby method for remov-
ing spurious eigenvalues is introduced and its numeri-
cal application described in Sec. B. An oblique Lanczos
method suitable for describing noisy Monte Carlo results

leading to non-Hermitian T
(m)
ij is presented in Sec. C.

Finally, Sec. D presents additional numerical results on
the residuals and correlations of Lanczos results.

A. Thermal effects

Consider a function f(t) sampled at discrete points
t ∈ {a, 2a, . . . , βa} with a spectral representation

f(t) =

∞∑
n=0

Xne
−Ent + Yne

Fnt, (15)

where En, Fn > 0 and Xn, Yn ∈ R. Particular cases
include bosonic thermal correlation functions in which
Yn = Xne

−βEn and Fn = En, as well as fermionic ther-
mal correlation functions in which the Fn are equal to
energies of fermionic states with opposite parity to those
with energies En. The thermal states with transfer ma-
trix eigenvalues eaFn can be treated as additional states
on equal footing with those with eigenvalues e−aEn by
defining

f(t) =

∞∑
k=0

Zke
Lkt, (16)

where

Zk ≡

{
Xk/2, k even

Y(k−1)/2, k odd
,

Lk ≡

{
−Ek/2, k even

F(k−1)/2, k odd
.

(17)

Using this representation as a starting point, a matrix
T can be defined that acts analogously to the physical
transfer matrix in the zero-temperature case.

A set of vectors |k⟩ and dual vectors ⟨k| can be defined
to have inner product ⟨k|k′⟩ = δkk′ . A vector |ψ⟩ can be
defined by

⟨k|ψ⟩ ≡
√
Zk, (18)

where the branch cut of
√
Zk is placed along the negative

imaginary axis in case Zk is negative. The dual vector
⟨χ| can be defined by

⟨χ|k⟩ ≡
√
Zk, (19)

An operator T can be defined by

⟨k|T |k′⟩ = eaLkδkk′ . (20)

Since Lk ∈ R, T is represented by a real and diagonal
matrix in the |k⟩ basis and is therefore a Hermitian oper-
ator. This provides a matrix-element representation for
f(t) as〈

χ
∣∣∣T t/a ∣∣∣ψ〉 =

∑
k,k′

⟨χ|k⟩
〈
k
∣∣∣T t/a ∣∣∣k′〉 ⟨k′|ψ⟩

=
∑
k,k′

√
Zke

Lktδkk′
√
Zk′

=
∑
k

Zke
Lkt

= f(t).

(21)

Regardless of whether f(t) can be associated with a
physical correlation function, this provides a representa-
tion of f(a), f(2a), ..., f(t) as matrix elements ⟨χ|T |ψ⟩,〈
χ
∣∣T 2

∣∣ψ〉, ...,
〈
χ
∣∣T t/a ∣∣ψ〉 of a Hermitian operator T .

Application of the Lanczos algorithm described here to

f(t) will lead to iterative approximations λ
(m)
k that con-

verge to eigenvalues eaLk of T in the limit of large Lanczos
steps m→ ∞. This implies

{λ(m)
k } →{eaLk} = {e−aEn , eaFn}, (22)

and the estimators E
(m)
k = −(1/a) lnλ

(m)
k therefore con-

verge to

{E(m)
k } → {En, −Fn}. (23)

The “energy spectrum” obtained by applying Lanczos
methods to f(t) for m steps will therefore approximate
some admixture of the En and −Fn.
Applying Lanczos methods to bosonic thermal cor-

relation functions will therefore result in positive E
(m)
n

approximating physical energies En and negative E
(m)
n

approximating −En. Applying Lanczos methods to
fermionic thermal correlation functions will result in pos-

itive E
(m)
n approximating the energies of fermionic states

with the same parity as |ψ⟩ and negative E
(m)
n approxi-

mating minus the energies of states with opposite parity.
Since this construction applies even when some of

the Xn are negative, it is valid even when f(t) de-
scribes an “asymmetric” correlation function represented
as

〈
O′(t)O†(0)

〉
with O ≠ O′ in the physical Hilbert

space. An oblique Lanczos method suitable for asymmet-
ric correlation functions is described in Sec. C below.

The practical convergence of Lanczos-based estimators
for time series of the form Eq. (15) that can be inter-
preted as thermal correlation functions with β/a = 100
are shown in Figs. 4. Thermal states show up as negative-
energy eigenvalues in Lanczos results for t/a ≳ 20. In the
same region, the approach of the Lanczos estimator to
the ground-state energy is non-monotonic. The residual
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FIG. 4. Comparison of the estimator arccosh([C(t+ 2a) + C(t)]/[2C(t+ a)]) with Lanczos-based estimators for a time series
with β/a = 100 points corresponding to Eq. (15) with Xn = Yn = (n + 1) and aEn = 0.1(n + 1) for n = 0, . . . , 50. As in

Fig. 1, estimators E
(k)
0 after k iterations of Lanczos are shown at t/a = 2k − 1 since this is the largest t/a correlation function

involved in its calculation. The residual bound computed via the Lanczos algorithm with Eq. (11) is shown as a dashed line.
The ground-state version of the KPS bound, Eq. (9), only applies for β → ∞ limit and can be violated when thermal effects
in f(t) are significant.

bound applies for all t/a and provides a rigorous system-

atic uncertainty on the distance between E
(m)
k and some

energy eigenvalue. The ground-state version of the KPS
bound in the form of Eq. (9) only applies for β → ∞ —
empirically it holds for t ≲ 3/4β in this example but can
be seen to be violated for larger t.
A bound valid at finite β can be obtained from the

general form of the KPS bound [51–53],

0 ≤ λn − λ
(m)
n

λn − λ∞
≤

[
K

(m)
n tanϕn

Tm−n−1(Γn)

]2

, (24)

where the smallest eigenvalue of the transfer matrix is
denoted λ∞ and converges to zero for a lattice gauge
theory with an infinite-dimensional Hilbert space such as
LQCD, cosϕn ≡ ⟨n|ψ⟩ = Zn,

Γn ≡ 1 +
2(λn − λn+1)

λn+1 − λ∞
= 2ea(En+1−En) − 1, (25)

and

K(m)
n ≡

n−1∏
l=1

λ
(m)
l − λ∞

λ
(m)
l − λl

, n > 0, (26)

with K
(m)
0 ≡ 1. However, this bound requires knowledge

of the entire spectrum to compute. Only for the case of
n = 0 does the bound reduce to an expression in terms
of only En and Zn, which results in Eq. (9).

B. Spurious eigenvalues

Implementing the Cullum-Willoughby procedure [78,
79] for removing spurious eigenvalues in Lanczos appli-

cations to noisy Monte Carlo results requires the defi-

nition of a threshold for when eigenvalues of T
(m)
ij and

T̃
(m)
ij should be considered identical, where T̃

(m)
ij is the

matrix obtained by removing the first row and column

from the tridiagonal matrix T
(m)
ij . The threshold should

only be different from zero because of statistical uncer-
tainties (and to a lesser extent finite-precision arithmetic
used when generating field configurations and/or execut-
ing the Lanczos algorithm). An automated procedure for
choosing this threshold based on bootstrap eigenvalue
histograms is defined below. It introduces two hyper-
parameters: ∆ controls the number of histogram bins
and KCW is an O(1) tolerance parameter specifying how
many samples are required to call a bin “non-spurious”
as described below.
Since T has only positive eigenvalues by assumption,

non-positive eigenvalues of T
(m)
ij must be spurious eigen-

values arising from statistical noise. Using the oblique

Lanczos formalism described in Sec. C below, the T
(m)
ij

are all real and the Ritz values λ
(m)
k are therefore either

exactly real or have non-zero imaginary parts and come in
complex conjugate pairs.4 All Ritz values that have non-
zero imaginary parts at working precision can therefore
be discarded as spurious (in the numerical examples here

I discard Ritz values with |arg(λ(m)
k )| > 10−12). Using

arbitrary-precision arithmetic instead of double precision
leads to significant changes to complex Ritz values but

4 Using the symmetric Lanczos algorithm with complex βj intro-
duces small but non-zero imaginary parts to all eigenvalues and
a threshold for distinguishing positive from non-positive eigen-
values must be introduced.
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provides consistent results for positive Ritz values, and
in the Monte Carlo analyses here I have adopted double
precision for convenience.5

Bootstrap resampling [81–83] can help to identify spu-
rious eigenvalues because they arise due to statistical
noise and their values are therefore more sensitive to
noise than non-spurious eigenvalues. Ritz values are
computed for sample mean correlation functions and for
each of Nboot ensembles obtained using bootstrap re-
sampling [81–83]. In the numerical results of this work,
Nboot = 200 is used throughout.
The bootstrap Ritz value distribution can be analyzed

using a variation of the Cullum-Willoughby criterion:

• Compute the Ritz values λ
(b,m)
k with k ∈ {1, . . . ,m}

an arbitrary ordering, m ∈ {1, . . . , Nit} where
Nit = (β+1)/2 is the maximum number of Lanczos
iterations, and b ∈ {1, . . . , Nboot}.

• Discard any λ
(b,m)
k with non-zero imaginary parts

as spurious.

• Compute the eigenvalues τ
(b,m)
k of the matrices

T̃
(b,m)
ij obtained by removing the first row and col-

umn of T
(b,m)
ij for each m and b.

• Compute d
(b,m)
k ≡ minj∈{1,...,m−1}|λ

(b,m)
k − τ

(b,m)
j |

for all k, m, and b.

• Denote the total number of approximately positive
eigenvalues computed across all bootstrap ensem-
bles by N+. Define the number of eigenvalues that
could be determined if these were all non-spurious
by Nλ ≡ round[N+/Nboot/Nit] where round de-
notes rounding to the nearest integer.

• Histogram ln d
(b,m)
k with a number of bins defined

by Nbins ≡ ∆Nλ where ∆ is another hyperparam-
eter. The energy results and uncertainties studied
here are insensitive to ∆ over the range ∆ ∼ 2−10.
For concreteness I take ∆ = 4 everywhere.

• Define δCW ≡ Nboot(Nit − Nλ)KCW/∆, the num-
ber of counts required to indicate a bin contains
an eigenvalue that is repeated across Lanczos it-
erations and bootstrap ensembles and is therefore
not spurious. Here, KCW is a O(1) hyperparameter
discussed more below; I take KCW = 3 everywhere.

• Find the first histogram bin (ordered with ln d
(b,m)
k

increasing) with more than δCW counts. Denot-

ing this histogram bin by ln d
(b,m)
k ∈ [Bi, Bi+1], de-

fine the Cullum-Willoughby threshold by εCW ≡

5 It is likely that calculations employing significantly larger imagi-
nary time extents and Lanczos iteration counts than those stud-
ied here would need to employ higher precision during execution
of the Lanczos algorithm.

eBi/FCW where FCW is the last hyperparame-
ter. The energy results and uncertainties stud-
ied here are insensitive to FCW over the range
FCW ∼ 5− 50. For concreteness I take FCW = 50
everywhere.

The result of this bootstrap histogram analysis is the
Cullum-Willoughby threshold εCW. This threshold is
used to remove spurious Ritz values:

• Compute the sample mean Ritz values, λ
(m)
k , and

discard λ
(m)
k with non-zero imaginary parts. Com-

pute the eigenvalues τ
(m)
k and distances d

(m)
k . Re-

move λ
(m)
k with d

(m)
k > εCW as spurious.

• Remove Ritz values with λ
(m)
k > 1, which corre-

spond to thermal states as described in Sec. A.

• The remaining non-spurious Ritz values λ
(m)
k < 1

are sorted as λ
(m)
0 > λ

(m)
1 > . . . for each m.

These provide Lanczos energies E
(m)
k ≡ −(1/a) lnλ

(m)
k

and in particular the central values for E
(m)
0 used here.

Example results for the determination of Cullum-
Willoughby thresholds and spurious eigenvalue identifi-
cation for SHO, LQCD proton, and LQCD pion results
are shown in Figs. 5-7. It is noteworthy that the gap

in d
(m)
n between spurious and non-spurious eigenvalues is

not large, and in some cases the non-spurious eigenvalue
associated with the ground state is close to the threshold.
This means that a small increase in KCW can cause the
ground-state eigenvalue for a particular Lanczos iteration
to be labeled spurious, at which point the largest non-
spurious eigenvalue will correspond to an excited-state
energy. Conversely, a small decrease in KCW can cause

a spurious eigenvalue with larger magnitude than λ
(m)
0

to be labeled non-spurious, at which point an unphysi-

cally small value for E
(m)
0 will be obtained. Although this

can introduce undesirable numerical instabilities to the
determinations of E

(m)
0 for particular m, spurious eigen-

values — by their spurious nature — have broadly dis-

tributed ln d
(m)
n that only rarely approach the ln d

(m)
n of

non-spurious eigenvalues. When spurious eigenvalues do

have ln d
(m)
n close to those non-spurious eigenvalues, they

are often (although not always) also close in magnitude,

and in these cases similar E
(m)
0 are obtained regardless of

which eigenvalues are labeled spurious. The appearance
of such “multiple eigenvalues” is commonplace in appli-
cations of Lanczos to finite matrices with floating-point
arithmetic [78, 79] and complicates Lanczos determina-
tions of excited-state energies.
To understand whether a small change in KCW could

lead to a significant change in εCW and therefore to a
change in whether eigenvalues with relatively large mag-
nitudes are labeled as spurious, it is sufficient to examine

the bootstrap histogram of ln d
(m)
n . If εCW is near the top

of a histogram bin that has smaller ln d
(m)
n than all other
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FIG. 5. Summary of the Cullum-Willoughby test used to identify and remove spurious eigenvalues for complex scalar field

theory results. The bootstrap histogram of ln d
(b,m)
k is shown top-left with Nλ computed using ∆ = 4 and KCW = 3 shown

as a horizontal red line. The vertical red line shows the corresponding value of ln εCW computed as described in the text.

Top-right, sample mean results for d
(m)
k are shown in comparison with εCW (horizontal red line) with those corresponding to

spurious, non-spurious excited-state, and non-spurious ground-state eigenvalues shown as black diamonds, purple triangles, and
orange squares, respectively. Middle-left, all of the spurious and non-spurious eigenvalues are shown along with the results for

E
(m)
0 shown in the main text. Analogous comparisons are shown for all the (spurious and non-spurious) positive eigenvalues,

middle-right, and all of the non-spurious eigenvalues (excluding those associated with thermal states), bottom.

bins with greater than εCW counts, then a small change in KCW can cause εCW to be associated with either this
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FIG. 6. Summary of the Cullum-Willoughby test for the LQCD proton results in the main text. Details are as in Fig. 5.

bin or a different bin. In this case, it is worthwhile to

study the variation of E
(m)
0 results with KCW choices

that lead to both possibilities. Any significant effects
on fit results E0 and/or δE0 arising from such variations
should be considered additional systematic uncertainties.
In the examples studied here, varying ∆, KCW , and FCW
over the ranges indicated leads to negligible effects, and I
do not associate a systematic uncertainty with this vari-

ation.

C. Oblique Lanczos

A nonsymmetric, or oblique, version of the Lanczos al-
gorithm can be used to compute the eigenvalues of non-
Hermitian matrices [68–70]. Even though the transfer
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FIG. 7. Summary of the Cullum-Willoughby test for the LQCD pion results in Sec. D. Details are as in Fig. 5.

matrix T can be assumed to be Hermitian for LQCD
applications, the oblique Lanczos formalism is needed
to describe fermions at non-zero temperature as well as
asymmetric correlation functions

Cχψ(t) ≡
〈
χ(t)ψ†(0)

〉
=

〈
χ
∣∣∣T t/a ∣∣∣ψ〉+ . . . . (27)

The oblique Lanczos formalism also avoids the complex

T
(m)
ij that arise in applications of the symmetric Lanc-

zos algorithm to noisy Monte Carlo results and violate
the usual assumptions of theoretical Lanczos analyses.
Oblique Lanczos therefore provides a theoretically rigor-
ous, as well as more numerically stable, starting point for
applying Lanczos in situations when T is Hermitian but
the Hermiticity of T (m) is broken at finite statistics. All
numerical results in this work use the oblique Lanczos
algorithm in practice.
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The primary difference between oblique and symmetric
Lanczos is that the former has distinct Krylov spaces of
left- and right-Lanczos vectors. These vectors will be
denoted ⟨wn| and |vn⟩ respectively. The first iteration of
oblique Lanczos involves the matrix element

α1 ≡ ⟨w1|T |v1⟩ =
⟨χ|T |ψ⟩
⟨χ|ψ⟩

= Ĉχψ(1), (28)

where the last equality shows the connection to the ra-
tio of correlation functions Ĉχψ(t) ≡ Cχψ(t)/Cχψ(0) and
implies that m = 1 results coincide with the effective
mass (and symmetric Lanczos). The base cases for other
tridiagonal matrix elements defined below are β1 = 0
and γ1 = 0. The matrix elements needed for a recursive
construction of oblique Lanczos that does not explicitly
access the Lanczos vectors are

Akj ≡
〈
wj

∣∣T k ∣∣vj〉 ,
Gkj ≡

〈
wj

∣∣T k ∣∣vj−1

〉
,

Bkj ≡
〈
wj−1

∣∣T k ∣∣vj〉 . (29)

1. Recursion relations

After the first Lanczos iteration, the residuals for the
left- and right-Lanczos vectors are defined by [68–70]

|rj+1⟩ ≡ (T − αj) |vj⟩ − βj |vj−1⟩ ,
⟨sj+1| ≡ ⟨wj | (T − αj)− γj ⟨wj−1| .

(30)

The left- and right-Lanczos vectors for the next iteration
are normalized versions of the corresponding residuals

|vj+1⟩ ≡
1

ρj+1
|rj+1⟩ ,

⟨wj+1| ≡
1

τj+1
⟨sj+1| .

(31)

Several choices for the normalization factors ρj and τj
are possible [68–70]; in order to simply subsequent ex-
pressions for tridiagonal matrix elements it is convenient
to choose [68, 69]

ρj ≡
√
| ⟨sj |rj⟩ |, τj ≡

⟨sj |rj⟩
ρj

. (32)

In conjunction with the bi-orthogonality of the Lanczos
vectors discussed further below, this choice leads to

⟨wi|vj⟩ = δij . (33)

The recursion relation required to compute ⟨sj+1|rj+1⟩
in terms of matrix elements from previous iterations is
given by

⟨sj+1|rj+1⟩ = A2
j − 2αjA

1
j + α2

jA
0
j

+ αj
(
βjG

0
j + γjB

0
j

)
−
(
βjG

1
j + γjB

1
j

)
+ γjβjA

0
j−1,

(34)

from which ρj+1 and τj+1 can be computed using
Eq. (32).
Recursion relations for the matrix elements Akj , B

k
j ,

and Gkj can be derived as in the symmetric case by insert-
ing Eqs. (30)-(31) into Eq. (29). The recursion relation
for Gkj is

τj+1G
k
j+1 = Ak+1

j − αjA
k
j − γjB

k
j . (35)

The analogous recursion relation for Bkj is

ρj+1B
k
j+1 = Ak+1

j − αjA
k
j − βjG

k
j . (36)

The recursion relations for Akj is

ρj+1τj+1A
k
j+1 = Ak+2

j − 2αjA
k+1
j + α2

jA
k
j

+ αj
(
βjG

k
j + γjB

k
j

)
−

(
βjG

k+1
j + γjB

k+1
j

)
+ γjβjA

k
j−1.

(37)

After m iterations of oblique Lanczos, the tridiagonal
matrix

T
(m)
ij ≡ ⟨wi|T |vj⟩ , (38)

expressing matrix elements of T in the Lanczos-vector
basis is given by

T
(m)
ij =



α1 β2 0
γ2 α2 β3

γ3 α3
. . .

. . .
. . . βm−1

γm−1 αm−1 βm
0 γm αm


ij

, (39)

where the elements αj , βj , and γj can be derived by
combining the recursion relations in Eq. (30) with the
orthogonality condition ⟨wj |vi⟩ = 0 for i ̸= j. Combining
⟨wj+1|vj⟩ = ⟨wj |vj+1⟩ = 0 with the recursion relations
leads to

αj = ⟨wj |T |vj⟩ = A1
j . (40)

Similarly combining the recursion relations with
⟨wj+1|vj−1⟩ = ⟨wj−1|vj+1⟩ = 0 gives

βj = ⟨wj−1|T |vj⟩ = B1
j ,

γj = ⟨wj |T |vj−1⟩ = G1
j .

(41)

Applying the recursion relations to ⟨wj |vj⟩ further gives
the relations

βj = τj , γj = ρj , (42)

and therefore the inner product of the left- and right-
Lanczos vector residuals is

⟨sj |rj⟩ = ρjτj = βjγj . (43)
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These results allow Eq. (34) to be simplified as

⟨sj+1|rj+1⟩ = A2
j − α2

j − βjγj , (44)

which shows how the oblique Lanczos formula for
βj+1γj+1 is equivalent to the symmetric Lanczos formula
for β2

j+1 when γj is equal to βj . This means that if ⟨w1| is
equal to ⟨v1|, then oblique and symmetric Lanczos results
are identical if and only if ⟨sj |rj⟩ > 0 for all iterations.

2. Comparison with symmetric Lanczos

For a Hermitian operator T , all of the elements of T
(m)
ij

defined above are real but are not necessarily positive. In
particular, for steps where βjγj < 0, the above definitions
give γj = −βj . For all steps where βjγj > 0, the results
for αj , βj , and γj from applying oblique Lanczos to a
Hermitian operator T are identical to those obtained by
applying the symmetric Lanczos algorithm described in
the main text. Note that this statement applies even for
j larger than a step k in which βkγk < 0 was realized
— the negative τk leads to a sign flip in ⟨wk| relative
to the symmetric case, but this sign is cancelled in the
recursions for ⟨wk+1| by a corresponding sign change in
γk. This means that the only difference between applying
symmetric and oblique Lanczos to a Hermitian operator

T is that T
(m)
ij includes γj = −βj < 0 when βjγj < 0,

while symmetric Lanczos has a purely imaginary βj on
both off-diagonals. These two matrices can be related by
a change of basis and therefore have identical eigenvalues

λ
(m)
n . This implies that, with arbitrary-precision arith-

metic, applying symmetric Lanczos with βj ∈ C gives

identical E
(m)
n as applying oblique Lanczos even at finite

statistics when fluctuations lead to negative estimates of
squared residual norms.

Round-off errors are quite different when the symmet-
ric and oblique Lanczos algorithms are performed using

floating-point arithmetic. Using oblique Lanczos, T
(m)
k

is real, and its eigenvalues are therefore either exactly
real (at working precision) or come in complex conjugate
pairs with non-zero imaginary parts. Using symmetric

Lanczos, T
(m)
k is generally a complex symmetric matrix,

which can have unpaired eigenvalues that are approxi-
mately but not exactly real. Distinguishing these approx-
imately real eigenvalues from pairs of complex conjugate
eigenvalues is relatively straightforward for the examples
studied here, but it adds additional complications that
are unnecessary when using oblique Lanczos.

The convergence of oblique Lanczos for non-Hermitian

T
(m)
k is governed by an analog of the KPS bound that was

derived by Saad in Ref. [68]. Even for the ground state,
the bound depends on the entire spectrum rather than
just E0 and Z0 as in the Hermitian case. Monotonic-
ity and one-sided variational bounds no longer apply for

non-Hermitian T
(m)
k ; results can approach from above or

below.

3. Residual bound: right Ritz vectors

A bound on the residual norms of Lanczos approxi-
mations to T |vj⟩ and ⟨wi|T can be obtained straightfor-
wardly for oblique Lanczos [68]. However, Paige’s proof
of the eigenvalue-level residual bound [52], Eq. (11), does
not apply for non-Hermitian T . In the remainder of this
section, I demonstrate that Paige’s proof can be extended
to the situation relevant for LQCD in which T = T † but

T
(m)
ij is non-Hermitian due to statistical noise and/or us-

ing distinct left- and right-Lanczos vectors.
To obtain a formula for computing the residual norm,

first note that the eigenvectors ω
(m)
k of T

(m)
ij appearing

in the eigendecomposition

T
(m)
ij =

∑
k

ω
(m)
ik λ

(m)
k (ω−1)

(m)
kj , (45)

satisfy the eigenvalue equation∑
k

T
(m)
ik ω

(m)
kj = ω

(m)
ij λ

(m)
j , (46)

which can be seen by matrix multiplying Eq. (45) by

ω
(m)
jl on the right and relabeling indices. The right Ritz

vectors, defined by∣∣∣y(m)
k

〉
≡

∑
i

|vi⟩ω(m)
ik , (47)

provide the Hilbert-space vectors corresponding to the

eigenvectors of T
(m)
ij . To make this correspondence pre-

cise, define a Hilbert space operator T (m) by

T (m) |vj⟩ ≡
∑
i

|vi⟩T (m)
ij . (48)

The matrix elements of this operator are given by〈
wi

∣∣∣T (m)
∣∣∣vj〉 =

∑
k

⟨wi|vk⟩T (m)
kj

=
∑
k

δikT
(m)
kj

= T
(m)
ij ,

(49)

and so that the matrix elements of T and T (m) between
Lanczos vectors are both equal to the tridiagonal matrix

elements T
(m)
ij . The Ritz vectors therefore satisfy the

eigenvalue equation

T (m)
∣∣∣y(m)
k

〉
=

∑
i

T (m) |vi⟩ω(m)
ik

=
∑
i,j

|vj⟩T (m)
ji ω

(m)
ik

=
∑
j

|vj⟩λ(m)
k ω

(m)
jk

= λ
(m)
k

∣∣∣y(m)
k

〉
.

(50)



18

Next, note that the action of T is given by Eq. (30)
and |rj+1⟩ = ρj+1 |vj+1⟩ = γj+1 |vj+1⟩ as

T |vj⟩ = αj |vj⟩+ βj |vj−1⟩+ γj+1 |vj+1⟩ . (51)

The analogous action of the tridiagonal matrix T (m) is
given directly from Eq. (39) by

T (m) |vj⟩ =
∑
i

|vi⟩T (m)
ij

=

{
αj |vj⟩+ βj |vj−1⟩+ γj+1 |vj+1⟩ , j < m

αj |vj⟩+ βj |vj−1⟩ , j = m,

(52)

which leads to

[T − T (m)] |vj⟩ = δjmγm+1 |vm+1⟩ , (53)

where |vm+1⟩ is the Lanczos vector obtained by extending
from m to m+ 1 steps. The action of T − T (m) on Ritz
vectors is therefore

[T − T (m)]
∣∣∣y(m)
k

〉
=

∑
j

[T − T (m)] |vj⟩ω(m)
jk

= γm+1ω
(m)
mk |vm+1⟩ .

(54)

Defining dual right Ritz vectors (which are distinct from
the left Ritz vectors introduced below) via the usual
Hilbert space adjoint,〈

y
(m)
k

∣∣∣ ≡ ∣∣∣y(m)
k

〉†
=

∑
i

⟨vi| [ω(m)
ik ]∗, (55)

taking the Hermitian conjugate of Eq. (54) gives〈
y
(m)
k

∣∣∣ [T − T (m)]† = γm+1[ω
(m)
mk ]

∗ ⟨vm+1| , (56)

since the βj and γj are all real.
These ingredients can be used to compute the Ritz

vector residual norm, defined by

R
(m)
k ≡ ||[T − λ

(m)
k ]

∣∣y(m)
n

〉
||2

=
〈
y
(m)
k

∣∣∣ [T − λ
(m)
k ]†[T − λ

(m)
k ]

∣∣∣y(m)
k

〉
.

(57)

Using Eq. (50) and its complex conjugate, the factors of

λ
(m)
k can be replaced by T (m),

R
(m)
k =

〈
y
(m)
k

∣∣∣ [T − T (m)]†[T − T (m)]
∣∣∣y(m)
k

〉
. (58)

Using Eq. (54) and Eq. (56) then gives

R
(m)
k = γ2m+1|ω

(m)
mk |

2 ⟨vm+1|vm+1⟩ . (59)

This is the oblique Lanczos analog of the right-hand-side
of Eq. (11).

4. Residual bound: spectral representation

Paige’s proof connecting the residual bound to eigen-
value error bounds [52] can now be applied. The proof
requires the assumption that T is Hermitian even though

non-Hermitian T
(m)
ij is allowed. Denoting as usual eigen-

states of T by |n⟩ and their Hermitian conjugates by ⟨n|
with normalization ⟨n|n⟩ = 1, the residual norm has a
spectral representation,

R
(m)
k =

〈
y
(m)
k

∣∣∣ [T − λ
(m)
k ]†[T − λ

(m)
k ]

∣∣∣y(m)
k

〉
=

〈
y
(m)
k

∣∣∣ [T − λ
(m)∗

k ][T − λ
(m)
k ]

∣∣∣y(m)
k

〉
=

∑
n

〈
y
(m)
k

∣∣∣T − λ
(m)∗

k

∣∣∣n〉〈
n
∣∣∣T − λ

(m)
k

∣∣∣y(m)
k

〉
=

∑
n

〈
y
(m)
k

∣∣∣λn − λ
(m)∗

k

∣∣∣n〉〈
n
∣∣∣λn − λ

(m)
k

∣∣∣y(m)
k

〉
=

∑
n

|λ(m)
k − λn|2

∣∣∣Z(m)
kn

∣∣∣2 ,
(60)

where Z
(m)
kn ≡

〈
n
∣∣y(m)
k

〉
. Defining

λ̃
(m)
k ≡ min

λ∈{λn}
|λ(m)
k − λ|, (61)

where the minimum is over the discrete set of true eigen-

values, i.e. λ̃
(m)
k is the closest true eigenvalue to λ

(m)
k , an

inequality for R
(m)
k can be derived from Eq. (60) as

R
(m)
k ≥

∑
n

|λ(m)
k − λ̃

(m)
k |2

∣∣∣Z(m)
kn

∣∣∣2
= |λ(m)

k − λ̃
(m)
k |2

∑
n

∣∣∣Z(m)
nk

∣∣∣2 , (62)

because λ̃
(m)
k is always nearer or identical to the replaced

λn. The overlap factor sum can be expressed as∑
n

|Zkn|2 =
∑
n

〈
y
(m)
k

∣∣∣n〉〈
n
∣∣∣y(m)
k

〉
=

〈
y
(m)
k

∣∣∣y(m)
k

〉
.

(63)

which allows R
(m)
k to be expressed as

R
(m)
k ≥ |λ(m)

k − λ̃
(m)
k |2

〈
y
(m)
k

∣∣∣y(m)
k

〉
= min
λ∈{λn}

|λ(m)
k − λ|2

〈
y
(m)
k

∣∣∣y(m)
k

〉
.

(64)

Combining this with Eq. (59) provides a residual
bound for oblique Lanczos,

min
λ∈{λn}

|λ(m)
k − λ|2 ≤ B

(m)
k ≡ γ2m+1 |ω

(m)
mk |

2 V
(m)
k , (65)
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where

V
(m)
k ≡ ⟨vm+1|vm+1⟩〈

y
(m)
k

∣∣∣y(m)
k

〉
=

⟨vm+1|vm+1⟩∑
ij [ω

(m)
ik ]∗ ⟨vi|vj⟩ω(m)

jk

.

(66)

This bound is summarized in Eq. (11)

5. Residual bound: left Ritz vectors

An identical derivation can be performed using the left
Ritz vectors 〈

x
(m)
k

∣∣∣ ≡ ∑
i

(ω−1)
(m)
ki ⟨wi| , (67)

which satisfy〈
x
(m)
k

∣∣∣T (m) =
∑
i

(ω−1)
(m)
ki ⟨wi|T (m)

=
∑
ij

(ω−1)
(m)
ki T

(m)
ij ⟨wj |

=
∑
j

λ
(m)
k (ω−1)

(m)
kj ⟨wj |

= λ
(m)
k

〈
x
(m)
k

∣∣∣ ,
(68)

and their duals
∣∣x(m)
k

〉
≡

〈
x
(m)
k

∣∣†. Together with
⟨wj | [T − T (m)] = δjmβm+1 ⟨wm+1| , (69)

the spectral representation for ||
〈
x
(m)
k

∣∣∣ [T−λ(m)
k ]||2 anal-

ogous to Eq. (60) can be used to show that

min
λ∈{λn}

|λ(m)
k − λ|2 ≤ β2

m+1 |(ω−1)
(m)
km |2W (m)

k , (70)

where

W
(m)
k ≡ ⟨wm+1|wm+1⟩〈

x
(m)
k

∣∣∣x(m)
k

〉
=

⟨wm+1|wm+1⟩∑
ij(ω

−1)
(m)
ki ⟨wi|wj⟩ [(ω−1)

(m)
kj ]∗

.

(71)

When ⟨wi| = |vi⟩†, as for symmetric bosonic correlation

functions in the infinite statistics limit, then T
(m)
ij is sym-

metric, ω
(m)
ij is unitary, and both Eq. (65) and Eq. (70)

reduce to Eq. (11). In general, Eq. (65) and Eq. (70)
provide rigorous two-sided bounds on the eigenvalue er-

ror minλ |λ(m)
k −λ|2 that are valid stochastically at finite

statistics. Both bounds hold simultaneously, so the more
constraining one may be taken.

6. Residual bound: auxiliary recursion relations

To compute (stochastic estimators for) these bounds
in practice, it remains to obtain formulae for ⟨vi|vj⟩ and
⟨wi|wj⟩. For ⟨vi|vj⟩ these can be obtained using recur-
sion relations for

Rkij ≡
〈
vi
∣∣T k ∣∣vj〉 = Rkji,

Ckj ≡ Rkjj ,
(72)

The relevant recursions can be derived as in the symmet-
ric case by inserting Eqs. (30)-(31) into Eq. (72). The
recursion relation needed to obtain Rki(j+1) for i ≤ j is

ρj+1R
k
i(j+1) = Rk+1

ij − αjR
k
ij − βjR

k
i(j−1), (73)

and the relation needed for Ckj+1 = Rk(j+1)(j+1) is

ρ2j+1C
k
j+1 = Ck+2

j − 2αjC
k+1
j + α2

jC
k
j + β2

jC
k
j−1

+ 2αjβjR
k
j(j−1) − 2βjR

k+1
j(j−1).

(74)

The analogous set of matrix elements required for
⟨wi|wj⟩ is given by

Lkij ≡
〈
wi

∣∣T k ∣∣wj〉 = Lkji,

Dk
j ≡ Lkjj .

(75)

The recursion relation to obtain Lki(j+1) for i ≤ j is

τj+1L
k
i(j+1) = Lk+1

ij − αjL
k
ij − γjL

k
i(j−1), (76)

and the relation for Dk
j+1 = Lk(j+1)(j+1) is

τ2j+1D
k
j+1 = Dk+2

j − 2αjD
k+1
j + α2

jD
k
j + γ2jD

k
j−1

+ 2αjγjR
k
j(j−1) − 2γjR

k+1
j(j−1).

(77)

The factors of V
(m)
k and W

(m)
k appearing in the oblique

Lanczos residual bounds, Eq. (65) and Eq. (70), can be
computed straightforwardly from these recursion results,

V
(m)
k =

A0
m+1∑

ij [ω
(m)
ik ]∗R0

ijω
(m)
jk

,

W
(m)
k =

B0
m+1∑

ij(ω
−1)

(m)
ki L

0
ij [(ω

−1)
(m)
kj ]∗

.

(78)

D. Additional numerical results

Pion correlation functions in LQCD have the distinc-
tion of not suffering from exponential SNR degradation.
Lanczos results for the pion mass are shown in compari-
son with E(t) and multi-state fit results in Fig. 8. After

mmax = 47 iterations, E
(mmax)
0 = 0.0779(21). The two-

sided window provided by the residual bound B
(mmax)
0 is

[0.046(10), 0.110(9)].
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FIG. 8. E(t), E
(m)
0 , and multi-state fit results for the pion;

details are as in Fig. 1.

Two-state correlation function fits with t/a = 7 give
0.0781(8) with χ2/dof = 0.16. A weighted average of
multi-state fits gives 0.0783(18). A much higher-statistics
calculation using 1024 Gaussian-smeared sources on 2511
gauge-field configurations with an identical action and
lattice volume finds ambig

π = 0.0779(5) [59]; nearly iden-
tical central values are obtained in Refs. [60, 89] while
Ref. [88] obtained 0.0766(9). Lanczos, two-state, and
model-averaged fit results all agree with ambig

π within
1σ.

The residual boundsB
(m)
0 are shown for complex scalar

field theory, pion, and proton results in Fig. 9.

Correlation matrices Corr[E
(m)
0 , E

(m′)
0 ] ≡

Cov[E
(m)
0 , E

(m′)
0 ]/

√
Var[E

(m)
0 ]Var[E

(m′)
0 ] are shown for

SHO, pion, and proton Lanczos results in Fig. 10. Analo-
gous effective mass correlation matrices Corr[E(t), E(t′)]
with t = 2m− 1 and t′ = 2m′− 1 are shown for compari-
son. In both cases, correlations fall off rapidly away from
the diagonal m = m′ for all cases studied here. For the
SHO, Lanczos correlations decrease faster with |m−m′|
than effective mass correlations. The standard effective
mass also shows significant anticorrelations associated
with thermal effects that are absent from Lanczos
results. For the pion, Lanczos correlations using sample-
mean estimators decrease slightly faster with |m − m′|
than standard effective mass correlations, while for
the proton Lanczos using sample-mean estimators and
standard effective mass correlations show roughly similar
decreases with |m − m′|. Bootstrap median Lanczos
results show qualitatively different behavior. For small
m or m′, correlations appear similar to effective mass
or sample-mean Lanczos results. Conversely, for large
m and m′ correlations approach O(1) values indicating
that there is little to no new statistical information
gain by increasing m. This saturation should not be
surprising if Lanczos is converging to a definite result
and there is limited statistical information in relatively
imprecise C(t) results with very large t. It is noteworthy
that this saturation appears only in bootstrap median
results—with sample mean estimators there are addi-
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FIG. 9. Residual bounds B
(m)
0 , defined in Eq. (65), for the

complex scalar field theory free boson mass, LQCD pion mass,
and LQCD proton mass.

tional fluctuations that increase the variance by about
an order of magnitude in all of these examples and wash
out the correlations between estimators with large m
and m′.

Bootstrap median and sample mean estimators be-
have very similarly for small m where few or no spu-
rious eigenvalues are present. In particular, bootstrap
median and sample mean estimators have identical vari-
ance when m = 1 and Lanczos reduces to the effective
mass. Bootstrap median and sample mean estimators
show significant differences only when spurious eigenval-
ues are present. This suggests that the lack of saturation
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FIG. 10. Correlation matrices for effective mass (left), Lanczos sample mean (middle), and Lanczos bootstrap median (right)
results for complex scalar field theory (top), the LQCD pion mass (middle), and the LQCD proton mass (bottom).

of correlations seen without bootstrap median is an arti-
fact of spurious eigenvalue misidentification adding large

uncorrelated noise to sample mean Lanczos results with
large m.
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