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SELF-SHRINKERS WHOSE ASYMPTOTIC CONES

FATTEN

DANIEL KETOVER

Abstract. For each positive integer g we use variational methods to
construct a genus g self-shrinker Σg in R

3 with entropy less than 2
and prismatic symmetry group Dg+1 × Z2. For g sufficiently large, the
self-shrinker Σg has two graphical asymptotically conical ends and the
sequence Σg converges on compact subsets to a plane with multiplicity
two as g → ∞. Angenent-Chopp-Ilmanen conjectured the existence of
such self-shrinkers in 1995 based on numerical experiments. Using these
surfaces as initial conditions for large g, we obtain examples of mean
curvature flows in R

3 with smooth initial non-compact data that evolve
non-uniquely after their first singular time.

1. Introduction

A hypersurface Σ ⊂ R
3 is called a self-shrinker if

HΣ =
〈x,n〉

2
, (1.1)

where HΣ denotes the mean curvature of Σ, and nΣ is a choice of unit normal
and x denotes the position vector.

If Σ is a self-shrinker, then it is the t = −1 time-slice of the ancient mean
curvature flow (MCF) evolving by homothety

Σt =
√
−tΣ for t ≤ 0. (1.2)

By Huisken’s monotonicity formula [31] and an argument of White and
Ilmanen, self-shrinkers are realized as blowups at singularities of the MCF.
The sphere of radius two S

2
∗ centered about the origin is a self-shrinker, as

well as all cylinders S
1
∗ × R of radius

√
2 centered about an axis through

the origin. Angenent discovered an embedded rotationally symmetric self-
shrinking torus [5].

For y ∈ R
3, and τ > 0, consider the functional

Fy,τ (Σ) =
1

4πτ

∫

Σ
e

−|x−y|2
4τ dµx. (1.3)

The surface Σ is a self-shrinker if and only if Σ is a critical point for the
functional F := F0,1, which we call the “Gaussian area.” In other words,
self-shrinkers are precisely the minimal surfaces in the Gaussian metric

The author was partially supported by NSF DMS-1401996.
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2 DANIEL KETOVER

(R3, 1
4π e

−|x|2/4δij). The Gaussian metric is incomplete and has Ricci cur-
vature approaching −∞ as |x| → ∞. On the other hand, the metric satisfies
a Frankel-type property [27] in that any two self-shrinkers intersect. In this
sense, there is an analogy between minimal surfaces in S

3 and self-shrinkers
(cf. [42]).

Colding-Minicozzi [20] introduced the entropy functional, which measures
the complexity of Σ at all scales:

λ(Σ) = sup
y∈R3,τ∈R+

Fy,τ (Σ) = sup
y∈R3,τ∈R+

F0,1(τ(Σ − y)). (1.4)

Entropy is non-increasing along the MCF, and when Σ is a self-shrinker,
the entropy is realized

λ(Σ) = F0,1(Σ) = F (Σ). (1.5)

The normalization is chosen so that λ(R2
∗) = 1. Stone [55] computed that

λ(S2∗) = 4/e ≈ 1.47 and λ(S1∗ × R) =
√

2π/e ≈ 1.52. Bernstein-Wang [9]
showed that any self-shrinker has entropy at least that of S2∗ and that the
cylinder S

1
∗ × R has the third lowest entropy among self-shrinkers.

So far, the only non-compact self-shrinkers aside from the cylinder and
plane have been obtained by Kapouleas, Kleene and Møller [35] and inde-
pendently Nguyen ([48], [49], [50]). Their family has antiprismatic symme-
try and consists of high genus surfaces with one conical end. The surfaces
resemble a desingularization of the self-shrinking sphere and plane in the
limit that the genus tends to infinity. Later this family was extended by
Buzano-Nguyen-Schulz for all genera using a variational method1 [12].

In this paper, we construct new examples of non-compact self-shrinkers
in R

3. The family was predicted by numerical experiments of Angenent-
Chopp-Ilmanen [4] (see also [33]) in 1995. In his ICM lecture in 2002, White
sketched work with Ilmanen toward constructing such self-shrinkers [62].

Let H denote the xy-plane {z = 0} and for any 0 < r < ∞ let us set

Cr = {(x, y, 0) ⊂ R
3 | x2 + y2 = r2} ⊂ H. (1.6)

Recall that an asymptotically conical surface Σ embedded in R
3 is one for

which limρ→0+ ρΣ = C where C is a regular cone in R
3 and the convergence

is in C∞
loc(R

3 \ (0, 0, 0)). In this case, the link of Σ is defined to be C ∩ S
2.

The following is our main result:

Theorem 1.1 (Self-shrinking doubled plane). For each integer g > 0 there
exists an embedded self-shrinker Σg ⊂ R

3 so that the following hold:

(a) λ(Σg) < 2 and limg→∞ λ(Σg) = 2.
(b) Σg is invariant under the prismatic group Dg+1 × Z2 ⊂ O(3).
(c) Σg has genus g.
(d) Σg → 2H in the sense of varifolds as g → ∞.

1It has yet to be established that the two families coincide.
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(e) For g large, Σg has two asymptotically conical ends, E1 ⊂ {z > 0} and
E2 ⊂ {z < 0}, which are graphical over H and whose links converge in
the C0-topology to the equator S

2 ∩ {z = 0}.
(f) For any subsequence g → ∞, after taking a further subsequence there

exists r > 0 so that on any compact subset K of H \ Cr, the surfaces
Σg can be expressed as a union of two normal graphs over K that each
converges smoothly to K as g → ∞.

Remark 1.2. The numerics of Chopp [17] and Angenent-Chopp-Ilmanen
[4] (cf. White [62]) suggest already for g = 1 that Σg has two ends.

We conjecture that the surface Σg minimizes entropy among genus g self-
shrinkers. If true, Σg could be considered the genus g surface of least geomet-
ric complexity in R

3. In the same way, there is a long-standing conjecture
of Kusner [45] that the Lawson surface ξg,1 in S

3 minimizes the Willmore
energy among genus g surfaces.

The existence of an entropy-minimizer among genus g self-shrinkers was
obtained by Sun-Wang (Corollary 1.4 in [58]). For g = 0, Bernstein-Wang
[9] (see also [11] and [42]) showed that the round sphere minimizes entropy
among all embedded two-spheres. By [57], the entropy-minimizer among
genus 1 self-shrinkers is not the Angenent torus2.

1.1. Fattening of MCF. When the flows Σg(t) :=
√−tΣg reach their

singularity at t = 0, they consist of a double-lobbed cone C(Σg). One may
extend the flow for positive times past this time using a weak notion of the
mean curvature flow ([13], [26]). Such resolutions of cones are often modeled
by self-expanders. A self-expander is a hypersurface Σ ⊂ R

3 satisfying

HΣ =
〈x,n〉

2
, (1.7)

and give rise to immortal flows by outward homothety Σt =
√
tΣ for t ≥ 0.

For g large, the t = 0 limit of the MCF beginning at Σg is a very wide-
brimmed double cone. Angenent-Chopp-Ilmanen [4] and Helmensdorfer [30]
showed that rotationally symmetric double cones {x2 + y2 = δz2} that are
sufficiently wide (i.e. δ is sufficiently small) admit multiple connected self-
expanding annuli as evolutions3. More generally, Bernstein-Wang (Lemma
8.2 in [10]) showed that cones contained in {x2 + y2 ≤ δz2} for δ sufficiently
small also admit a connected self-expanding evolution. On the other hand,
Ding [23] (based on a sketch of Ilmanen [33]) showed that C(Σg) also admits
disconnected self-expander evolutions.

Thus we obtain

2It is an interesting question whether the genus 1 self-shrinker obtained in [58] coincides
with Σ1.

3These are analogous to the stable and unstable catenoids in R
3 bounded between two

circles in parallel planes.
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Theorem 1.3 (Fattening). For g large enough, the level set flow with
(smooth) initial condition given by Σg fattens.

The non-compact examples of Kapouleas-Kleene-Møller and Nguyen ([35],
[48], [49], [50]), on the other hand, blow down to a graphical cone at t = 0,
and thus have a unique evolution beyond the singular time [25]. Some
examples in fattening in higher dimensions were considered by Angenent-
Ilmanen-Velasquez [3].

Recently, Lee-Zhao [46] showed that for any asymptotically conical self-
shrinker, there exists a smooth embedded closed surface that develops that
singularity under mean curvature flow. Chodosh-Daniels-Holzgate-Schulze
[14] also have shown recently that fattening of a smooth hypersurface with
a conical singularity occurs if and only if the cone fattens. Combining these
results with our existence result (Theorem 1.1) we obtain:

Theorem 1.4. There exists a smooth embedded closed surface in R
3 from

which the level set flow fattens.

While we were completing this article, we learned of work of Ilmanen-
White [32] that constructs (presumably) the same self-shrinkers as those pur-
ported in Theorem 1.1 using mean curvature flow. In the process Ilmanen-
White also obtain examples of mean curvature flows beginning at closed
surfaces in R

3 that fatten. Their work uses the recent resolution of the
Multiplicity One Conjecture due to Bamler-Kleiner [6]. In relation to their
work, we get the additional information that the entropy of the self-shrinkers
is less than 2 which may be of independent interest. On the other hand,
Ilmanen-White show their self-shrinkers have two ends for all genera, while
we can only show this for large values of the genus.

As a consequence of Bamler-Kleiner’s recent resolution of the Multiplic-
ity One Conjecture (together with Brendle’s classification of genus zero
shrinkers [11] and other recent developments [16],[21]), flowing a family of
spheres in R

3 is a well-posed problem for which fattening does not occur.
Our work shows that in the higher genus case, fattening is unavoidable even
in the highly restricted class of initial conditions with entropy less than 2.

1.2. Sketch. Let us sketch the main ideas. Self-shrinkers are minimal sur-
faces in the Gaussian metric (R3, e−|x|2/4δij) and we will use the correspond-
ing variational construction of such minimal surfaces developed in [42]. Re-
cently with G. Franz and M. Schulz the min-max theory was extended to
sweepouts that are equivariant with respect to any finite group G ⊂ O(3)
[28].

Considering 1-parameter sweepouts of Gaussian space by spheres invari-
ant under the prismatic group Pg+1 := Dg+1 × Z2 we obtain from the equi-
variant min-max theory the self-shrinking sphere S

2
∗ = S

2(2). After all, the
sphere has equivariant index 1, has lowest entropy shrinker above that of
the plane ([9], [42]) and exists in an optimal 1-parameter family {St}t∈[0,1]
of concentric spheres centered at the origin.
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In [38] the author introduced the notion of “flipping” optimal foliations of
three-manifolds to produce an index 2 minimal surface (see also [29] in the
free boundary case). In our setting, we consider the min-max problem asso-
ciated to all two-parameter families of Pg+1-equivariant surfaces of genus g
that interpolate between the optimal foliation {St}t∈[0,1] and the same folia-
tion with the opposite orientation. The two-parameter family Su,v, roughly
speaking, consists of two parallel spheres Su and Sv joined by g + 1 necks
in a Pg+1 := Dg+1 × Z2 equivariant fashion. By a Lusternick-Schnirelman
argument, a min-max procedure applied to this family does not simply pro-
duce S

2
∗. By the catenoid estimate [41] the “width” ω2(Pg+1) of this family

satisfies
ω2(Pg+1) < 2λ(S2∗) ≈ 2.94. (1.8)

and it would be natural to expect one obtains a doubling of the self-shrinking
sphere.

A Jacobi field argument, however, shows that there can not exist dou-
blings of the sphere where necks are congregating only on the equator in
the limit that g → ∞. Indeed, if Σg were such a doubling, by subtracting
the distance between the two sheets and rescaling one obtains a rotation-
ally symmetric positive Jacobi field J = J(φ)4 on each hemisphere of S

2
∗

satisfying
∆S2(1)J + 4J = 0 (1.9)

and J ′(0) = 0 (to ensure smoothness at the north pole). On the other hand,
f(φ) = cos(φ) (i.e. the z-coordinate) satisfies ∆S2(1)f + 2f = 0. By Sturm-
Liouville comparison, J must have a zero at some φ0 < π/2. This gives a
contradiction. Such considerations of “profile functions” for doublings were
introduced by Kapouleas [34] and used in his later work [36].

In fact a large part of this paper is devoted to showing that (1.8) may be
improved to

ω2(Pg+1) < 2. (1.10)

The proof (1.10) relies on a careful study of the metric geometry of Gauss-
ian space. In particular, there exists a sweepout with Gaussian areas below
2 beginning at a given disk D centered about the origin in H and ending at
H \D, the exterior infinite annulus, together with a set of arbitrariy small
Gaussian area. The sweepout is obtained by first expanding the disk to a
half-cylinder, and then folding the cylinder through truncated cones until it
collapses to H \D. We call such a a sweepout an inversion since it reverses
the normal vector from upward on D to downward on H \D. The necessary
geometric estimates are contained in Propositions 3.2, 3.5, and 3.6

Returning to the construction of the desired two-parameter family, we first
fold the inner sphere Su contained in {Su,v}(u,v)∈I2 inwards and the outer
sphere Sv outwards toward the exterior annulus in H as described above so
that the surface resembles parts of two planes parallel to H plus spherical
caps of negligible area. Since H is unstable, we may then use the catenoid

4The variable φ being the azimuthal spherical coordinate.
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estimate [41] to retract the surfaces to the union of two planes (modulo
vertical tubes) while maintaining the Gaussian area bound. Since the two
spheres are on separate sides of the plane H, we then use Smale’s theorem
[53] to retract them to points in a continuous fashion. The argument is
delicate since the Gaussian areas are forced to approach 2 in the process of
the deformation. This completes the sketch of the proof of (1.10).

We then consider a varifold limit Σ∞ of Σg for some subsequence of g
tending to infinity. Using work of Kleene-Møller [43] we get that either Σ∞

is the self-shrinking cylinder, the Angenent torus (which has equivariant
index 2 and entropy roughly 1.86 [7]), an immersed self-shrinker, or 2H. We
show that the surfaces cannot degenerate to the Angenent torus as the min-
max limit is obtained after equivariant neckpinches, all of which reduce the
surface to a union of spheres. Immersed surfaces are ruled out by entropy
considerations. The self-shrinking cylinder on the other hand has equivariant
index 1 and nullity 0 and thus cannot arise with multiplicity 1 from a 2-
parameter min-max procedure. Indeed, Marques-Neves proved such Morse
index bounds in the Almgren-Pitts setting on compact manifolds [47] and
the author together with Liokumovich obtained analogous results in the
Simon-Smith setting [40]. Having ruled out all other possibilities, we get
that Σ∞ = 2H and Σg resembles a doubled plane on compact subsets for
large g.

To show that the genus does not disappear to infinity or vanish into the
origin as g → ∞ we consider the Jacobi equation for the Gaussian area
on the plane. If the topology disappears in the limit, then subtracting the
two sheets of the self-shrinker Σg and doing a blowup argument gives us a
“profile function” satisfying the confluent hypergeometric equation studied
by Kummer [44] in 1837. A study of positive radial solutions to this equation
prohibits the topology from disappearing in the limit.

Finally, because the self-shrinkers Σg consist of components in {z > 0}
and {z < 0} which are only joined up at a fixed scale where genus is con-
gregrating, we may apply Brakke’s regularity theorem to each component
separately to deduce that Σg has only two graphical ends for g large. In
this section we also use ideas of Sun-Wang [58] on compactness of genus g
self-shrinkers.

The organization of this paper is as follows. In Section 2 we introduce
the equivariant min-max setting in which we will work. In Section 3 we
estimate the Gaussian areas of the building blocks of our desired sweepout.
In Section 4 we construct the “flipping” sweepouts with Gaussian areas less
than 2. In Section 5 we prove the existence of the purported self-shrinkers
Σg. In Section 6 we show that Σg has genus g. In Section 7 we show that
Σg converges to twice a plane as g → ∞. In Section 8 we show that Σg has
two graphical ends when g is large. Section 9 is an appendix concerned with
the self-shrinker Jacobi equation on the plane.

Acknowledgements: I am grateful to Prof. Jacob Bernstein for his interest,
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encouragement, and many helpful conversations and insights that greatly
improved this work.

2. Pg+1-equivariant min-max

In this section we set up the relevant equivariant min-max framework.

2.1. Prismatic symmetry. Let us describe the prismatic symmetry group
Pg+1 in more detail. If P is a plane in R

3, let us denote by τP ∈ O(3) the
reflection in the plane P. Recall H = {z = 0}.

Let {L1, .., Lg+1} denote (g+1) equally spaced lines contained in H pass-
ing through the origin where L1 coincides with the x-axis. In other words for
each k = 1, ..., g + 1, we denote the rays (in cylindrical coordinates (r, θ, z)
on R

3)

Rk = {(r, θ, 0) ∈ R
3 | θ =

π(k − 1)

g + 1
} (2.1)

Similarly for each k = g + 2, ..., 2g + 2 denote the rays

Rk = {(r, θ, 0) ∈ R
3 | θ =

π(k − g − 2)

g + 1
+ π} (2.2)

Then for each k = 1, ..., g + 1, we have the line Lk = Rk ∪Rk+g.
The dihedral group Dg+1 ⊂ SO(3) is generated by a 2π/(g + 1)-rotation

about the z-axis together with π-rotations about the lines {Li}g+1
i=1 . Let us

denote by Ri : R3 → R
3 the rotation about Li. The group Dg+1 has order

2(g + 1).
The prismatic group Pg+1 is Dg+1 × Z2, where the Z2 factor is generated

by the reflection
τH(x, y, z) = (x, y,−z). (2.3)

For each i = 1, ..., g + 1, let Pi denote the plane containing the z-axis
together with the line in Li.

The group Pg+1 contains the g + 1 vertical reflections {τPi}g+1
i=1 (with τPi

obtained as τH ◦Ri) as well as the horizontal reflection τH .

2.2. Equivariant sweepouts. Let G ⊂ O(3) be a finite subgroup. Set
In = [0, 1]n ∈ R

n. Let {Σt}t∈In be a family of closed subsets of R
3 and

B ⊂ ∂In. We call the family {Σt}t∈In a genus g G-sweepout if

(1) g(Σt) = Σt (setwise) for all g ∈ G and t ∈ In.
(2) The action of G preserves the orientation of Σt for t ∈ In.
(3) F (Σt) is a continuous function of t ∈ In

(4) Σt converges to Σt0 in the Hausdorff topology as t → t0.
(5) For t0 ∈ In \ B, Σt0 is a smooth closed surface of genus g and Σt

varies smoothly for t near t0.
(6) For t ∈ B, the set Σt consists of the union of a 1-complex (possibly

empty) together with a smooth surface (possibly empty).

Remark 2.1. By item (2), a G-invariant sweepout is orthogonal to (or
disjoint from) any plane of reflective symmetry.
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Beginning with a genus g sweepout {Σt}t∈In we need to construct com-
parison sweepouts which agree with {Σt}t∈In on ∂In. For any sweepout, we
may generate new swepouts as follows. For any map Ψ ∈ C∞(In × R

3,R3)
such that for all t ∈ In we have Ψ(t, .) ∈ Diff0(R

3) and Ψ(t, .) = id if
t ∈ ∂In. If G 6= {e} we further demand the family of diffeomorphisms be
G-equivariant. If Π is a collection of sweepouts, we say it is saturated if for
any any sweepout {Λt}t∈In ∈ Π we have also Ψ(t,Λt) ∈ Π as long as Ψ has
one of the two additional properties:

(1) Ψ(t, .) : R3 → R
3 has compact support for all t ∈ In.

(2) Ψ(t, .) is the time 1 flow generated by smooth n-parameter vector
fields Xt : R3 → R

3 with supt∈In ||Xt|C1 ≤ C.

Given a sweepout {Σt}t∈In , denote by Π := ΠΣt the smallest saturated
collection of sweepouts containing {Σt}t∈In We define the width of Π to be

W (Π, G) = inf
Λt∈Π

sup
t∈In

F (Λt). (2.4)

A minimizing sequence is a sequence of sweepouts {Σi
t} ∈ Π such that

lim
i→∞

sup
t∈In

F (Σi
t) = W (Π, G). (2.5)

Finally, a min-max sequence is a sequence of slices Σi
ti , ti ∈ In taken from

a minimizing sequence so that

F (Σi
ti) → W (Π, G). (2.6)

The main point of the Min-Max Theory of Almgren-Pitts ([2], [51]) as
refined by Simon-Smith ([54] [22]) is that if the width is greater than the
maximum of the areas of the boundary surfaces, then some min-max se-
quence converges to a minimal surface in M . Crucially, the topology of the
limit is controlled by g.

The equivariant version was obtained in [38] (cf. [52]) assuming the ele-
ments of G are orientation-preserving, and recently with G. Franz and M.
Schulz [28] this assumption was removed. The extension to the Gaussian

metric M = (R3, e−|x|2/4δij) was obtained together with X. Zhou [42] (see
also [59]) using a special flow to prevent min-max limits from escaping to
infinity.

Theorem 2.2 (Multi-parameter Min-max Theorem). Given a (genus g)
G-sweepout {Σt}t∈In , if Π denotes its saturation then the following holds. If

2 > W (Π, G) > sup
t∈∂In

F (Σt), (2.7)

then there exists a min-max sequence Σi := Σi
ti such that

Σi → Γ as varifolds, (2.8)

where Γ is a smooth embedded G-equivariant self-shrinker. Moreover,

λ(Σ) = W (Π, G) = F (Σ). (2.9)
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We also have

(1) genus(Γ) ≤ g.
(2) The self-shrinker Γ is orthogonal to any plane and axis of symmetry

of G that it intersects.

We restrict to sweepouts with entropy less than 2 because it rules out
higher multiplicity and simplifies statements about the genus control. Given
the recent work of Wang-Zhou [61] one expects multiplicity does not occur
in this setting.

As an important example of Theorem 2.2, for each g ≥ 1, we have the
following (genus 0) Pg+1-sweepout {St}t∈[0,1] of Gaussian space:

St = {(x, y, z) | x2 + y2 + z2 = tan(
tπ

2
)}. (2.10)

If we apply Theorem 2.2 to the saturation of the family (2.10) the self-
shrinker we obtain is S

2
∗. Indeed, by item (1) above the genus must be zero,

and by Brendle’s classification [11] we obtain only the sphere, cylinder or
plane as possibilities. The latter is excluded by item (2) and the sphere has
smaller Gaussian area.

2.3. P∞-invariant self-shrinkers. We will need the following classifica-
tion, due to Kleene-Møller (Theorem 2 in [43]):

Proposition 2.3 (Classification of P∞-invariant shrinkers). A smooth P∞-
invariant embedded self-shrinker is one of the following:

(i) S
2
∗

(ii) S
1
∗ × R (about the z-axis)

(iii) Angenent torus
(iv) H (the xy-plane).

2.4. Equivariant index of self-shrinkers. Let L0,1 denote the stability
operator for the F0,1 functional defined on any self-shrinker Σ. Let us call
φ ∈ C∞(Σ), a Pg+1-invariant eigenfunction if

(1) L0,1φ = λφ for some λ ∈ R

(2) φ(hx) = φ(x) for h ∈ Pg+1 and x ∈ Σ.

Let indPg+1(Σ) denote the maximal dimension of a space of eigenfunc-
tions of L0,1 with negative eigenvalue (counted with multiplicities), and let
nullPg+1(Σ) denote the dimension of the Pg+1-invariant kernel of L0,1.

The positive and negative eigenspaces of L0,1 on spheres and cylinders
are easy to calculate. We obtain

Proposition 2.4 (Equivariant index). We have the following

(1) ind Pg+1(S2∗) = 1 and null Pg+1(S2∗) = 0,

(2) ind Pg+1(S1∗ × R) = 1 and null Pg+1(S1∗ × R) = 0,

Proof. The negative eigenfunctions for the stability operator for the F0,1

functional on S
2
∗, S

1
∗×R correspond to translations and homothety (Lemma



10 DANIEL KETOVER

5.5 in [20]). The eigenfunctions with zero eigenvalue (nullity) correspond
to rotations. The sphere is preserved by all rotations and no translation is
Pg+1 invariant, leaving only the homothety as negative eigenfunction and no
nullity. Similarly no translation or rotation of the cylinder is Pg+1 invariant,
leaving only the homothety as Pg+1-invariant negative eigenfunction. �

3. Gaussian area estimates

In this section we derive a number of estimates for the Gaussian areas of
standard surfaces that will comprise the building blocks of our family. All
surfaces we consider are P∞-invariant.

For 0 ≤ R1 ≤ R2 let us denote the doubled annulus:

D(R1, R2, h) := {(x, y, z) ∈ R
3 | R2

1 ≤ x2 + y2 ≤ R2
2 and z = ±h}. (3.1)

The Gaussian area can be computed5 as

|D(R1, R2, h)| = 2e−h2/4(e−R2
1/4 − e−R2

2/4). (3.2)

Let us denote the cylinder:

Cyl(r, h) = {(x, y, z) ∈ R
3 | x2 + y2 = r2 and |z| ≤ h}, (3.3)

with Gaussian area

Cyl(R,H) = Re−
1
4
R2

∫ H

0
e−

1
4
z2dz, (3.4)

so that

Cyl(R,∞) =
√
πRe−

1
4
R2

, (3.5)

and

Cyl(R,h) ≤ hRe−R2/4 for all h and R. (3.6)

The sphere

S(r) = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = r2}, (3.7)

satisfies

|S(R)| = R2e−
1
4
R2

. (3.8)

The following lemma is useful.

Lemma 3.1. Fix h > 0 and Σ a submanifold (possibly with boundary)

contained in {z ≥ 0}. Consider the translated surface Σ + h~k, where ~k =
(0, 0, 1). Then

F (Σ + h~k) ≤ e−h2/4F (Σ). (3.9)

5With the convention that |D(R1, R2, 0)| counts the area twice.
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Proof. Indeed, (writing |ρ|2 = x2 + y2 + z2) we get

F (Σ + h~k) =

∫

Σ+h
e−|ρ|2/4dµ =

∫

Σ
e

=|ρ|2−2hz−h2

4 dµ ≤ e−h2/4

∫

Σ
e−|ρ|2/4dµ,

(3.10)
where we use that z ≥ 0 on the support of Σ and h is positive in the
inequality. �

3.0.1. Gaussian area of spherically-capped cylinders. Let S(R,h) denote the
translated spherical caps:

S(R,h) = {(r, θ, z) ∈ R
3 | z = ±

√

R2 − r2 ± h}. (3.11)

In the following, we estimate the Gaussian surface area of ellipsoid-like sur-
faces obtained from adding in a cylinder to S(R,h) to obtain a closed surface.

Proposition 3.2 (Gaussian area of spherically-capped cylinders). For δ1 =
.133 there holds for all R > 0 and h > 0

|S(R,h)| + |Cyl(R,h)| ≤ 1.867 = 2 − δ1. (3.12)

Proof. Using (3.5) and (3.8) together with Lemma 3.1 we obtain

|S(R,h)|+|Cyl(R,h)| ≤ e−h2/4R2e−R2/4+Re−R2/4

∫ h

0
e−1/4z2dz = G(R,h).

(3.13)
For fixed R, the derivative of G(R,h) is zero only at h = 2/R. Thus for
each R > 0 we obtain

sup
h≥0

|S(R,h)| + |Cyl(R,h)| ≤ max (G(R, 2/R), |S(R, 0)|, |Cyl(R,∞)|)
(3.14)

where

G(R, 2/R) = R2e−R2/4−1/R2
+ Re−R2/4

∫ 2/R

0
e−z2/4dz. (3.15)

We find numerically the maximum of the function F (R) = G(R, 2/R) is at
most 1.867 and achieved at R0 ≈ 1.764. Thus we obtain from (3.14):

sup
R,h

|S(R,h)| + |Cyl(R,h)| ≤ max (1.867, λ(S2∗), λ(S1∗ × R)) = 1.867 (3.16)

Thus (3.12) follows with δ1 = 2 −G(2/R0, R0) ≤ .133.
�

3.0.2. Gaussian area of cones. For φ ∈ [0, π/2] and 0 ≤ R1 < R2, consider
the graph of a (doubled) cone in cylindrical coordinates:

C(R1, R2, φ) = {(r, θ, z) ∈ R
3 | z = ± tan(φ)(r −R1) and R1 < r < R2}

(3.17)
We compute the Gaussian area by

|C(R1, R2, φ)| = sec(φ)

∫ R2

R1

re−
1
4
(r2+tan2(φ)(r−R1)2dr. (3.18)
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Note that setting φ = 0, we recover the formula for Gaussian area of the
doubled annuli:

|C(R1, R2, 0)| = |D(R1, R2, 0)| = 2(e−
1
4
R2

1 − e−
1
4
R2

2). (3.19)

Carrying out the integral in (3.18) we obtain

|C(R,∞, φ)| = 2 cos(φ)e−
1
4
R2

+ I(R,φ), (3.20)

where I(r, φ) ≥ 0 is given by6

I(R,φ) =
√
πR sin2(φ)(1 − erf(

R

2
cos(φ)))e−

R2 sin2(φ)
4 . (3.21)

Differentiating I(R,φ) in φ (and discarding the negative terms), we obtain

Iφ(R,φ) ≤ √
πR sin(φ) (3.22)

so that

|Cφ(R,∞, φ)| ≤ 2e−
R2

4 sin(φ)(−1 +
√
πRe

R2

4 ). (3.23)

Taking R ≤ 0.2 we obtain

√
πRe

R2

4 ≤ 1/2. (3.24)

Thus by (3.23) we guarantee

|Cφ(R,∞, φ)| < 0 for all φ ∈ (0, π/2]. (3.25)

Thus we have |C(R,∞, φ)| is decreasing in φ for R small enough. In fact,
we have the following:

Proposition 3.3 (Gaussian area of cones). For δ2 = .02 > 0 the following
is true:

(1) For all R1 ≤ R2 and φ ∈ [0, π/2] there holds

|C(R1, R2, φ)| ≤ 2. (3.26)

(2) For R1 > .2 there holds

|C(R1,∞, φ)| ≤ 2 − δ2. (3.27)

(3) For R1 ≤ .2, |C(R1,∞, φ)| is strictly decreasing in φ ∈ [0, π/2],
whence

|C(R1,∞, φ)| ≤ |D(R1,∞)| for all φ ∈ [0, π/2]. (3.28)

Proof. We have already shown (3). To show (2), it suffices to find the
maximum of |C(R,∞, φ)| for (R,φ) in the domain [.2,∞] × [0, π/2]. One
finds numerically that the maximum is achieved at approximately 1.98 at
the boundary point (R,φ) = (.2, 0). Thus (3.27) holds with δ2 = .02.7 �

6Recall erf(x) := 2√
π

∫ x

0
e−y2

dy, normalized so that erf(∞) = 1.
7This is far from sharp, but for our purposes the existence of δ2 > 0 is sufficient.
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Remark 3.4. For R small, |C(R,∞, φ)| is decreasing in φ and for R large
|C(R,∞, φ)| is increasing in φ. In the intermediate region |C(R,∞, φ)|
has one critical point in φ for each R. This behavior is consistent with
the existence of self-shrinking conical “trumpet ends” discovered by Kleene-
Møller [43] that interpolate between the cylinder and (doubled) plane.

In fact we will need to consider the translations of the cones. Considering
the translated cone C(R1,∞, h, φ) defined over R1 < r < R2 by

C(R1, R2, h, φ) = {(r, θ, z) | z = ± tan(φ)(r −R1) ± h and R1 < r < R2}
(3.29)

Using Lemma 3.1 we can estimate the Gaussian area

|C(R1, R2, h, φ)| ≤ e−
h2

4 |C(R1, R2, φ)|. (3.30)

Thus from Proposition 3.3 we obtain:

Proposition 3.5 (Gaussian area of translated cones). For δ2 defined in
Proposition 3.3, the following are true:

(1) For R > .2 and all h there holds

|C(R,∞, h, φ)| ≤ 2 − δ2. (3.31)

(2) For R ≤ .2 and all h and φ ∈ [0, π/2] there holds

|C(R,∞, h, φ)| ≤ |D(R,∞, h)|. (3.32)

Proof. For R ≥ .2, we may bound (for all h) using Lemma 3.1

|C(R,∞, h, φ)| ≤ e−h2/4(2 − δ2) ≤ 2 − δ2. (3.33)

To show (2), observe that for R ≤ .2 by item (3) in Proposition 3.3
together with Lemma 3.1 we obtain

|C(R,∞, h, φ)| ≤ e−h2/4|C(R,∞, φ)| ≤ e−h2/4|C(R,∞, 0)| = |D(R,∞, h)|.
(3.34)

�

3.0.3. Gaussian areas of ellipsoids. Consider the ellipsoid with a > b given
by

E(a, b) = {(x, y, z) ∈ R
3 | (x2 + y2)a−2 + z2b−2 = 1} (3.35)

The formula for the Gaussian area of E(a, b) is

|E(a, b)| = e−
a2

4

∫ 1

0
e

1
4
(a2−b2)τ2a2τ

√

1 + b2a−2τ−2(1 − τ2)dτ. (3.36)

Note that E(a, 0) is (in the sense of varifolds) the disk D(0, a) with mul-
tiplicity 2 and E(a, a) is the sphere S(a). We have the following confirmed
numerically:

Proposition 3.6 (Gaussian areas of ellipsoids). Setting δ3 = .0365 > 0, for
all b ≤ a ≤ 4 there holds

|E(a, b)| ≤ 2 − δ3 = 1.9365. (3.37)
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We will also need to consider the following radial graphs

z+h,a,b : H → R
+ (3.38)

for each h ≤ b ≤ a:

z+h,a,b(r, θ) =

{

b
√

1 − a−2r2 for r ≤ a
√

1 − h2b−2,

h for r ≥ a
√

1 − h2b−2,
(3.39)

Define z−h,a,b(r, θ) = −z+h,a,b(r, θ). The family is obtained by taking the

maximum of the graphs determined by z = h and E(a, b). Fixing h and a,
we obtain a 1-parameter family of graphs {z+h,a,b}ab=h interpolating from the

constant function z+h,a,h = h at b = h to the union of a piece of sphere glued

together with constant function at b = a. This family effectively removes
the parts of the ellipsoid E(a, b) with vertical tangent line.

Let zh,a,b = z+h,a,b ∪ z−h,a,b. We need the following estimate:

Lemma 3.7. Suppose a ≥ 3. Then for all 0 ≤ h ≤ b ≤ a there holds

|z+h,a,b| ≤ 1 − h2

4
. (3.40)

Proof. For the elliptical part of z+h,a,b, the area may be computed by re-

stricting the integral in (3.36) to τ ∈ [h/b, 1]. The formula for the part of
z+h,a,b which is constant is given in (3.2). Numerically we find that |z+h,a,b|
is decreasing in b as long as a ≥ 3. When b = h, we obtain equality in
(3.40). �

4. Existence Pg+1-equivariant flipping sweepouts

In this section, we construct the non-trivial two-parameter “flipping”
sweepout that will be used to produce the self-shrinker Σg. In the following,
let V denote the volume of Gaussian space8. We prove the following (recall
I = [0, 1] and the optimal family of spheres {St}t∈[0,1] was defined in (2.10)):

Theorem 4.1 (Flipping sweepout). Fix g ≥ 1. There exists a (genus g)
Pg+1-sweepout {Σs,t}(s,t)∈I2 so that the following hold for suitably small η1 ≪
1 and η2 <

V
2 .

(1) Σ0,t = S1−t together with a set of arcs for t ∈ [0, 1 − η1]
(2) |Σ0,t| ≤ η1 for t ∈ [1 − η1, 1]
(3) Σ1,t = St together with a set of arcs for t ∈ [η1, 1 − η1]
(4) |Σ1,t| ≤ η1 for t ∈ I \ [η1, 1 − η1]
(5) |Σs,0| + |Σs,1| ≤ η1 for all s ∈ I
(6) Σ0,t has the opposite orientation to Σ1,1−t for t ∈ [η1, 1 − η1].
(7) Σs,t has genus g for (t, s) /∈ ∂I2.

8V = 1

(4π)3/2

∫
R3 e

−3|ρ|2/8dx = 1

(4π)1/2

∫ ∞
0

r2e−3r2/8dr ≈ .5445.
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(8) For each s ∈ [0, 1], the 1-sweepout {Σs,t}t∈[0,1] is a non-trivial sweep-
out in the following sense. For some continuously varying choice
of region Rs,t bounded by Σs,t, there holds: vol(Rs,0) ≤ η2 and
vol(Rs,1) > V − η2 for each s ∈ [0, 1].

(9) The Gaussian area bound holds:

sup
(s,t)∈∂I2

F (Σt,s) = λ(S2∗). (4.1)

where the supremum is attained at a unique point on both the left
{(0, t)}t∈[0,1] and right {(1, t)}t∈[0,1] sides of the parameter space I2.

(10) The Gaussian area bound holds:

sup
(s,t)∈I2

F (Σs,t) < 2. (4.2)

4.1. Inversions at varying radii. In this subsection, we begin to con-
struct the family posited in Theorem 4.1. For R in a suitable range we will
construct a family of surfaces {ΣR

t }t∈[0,5/6]. We call {ΣR
t }t∈[0,5/6] an ‘inver-

sion at radius R’ because it first consists of a spherical foliation (modulo thin
tubes connecting to a negligible interior sphere) beginning at radius infinity
and stopping at radius R after which the sphere is “inverted” toward the
part of a plane parallel to the xy-plane with radial coordinate bigger than
R (together with large spherical caps). This process involves interpolation
with cylinders and cones as described in the introduction. The inversion
process brings the Gaussian areas extremely close to, but below, 2.

The family of surfaces {ΣR
t }t∈[0,5/6] depends on several auxiliary variables:

ΣR
t = ΣR

t (h(R), δ(R),Ω(R,h)) (4.3)

where h, δ,Ω will be chosen in the course of the construction. Roughly
speaking, the parameter δ will be very small and represents the thickness of
a certain collection of tubes. The parameter h will represent the radius and
height of the surface Fh(h) (i.e. a cylinder capped with disks). The parame-
ter Ω(R,h) is large and measures to what radius we fling out a sphere toward
infinity in the deformation. The sweepout is obtained by concatenating the
following five isotopies.

For ease of notation, in this section for Σ ⊂ R
3 a piecewise smooth surface

we denote F (Σ) by |Σ|.

Let us set

.2 ≤ R ≤ 5. (4.4)

Step 0: Set-up and definitions. For any h, r > 0 let

Fh(r) = Cyl(r, h) ∪D(0, r, h), (4.5)

denote the sphere obtained by capping off a cylinder with disks. Assume
ǫ ≪ min(h, r). Let L(ǫ) denote the boundary of the ǫ-tubular neighborhood
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about the union of the rays ∪2g+1
i=1,oddRi

9. Let D1(h, r, ǫ) denote the union of

the g + 1 disks in Cyl(r, h) bounded by the g + 1 circles

L(ǫ) ∩ Cyl(r, h) ⊂ Fh(r). (4.6)

Similarly let D2(R, ǫ) denote the union of disks in S(R) bounded by the
g + 1 small circles L(ǫ) ∩ S(R). Note that for ǫ ≪ min(h, r) there holds

|D1(h, r, ǫ)| ≤ 2πǫ2 and |D2(R, ǫ)| ≤ 2πǫ2 (4.7)

Let L(R,h, r, ǫ) denote the union of g + 1 annuli comprising the con-
nected components of L(ǫ)\ (Cyl(r, h)∪S(R)) with boundary ∂D1(h, r, ǫ)∪
∂D2(R, ǫ). Since straight lines through the origin in Gaussian space to in-
finity have bounded length, there exists A > 0 so that

|L(R,h, r, ǫ)| ≤ |L(ǫ)| ≤ Aǫ. (4.8)

Step 1: Initial surfaces. For h < .1 let us denote

Σ0(R,h) = S(R) ∪ Fh(h). (4.9)

We define a smoothly varying family of surfaces for t ∈ (0, 1]:

ΣR
1 (t) = Σ0(

R

t
, ht) ∪ (L(

R

t
, th, th, th3)) \ (D1(th, th, th3) ∪D2(

R

t
, th3)).

(4.10)
At t = 1 we get

ΣR
1 (1) = Σ0(R,h) ∪ L(R,h, h, h3) \ (D1(h, h, ǫ) ∪D2(R,h3)), (4.11)

and as t → 0, the family Σ1(t) converges in the Hausdorff topology to the

union ∪2g+1
i=1,oddRi.

Roughly speaking, for t ∈ (0, 1), the surface Σ1(t) is a larger sphere with
a tiny cylinder inside capped off with disks, together with g + 1 thin necks
joining the inner component to the outer sphere. At t = 0 the set ΣR

1 (0) is
a union of g + 1 equally spaced rays through the origin.

By Taylor expanding the Gaussian area of Fh(h) we see that there exists
h0 > 0 and B > 0 so that if h ≤ h0, there holds

|Fh(h)| ≤ Bh2. (4.12)

By plugging in ǫ = th3 into (4.8) we obtain

|ΣR
1 (t)| ≤ |S(R)| + |Fh(h)| + L(ǫ) ≤ λ(S2

∗) + Bh2 + Ah3. (4.13)

Choose h1 so that
Bh21 + Ah31 < 2 − λ(S2

∗). (4.14)

Then as long as h ≤ min(h1, h0, .1) we obtain:

sup
t∈[0,1]

|ΣR
1 (t)| < 2. (4.15)

9When g is odd, the union includes half-lines in opposite directions, giving a union of
lines.
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Step 2: Outer sphere to cylinders with caps. Fix Ω = Ω(R) > 0 (it will be a
large number to be determined later). For t ∈ [0, 1] let us define

G(R, t) = Cyl(R,Ωt) ∪ S(R,Ωt). (4.16)

Note that G(R, 0) coincides with S(R) and G(R, 1) is nearly a cylinder a
long as Ω is sufficiently large.

By Proposition 3.2 there exists δ1 > 0 so that

|G(R, t)| < 2 − δ1 for all t ∈ [0, 1]. (4.17)

Assume ǫ ≪ min(h, r). Let D̃2(R, ǫ, t) denote the small disks in G(R, t)

bounded by the curves of intersection of L(ǫ) with G(R, t) and let L̃(R,h, r, ǫ)
denote the component of L(ǫ) \ (Cyl(r, h) ∪ G(R, t)) with boundary given

by ∂D1(h, r, ǫ) ∪ ∂D̃2(R,Ω, ǫ, t).
We define a continuously varying one-parameter family {ΣR

2 (t)}t∈[0,1] with

ΣR
2 (0) = ΣR

1 (1) as follows:

ΣR
2 (t) = G(R, t) ∪ Fh(h) ∪ L̃(R,h, h, h3)) \ (D1(h, h, h3) ∪ D̃2(R,Ω, h3, t)).

(4.18)
Recall that for h sufficiently small, we have

|L̃(R,h, h, h3)| ≤ |L(ǫ)| ≤ Ah3. (4.19)

In light of (4.17) and (4.19) and (4.12) as long as h ≤ min(h0, h1, .1) we
obtain (for all R in the desired range (4.4) and all Ω > 0):

sup
t∈[0,1]

|ΣR
2 (t)| < 2 − δ1 + Ah3 + Bh2. (4.20)

Choose h2 to satisfy

Ah32 + Bh22 ≤ δ1/2. (4.21)

Then as long as h ≤ min(h0, h1, h2, .1) we obtain

sup
t∈[0,1]

|ΣR
2 (t)| < 2 − δ1/2. (4.22)

The variable Ω = Ω(R) (i.e. the height of the cylinder) will be specified
in the next two steps.

Step 3: Opening via truncated cones.
For t ∈ [0, 1] let us set (recalling definition 3.29)

G(R,Ω, h, t) = C(R,R+sin(
tπ

2
)(Ω−h), h,

tπ

2
)∪Ends(R,Ω, h, t)∪Cyl(R,h)

(4.23)
where Ends(R,Ω, h, t) is given as

Ends(R,Ω, h, t) = S(R,Ω) ∪B(R,Ω, h, t) (4.24)
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with B(R,Ω, h, t) being the set (far from the plane H) traced out as the
cone opens:

B(R,Ω, h, t) = {|z| > h} ∩ (
⋃

s∈[0,t]

∂C(R,R + sin(
sπ

2
)(Ω − h), h,

sπ

2
). (4.25)

Assume Ω ≥ R. Then all points in the support of S(R,Ω) are a distance at
least Ω from the origin. Thus we may bound

|S(R,Ω)| ≤ e−Ω2/4areaR3(S(R))

4π
≤ R2e−Ω2/4 ≤ Ω2e−Ω2/4. (4.26)

Note that points in B(R,Ω, h, t) are at least a distance
√

2Ω from the
origin and B(R,Ω, h, t) consists of parts of a sphere of radius Ω − h ≤ Ω.
Thus we obtain

|B(R,Ω, h, t)| = DΩ2e−Ω2/4. (4.27)

Assuming Ω ≥ R we obtain putting together (4.26) and (4.27) for some
E > 0,

|Ends(R,Ω, h, t)| = EΩ2e−Ω2/4. (4.28)

We define a one-parameter family {ΣR
3 (t)}t∈[0,1] (with ΣR

3 (0) = ΣR
2 (1)) as

follows:

ΣR
3 (t) = G(R,Ω, h, t)∪Fh(h)∪ L̃(R,h, h, h3)) \ (D1(h, h, h3)∪ D̃2(R,h3, 1)).

(4.29)
Since by assumption R ≥ .2 by Proposition 3.3, (4.28), (4.12) and (3.6) we
get

|ΣR
3 (t)| < 2 − δ2 + Ah3 + Bh2 + hR + EΩ2e−Ω2/4 (4.30)

Choose Ω1 so large so that

EΩ2
1e

−Ω2
1/4 ≤ δ2

4
(4.31)

and h3 small enough so that

5h3 + Ah33 + Bh23 ≤
δ2
4
. (4.32)

Then we get for h ≤ min(h0, h1, h2, h3, .1) and Ω ≥ max(Ω1, R):

sup
t∈[0,1]

|ΣR
3 (t)| < 2 − δ2

2
. (4.33)

Step 4: Enlarging inner cylinder. Set rmax(R) = max (R/2, R − 1). For
t ∈ [0, 1], let us define the family of radii

rt = h + t(rmax(R) − h). (4.34)

For t ∈ [0, 1] let us consider the family of inner cylinders with expanding
radii

Fh(rt) = D(rt, h) ∪ Cyl(rt, h). (4.35)
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Let us define a one-parameter family {ΣR
4 (t)}t∈[0,1] (with ΣR

4 (0) = ΣR
3 (1))

as follows:

ΣR
4 (t) = Fh(rt)∪G(R,Ω, h, 1)∪L̃i(R,h, rt, h

3)\(D1(rt, h, h
3)∪D̃2(R,h3, 1)).

(4.36)
Thus we obtain

|ΣR
4 (t)| ≤ |D(R,∞, h)| + |Cyl(R,h)| + |Fh(rt)| + Ah3 + EΩ2e−Ω2/4 (4.37)

Recalling the formula for area of a cylinder and that R ≤ 5

|Cyl(R,h)| ≤ hRe−R2/4 ≤ 5h. (4.38)

and
|Cyl(rt, h)| ≤ 5h, (4.39)

Using these we obtain the Gaussian area bound

|ΣR
4 (t)| ≤ |D(R,∞, h)| + |D(0, rt, h)| + 10h + Ah3 + EΩ2e−Ω2/4. (4.40)

Applying this together with the formula for Gaussian area of disks, we
get the Gaussian area bound

sup
t∈[0,1]

|ΣR
4 (t)| ≤ e−h2/4(2 − |D(rt, R)|) + 10h + 2Ah3 + EΩ2e−Ω2/4. (4.41)

We expand the first term in h and get

sup
t∈[0,1]

|ΣR
4 (t)| ≤ 2 − |D(rt, R)| + 10h + Ah3 + h4/16 + EΩ2e−Ω2/4. (4.42)

Note finally that

inf
R∈[.2,5],t∈[0,1]

|D(rt(R), R)| ≥ η2 > 0. (4.43)

Choose Ω2 large enough so that

EΩ2
2e

−Ω2
2/4 ≤ η2/4. (4.44)

Choose h4 so that
Ah34 + h44/16 ≤ η2/4. (4.45)

Thus we get for all h ≤ min(h0, h1, h2, h3, h4, .1) and Ω ≥ max(Ω1,Ω2, R)
the bound

sup
t∈[0,1]

|ΣR
4 (t)| < 2 − η2

4
. (4.46)

Step 5: Catenoid estimate. Set

rnecks(R) = (R + rmax(R))/2. (4.47)

Consider the set W obtained as the intersection of the circle of radius
rnecks(R) about the origin in the plane H with the rays ∪2g+2

i=2,evenRi. Let

V (R) denote the union of those lines that contain a point in W and are
orthogonal to H. Let V (R, δ) denote the boundary of the the δ-tubular
neighborhood about the set of lines V (R). Let D3(h, δ) denote the union of
the disks in D(0, R + Ω − h, h) bounded by the intersection D(0, R + Ω −
h, h) ∩ V (R, δ). Let V (R,h, δ) denote the g + 1 components of V (R, δ) \
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D(0, R + Ω − h, h) intersecting the plane H (i.e. the vertical tubes). Note
that for some F > 0 there holds

|V (R,h, δ)| ≤ Fδ. (4.48)

By the catenoid estimate (Theorem 2.4 in [41]) there is an isotopy {ΣR
5 (t)}t∈[0,1]

so that ΣR
5 (0) = ΣR

4 (1) and which ends10 at

ΣR
5 (1) = D(0,Ω + R− h, h) ∪ Ends(R,Ω, h, 1) ∪ V (h, δ) \D3(h, δ). (4.49)

Roughly speaking, the surface Σ5(1) looks like two planes parallel to H
capped off with spherical-like surfaces joined together by thin vertical tubes.

Taking δ = h3 we estimate

|ΣR
5 (1)| = 2 − 1

2
h2 + Fh3 + EΩ2e−Ω2/4. (4.50)

In order to apply the catenoid estimate we further shrink h ≤ hc = infR∈[.2,5] hc(R)
where hc(R) is the required value of h in Theorem 2.4 in [41], and then finally
set Ω3 = Ω3(h) so that for all Ω ≥ Ω3 there holds

EΩ2e−Ω2/4 ≤ h3. (4.51)

Choosing h ≤ min(hc, h0, h1, h2, h3, h4, .1) and then Ω(R,h) ≥ max (R,Ω1,Ω2,Ω3(h))11,
we obtain

|ΣR
5 (1)| ≤ 2 − 1

2
h2 + Gh3 ≤ 2 − 1

4
h2. (4.52)

The isotopy provided by the catenoid estimate satisfies

sup
t∈[0,1]

|ΣR
5 (t)| = 2 − Ch2, (4.53)

for some 0 < C < 1/4 as desired.
The final surface in the isotopy ΣR

5 (1) consists of two components P1(R), P2(R)
with

P1(R) = (D(0,Ω + R− h, h) ∪ Ends(R,Ω, h, 1)) ∩ {z > 0} (4.54)

above H and

P2(R) = (D(0,Ω + R− h, h) ∪ Ends(R,Ω, h, 1)) ∩ {z < 0} (4.55)

below H, joined by thin vertical tubes V (R,h3, h) through H.

Step 6: Reparameterization. We concatenate the previous five isotopies
by defining for each .2 ≤ R ≤ 5

10This isotopy is the time-reversed version of Theorem 2.4 in [41].
11Note now that any further shrinking of h requires adjusting Ω to be larger.
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ΣR
t =































ΣR
1 (6t) for 0 ≤ t ≤ 1/6,

ΣR
2 (6t− 1) for 1/6 ≤ t ≤ 2/6,

ΣR
3 (6t− 2) for 2/6 ≤ t ≤ 3/6,

ΣR
4 (6t− 3) for 3/6 ≤ t ≤ 4/6,

ΣR
5 (6t− 4) for 4/6 ≤ t ≤ 5/6,

Let Ψ denote a diffeomorphism from [0,∞) to [0, 1) and denote s1 := Ψ(.2)
and s2 := Ψ(5). For s1 ≤ s ≤ s2 let us define the family of surfaces

Σs,t := Σ
Ψ−1(s)
t . (4.56)

Proposition 4.2. The family {Σs,t}(s,t)∈[s1,s2]×[0,5/6] is an Pg+1-invariant
genus g family of surfaces satisfying

sup
(s,t)∈[s1,s2]×[0,5/6]

|Σs,t| < 2. (4.57)

4.2. Interpolation: Completion of proof of Theorem 4.1. In this sec-
tion, we complete the proof of Theorem 4.1 by extending the sweepout Σs,t

defined on [s1, s2]× [0, 56 ] to the entire rectangle [0, 1]× [0, 1] with the proper-
ties posited in Theorem 4.1. In particular, we must interpolate between the
family of inversions given by the left and right boundaries of ([s1, t]t∈[0,5/6],
and [s2, t]t∈[0,5/6]) with the optimal sweepouts asserted at the left and right
faces of the parameter space in Theorem 4.1. Additionally, each surface
on the bottom face [s, 5/6]s∈[s1,s2] consists of two components as described
above, one in {z > 0} and the other in {z < 0} joined by thin vertical necks
and with total Gaussian area less than but very close to 2. We need to bring
these areas down in order to have only small surfaces with small Gaussian
area on the bottom face of our sweepout as posited in Theorem 4.1.

The following lemma will be useful for this latter task. It makes use of
the mean-convex nature of half-spaces in the Gaussian metric.

Lemma 4.3 (Squeezing convex neighborhoods). For k ≥ 0, let {Γt}t∈Sk be
a smoothly varying family of rotationally symmetric two-spheres12 contained
{z > 0} such that

sup
t∈Sk

F (Γt) < Λ. (4.58)

Then there exists a smoothlhy varying family of of rotationally symmetric
two-spheres {Γ′

t}t∈Dk+1 extending {Γ′
t}t∈Sk so that

Γ′
t ⊂ {z > 0} (4.59)

for all t ∈ Dk+1 and

sup
t∈Dk+1

F (Γ′
t) < Λ. (4.60)

12For k = 0, then S0 denotes two points and the condition that the family is smoothly
varying is vacuous.
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Proof. By Smale’s theorem [53], there exists an extension {Γ̃t}t∈Dk+1 of
{Γt}t∈Sk . Let us suppose without loss of generality that

sup
t∈S1

F (Γ̃t) < Λ′. (4.61)

with Λ′ > Λ.
For τ ∈ R denote the translation Tτ : R3 → R

3

Tτ (x, y, z) = (x, y, z + τ). (4.62)

Let us parameterize the disk Dk+1 by (ρ, θ) with 0 ≤ ρ ≤ 1 and θ ∈ Sk.
Then for any τ) > 0 Let us now construct the extension Γt defined for

t ∈ Dk+1. For 1/2 ≤ ρ ≤ 1 let us define

Γ′
ρ,θ = Γρ,θ − 2(t− 1)τ0. (4.63)

For 0 ≤ ρ ≤ 1/2 let us define

Γ′
ρ,θ = Γ̃2(ρ−1/2),θ + τ0. (4.64)

In light of Lemma 3.1 we obtain

sup
t

F (Γ′
t) ≤ max(Λ, e−ρ20/4 sup

t
F (Γ̃t)) ≤ max(Λ, e−ρ20/4Λ′). (4.65)

Choosing ρ0 so large so that

Λ′e−ρ20/4 < Λ, (4.66)

gives the result. �

We now complete the proof of Theorem 4.1 by providing the desired ex-
tension. Note that we may need to shrink h further and thus increase Ω(5, h)
in the following sections.

Left side: On the left boundary [s2, t]t∈[0,5/6], we first taper down the iso-
topies in Step 3 and then the isotopy from Step 2. Toward that end, for
s1
2 ≤ s ≤ s1, and 0 ≤ t ≤ 5

6 let us define for K = Ψ−1(.2)

Σs,t =































ΣK
1 (6t) for 0 ≤ t ≤ 1/6,

ΣK
2 (6t− 1) for 1/6 ≤ t ≤ 2/6,

ΣK
3 (2(6t− 2)(s − s1/2)/s1) for 2/6 ≤ t ≤ 3/6,

ΣK
4 (6t− 3) for 3/6 ≤ t ≤ 4/6,

ΣK
5 (6t− 4) for 4/6 ≤ t ≤ 5/6,

(4.67)

In this way, for (s, t) ∈ [ s12 , s1] × [2/6, 3/6] the truncated cones in Step 3
only open partially instead of becoming entirely planar. Because R ≤ .2, it
follows from item (2) in Proposition 3.5 that the end result of Step 3 has
less Gaussian area than |Σs1,3/6|. Since the supports of the isotopies in Step
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4, and Step 5 are disjoint from the conical pieces where adjustments have
now been made in Step 3, it follows that

sup
s∈[

s1
2
,s1],t∈[0,

5
6
]

|Σs,t| < 2. (4.68)

For (s, t) ∈ [ s14 ,
s1
2 ]× [0, 56 ] we taper down the isotopy of Step 2 by defining

Σs,t =































ΣK
1 (6t) for 0 ≤ t ≤ 1/6,

ΣK
2 (4(6t− 1)(s − s1/4)/s1) for 1/6 ≤ t ≤ 2/6,

ΣK
3 (0) for 2/6 ≤ t ≤ 3/6,

ΣK
4 (6t− 3) for 3/6 ≤ t ≤ 4/6,

ΣK
5 (6t− 4) for 4/6 ≤ t ≤ 5/6,

(4.69)

Since the extension {Σs,t}(s,t)∈[s1/4,s1/2]×[0,5/6] merely shrinks the height
of a capped cylinder of radius .2, it is clear the Gaussian areas of the above
family are also much less than 2.

Then we fill in the rectangle spanned by [s1/8, s1/4] × [0, 5/6] by first
tapering down the isotopy provided by Step 5 and then tapering down the
isotopy of Step 4 so that {s1/8}×[0, 5/6] only consists of the isotopy provided
in Step 1. Then it is straightforward to extend to the rectangle [0, s1/8] ×
[0, 5/6] by adjusting Step 1 to shrink the necks and inner component Fh(h)
down to zero so that {Σ0,t}t∈[0, 5

6
] gives the optimal foliation {S1−τ} for τ in

a suitable range, as desired.
Finally, let us apply the k = 0 case of Lemma 4.3 to extend the sweepout

Σs,t defined at (s1/4, 5/6) to the segment {(s1/4, t)}t∈[5/6,1] so that Σs1,1 = Θ
is a union of a tiny Z∞-invariant round sphere χ ⊂ {z > 0} centered on the
positive z-axis together with τH(χ) and g + 1 very thin tubes joining the
two components. By Lemma 4.3, we guarantee the Gaussian areas of this
extension are less than 2.

Right side: On the right side [s2, t]t∈[0,5/6], we need to first amend Step
4 in the construction of {Σs2,t}t∈[0,5/6] where instead of enlarging the radius
of the inner cylinder while keeping its height fixed, we convert the inner
component to ellipsoids, and then allow the heights (minor axes) of the el-
lipsoids to increase in tandem with their radii (major axis) so that at the
end of the deformation we arrive at the spherical foliation. Let us give the
details.

For any h, r ∈ (0,∞) the ellipsoid E(r, h) is inscribed inside the capped
cylinder Fh(r) defined in (4.5). Let {E(r, h, λ)}λ∈[0,1] denote a family of
P∞-invariant convex sets satisfying:

i. E(r, h, 1) = Fh(r)
ii. E(r, h, 0) = E(r, h)

iii. E(r, h, λ) ⊂ E(r, h, λ′) if λ′ ≥ λ
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iv. For each r, if h is small enough there holds for some Cr > 0:

|E(r, h, λ)| ≤ 2|D(0, r, 0)| + Crh for all λ ∈ [0, 1]. (4.70)

For (s, t) ∈ [s2, s2 + ι] × [0, 5/6], we amend Step 4 by replacing the term
Fh(r) in equation (4.36) with the surface E(rt, h,−(s − (s2 + ι))/ι).

Using (4.70) and (4.41), if h is small enough, we get a similar expansion

for the area along this amended isotopy that we denote Σ̃s
4(t),

sup
t∈[0,1]

|Σ̃s
4(t)| ≤ e−h2/4(2−|D(rt, 5, 0)|)+(5+C)h+2Ah3+EΩ2e−Ω2/4. (4.71)

Shrinking h and then increasing Ω(5, h) as in equations (4.42)-(4.46) we
obtain since rt ≤ 4

sup
s∈[s2,s2+ι]

sup
t∈[0,1]

|Σ̃s
4(t)| ≤ 2 − η2/4. (4.72)

For (s, t) ∈ [s2 + ι, s2 + 2ι] × [0, 5/6] we amend Step 4 (and so adjust in
[s2 + ι, s2 + 2ι] × [3/6, 4/6]) by replacing the term Fh(r) in equation (4.36)
with E(rt, ht,s) where rt is as defined in Step 4 and the height is given by

ht,s = γ1(t) + γ2(t)s, (4.73)

where γ1(t) = (rt − h)/ι and γ2(t) = h − (rt − h)(s2 + ι)/ι. The functions
γ1(t) and γ2(t) are chosen so that for all 0 ≤ t ≤ 1

(1) ht,s2+ι = h
(2) ht,s2+2ι = rt.

Since rt ≤ 4 we get |ht,s| ≤ 4 and thus we have from (3.37) and (4.41) that

sup
t∈[0,1]

|Σ̃s
4(t)| ≤ 2 − δ3 + 2e−52/4 + 5h + Ah3 + EΩ(5)2e−Ω(5)2/4. (4.74)

Since δ3 = .065 > 2e−52/4 ≈ .0039, shrinking h sufficiently and increasing
Ω(5, h) sufficiently guarantees the Gaussian area bound

sup
s∈[s1+ι,s1+2ι]

sup
t∈[0,1]

|Σ̃s
4(t)| < 2. (4.75)

As a result of the modification of Step 4 for the range s ∈ [s2 + ι, s2 + 2ι],
the ellipsoid part of Σs

4(1) juts “higher” than the portion at constant height
h. Thus we need to also amend the surfaces which are the end result of Step
5, which we denote Σ̃s

5(1). The end result of Step 5 will no longer be as in
(4.49) comprised of disks parallel to H (plus caps) but instead parts of the
graphs zh,4,b(s) defined in (3.39) (plus caps). Recall the function b(s) := h1,s
interpolates from b(s2 + ι) = h to b(s2 + 2ι) = 4. We set

Σ̃s
5(1) = (zh,4,b(s) ∩BΩ+R−h(0)) ∪Ends(R,Ω, h, 1) ∪ V (R,h, δ) \D3(R,h, δ).

(4.76)
By Lemma 3.7, possibly shrinking h further and increasing Ω(5, h) we

obtain for some c > 0

sup
s∈[s2+ι,s2+2ι]

sup
t∈[0,1]

|Σ̃s
5(t)| ≤ 2 − ch2. (4.77)
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This completes the extension to the rectangle spanned by (s, t) ∈ [s2, s2 +
2ι]× [0, 5/6]. We extend to (s, t) ∈ [s2+2ι, s2+3ι]× [0, 5/6] by first tapering
down Step 5 and then and then tapering down Steps 3 and 2. It is then
straightforward to shrink the tubes from Step 1 down to zero. In this way,
Σt,0 coincides with the optimal foliation Sτ for τ in a suitable range of [0, 1].

Finally, on the arc {s2 + 2ι, t}t∈[ 5
6
,1] we again use Lemma 4.3 to isotope

the surface Σs2+2ι,5/6 to Θ with Gaussian areas less than 2. One can check
that the volume bounded by the surface Σs2+2ι,5/6, and thus also surfaces
assigned to this arc, all bound a volume much less than V/2 on one side as
required in Proposition 4.1.

Bottom: On the arc {s, 1}s∈[s1/4,s2+2ι] we set Σs,1 := Θ. We now extend

our sweepout Σs,t to the solid rectangle R ⊂ I2 with boundary Γ given

by the segments {s, 56}s∈[s1/4,s2+2ι], {s, 1}s∈[s1/4,s2+2ι], {s1/4, t}t∈[ 5
6
,1], and

{s2 +2ι, t}t∈[ 5
6
,1]. By construction, along Γ, the surfaces ΣΓ consist of a Z∞-

invariant sphere in {z > 0} together with the mirror image of the sphere
in {z < 0} and g + 1 very thin tubes joining them. After shrinking these
tubes further and applying Lemma 4.3 we obtain the desired extension to
the rectangle R in I2 with ∂R = Γ. Since

sup
(s,t)∈∂R

|Σs,t| < 2, (4.78)

Lemma 4.3 guarantees that the extension also satisfies

sup
(s,t)∈R

|Σs,t| < 2. (4.79)

In summary, we have extended the sweepout to the entire square I2 except
for the tiny corner rectangles [0, s1/4] × [5/6, 1] and [s2 + 2ι, 1] × [5/6, 1].
Reparameterizing the domain to be a square completes the proof of Theorem
4.1.

5. Lusternick-Schnirelman argument

Using the “flipping” sweepout constructed in Theorem 4.1 we obtain the
following result (cf. Theorem 1.6 in [39]) . Recall that there exists εBW > 0
with the property that any self-shrinker that is not the plane, sphere or
cylinder has entropy at least λ(S1

∗ × R) + εBW .

Theorem 5.1 (Flipping optimal foliation). For each g ≥ 1 there exists a
Pg+1-invariant self-shrinker Σg with

(1) λ(S1∗ × R) + εBW < λ(Σg) < 2
(2) genus(Σg) ≤ g.

Proof. Let ω2(Pg+1) denote the min-max width associated to the Pg+1-
equivariant saturation of {Σs,t}(s,t)∈I2 constructed in Theorem 4.1. If

ω2(Pg+1) > sup
(s,t)∈∂I2

|Σs,t| = λ(S2∗) (5.1)
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then applying Theorem 2.2 we obtain a Pg+1-invariant self-shrinker Σg with
entropy equal to ω2(Pg+1). In light of the entropy bound ω2(Pg+1) < 2
the self-shrinker Σg occurs with multiplicity 1. By the genus bounds in
Theorem 2.2 we obtain genus(Σg) ≤ g. By [40], we get Σg 6= S

1
∗ × R as a

two-parameter min-max procedure cannot produce the the equivariant index
1 cylinder (Proposition 2.4).

Thus it remains to rule out the equality case

ω2(Pg+1) = λ(S2∗). (5.2)

Let {Σi
s,t}(s,t)∈I2 denote a sequence of pulled-tight Pg+1-sweepouts in the

saturation satisfying

sup
(s,t)∈I2

|Σi
s,t| ≤ λ(S2) +

1

i
. (5.3)

For each i > 0 and ε > 0 let

Si
ε := {(a, b) ∈ [0, 1] × [0, 1] | F(Γi

a,b,S
2
∗) < ε} (5.4)

Note that for each ε > 0 and positive integer i we have, letting t0 ∈ [0, 1] be
the unique value so that St0 = S

2
∗, that both (0, t0), (1, t0) ∈ Si

ε.
First we claim that for each ε > 0, there exists an integer I(ε) large enough

so that if i > I(ε) then Si
ε contains a continuous path (aiε(η), biε(η))η∈[0,1] ⊂

[0, 1]× [0, 1] beginning on the left side of the square and ending on the right
side of the square. Suppose not. Then there exists ε0 so that the claim fails.
Since the claim fails, it follows that we can find a path (ciε(τ), diε(τ))τ∈[0,1]
such that (ciε(0), diε(0)) is on the bottom face of the square, and (ciε(1), diε(1))
is on the top face of the square so that

F (Φi
ciε(τ),d

i
ε(τ)

,Si
ε) ≥ ε0 for all τ, (5.5)

for some subsequence of i (not relabelled).
For each i, we consider the family Σi

t := {Φi
ci(τ),di(τ)}τ∈[0,1]. Let Π0 denote

the Pg+1-saturation of the families {Σi
t}t∈[0,1]. Let us define the correspond-

ing min-max width

ω1 = inf
Σ′

t∈Π0

sup
t∈[0,1]

|Σ′
t|. (5.6)

We claim

ω1 = λ(S2∗). (5.7)

Indeed, let {Σ′
t}t∈[0,1] ∈ Π0. Then we may consider a continuously varying

family Ωt of open sets so that Σt = ∂Ωt for each 0 ≤ t ≤ 1. Letting
g(t) = vol(Ωt) we have by item 8 in Proposition 4.1 that g(0) < η2 < V/2
and g(1) > V −η2 > V/2. Thus for some t0 ∈ (0, 1) there holds g(t0) = V/2.
By the Isoperimetric Inequality in Gaussian space [56], this implies |Σ′

t0 | ≥ 1.
Thus

ω1 ≥ 1. (5.8)
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On the other hand, by (5.3) we have

ω1 ≤ λ(S2∗) < 2. (5.9)

Applying the Min-max Theorem 2.2 to the family Π0, we obtain an embed-
ded self-shrinker Γ with entropy equal to ω1. By item (2) in Theorem 2.2,
Γ 6= H as Γ must intersect the singular set of the group action orthogonally,
but H contains segments of the singular set. By Bernstein-Wang [9] and
(5.9) it follows that Γ = S

2
∗ and ω1 = λ(S2∗).

Thus the sequence of one-parameter families {Φi
ci(τ),di(τ)

}τ∈[0,1] is a min-

imizing sequence of sweepouts in Π0. On the other hand, by (5.5), no
min-max sequence obtained from it can be almost minimizing in annuli.
Thus by Pitts’ combinatorial deformation (cf. Proposition 5.3 in [19]), we
obtain another element in Π0 with maximal Gaussian area less than λ(S2∗),
implying

ω1 < λ(S2∗), (5.10)

a contradiction. Thus the claim is established.
For each δ > 0 there exists ε(δ) > 0 so that the paths (aiε(δ)(η), biε(δ)(η))η∈[0,1]

joining the left side of the square to the right, concatenated with the paths
connecting (aiε(δ)(0), biε(δ)(0)) to (0, t0) and (aiε(δ)(1), biε(δ)(1)) to (1, t0) on the

left and right side, respectively, is contained in Si
δ. This follows by contra-

diction because there by items 1-5 in Proposition 4.1 there is a unique point
on the left side of the square (as well as on right) whose corresponding sur-
face is a self-shrinking sphere and has Gaussian area λ(S2∗). Let us denote

these concatenated paths by (ãiε(δ)(η), b̃iε(δ)(η))η∈[0,1].

Choosing δ small enough, the paths (ãiε(δ)(η), b̃iε(δ)(η))η∈[0,1] (whose cor-

responding surfaces are contained in a δ-neighborhood about S
2
∗) join S

2
∗

to itself but with opposite orientation by item 6 in Theorem 4.1. This is
impossible (cf. Lemma 3.2 in [39]).

Thus we have ruled out the case that ω2(Pg+1) = λ(S2∗). This completes
the proof.

�

6. Genus of Σg

In this section we prove Theorem 1.1c which we restate:

Proposition 6.1. For each g ≥ 1, the self-shrinker Σg has genus g.

Min-max limits such as Σg are obtained topologically by performing a
sequence of neckpinches on the approximating sequence ([38] and Section
5 of [37]). To prove Proposition 6.1 we must classify such compressions
up to isotopy. In general, a (Heegaard) surface with genus at least 2 has
infinitely many such compressing disks which makes this a challenging task.
However, because a fundamental piece of any surface in the equivariant
saturation ΠΣs,t of the family {Σs,t}(s,t)∈I2 constructed in Theorem 4.1 is
a sphere with prescribed orthogonal intersection with the singular set of
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the group action Pg+1 on R
3, one can classify the finitely many possible

equivariant compressions.
Roughly speaking, the necks joining the two parallel spheres in a surface

Σs,t from a sweepout contained in ΠΣs,t can break one way to give two
concentric spheres, or the other way to give a sphere contained in {z > 0}
and another sphere in {z < 0}. A key point is that no compression can
produce a torus. According to Berchenko-Kogan’s numerical analysis [8],
the Angenent torus likely has equivariant index 2 and thus would otherwise
be difficult to rule out as min-max surface Σg obtained from a two-parameter
min-max process13.

Let G ⊂ O(3) act on R
3. For x ∈ R

3 the isotropy subgroup Gx ⊂ G is

Gx = {g ∈ G | gx = x}. (6.1)

The singular set of the group action is

SG = {x ∈ R
3 | Gx 6= e}. (6.2)

In general, the set SG admits a decomposition as

SG = S0
G ∪ S1

G ∪ S2
G (6.3)

where each component of S2
G is an open subset of a plane with isotropy

Z2 (“reflections”), each component of S1
G is a straight line segment (with

isotropy containing a subgroup of rotations isomorphic to Zn for some n)
and S0

G ⊂ {(0, 0, 0)}.
Assume Σ is a G-equivariant surface that is orthogonal to any component

of SG that it intersects. Let S ⊂ S1
G denote a connected segment with

Zn ⊂ GS where Zn is a subgroup of rotations and GS is the isotropy group
along S. We say Σ′ is obtained from Σ by an Zn-neckpinch along S if the
following is true:

(1) There exists two embedded GS-equivariant disks D1,D2 ⊂ R
3 which

each intersects S once and a GS-equivariant annulus A ⊂ Σ, disjoint
from S with ∂A = ∂D1 ∪ ∂D2.

(2) D1∪D2∪A bounds a solid three ball B with B∩ (S1
G∪S0

G) = B∩S.
(3) Letting G′ denote the stabilizer of B (as a set),

Σ′ = (Σ \
⋃

[g]∈G/G′

g(A)) ∪ (
⋃

[g]∈G/G′

g(D1) ∪
⋃

[g]∈G/G′

g(D2). (6.4)

We say Σ′ is obtained from Σ by an ordinary neckpinch if the following
is true:

(1) There exists two embedded disks D1,D2 ⊂ R
3 and an annulus A ⊂ Σ

all disjoint from S1
G such that ∂A = ∂D1 ∪ ∂D2.

(2) D1 ∪D2 ∪A bounds a solid three ball B with B ∩ SG ⊂ B ∩ S2
G.

13In fact, if we worked with the Almgren-Pitts version of min-max theory as opposed
to the Simon-Smith one, this could well be the min-max limit for each g.
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(3) Letting G′ denote the stabilizer of B as a set,

Σ′ = (Σ \
⋃

[g]∈G/G′

g(A)) ∪ (
⋃

[g]∈G/G′

g(D1) ∪
⋃

[g]∈G/G′

g(D2). (6.5)

Remark 6.2. Note that in items (2) we allow the neckpinch to occur through
planes of reflection which is why we only demand B to intersect the 1-
dimensional stratum of the singular set in a particular way.

To classify possible compressions it will suffice to consider the subgroup
Dg+1 ⊂ Pg+1 consisting of orientation-preserving isometries. Let Γg denote
a sweepout surface isotopic to Σs,t for any (s, t) ∈ int(I2) as constructed

in Proposition 4.1. Let us consider the quotient Γg := Γg/Dg+1 inside the

orbifold R
3

:= R
3/Dg+1. Let π : R3 → R

3
. And set R

+
i = π(Ri) for each

i ∈ {1, ..., 2g + 2} and Z
+

= π(Z+). Note that for i odd, we get R
+
1 = π(Ri)

and for i even we get R
+
2 = π(Ri). In the orbifold R

3
, the three rays R

+
1 ,R

+
2 ,

and Z
+

meet at the origin point O.

The projected surface Γg is a sphere intersecting R
+
1 twice, R

+
2 zero times,

and Z
+

twice. For any sphere G ⊂ R
3

let us define a triple of non-negative
integers (“the intersection data”) ~g = (k1, k2, b) denoting its number of

intersection points with R
+
1 , R

+
2 and Z

+
respectively. For example, Γg

has intersection data (2, 0, 2).
Assuming π−1(G) is connected, the Riemann-Hurwicz formula recovers

the genus of π−1(G) if G has intersection data (k1, k2, b). In the following
let k = k1 + k2.

genus(π−1(G)) =
k

2
− 1

2
g(4 − 2b− k) − 1. (6.6)

We have the following:

Lemma 6.3. Let (G,~g) be a sphere embedded in R
3
. An equivariant neck-

pinch disconnects G into two spheres (G1, ~g1) and (G2, ~g2) with ~gi = (ni,mi, ai)
so that the following are true.

i. For a Zk-neckpinch we have ~g1 + ~g2 − 2~v = ~g and ~v is either (0, 0, 1),
(0, 1, 0) or (1, 0, 0).

ii. For an ordinary neckpinch there holds ~g1 + ~g2 = ~g
iii. In both cases, for each i = 1, 2 the parity of ni, mi and ai coincide.

Proof. To verify i and ii, observe that any Zk-neckpinch performed on G
partitions the intersection vector ~g into two summands and adds one to the
same entry of both summands while an ordinary neckpinch gives a partition
of the intersection vector without adding one to any entry.

To show iii, observe first that R
3
, as a quotient of R

3 by orientation-
preserving isometries, is itself homeomorphic to R

3 and thus the following

topological considerations apply. A sphere contained in R
3 \ O and a ray

with tip at O have odd intersection number if the sphere bounds a region
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in R
3

containing O and even intersection number if not. Each Gi ⊂ R
3 \ O

bounds a 3-ball in R
3

which either contains the origin O or not. If it contains

the origin, it has odd intersection number with each of the rays R
+
1 , R

+
2 ,

Z
+

emanating from it. Otherwise it has even intersection number with all
three rays. This gives item iii.

�

The following is the main consequence of this analysis that we will use.

Proposition 6.4 (Surgeries on Sweepout Surfaces). Let Γ ⊂ R
3 be a closed

embedded Pg+1-invariant genus g surface with π(Γ) ⊂ R
3
a sphere with

intersection type (2, 0, 2).
Suppose Γ is Pg+1-equivariant and is obtained from Φ after a sequence

of Pg+1-equivariant neckpinches. Then Γg consists of a surface of genus g
isotopic to Γ together with a union of spheres, or else is a union of spheres.

Proof. The surface Φ has intersection data given by (2, 0, 2). We claim that
performing an equivariant neckpinch on Φ either produces a union of spheres
or else a surface of type (2, 0, 2) and a union of spheres.

Up to permuting the two components, there are five possible partitions
of the intersection data of Φ: (1, 0, 1), (1, 0, 1) and (1, 0, 2), (1, 0, 0) as well
as (2, 0, 0), (0, 0, 2) and (2, 0, 1), (0, 0, 1), and finally (2, 0, 2), (0, 0, 0).

First let us consider ordinary neckpinches, which by Lemma 6.3ii are
enumerated by the possible partitions above. All of them are excluded by
Lemma 6.3iii except for (2, 0, 0), (0, 0, 2) which lifts to a union of spheres and
(2, 0, 2) and (0, 0, 0) which corresponds to a genus g surface together with a
union of spheres.

To consider equivariant Zk-neckpinches, in each of the above five parti-
tions, we have three possibilities for ~v, leaving 15 cases to consider. We
will show that all but those claimed in the statement of the proposition
are ruled out by items iii in Lemma 6.3. For the partition (1, 0, 1), (1, 0, 1),
only ~v = (0, 1, 0) does not violate iii), giving resulting spheres with data
(1, 1, 1), (1, 1, 1). By (6.6) these spheres lift to a union of two-spheres.
For the partition, (1, 0, 2), (1, 0, 0), only ~v = (1, 0, 0) giving the resulting
spheres with data (2, 0, 2), (2, 0, 0) does not violate iii. For the partition
(2, 0, 0), (0, 0, 2), all choices of ~v violate item iii. For the partition (2, 0, 1),
(0, 0, 1), only setting ~v = (0, 0, 1) does not violate iii, giving two spheres
with data (2, 0, 2), (0, 0, 2) for which the genera are again g and 0 by (6.6).
Finally for the partition (2, 0, 2), (0, 0, 0), no choice of ~v gives an admissible
choice of ~g1 and ~g2. �

Recall that for a smooth embedded surface Σ ⊂ R
3 (possibly with bound-

ary) after choosing a normal n(p) on Σ we denote the tubular neighborhood:

Tǫ(Σ) = {expp(tn(p)) | p ∈ Σ, t ∈ [−ǫ, ǫ]}. (6.7)

For ǫ small enough, Tǫ(Σ) is diffeomorphic to Σ× [−ǫ, ǫ]. Moreover, ∂Tǫ(Σ)
consists of two components ∂T+

ǫ (Σ) and ∂T−
ǫ (Σ) each isotopic to Σ given
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by

∂T±
ǫ (Σ) = {expp(tn(p)) | p ∈ Σ, t = ±ǫ}. (6.8)

The families {∂T±
δ (Σ)}δ∈[0,ǫ] smoothly foliate a neighborhood of Σ.

For some ǫ0 small enough, by virtue of this smooth foliation, the follow-
ing is true. There exist C > 0 and λ > 0 so that for any closed curve γ
contained in ∂T±

ǫ (Σ) for some ǫ ∈ [0, ǫ0] of length at most λ, there exists
an embedded disk D ⊂ ∂T±

ǫ (Σ) with boundary γ and diameter at most Cλ
(cf. Proposition 2.3 in [22]).

Proof of Proposition 6.1. Let us show that

genus(Σg) = g. (6.9)

By the Gaussian area bound λ(Σg) > λ(S1 × R) (item 2 in Theorem 5.1)
and Brendle’s classification [11] we get that genus(Σg) > 0. Thus we may
assume toward a contradiction that

genus(Σg) = h with 0 < h < g. (6.10)

For large large i, after performing finitely Zk and ordinary neckpinches on
the min-max sequence Γi (and discarding some connected components of the
result) we obtain a surface Γi contained in a tubular neighborhood about
Σg and isotopic to Σg. By Proposition 6.4, the genus of Γ′

i is equal to 0 or

g. Since genus(Γ
′
i) = genus(Σg) we get a contradiction to (6.10). Let us

give the details.
The self-shrinker Σg intersects the 1-dimensional part of the singular set

of the group action S1
G in finitely many points p1, ..., pk. Since ∂Tλ(Σg)

consists of two parallel components it thus intersects S1
G in 2k points which

we denote {p±1 (λ), ..., p±k (λ)}.
For any δ > 0, by the varifold convergence Γi → Σg, we obtain for i large

enough

H2(Γi ∩ (Tǫ(Σg) \ Tǫ/2(Σg)) ≤ δ. (6.11)

Fix ǫ < ǫ0. By the co-area formula and Sard’s lemma, we may choose
ηi ∈ [ǫ/2, ǫ] so that

H1(Γi ∩ ∂Tηi(Σg)) < 4δ/ǫ. (6.12)

and so that Γi intersects ∂Tηi(Σg) transversally in a union of circles Ci
1, ..., C

i
k.

If δ is sufficiently small by (6.12) and the choice of ǫ, each of these circles
has short length and bounds a small disk of bounded diameter in ∂Tηi(Σg)
which thus can only intersect at most one of the points {p±1 (ηi), ..., p

±
k (ηi)}.

We may consider the corresponding circles in Γi ∩ ∂Tηi±τ (Σg) for some
tiny τ . By transversality, these circles bound annuli and we may perform
a series of neckpinch surgeries supported in Tηi+τ (Σg) \ Tηi−τ (Σg). If the
circles Ci

l along which we surger contain one of the points pl(ηi± τ) in their
interior, then one performs a Zk-neckpinch. Otherwise, it is an ordinary
neckpinch. To arrive at Γ′

i after this surgery process we then discard any
connected components contained in R

3 \ Tηi−τ (Σg).
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The resulting surface Γ′
i has the following properties:

(1) Γ′
i = Γi in Tηi−2τ (Σg)

(2) Γ′
i ⊂ Tηi(Σg).

(3) genus(Γ′
i) = g or 0.

It follows from Section 5.1 in [38] that using the improved version of
Simon’s lifting lemma one may perform further equivariant neckpinches and
further isotopies on Γi within Tηi(Σg) in order to obtain a surface Γi isotopic
to Σg. This completes the proof.

Finally let us give the straightforward modifications in the case that Σ
is noncompact. Choose R so large so that for s ≥ R, the set Bs(0) ∩ Σg

consists of curves E1(s), ...Ek(s) that each bounds an end of Σg diffeomorphic
to S

1 × [0,∞). Replace in the previous argument Γi with Γi ∩BR+1(0) and
Σg with Σg ∩ BR+1(0). Then any curves with some support in ∂Tηi(Σg) ∩
BR(0) are closed and avoid ∂BR+1(0) by the choice of ǫ0 above (otherwise,
their diameter would be too large). Thus in the same way we may perform
equivariant neckpinches on Γi to obtain a surface Γ′

i with Γ′
i ∩ BR(0) ⊂

Tηi(Σg). By the improved version of Simon’s lifting lemma, after isotopies
and further surgeries on Γ′

i ∩ BR(0), we obtain a surface Γ′′
i isotopic to

Σg ∩BR(0). �

7. Limit of Σg

In this section we prove Theorem 1.1d and f which we restate:

Theorem 7.1. The self-shrinkers Σg satisfy the following properties:

(i)

lim
g→∞

Σg = 2H as varifolds. (7.1)

(ii) For any subsequence g → ∞, up to taking a further subsequence, the
convergence in (7.1) is smooth on compact subsets away from a single
circle.

Let Σ∞ be a varifold limit of Σg for some subsequence I of g. We will
show Σ∞ = 2H, which implies (7.1). The varifold Σ∞ is an F -stationary
integral varifold invariant under the group P∞. Let us define the circle

C(p, r) = {(x, y, z) | x2 + y2 = r2 and z = p} (7.2)

Let N(p, r, ǫ) denote the ǫ-tubular neighborhood about C(p, r).
We need the following definition (letting K denote any subsequence of I):

S(K) := {C(p, r) | for some subsequence J ⊂ K and all ǫ > 0, the convergence

ΣJ N(p, r, ǫ) → Σ∞ N(p, r, ǫ) is not smooth.}
(7.3)

Note that sing(Σ∞) ⊂ S(I) but S(I) may be a strictly larger set (and in
our setting this will turn out to be the case).

First we show
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Proposition 7.2. For some subsequence J ⊂ I, the set S(J) \ {z-axis} is
one of the following:

(1) empty
(2) a circle C centered about the origin in H.

In the latter case, the density of Σ∞ at C is 2.

Proof. The F -stationary integral varifold Σ∞ is P∞-invariant. Moreover,
because

lim sup
g→∞

λ(Σg) ≤ 2, (7.4)

it follows that

λ(Σ∞) ≤ 2. (7.5)

Indeed, otherwise, there exists (x, t) ∈ R
2 × (0,∞) so that Fx,t(Σ∞) is

arbitrarily close to a number greater than 2. But by the continuity of each
F -functional under varifold convergence, this implies Fx,y(Σg) is also greater
than 2 for a subsequence of g, contradicting the fact that λ(Σg) < 2.

By the entropy bound λ(Σ∞) ≤ 2 and rotational symmetry, the density
Θ(Σ∞, x) at any singular point x ∈ supp(Σ∞) is 2 or 3/2. As a limit of
orientable surfaces, it follows that 3/2 does not occur. Any tangent cone to
Σ∞ at a point in sing(Σ∞) consists of two distinct planes, and by Allard’s
theorem [1] a tangent cone to Σ∞ at a point in S(I) \ sing(Σ∞) consists of
a single plane with multiplicity 2.

Choose a subsequence J ⊂ I and corresponding point q ∈ S(J)\{z-axis} ⊂
S(I)\{z-axis} (with p, r chosen so that q ∈ C(p, r)) where for any sufficiently
small ǫ the convergence Σ

J
N(p, r, ǫ) → Σ∞ N(p, r, ǫ) is not smooth (and

there is no subsequence for which it is smooth).
Let us partition S(J) = S0(J) ∪ S1(J), where we set

S0(J) = S(J) ∩H and S1 = S(J) \ S0(J) (7.6)

Let us denote by N(ǫ) the set N(p, r, ǫ). We claim that for the subse-
quence J of g:

genus(Σg ∩N(ǫg)) = g for g large enough. (7.7)

for some ǫg ∈ [ǫ/2, 2ǫ] for which Σg intersects N(ǫg) transversally. But if
q ∈ S1(J) this is a contradiction as by the reflective symmetry the genus of
Σg near C(−p, r) is also g. Thus S1(J)\{z-axis} = ∅. Applying the identical
argument to S0(J) implies that S0(J) \ {z-axis} contains at most one point.
Thus it suffices to prove the claim.

Consider

Γ′
g := Σg ∩N(ǫg) (7.8)

and

Γg = Γ′
g/Zg+1, (7.9)

where Zg+1 is the subgroup of Pg+1 corresponding to rotations by angle
2π/(g + 1) about the z-axis. Since N(ǫg) is disjoint from the z-axis, this
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action is free and we get

χ(Γ′
g) = (g + 1)χ(Γg). (7.10)

Denote by h the genus of Γg, and h′ the genus of Γ′
g. Let eL(g) denote

the number of connected curves of ∂Γg that lift to connected curves in ∂Γ′
g.

Recall that the first integral homology group of the torus ∂N(ǫ) is equal to
Z⊕Z, where the first factor denotes the number of meridianal loops and the
second longitudinal loops. The only elements corresponding to embedded
curves are of the form (k, l) where k and l are relatively prime. The number
eL(g) counts the curves of type (k, l) for l 6= 0.

By untangling (7.10) using the fact that boundary curves of Γg that do
not lift to connected curves must lift to g + 1 such curves in Γ′

g we obtain

h′ =
geL(g)

2
− g + h(g + 1), (7.11)

We also have by assumption

h′ ≤ g. (7.12)

Let C ′
g denote those components of Γ′

g that contribute to the limit Σ∞ in

N(ǫ/2). By the monotonicity formula, C ′
g consists of at most Λ components

(independent of g).
If any element of C ′

g has a boundary curve ∂Γ′
g of type (k, l) for k ≥ 1

and a sequence g → ∞, then we get that ∂N(ǫ′) for some ǫ′ ∈ [ǫ/2, ǫ] is
contained in the the support of Σ∞, which is impossible.

Thus for large g, each component in C ′
g has all boundary curves of the

form (0, 1) or (0, 0). Suppose such a component satisfies eL(g) = 0 in which
case all its boundary curves are of the form (0, 0). Then the only possible
solution to (7.12) and (7.10) is if we set h = 1 and h′ = 1. Thus components
with eL(g) = 0 have genus 1. If instead eL(g) = 2, we must have h = 0 and
h′ = 0. Thus such components give a union of planar domains.

Let C ′′
g ⊂ Σ′

g denote those connected components with eL(g) ≤ 2 and

thus genus 0 or 1. By the bound on the cardinality of C ′
g, the combined

genus of C ′
g is at most Λ. By Ilmanen’s integrated Gauss-Bonnet argument,

([33], [38]) we obtain
∫

C′′
g ∩N(ǫ/2)

|A|2dµ ≤ Λ′ < ∞. (7.13)

By standard ǫ-regularity theory [15], the bound (7.13) ensures that the
convergence of C ′

g in N(ǫ/2) is smooth away from finitely many points. How-

ever, as C ′
g is invariant under Pg+1 for larger and larger g, this is impossible

unless the set of finitely many points is in fact empty. Thus the surfaces
C ′
g converge to some integral varifold limit Σ′

∞ smoothly in N(ǫ/2) with
density 1 or 2 at (rj , 0, pj). From the definition of S, we get that C ′

g \ C ′′
g

must converge to its limit non-smoothly in N(ǫ/2). This forces the density
of Σ∞ at (rj , 0, pj) to be at least 3, contradicting the density bound of 2.
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Thus we have shown that all components in C ′
g must have eL(g) ≥ 4 for

g large enough. If a component satisfies eL = 4, the only solutions to (7.12)
and (7.10) occur when h′ = g and h = 0. If a component satisfies eL(g) ≥ 6,
there are no solutions to (7.12) and (7.10). Thus C ′

g contains exactly one
element of genus g and the genus of Σg ∩N(ǫ/2) for large g is also equal to
g, as desired.

This completes the proof of the claim, and thus the proposition.
�

Now we show that sing(Σ∞) = ∅. The argument amounts to considering
possible behavior of F -stationary integral 1-varifolds with at worst a single
point of density 2 (i.e. a crossing singularity):

Lemma 7.3. The set sing(Σ∞) is empty. Moreover, Σ∞ = 2H.

Proof. Let F denote the closure of a fundamental domain of the P∞-action
given by the solid quadrant of the plane P1 (containing the z-axis and ray
R1) with non-negative x and z-coordinates. Let us denote the non-negative
x-axis by X+ and the non-negative z-axis by Z+. So

∂F = Z+ ∪X+ with X+ ∩ Z+ = (0, 0, 0). (7.14)

Let π : R3 → F denote the projection to the fundamental domain. As-
sume toward a contradiction that sing(Σ∞) is non-empty. Fix S ∈ sing(Σ∞)

and let s = π(S). Set Σ̃∞ := π(Σ∞). By Proposition 7.2, s ∈ Z+ ∪X+.
First observe that s /∈ Z+ \ (0, 0, 0). Indeed, if not, then locally near such

a point, the stationarity of Σ∞ and the fact that S1(J) \ {z-axis} is empty

by Proposition 7.2 implies that Σ̃∞ near s consists of two otherwise disjoint
segments meeting the axis Z+ at angle π/2 at s. Thus by the maximum
principle, the two segments coincide and s would in fact not be in sing(Σ∞).
Similar reasoning implies s 6= (0, 0, 0). Thus we have shown s ∈ X+\(0, 0, 0)
and by Proposition 7.2, it is the only s ∈ F with π−1(s) ⊂ sing(Σ∞).

It follows that Σ∞ has support a union of (potentially immersed) self-
shrinkers. If there are two or more self-shrinkers in the union, since each has
entropy at least 1, the entropy bound λ(Σ∞) ≤ 2 implies that Σ∞ is a union
of two planes, which is impossible unless the planes coincide with H. Thus
Σ∞ is the varifold given by a single immersed self-shrinker with multiplicity
1. Since Σ∞ has an immersed circle S, by considering the Fx0,t0-functionals
for t0 → 0 and x0 ∈ S we get λ(Σ∞) = 2. However, the supremum of the
Fx0,t0 functionals on a self-shrinker (that does not split off a line) is attained
uniquely at (1, 0) and not in the limit that t0 → 0 (Lemma 7.10 in [18]).
This contradiction establishes that sing(Σ∞) is empty.

Again by the classification of rotationally symmetric shrinkers (Proposi-
tion 2.3) and entropy bound we obtain that Σ∞ is either equal to 2H, S2∗,
S
1
∗ × R, or the Angenent torus. Note

λ(S1∗ × R) + εBW ≤ lim
g→∞

λ(Σg) = λ(Σ∞) ≤ 2. (7.15)
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Thus all options for Σ∞ are excluded except for the Angenent torus and
2H. If Σ∞ is the Angenent torus, then Σg would be diffeomorphic to a torus
by Allard’s theorem [1] for large g, which is not possible by Proposition 6.4.
This completes the proof. �

Finally let us show

Proposition 7.4. For the subsequence I and further subsequence J ⊂ I
there exists a circle C(0, r) ⊂ H so that the convergence

ΣJ → 2H as varifolds (7.16)

is smooth and graphical on compact subsets of H \ C(0, r). Moreover, for
any R > r and g far enough along in the subsequence J the set

Σg ∩H ∩BR(0) (7.17)

is a union of g + 1 embedded circles.

Proof. Suppose S(I) is empty. In this case, for any ǫi > 0 and Ri > 0
denote Ωi = BRi(0) \ Bǫi(0). Then Σg → 2H smoothly on H ∩ Ωi for any
subsequence. Consider a sequence Ri → ∞ and ǫi → 0. Then for each i we
get a subsequence of g so that Σg ∩ Ωi may be written as a union of two
normal graphs w1

g(x) and w2
g(x) = −w1

g(x). Set

ug(x) = w1
g(x)/w1

g(p) (7.18)

for some choice of p in all Ωi. Passing to a diagonal subsequence (cf. Ap-
pendix in [18]) we obtain a non-negative rotationally symmetric solution
φ : H \ (0, 0) → R to the Jacobi equation

LHφ = 0. (7.19)

By Proposition 9.1, there is no such function 14. Thus S(I) is not empty
and by Proposition 7.2 we may pass to a further subsequence J for which
S(J) contains exactly one point, as desired.

Finally choose R greater than the radius of the single circle contained
in S(J). We will show that for g large, Σg ∩ H ∩ BR(0) is a union of
g + 1 circles. This follows from symmetry considerations together with the
structure obtained in Proposition 7.2. Indeed, by Proposition 7.2 and the
smooth convergence of Σg to 2H away from a single circle C, we obtain
(letting N(ǫ) denote the ǫ-tubular neighborhood about C) that

(1) Σg∩N(ǫ) is a connected surface with genus zero in each fundamental
domain of the Zg+1 ⊂ Pg+1 action on R

3

(2) Σg ∩ ∂N(ǫ) consists of four longitudinal circles, two of which are
contained in {z > 0} and two of which are contained in {z < 0}.

14Alternatively, one could argue that any singularity of such a Jacobi function has to
be removable [18], and any smooth positive solution to (7.19) on H would force H to be
stable, which it is not [20].
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Let us denote
Σ+
g = Σg ∩ {z ≥ 0} ∩BR(0) (7.20)

and Σ−
g = τH(Σ+

g ). Consider the the quotients Γg = (Σg ∩ N(ǫ))/Zg+1

together with Γ±
g = Σ±

g /Zg+1. Then Γg has 4 boundary curves and genus 0
and thus Euler characteristic −2.

Let e denote the number of circles of intersection of Γ±
g with the plane

H. Then by the additive properties of the Euler characteristic we obtain

χ(Γg) = 2χ(Γ+
g ) = 2(2 − (2 + e)) = −2e. (7.21)

Since χ(Γg) = −2, we get from (7.21) that e = 1. Note that e cannot be
a longitudinal curve as the number of such curves is even. Thus the single
curve in Γg ∩H lifts to g+ 1 distinct simple curves in Σg ∩H ∩BR(0). Note
finally that by the smooth convergence of Σg to 2H outside of N(ǫ), these
are the only curves contained in Σg ∩H ∩BR(0) for large g. This completes
the proof. �

Note that we also have established the following useful fact:

Proposition 7.5. There exists L > 0 so that for all g sufficiently large,
then Σg ∩BL(0) has genus g.

Proof. Suppose not. Then by Proposition 6.4, for each Lk > 0 we get
a subsequence of g so that BLk

(0) ∩ Σg has genus 0. Thus by Ilmanen’s
integrated Gauss-Bonnet argument and the increasing equivariance (as in
the proof of Proposition 7.2, we get that for this subsequence Σg → 2H
smoothly in BLk/2 \ (0, 0, 0). Taking Lk → ∞ and a diagonal argument
gives a smooth positive Jacobi field on H \ (0, 0), which is impossible by
Proposition 9.1. �

8. Ends of Σg

In this section we prove Theorem 1.1e which we restate

Proposition 8.1. For g large, the self-shrinker Σg has two graphical asymp-
totically conical ends E+

g and E− = τH(E+
g ) with E+

g ⊂ {z > 0}. The links

L(E±
g ) each converge to the equator S

2 ∩ {z = 0} in the C0-topology.

Recall that the asymptotic cone C(Γ) of a self-shrinker Γ ⊂ R
3 is defined

to be
C(Γ) = lim

τ→0+
τΓ, (8.1)

and its link is given by
L(Γ) = C(Γ) ∩ S

2. (8.2)

A circle contained in L(Γ) corresponds to a conical end, and a point
corresponds to a cylindrical end.

L. Wang [60] (extended by Sun-Wang [58]) has shown that for any self-
shrinker of finite genus, L(Γ) consists of finitely many disjoint simple closed
curves and points. For R large and transverse to Σg, the surface Σ \BR(0)
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thus consists of self-shrinking (conical or cylindrical) ends Γ1, ...,Γk, where
each Γi is diffeomorphic to S

1 × [0,∞).
Using the decomposition provided by Proposition 7.4 together with topo-

logical considerations based on the manner in which the sweepout surfaces
are set up we first show that the ends of Σg are disjoint from the plane H:

Proposition 8.2. There exists R > 0 so that for g large enough,

Σg \BR(0) consists of two genus zero components, E+
g and E−

g , (8.3)

where τH(E+
g ) = E−

g and E+
g ⊂ {z > 0}. Each ∂E+

g and ∂E−
g consists of

one circle in ∂BR(0).

Proof. Observe that for R > L (from Proposition 7.4) we get that

genus(Σg ∩BR(0)) = g (8.4)

and from the graphical convergence of Σg to 2H, it follows that for g large
enough the set ∂(Σg ∩ BR(0)) consists of two simple closed curves A+

g ⊂
{z > 0} and A−

g = τH(A+
g ) ⊂ {z < 0}.

We show that no component E of Σg \BR contains a point of H. To that
end, first fix g so that the statements of the previous paragraph hold. Then
consider the min-max sequence {Γi}∞i=1 converging in the sense of varifolds
to Σg. Thus Γi ∩ BR(0) has genus g. Let P > R be so large so that by
Proposition 7.4 Σg ∩ ∂BP (0) consists of those circles C1, ...Ck which bound
ends diffeomorphic to S

1 × [0,∞) on Σg. By reflective symmetry, we have
τH(Ci) = Ci for any i with Ci ∩H 6= ∅. Recall from Proposition 6.1 that we
may perform finitely many neckpinch surgeries on Γi in BP+1(0) ∩ Tǫ(Σj)
together with isotopies to arrive at a surface Γ′

i isotopic (and parallel) to Σg

in BP (0) ∩ Tǫ(Σg).
We then perform neckpinch surgeries along the subcollection

{Ci1 , ..., Cil} ⊂ Γ′
i ∩BP (0) (8.5)

which intersect H by adding in the disks in ∂BP (0) orthogonal to H. This
gives a closed connected surface Γ′′

i with some boundary circles W1, ...,Wv

in H. Moreover, genus(Γ′′
i ∩BR(0)) = g and thus

genus(Γ′′
i \BR(0)) = 0. (8.6)

In fact, v = 1. Otherwise, the surface (Γ′′
i \BR(0)) ∩ {z ≥ 0} would be a

planar domain with at least two boundary circles in H (and one at ∂BR(0)),
which implies in light of (8.6):

χ(Γ′′
i \BR(0)) = 2χ(Γ′′

i \BR(0)) ∩ {z ≥ 0}) < 0. (8.7)

But Γ′′
i \BR(0) has genus 0 by (8.6) and two boundary components and thus

χ(Γ′′
i \BR(0)) = 0. (8.8)

This gives a contradiction and thus v = 1. Since v = 1, by Pg+1-equivariance,
the curve W1 is preserved by the group Zg+1 of rotations about the z-axis.
Therefore the curve W1 intersects the rays R1 and R2 (at least) once and
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the surface Γ′′
i has intersection type with b = 1 and k ≥ 4 in (6.6), implying

that it has genus at least g + 1. This is a contradiction as Γ′′
i is obtained

from Γi after surgeries which can only decrease the genus. �

In light of Proposition 8.2, each asymptotic cone C(Σg) may be partitioned

C(Σg) = C+(Σg) ∪ C−(Σg), (8.9)

where C+(Σg) = C1
g ∪ ... ∪ CNg

g and each Ci
g is regular a cone (or ray) all

of whose support aside from the tip are contained in {z > 0} and where

C−(Σg) = D1
g ∪ ... ∪DNg

g with Di
g = τH(Ci

g) for each i = 1, ..., Ng .
We have the following (using the argument of Lemma 4.1 in [58]):

Lemma 8.3 (Asymptotic Cones). For large g, the set C+(Σg) is non-empty
and in particular Σg is non-compact. The link of C+(Σg) converges in the
Hausdorff topology to a subset of S2 ∩ {z = 0} as g → ∞.

Proof. For each ǫ ≥ 0 let us denote the conical tubular neighborhood (using
cylindrical coordinates for R

3):

Uǫ = {(r, θ, z) ∈ R
3 | |z| ≤ ǫr}. (8.10)

Fix ǫ > 0. We claim for any R > L and g large enough (depending on ǫ and
R):

Σg \BR(0) ⊂ Uǫ. (8.11)

Suppose not. Then there are a subsequence of g (not relabelled) with ρgyg ∈
∂Uǫ where ρg → ∞, |yg| = 1 and yg is contained in the northern hemisphere
of S2. We can assume that up to a subsequence yg → y, where y is contained
in {z > 0}. Since Σg → 2H on compact subsets, it follows from Proposition
8.2 that ρg → ∞. Because Σg is smooth, there exists sg > 0 small enough
so that

Fρgyg,sg(Σg) > 1 − 1/g. (8.12)

Choose ag = (sg − 1)/ρ2g so that by rewriting (8.12) we obtain for each g

Fρgyg,1+agρ2g
(Σg) > 1 − 1/g. (8.13)

Note that we may assume ag → 0.
Recall that for Γ a self-shrinker, we have (equation 7.13 in [18]) for y ∈ R

3

and a ∈ R and s > 0

Fsy,1+as2(Γ) is non-increasing in s. (8.14)

Applying this monotonicity formula to (8.13) we get for any ρ > 0

Fρy,1(2H) = lim
g→∞

Fρyg ,1+agρ2(Σg) ≥ lim inf
g→∞

Fρgyg,1+agρ2g
(Σg) ≥ 1. (8.15)

The equality in (8.15) is from the continuity of the F -functionals with respect
to varifold convergence (cf. Proposition 2.4 in [58]) together with the fact
that ag → 0. On the other hand, as ρ → ∞, we have

Fρy,1(2H) → 0, (8.16)

since y is not in the support of H.
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Since (8.11) holds for genera g sufficiently large depending on ǫ > 0, and
Σg \BR(0) is disjoint from H by Proposition 8.2, the conclusion follows. �

We now show there are two distinguished “large” ends to Σg:

Lemma 8.4. Fix ǫ < 1/2. Then for each g large enough, there is exactly
one index i ∈ {1, ..., Ng} with the property that

Ci
g ∩ S

2 is homotopic in Uǫ ∩ S
2 to the equator {z = 0} ∩ S

2. (8.17)

Proof. For Lg > L chosen large enough, it follows from Lemma 8.3 that
Σg ∩ (∂BLg (0) ∩ Uǫ) consists of Ng curves. Suppose we order the curves
so that the first N ′

g ≤ Ng are longitudinal curves in the solid (piecewise
smooth) torus T = Uǫ∩ (BLg(0)\BL(0))∩{z > 0}. Note that N ′

g +1 is even
since ∂(Σg ∩ T ) is null-homologous in T and since Σg ∩ ∂BL(0) consists of
one curve by Proposition 8.2. Thus N ′

g is odd and in particular at least 1.

Since Lg may taken arbitrarily large without changing N ′
g, this gives (8.17)

for at least one suitable index i. To see that N ′
g = 1, observe that since

entropy is non-increasing under MCF:

Ng
∑

i=1

(F0,1(Ci
g) + F0,1(Di

g)) ≤ λ(Σg) ≤ 2, (8.18)

and thus by symmetry
Ng
∑

i=1

F0,1(Ci
g) ≤ 1. (8.19)

On the other hand, in light of (8.17) and Lemma 8.3, for i = 1, ..., N ′
g , and

any δ > 0 we obtain that

F0,1(Ci
g) > 1 − δ (8.20)

for g large enough. If N ′
g > 1 this contradicts (8.19). �

Our goal us to show that E±
g is each diffeomorphic to an infinite annulus

S
1×[0,∞). Equivalently, our goal is to show Ng = 1 for each g large enough.

The danger is that E±
g has ends sprouting up at larger and larger radii on

Σg.
We need Ecker’s localized version of Huisken’s monotonicity formula [24].

Namely, suppose M = Mt is an integral Brakke flow and set X0 = (x0, t0).
For

φX0(x, t) = (1 − |x− x0|2 + 2n(t− t0)

ρ2
)3+ (8.21)

and

ρX0(x, y) = (4π(t0 − t))−1/2e
−

|x−x0|2
4(t0−t) (8.22)
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The Gaussian density ratio

Θ(M,X0, r) =

∫

Mt0−r2

ρX0φ
ρ
X0

dµ (8.23)

is non-increasing in r.
The density at X0 is defined as

Θ(M,X0) = lim
r→0

Θ(M,X0, r). (8.24)

The density Θ(M,X0) is equal to 1 when X0 is a smooth point of the
flow. We need one version of White’s version of Brakke regularity theorem
for limits of Brakke flows:

Theorem 8.5 (Brakke regularity theorem [62]). Suppose Mi are smooth
Brakke flows with Mi ⇀ M. If

Θ(M,X0) = 1, (8.25)

then there is an open neighborhood of X0 in space-time so that in this neigh-
borhood, the convergence of Mi to M is smooth.

With this background, we can now show

Proposition 8.6. For g large enough, E±
g are annuli that may be expressed

as normal graphs over the plane H.

Proof. Assume toward a contradiction for some subsequence (not relabelled)
g → ∞ there are points pg ∈ E+

g so that the tangent plane to Σg is orthog-
onal to H at pg and Rg = |pg| → ∞.

Pass to a subsequence of g so that q is the limit of R−1
g pg with q ∈ S

2∩H.
Thus there exists ǫg → 0 so that

|q −R−1
g pg| ≤ ǫg. (8.26)

Let us consider the flows

Σg(t) :=
√
−tΣg B1/2(q) (8.27)

for t ∈ [−1, 0].
For t ∈ [−t0, 0] for some t0 small enough, by Proposition 8.2 for all g

large enough, the flow (8.27) is disjoint from the plane H. Let Σ̂g(t) de-

note the connected components of Σg(t) with positive z-coordinate and let
{µ̂g

t }t∈[−t0,0] denote the corresponding integral Brakke flows in B1/2(q). By
the compactness theorem for Brakke flows, we may extract a weak limit

µ̂g
t ⇀ µ̂t. (8.28)

From the definition of weak convergence for such flows, µ̂t is the varifold
limit of µ̂g

t for each t ∈ [−t0, 0].
We claim µ̂t is the static flow of planes near q for t ∈ [−t0, 0]. For fixed

t ∈ [−t0, 0), observe that the varifold µ̂g
t converges to H B1/2(q) as g → ∞.

Indeed by Proposition 7.1, since Σg → 2H on compact subsets of H, it
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follows that for any fixed λ > 0, λΣg → 2λH on any compact set as g → ∞.
Setting λ =

√−t gives the claim noting that H is invariant under homothety.
For t = 0, on the other hand, Lemma 8.3 implies that the collection

of asymptotic cones µ̂g
0 converges in the sense of integral currents to H as

g → ∞. It follows that

Θ(µ̂0, (q, 0)) ≥ 1. (8.29)

Applying Ecker’s localized monotonicity formula together with (8.29) gives

lim
r→0

Θ(µ̂t, (q, 0), r2) ≥ Θ(µ̂0, (q, 0)) ≥ 1. (8.30)

Since µ̂t consists of an open subset of a plane for t < 0, the limit in (8.30)
is 1, and thus

Θ(µ̂t, (q, 0)) = 1. (8.31)

It follows that {µ̂t}t∈[−t0,0] is the static flow of planes in B1/2(q). By

Theorem 8.5 it follows that µ̂g
t converges smoothly to the static flow µ̂t in a

backwards parabolic ball B1/4(q) × [−t0/2, 0].

On the other hand, setting tg = − 1
R2

g
, we get by (8.26) that for the

previously chosen pg ∈ Σg and g large enough

|q −
√

−tgpg| ≤ ǫg ≤
1

4
(8.32)

By the choice of pg, the equation (8.32) together with the fact that ho-
motheties preserve angles imply that µ̂g

tg is not graphical in the ball B1/4(q)

for the sequence of times tg → 0. This is a contradiction. �

9. Stability operator L0,1 on H

The stability operator on H is given by (equation 5.1 in [18])

LHφ = ∆R2φ− 1

2
〈x,∇φ〉 +

1

2
φ. (9.1)

In polar coordinates (r, θ) this becomes

LHφ = φrr +
1

r
φr +

1

r2
φθθ −

r

2
φr +

1

2
. (9.2)

We will need to study solutions φ to LHφ = 0. Assuming the solution
φ = φ(r) is rotationally symmetric we get

LHφ = φrr + (
1

r
− r

2
)φr +

1

2
. (9.3)

Let us make the change of variable ξ = r2/4. Thus

φr =
r

2
φξ, (9.4)

and

φrr =
1

2
φξ +

r2

4
φξξ =

1

2
φξ + ξφξξ. (9.5)
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Thus we obtain that the rotationally invariant solutions to LHφ = 0 satisfy

ξφξξ + (1 − ξ)φξ +
1

2
φ = 0. (9.6)

The equation (9.6) is a confluent hypergeometric equation studied by Kum-
mer in 1837 ([44]). In general, one solution to

ξφξξ + (b− ξ)φξ − aφ = 0, (9.7)

is given by

M(a, b, ξ) = 1 +
a

b · 1
ξ +

a(a + 1)

b(b + 1) · 1 · 2
ξ2 + ..., (9.8)

or

M(a, b, ξ) =
∞
∑

k=0

(a)k
(b)k · k!

ξk, (9.9)

where the Pockhammer symbol (a)k is defined as

(a)k = a(a + 1)(a + 2)...(a + k − 1). (9.10)

This solution has asymptotics

M(a, b, ξ) ∼ eξξa−b

Γ(a)
as ξ → ∞. (9.11)

Thus one solution to (9.6) can be denoted

φ1(r) := M(−1

2
, 1, r2/4) (9.12)

and

φ1(r) ∼ −4r−3er
2/4

√
π

as r → ∞. (9.13)

Observe that φ1(0) = 1 and from differentiating the series expansion we get
that φ′

1(r) < 0 and φ′′
1(r) < 0 for r > 0. It follows that φ1 has precisely one

zero at r = r1.
A second linearly independent solution U(a, b, ξ) to (9.7) is known as the

Tricomi function with asymptotics

U(a, b, ξ) = ξ−a for large ξ. (9.14)

Thus we may set

φ2(r) := U(−1

2
, 1, r2/4)15 (9.16)

which satisfies
φ2(r) ∼ r

2
for large r. (9.17)

Moreover, as r → 0, φ2(r) → −∞ logarithmically.

15In fact there is an explicit formula

U(−
1

2
, 1, ξ) = eξ/2((ξ − 1)K0(ξ/2) + ξK1(ξ/2)), (9.16)

where K0 and K1 denote the modified Bessel functions of the second kind, which decay

with rate e−ξ
√

ξ
as ξ → ∞.
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One also finds numerically that the function φ2(r) has precisely one zero
r2 with r2 < r1.

Proposition 9.1. There exists no positive radial function φ = φ(r) ∈
C∞(H \ (0, 0)) satisfying

LHφ = 0. (9.18)

Proof. Since φ1 and φ2 change sign it suffices to show that for each λ 6=
0 ∈ R, the function φλ(r) := φ2(r) + λφ1(r) is not everywhere positive or
everywhere negative. But φλ(r1) = φ2(r1) > 0 and in light of the fact that
φ1(0) = 1 and φ2 tends to −∞ as r → 0 we obtain that φλ(r) → −∞ as
r → 0. Since φλ takes on positive and negative values, this completes the
proof. �
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