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Abstract

Signal-agnostic data exploration based on machine learning could unveil very subtle statistical devi-
ations of collider data from the expected Standard Model of particle physics. The beneficial impact
of a large training sample on machine learning solutions motivates the exploration of increasingly
large and inclusive samples of acquired data with resource efficient computational methods. In this
work we consider the New Physics Learning Machine (NPLM), a multivariate goodness-of-fit test
built on the Neyman–Pearson maximum-likelihood-ratio construction, and we address the problem
of testing large size samples under computational and storage resource constraints. We propose to
perform parallel NPLM routines over batches of the data, and to combine them by locally aggregating
over the data-to-reference density ratios learnt by each batch. The resulting data hypothesis defining
the likelihood-ratio test is thus shared over the batches, and complies with the assumption that the
expected rate of new physical processes is time invariant. We show that this method outperforms
the simple sum of the independent tests run over the batches, and can recover, or even surpass, the
sensitivity of the single test run over the full data. Beside the significant advantage for the offline ap-
plication of NPLM to large size samples, the proposed approach offers new prospects toward the use
of NPLM to construct anomaly-aware summary statistics in quasi-online data streaming scenarios.

1. Introduction

Numerous experimental tests have confirmed the Standard Model as the best description of the parti-
cle physics world, reaching levels of precision up to few parts per thousand. New physical processes,
if detectable, should therefore manifest as very subtle statistical deviations of the data distributions
with respect to the Standard Model expectations. Increasing the phase space acceptance and the
statistics of the analysed datasets could unveil interesting data structures that were missed so far.
Along with the regular signal-specific statistical analyses, signal-agnostic anomaly detection tools
have grown of interest in the high energy physics community, and machine learning has proved to
be a crucial ingredient to scale their discovery power.

Anomaly detection broadly refers to the problem of identifying data patterns that do not align
with their expected behaviours. Events can be interpreted as anomalous for multiple reasons; either
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because their appearance in the dataset is rare, or because they manifest out of the expected data
support. Moreover, anomalies can emerge as a collective behaviour affecting the statistical model de-
scribing the data occurrence in the experiment. In this work we focus on collective anomalies, namely
phenomena that rise as an unexpected deformation of the data probability distribution. These kind
of anomalies are tackled by means of statistical anomaly detection tools. Statistical anomaly detection
refers to the problem of recognising and quantifying distributional deviations of a dataset from its
nominal expected behaviour. Besides its use in new physics searches, statistical anomaly detection
finds a wide spectrum of applications in experimental particle physics. The most striking examples
are data quality monitoring of experimental setups at data taking time, and validation of simulated
samples.

When a tractable model of the data nominal behaviour is available, statistical anomaly detection
reduces to a goodness-of-fit test: a test statistic is defined according to a notion of similarity between
the data distribution and the nominal model, and the level of compatibility is quantified in terms of
the test statistic p-value with respect to the test distribution in nominal conditions. However, in most
of the applications of statistical anomaly detection in high energy physics, a tractable model for the
nominal data distribution is not available and needs to be replaced by a dataset of reference ( denoted
as R in this work), simulated according to the nominal model or built in a data-driven fashion. In
these cases, the problem of statistical anomaly detection is solved as a two-sample-test, introducing
a test statistic that measures the distance between two samples.

High energy physics, and in particular collider data, pose extremely challenging problems for
statistical anomaly detection due to the level of precision required to test the Standard Model. For
instance, the accuracy of the statistical models employed in the process of scientific discovery is a
particularly delicate matter that requires powerful testing tools. Similarly, the lack of new interesting
tensions with the Standard Model hypothesis after the Higgs boson discovery seem to indicate that,
if detectable, new physics should manifest at the LHC as a very rare process, whether in time or in
phase space. Anomaly detection algorithms must therefore be able to capture very subtle anomalous
behaviours, and they should be run over the most inclusive set of data allowed by the computa-
tional and methodological constraints. An extensive review of goodness-of-fit algorithms routinely
adopted in the high energy physics community can be found in Ref. [1].

Machine learning (ML) has provided significant improvements to the statistical tools employed in
data analysis at the LHC, allowing to deal with increasingly complex data structures, and exploiting
a wider amount of the physics information produced by the experiments. In the specific context of
goodness-of-fit, machine learning based algorithms have opened the path to multivariate statistical
analyses, able to capture mismodeling also in the correlations between variables Ref. [2].

In absence of constraining inductive biases, as it is the case in unknown anomalous signals
searches, the power of machine learning strategies resides in their ability to learn from the train-
ing examples coming directly from the experimental data. However, the latter could be either scarce
or completely lacking of anomalous events due to their rarity. The impact of machine learning is
therefore expected to become more and more evident by scaling the training sample size and, as a
consequence, the rate of collected anomalies. While beneficial to the training, larger sample sizes in-
troduce computational and storage constraints, that need to be addressed. In this work, we focus on
the New Physics Learning Machine (NPLM) algorithm, an ML-empowered goodness-of-fit method
based on the Neyman-Pearson hypothesis test (Ref. [3, 4, 5, 6, 7]), and we address the problem of
how to test large datasets under computational and storage constraints. The approach presented in
this paper proposes parallel computing of the test over batches of the original sample and a final
aggregation strategy that combines the local approximation of the data-to-reference ratios learnt by
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each instance of the algorithm. We outline three operational approaches for different resource con-
straints settings, aiming at maximally exploiting the available experimental data both in offline and
quasi-online configurations.

We apply the split-aggregation approach to a one-dimensional toy model and two realistic LHC
datasets of increasing complexity. The former is a dimuon final state characterised by 5 observables
and sample size of O(104) events, and a 24-dimensional problem defined by the tri-momenta of eight
objects selected at the L1 trigger of the CMS experiment with sample size of O(106) events.

Our numerical experiments for one-dimensional and five-dimensional problems show that the
aggregation strategy can fully recover or, in same cases, even outperform the single batch imple-
mentation, thanks to the effect of regularization against statistical noise that the aggregation strategy
introduces.

Furthermore, the studies conducted on the 24-dimensional problem show the discovery potential
of the various approaches in high-dimensional and large statistic scenarios.

The paper is organised as follows. In Section 2 we describe the NPLM algorithm and the proposed
batch solution for handling large sample sizes. In Section 3 we study the performances of the split-
aggregation approach on the one-dimensional and five-dimensional problems and we compare them
with the original implementation of NPLM. In Section 4, we apply the split-aggregation strategy
to a large size dataset simulating the CMS L1 trigger, showing the scalability of the algorithm to
more complex scenarios. We conclude in Section 6 discussing our main findings and future research
directions.

2. Algorithm

In this Section we briefly summarise the main features of the NPLM algorithm and we provide the
statistical foundations for the new proposed split-aggregation solution.

2.1. New Physics Learning Machine (NPLM)

New Physics Learning Machine (NPLM) is a ML-based signal-agnostic strategy to detect and quan-
tify statistically significant deviations of the observed data D from a defined reference model R
Ref. [3]. The NPLM method is inspired by the classical approach to hypothesis testing based on
the log-likelihood-ratio Ref. [8]

t(D) = 2 max
w ∑

x∈D
log

L(x|Hw)

L(x|R) , (1)

where the two compared hypotheses are the reference, R, and a composite alternative, Hw, whose
nature is not known a priori. A model fw(x) with trainable parameters w is defined on the space of
the data x to parametrize the density distribution of the data in the family of alternatives

n(x|Hw) = n(x|R)e fw(x) . (2)

Since the total number of events in x is a Poissonian random variable whose expectation depends
on the theory model, the test statistic in Eq. 1 is computed as the extended log-likelihood-ratio, which
in terms of fw is written as

t(D) = 2 max
w

[
N(R)− N(Hw) + ∑

x∈D
fw(x)

]
, (3)
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Fig. 1: NPLM training over a single dataset. Schematic representation of a single run of the NPLM algorithm.
The NPLM model, a kernel method in this work, takes as input two datasets, a reference sample (R) and a
data sample D, and it fit via maximum-likelihood the log-ratio of their densities f (x; ŵ). The resulting model
is evaluated in-sample on D and R to compute the test statistic t.

with N(R) and N(Hw) the expectation values of the total number of events in D under the reference
and the alternative hypotheses respectively. The maximisation problem described by Eq. 3 can be
solved by a machine learning task

tw(D) = −2 min
w

L[ fw] , (4)

where the loss function

L[ fw] =

[
∑

x∈R
wR(x)(e fw(x) − 1)− ∑

x∈D
fw(x)

]
. (5)

takes as input two training datasets: the dataset of interest D, and a sample of reference R drawn
according to the reference hypothesis and weighted by wR(x) to match the experimental luminosity
. Thus, the machine learning task learns the optimal values of the trainable parameters of f , ŵ, to
approximate the log-density-ratio of the two samples

fŵ(x) = log
n(x|Hŵ)

n(x|R) (6)

As for any test statistic, the value of the test obtained for D has to be compared to the distribution
of the test under the reference hypothesis, p(t|R), and the p-value is finally used as a GoF metric.
We build p(t|R) empirically, running pseudo-experiments on datasets that are generated according
to the R hypothesis. The model fw(x) could be a neural network as in Ref. [3, 4, 5], or it could be
built with kernel methods Ref. [6, 9]. In this work we employ kernel methods since they have been
showed to be less time demanding than neural networks. Details about the NPLM training strategy
based on kernel methods are postponed to Section 2.4.

It should be mentioned that the test statistic in Eq. 4 has good statistical properties (i.e. its null
distribution approximates a χ2 in the asymptotic regime) only if the number of events representing
the reference hypothesis, NR is large enough that the statistical fluctuations affecting the reference
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sample are negligible with respect to the one affecting the data. We refer the reader to Ref. [4] and
Ref. [6] for a detailed discussion on the impact of the reference sample size on the NPLM test statistic
properties.

Moreover, in realistic particle physics scenarios uncertainties affect the knowledge of the reference
hypothesis requiring the introduction of nuisance parameters, defining families of transformations of
the reference distribution that should be seen as not anomalous. A solution to extend the NPLM strat-
egy to account for systematic errors has been introduced in Ref. [5]. In our studies, we will consider
systematic uncertainties as negligible and leave the treatment of systematic uncertainties within the
batch approach for future studies. Finally, often times simulations are not accurate enough to provide
a good reference model. In those circumstances, data driven techniques need to be implemented to
build R. The problem of building an accurate reference model R is a distinct problem and out of the
scope of this work.Comment on possible solutions to this problem in Section 4. In the next Section
we introduce the batching idea to address the problem of large sample size.

2.2. Learning New Physics from batches

Let’s assume that the experimental data D are acquired in Nb batches Di

D = ∪iDi , (7)

and the size Ni of each batch is a Poissonian random variable whose expectation is a function of
the integrated data acquisition time.† In addition, let’s assume that each batch Di can be stored in a
buffer long enough time to undergo the NPLM training task.

Since the proton-proton collisions are independent events, the optimal test of the full dataset
according to Neyman and Pearson would be the sum of the log-likelihood-ratio test performed over
each single batch, with alternative hypothesis set to the True model (T) underlying the data:

tid(D = ∪iDi) = 2
Nb

∑
i=1

log
L(Di|T)
L(Di|R)

. (8)

Clearly, the True hypothesis T is not known a priori and we want to exploit the NPLM strategy to
estimate it. The solution we propose in this work is to run separate instances of the NPLM algorithm
over different batches and recombine the information encoded in the log-density-ratio functions

fŵ, i(x) = log
n(x; Hi

ŵ)

n(x; R)
(9)

learnt by the different instances. Recalling the parametrization defined in Eq. 2, for each learnt model
fw, i we can write an estimate of the density ratio between the data batch and the reference R

n(x; Hi
ŵ) = n(x; R)e fŵ,i(x) , (10)

Each density n(x; Hi
ŵ) can be interpreted as an approximated view of the same True physical model.

If the learning process outputs an accurate enough representation of T, then Eq. 8 can be straightfor-
ward approximated summing the likelihood-ratio-tests output by NPLM for the separate batches

tNb
SUM(D) =

Nb

∑
i=1

t(Di) = 2
Nb

∑
i=1

log
L(Di|Hi

w)

L(Di|R)
= 2

Nb

∑
i=1

[
∑

x∈R
wR(x)(1 − e fi,ŵ(x)) + ∑

x∈Di

fi,ŵ(x)

]
. (11)

†more precisely, the expected number of observations for a given physics process (H) is a function of its physics cross
section (σ(H)), the integrated luminosity (L), and the acceptance (a) and efficiency (ϵ) of the experimental setup: N(H) =
σ(H)× L × a × ϵ.
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This approach produces a powerful test if the exact shape and normalization of the signal is captured
by all models. However, when the signal is very rare its impact in a small size data sample can
be overlooked by the model. We can exploit two simple assumptions to provide a better solution.
First, we assume that the new physics source is static, namely its occurence rate is uniform over
time. Second, we assume that biases affecting single batch views are due to statistical noise whose
impact over time is on average null. Under these assumptions, averaging the density-ratio terms
learnt in different batches provide a single alternative hypothesis HNb

w shared among batches, that
helps to enhance systematic discrepancies, interpreted as signals, while suppressing random ones.
The density of the data under HNb

w would then have the following form:

n(x; HNb
w ) =

1
Nb

Nb

∑
i=1

n(x; Hi
w) . (12)

By expressing the model of the data density distribution in each batch in terms of the set of functions
{ fw,i}Nb

i=1, we can define an “aggregated” model of the log-ratio of the densities as

FNb(x; W) = log
n(x; HNb

w )

n(x; R)
= log

[
1

Nb

Nb

∑
i=1

e fi(x; w)

]
, (13)

and use it to compute the log-likelihood-ratio test statistics over the set of batches:

tNb
AGGR(D) = 2

Nb

∑
i=1

log
L(Di|HNb

w )

L(Di|R)
= 2

Nb

∑
i=1

[
∑

x∈R
wR(x)(1 − eFNb (x; W)) + ∑

x∈Di

FNb(x; W)

]
. (14)

Batching solutions for computationally intensive calculations with kernel methods have already
been proposed in the literature for supervised approaches (see for instance Ref. [10]). In Ref. [10]
the authors show theoretical guarantees for recovering the performances of the full sample training
solution, provided that the number of splitting is not too large.

2.3. Operational strategies in resource constrained settings

Despite the advantage provided by splitting the dataset in batches, the computational requirements
for the algorithm execution might still pose significant challenges to its application in realistic sce-
narios. In fact, computing tNb

AGGR requires evaluating FM
W (x) over each element x in the total set of

acquisitions D = ∪iDi. This means that all data batches have to be stored for the whole duration of
the NPLM algorithm execution, and the memory locations at which the models are stored need to be
accessible by all batches. Moreover, the execution time largely varies depending on several factors
concerning the algorithm setup, such as the size of the batches, the choice of input variables, but also
to the computational resources available and the way these are dispatched. The possibility of run-
ning NPLM tasks in parallel on multiple GPUs provides, for instance, the potential to significantly
reduce the computational time.

On the other hand, if the storage resources are limited, it could happen that not all the data can
be saved long enough for the NPLM routines to be all completed. In this situation, the test in Eq. 14
cannot be evaluated exactly. Two alternatives can then be contemplated. The first one is to run NPLM
over all the batches and save the final models { fw,i}Nb

i+1 to estimate HNb
w , but running the test only on
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a subset of Ntest batches that could be stored:

tNb,Ntest
AGGR (D) = 2

Ntest

∑
i=1

log
L(Di|HNb

w )

L(Di|R)
= 2

Ntest

∑
i=1

[
∑

x∈R
wR(x)(1 − eF

Nb
W (x)) + ∑

x∈Di

FNb
W (x)

]
. (15)

The second alternative is considering Eq. 10 as the limit of a smart multidimensional binning ap-
proach, where the bins centres are the elements of the reference sample R. In this limit, each bin has

counting equal to the unity under the reference hypothesis and value eF
Nb
W (x) under the alternative. A

“saturated” binned likelihood-ratio test [11] can then be computed:

tNb
SAT(R) = 2 ∑

x∈R
wR(x)

[
(1 − eF

Nb
W (x)) + eF

Nb
W (x) log FNb

W (x)
]

. (16)

Notice that the test does not depend on the data D directly, but only via FNb
W , that has been learnt

exploiting the dataset D in batches. Moreover, the test does not compute the likelihood-ratio of the
data, but it rather evaluates the distance between the density of the reference and that of the alterna-
tive hypothesis on the data points belonging to the reference sample R. Eq. 16 is a powerful metric
when the model FNb

W is able to capture the signal shape well enough. Its performances deteriorates for
signal events that lay in rare regions of the input space, or whose shape is too complex compared to
the expressivity of the family of universal approximators used to define the models { fw,i}. An alter-
native approach of online data summarization based on machine learning was proposed in Ref. [12].
There are two main conceptual differences between the approach presented in Ref. [12] and the one
presented in the current paper. The first is that the authors of Ref. [12] propose to learn directly the
probability distribution of the data, while via NPLM we propose to learn the ratio of the data den-
sity with respect to a reference. The second difference concerns the training strategy. The authors
of Ref. [12] suggest to train a unique model (specifically, a normalizing flow) feeding the acquired
data batches sequentially. Conversely, in the present work we propose to perform a complete and
independent training for each batch, thus preventing catastrophic forgetting.

In the experiments reported in Section 4 we consider three representative resource constrained
scenarios:

1. No resource constraints (NPLM-ALL): all batches are used both for training and for testing.
The final test is the one in Eq. 14.

2. Long term storage constraint (NPLM-ONE): there are enough computational resources to train
multiple instances of the algorithm in a quasi-online fashion but only one batch is available for
testing. For this configuration, the final test is the one in Eq. 15, with Ntest = 1.

3. Saturated test (NPLM-SAT): all data are temporarily available for a quasi-online training of the
algorithm but they cannot be stored and tested. In this case, we only test the distance between
the density of the data and that of the reference distribution by computing the saturated test in
Eg. 16.
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(b) NPLM-ONE

(a) NPLM-ALL

(c) NPLM-SAT

Fig. 2: Operational strategies in resource constrained scenarios. Schematic representation of the three sce-
narios considered in this work. The experimental data are collected in a storage unit or buffer (orange box)
and used to train multiple instance of the NPLM model (purple squares). In the NPLM-ALL scenario all data
batches and trained models are sent downstream to compute the test statistic. In the NPLM-ONE scenario all
the models but only one batch are sent downstream for testing. Finally, in the NPLM-SAT scenario only the
models are stored and can be used to test for significant deviations. Due to the information reduction imposed
by the resource constraints, the power of the test generally decreases from left to right.
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2.4. Time-efficient NPLM implementation with non-parametric models

To harness the execution time of a single instance of the NPLM algorithm we consider the kernel-
based implementation of NPLM presented in Ref. [6], and applied in Ref. [9], which exploits the
FALKON library [13], a modern solver for kernel methods that leverages several algorithmic solutions
developed in Ref. Ref. [14, 15, 13] to allow for their use in large scale problems. The model used
in FALKON is a Nystrom approximated Kernel method defined as a finite weighted sum of kernel
functions

fw(x) =
M

∑
i=1

wik(x; xi, σFLK) . (17)

The kernel function, k(x; xi, σFLK), adopted in this implementation is a Gaussian kernel

k(x; xi, σFLK) = exp
(
−∥x − x′∥2

2σ2
FLK

)
, (18)

where the hyper parameter σFLK denotes the Gaussian width.
To approximate the log-ratio between the distribution of the D and R datasets the training ex-

ploits a weighted binary cross-entropy loss

L( fw) = ∑
x∈R

wR(x) log
[
1 + e fw(x)

]
+ ∑

x∈D
log

[
1 + e− fw(x)

]
, (19)

with a L2 regularisation term. The NPLM method works under the assumption that the reference
sample is large enough to be a good representation of the R hypothesis, which typically leads to an
imbalanced dataset with NR > ND. The weight wR(x), is thus introduced to balance the two classes’
contributions.

Hyper parameters choice. The hyper parameters choice for a given family of universal approxi-
mators defines the “modes” of the data that the NPLM algorithm is able to capture. For the kernel-
methods considered in this work, there are three hyper parameters that need to be defined: the
number of centres M, the Gaussian width σ, and the regularisation parameter λ. In Ref. [6] it has
been showed that there exists a “valley” of (M, σ, λ) configurations that guarantee the convexity of
the loss function, arbitrarily small prediction error and reasonable convergence time. However, no
further indication can be provided to enhance the sensitivity to statistical anomalies. Different hyper
parameters choices could be optimal to capture different types of data deviations from the reference
distribution. For instance, small values of the Gaussian kernels width, σFLK, would allow to better
capture localised deviations, like narrow resonances, while larger values would be better suited to
represent effects affecting the distribution on a wider range, like scale mismatches. If the nature of
the anomaly is unknown and no good prior is available, then the most inclusive way of testing the
data is combining multiple choices of the hyper-parameters configurations. In this work we fix M
and λ following the prescription proposed in Ref. [6]. Namely, we chose M = c

√
N with c ∼ (1)

such that the training time is reasonable given the available computational resources, and we choose
λ as small as possible, provided no instabilities are encountered.

For the Gaussian width, σFLK, we adopt the approach recently proposed in Ref. [16] rather than
limiting to a single value we consider five values corresponding to the 5, 25, 50, 75 and 95 % quantiles
of the pairwise distance distribution between the elements in the reference set. We combine the

9



Anomaly-aware summary statistic from data batches

results obtained with different values of σFLK by selecting the minimum:

P = min
{σFLK}

(pσFLK) (20)

It is worth noticing that the authors of Ref. [10] comment on the impact of regularisation on the
batched solutions, highlighting how the correct level of generalisation can be recovered if the train-
ings run on the batches is under-regularised. The NPLM algorithm is a signal-agnostic strategy and
therefore an optimal regularisation level cannot be determined prior to testing the data. Neverthe-
less, we observe the benefit of the aggregation as a regularisation in our studies. Details are reported
in Section 3.

3. Numerical experiments

In this Section we study the properties of the batch-based strategy outlined in Section 2.3 over two
proof-of-concept applications. We start considering a one-dimensional problem characterised by a
smoothly falling reference distribution (EXPO-1D) for which the optimal test statistic according to
Neyman and Pearson can be computed analytically and used as a target. We then move to the mul-
tidimensional problem of a dimuon final state observed at collider experiments (DIMUON-5D). A
detailed description of the datasets’ properties and signal benchmarks is given in Appendix S1.1. The
details about the algorithm implementation, execution time and resource consumption are given in
Section 5.

3.1. Improving regularisation and sensitivity by aggregating over batches.

We start by studying the impact of the number of batches Nb on the power of the NPLM-ALL aggre-
gated test statistic (Eq. 14). We run the NPLM algorithm for different values of Nb and we compare
the power curves of the aggregated test (Eq. 14) and the simple sum of tests (Eq. 11) resulting by
combining them. We run the experiments on the various signal benchmarks reported in Table S1 for
the EXPO-1D dataset and on Table S2 for the DIMUON-5D dataset.

Interestingly, the aggregated test shows similar or higher power as the number of batches in-
creases. Conversely, we observe that the simple sum of tests suffers from significant power degra-
dation as the number of batches increases. We argue that the regularisation benefit introduced by
averaging over the batches has higher impact than the sensitivity loss due to data splitting. One pos-
sible explanation for such result can be found in the in-sample nature of the NPLM algorithm. Each
trained model is by construction induced to (over)fit fluctuations in the data batch distribution even
when those are not statistically significant in the single batch test. Combining the outcome of each
batch training at the level of the functional forms of the model allow therefore to restore the suite of
information carried along by each model, and exploit it to recover sensitivity to very rare signals. An
illustrative example of the dynamics mentioned above is given in Figure 3. The panels represent the
data distribution (black histograms) and reference distribution (light blue histograms) for the one-
dimensional EXPO-1D dataset, when the data are split in four batches. A rare Gaussian signal is
injected in the tail of the exponentially falling distribution. The light green solid lines represent the
models learnt in each training. On the right hand side of the Figure, we report four panels showing
the individual batches and the relative trained models. The models follow the statistical fluctuations
of the training sample producing an imprecise view of the true model of the data. On the left hand
side, the four models are combined to produce the aggregated version, showed in dark green. It is
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easy to notice the improved stability of the aggregated model with respect to the ones trained on
single batches.

Fig. 3: Understanding the regularising effect of the batching strategy. Visual representation of the densities
functions reconstructed by the NPLM models trained on different batches (light green lines), and after combin-
ing them (dark green line in the main panel). The reconstruction after combination is more robust to statistical
fluctuations and approximates the true signal model better than each single one.

The observed behaviour is consistent across all the studied signal benchmarks for both datasets.
We report in Figure 4 the power curves for one signal benchmark of the EXPO-1D dataset, and in
Figure 5 the power curves for one signal benchmark of the DIMUON-5D dataset. Additional power
plots for the aggregated and simple-sum tests for different values of σFLK on different datasets and
signal benchmarks are reported in Appendix S1.2.

3.2. Improving anomaly detection on a single batch exploiting quasi-online learning.

The results presented in Section 3.1 suggest that the aggregation improves the quality of the density-
ratio modelling. This motivates the use of NPLM in a quasi-online setup to extract powerful informa-
tion from data even when only a fraction of the latter can be eventually stored (storage constrained
scenario). This is always the case at collider experiments, where trigger algorithms are designed to
filter the data. We study the impact of aggregating the modelling over multiple batches on the power
of the NPLM test for a single data batch (NPLM-ONE scenario). For the EXPO-1D dataset, the data
are split in eight batches, all of them are analysed via NPLM but only one is saved for testing. For
the DIMUON-5D dataset, instead, the data are split in four batches. Figure 6 shows the results of
our study for the narrow (left panel) and broad (right panel) signal benchmarks in the EXPO-1D
dataset, whereas Figure 7 shows the results for two different injections of a Z’ resonant signal with
invariant mass of 300 GeV, considered in the DIMUON-5D dataset. While not competitive with the
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Fig. 4: NPLM-ALL. EXPO-1D – localised signal in the tail. Power curves for the aggregated test tAGGR (left
panel) and the simple sum of tests tSUM (right panel) at different number of batches. Data splitting improves
the performances of tAGGR, while degrades tSUM.
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Fig. 5: NPLM-ALL. DIMUON-5D – Z’ resonance at 300 GeV. Power curves for tAGGR (left panel) and tSUM
(right panel) at different number of batches. Data splitting improves the performances of tAGGR, while de-
grades tSUM.

ideal scenario of unlimited storage availability in which the full dataset can be tested (green line), the
power curve of our experiment (lightblue line) shows significant improvement over the simple use
of NPLM on a single batch (black line). Similar behaviours are found for different signal benchmarks
in both the univariate and multivariate datasets. Additional plots are reported in Appendix S1.3.

3.3. Anomaly-preserving data compression via likelihood-ratio

Finally, we consider the extreme scenario in which data cannot be permanently stored but are only
available quasi-online for a limited time window. In this case, the proposed solution is storing the
NPLM models { fw,i}Nb

i+1 as compressed representations of the data batches, and build the saturated
likelihood-ratio test described in Eq. 16. The saturated test is not properly a likelihood-ratio test be-
cause the likelihood is not directly evaluated on the data points in D. This in principle could lead
to inefficiencies. A trivial failure example, for instance, is that of a signal localised in a low density
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Fig. 6: NPLM-ONE. EXPO-1D. Power curves for tAGGR when evaluated over one single data batch (light blue
line) and over the full dataset (green line), compared with the power of the test learnt and evaluated over one
data batch (black line). The aggregation improves the accuracy over the learnt alternative model enhancing
the sensitivity with respect to the single batch test. The two panels show the results of our tests for two signal
benchmarks, the narrow peak (left panel) and the broad peak (right panel).

region of the reference data distribution. Since the likelihood-ratio reconstructed by F is only evalu-
ated in the data points of the reference sample R, if the shape of the signal is underestimated then
the test would not be sensitive to it. This intuition can be verified running numerical experiments
of different nature. Figure 8 shows two representative experiments run on the EXPO-1D dataset. In
the Figure we compare the power curve of the saturated test (black line) with that of the aggregated
test evaluated over the full dataset (light blue line), or on one batch only (green line). For the signal
located in the bulk of the reference distribution (left panel), the saturated test has comparable power
to the aggregated test evaluated over the full dataset. Instead, for the Gaussian signal in the tail of the
reference distribution (right panel), the power of the saturated test deteriorates, as fewer reference
data points are available in the signal region to properly quantify the discrepancy. Similar results
are found for the DIMUON-5D dataset (see Figure 9). Additional Figures for the remaining signal
benchmarks are reported in Appendix S1.4.

4. Scaling up to big data LHC scenarios

In this Section we apply the batch-aggregation approach to a larger scale dataset, emulating a typical
data stream acquired at the CMS experiment with a one light lepton (electron or muon) requirement
at the first level of data filtering (L1 trigger). The dataset, initially introduced in Refs. [17, 18] and later
adapted for anomaly detection [19] is publicly available on Zenodo [20, 21, 22, 23, 24]. It consists of
simulated events for the Standard Model (SM) and four beyond the Standard Model signatures that
we report below‡:

• A → 4l: a neutral scalar boson (A) decaying to two off-shell Z bosons, each forced to decay to
two leptons;

• h± → τ±ν: a charged scalar boson (h±) decaying to a τ lepton and a neutrino;

• h0 → τ+τ−: a scalar boson (h0) decaying to two τ leptons;

‡Additional information about the dataset can be found in Ref. [19].
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Fig. 7: NPLM-ONE. DIMUON-5D. Power curves for tAGGR when evaluated over one single data batch (light
blue line) and over the full dataset (green line), compared with the power of the test learnt and evaluated
over one data batch (black line). The aggregation improves the accuracy over the learnt alternative model
enhancing the sensitivity with respect to the single batch test.The two panels show the results of our tests for
two signal benchmarks, the a Z’ resonance in the bulk of the mass spectrum (left panel) and and a Z’ resonance
in the tail of the mass spectrum (right panel).

• LQ → bτ: a leptoquark (LQ) decaying to a b quark and a τ lepton.

The dataset contains a list of 19 physics objects (4 muons, 4 electrons, 10 jets and the event missing
transverse energy) for each collision event. Each object is characterised by three kinematic variables
and a class label, for a total of 76 features. We run the batched version of NPLM over the 24 dimen-
sional problem defined by considering the kinematic features of eight out of the nineteen objects: the
missing transverse energy, the first two most energetic muons, the first two most energetic electrons,
and first three most energetic jets. We consider a data sample D of 1 million SM events, on top of
which signal events of the order of few parts per mill are injected to test the algorithm sensitivity.
The marginal distributions over the input features for the Standard Model background and the four
signal benchmarks are reported in Figures S2 and S3 in Appendix S1.1.

The reference sample R is taken to be 10 million SM events (ten times larger than the full D
sample), and the D sample is split in 5 batches (Nb = 5). As for the kernel methods hyper parameters,
we set M = 10 000 and λ = 10−6. For sake of time, we study the performances of the model for a
single value of the kernel width σFLK, corresponding to the 90% quantile of the distribution of pair-
wise distance between SM data points. We run the three versions of the algorithm presented in
Section 3: train and test over all batches (NPLM-ALL), train over all and test only one batch (NPLM-
ONE), and the saturated test on the model obtained averaging over all batches (NPLM-SAT).

Figure 10 shows the median Z-score reached by the three approaches for a 0.2% and 0.4% signal
injection of the four different signal benchmarks. For completeness, we also show the sensitivity of
the algorithm if only a fifth of the luminosity, namely one batch, is exploited by NPLM. The results
of our tests confirm the main finding already outlined in Section 3. First, the NPLM-ONE approach
exhibits increased performances with respect to the application of NPLM to a single batch, remarking
that the aggregation via average proposed in this work allows to unveil sensitive information about
the signal signature, even when the full set of data is not available at testing time. Moreover, when
all the data are available at testing time (NPLM-ALL), the NPLM algorithm can take advantage of
the full sample statistics to make discovery possible. This is the case for the A → 4l and h± → τ±ν
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Fig. 8: NPLM-SAT. EXPO-1D. Comparison of the aggregated and saturated test statistic power curves for a
localized signal in the bulk (left panel) and in the tail (right panel). The experiments have been performed
aggregating over 4 batches.

0 1 2 3
Zα

0.0
0.2
0.4
0.6
0.8
1.0

P
(Z
>
Z
α
)

Z'@200 N(S)/N(B)=1%

# aggregation: 4
Z'@200 N(S)/N(B)=1%

# aggregation: 4
Z'@200 N(S)/N(B)=1%

# aggregation: 4

0 1 2 3
Zα

0.0
0.2
0.4
0.6
0.8
1.0

P
(Z
>
Z
α
)

Z'@600 N(S)/N(B)=0.15%

# aggregation: 4
Z'@600 N(S)/N(B)=0.15%

# aggregation: 4
Z'@600 N(S)/N(B)=0.15%

# aggregation: 4

tAGGR, MINp-σFLK

tAGGR, MINp-σFLK

aggreg.: 4
test: 1
tSAT, MINp-σFLK

Fig. 9: NPLM-SAT. DIMUON-5D. Comparison of the aggregated and saturated test statistic power curves for
a Z’ resonant signal in the bulk (left panel) and in the tail (right panel) of the mass spectrum considered in this
work. The experiments have been performed aggregating over 4 batches.

signal benchmarks, where a 2 per mill signal injection (corresponding to a 2 sigma global normaliza-
tion effect in our studies), can be raised to evidence (for A → 4l) or discovery (for h± → τ±ν) level
of significance §. For the A → 4l and h± → τ±ν signal benchmarks, we observe impressive reaches
for the NPLM-SAT approach as well. This result aligns with what observed in the one-dimensional
and five-dimensional experiments, namely that NPLM-SAT is as successful as NPLM-ALL when the
signal support is mainly in the bulk of the reference sample support, as it is the case for the signal
benchmarks considered here (see marginal distributions reported in Figures S2 and S3). Addition-
ally, this result points out the potential of the NPLM split-aggregation method as a tool to compute

§The Z-score values reported in Figure 10 are computed empirically up to 3. For larger values of the default NPLM,
NPLM-ALL and NPLM-ONE, we rely on the asymptotic χ2 distribution of the test statistic under the null hypothesis (the
compatibility of the NPLM test with a χ2 for kernel methods was previously studied in Refs. [6, 9]). For NPLM-SAT we
don’t observe the emergence of an asymptotic χ2. However the null distribution has a good agreement with a normal
distribution. We therefore use the normal asymptotic to extrapolate an estimate of Z-scores above 3. Points above 3 in the
Figure should therefore be taken more as a qualitative trend than an accurate estimate.
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anomaly-preserving summary statistics, allowing to save information about data that are only temporar-
ily available and eventually discarded by the data acquisition system. We conclude this Section with
commenting on the performances of NPLM on the h± → τ±ν and LQ → bτ signals, that are found
to be poorer. We believe that the reason could reside in the choice of the features adopted in these
studies – only a subset of the original nineteen physics objects is retained for this analysis. Moreover,
the algorithm performances are sensitive to the size of the reference sample R – our studies suggest
that the larger the sample the more accurate the result becomes, though more computationally de-
manding. Finally, one peculiar feature of this dataset is the so called “zero padding”, namely filling
with zeros the entries corresponding to specific objects in the event that are not observed. The zero
padding gives rise to sharp features that project great part of the data on lower dimensional sur-
faces of the input manifold. The problem of variable size events could be solved choosing a different
data representations, model architecture, or by mapping the data to a lower dimensional embedding.
These interesting directions are out of the scope of this paper and are left for future work.
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Fig. 10: CMS-L1-24D Summary plot. Sensitivity reach in term of the median Z-scores as a function of the
fraction of signal injection. The total number of background events sum to 1 million. The inspected signal
fractions are of the order of few per mill. Each panel corresponds to a different signal benchmark.

5. Computational resources and training time

In this Section, we report the details of the algorithm implementation, highlighting the typical execu-
tion time and computational resources needed for the numerical experiments studied in this work.

Execution time. The execution time of a single instance of the NPLM algorithm based on kernel
methods depends on several factors: the total number of data points, the number of kernels M, the
kernel width σFLK, the smoothness parameter λ, and on the hardware resources employed. Our
implementation relies on the Falkon library [13], that allows to speed up the fitting time by optimally
exploiting GPUs [6].
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dataset M σFLK λ NR ND (all) Time (single batch)

EXPO-1D 1k [0.1, 0.3, 0.7, 1.4, 3.0] 10−6 200k 16k 0.5–1.5 s
DIMUON-5D 10k [0.8, 1.9, 3.0, 4.4, 6.6] 10−6 40k 8k 3–12 s
L1CMS-24D 10k [10.5] 10−6 10M 1M 40-70 s

Table 1: Model hyper parameters and execution time. Unless stated otherwise, all instances of the NPLM
algorithm for each dataset follow the settings described in this table.

We report in Table 1 the typical time range for a single batch execution for the hyper parameters
choice adopted in our experiments. The variance within experiments on the same dataset is mainly
due to the σFLK value, smaller values require a higher number of iterations of the Falkon algorithm to
reach convergence. The main difference in execution time between the univariate and multivariate
cases is due to the model size, being the number of kernels used in the five-dimensional problems a
factor 10 larger than in the one-dimensional case. The training time is not significantly affected by
the batch size, as the reference sample size is dominating the overall size of the training sample. For
large samples and complex models the execution time increases exponentially with the dataset size
(see studies reported in Ref. [6]), and the benefit of batching the dataset in terms of execution time
become more striking. This has been observed, for instance, when studying the L1CMS-24D.

Storage resources. Aggregating over batches requires both temporary and permanents computa-
tional and storage resources. The temporary resources are used to train each single instance of the
algorithm and should be sufficient to store the data batch input to the model, and the model itself.
Importantly, the model location should be accessible by all data batches to allow estimating FNb ac-
cording to Eq. 13. The reference sample R and the values that the aggregated model FNb takes in the
test points should instead be stored in a permanent location. The reference sample is a static input
to the NPLM algorithm and is common to all training instances.¶ Together with the test data, it is
used to asses the value of the test in all three versions described in Section 3. The amount of memory
resources to be allocated for the aggregated model depends on the number of data points required
by the test. For the test in Eq. 14, the aggregated function FNb is evaluated over all data points and
reference points, requiring a vector of length NR +ND. For the test in Eq. 15, only a subset Ntest < Nb
of batches is used for evaluation and therefore the vector length reduces to NR + Ntest

Nb
ND. Finally for

the saturated test in Eq. 16, the aggregated function is only evaluated over the reference set, requiring
a NR length vector only. For the first two cases, the storage resources needed scale linearly with the
data taking time, while in the last case they are constant. The implications of information loss on the
sensitivity of the different summary statistics are discussed in Section 3.2 and 3.3.

6. Conclusions

In this work we explore the possibility of scaling the use of NPLM to test large size data samples in
presence of variable computational and storage resource constraints. We propose to split the dataset
in batches and run parallel instances of the NPLM algorithm on each of them. The final results are
combined averaging the density-ratio functions learnt by each instance of the NPLM algorithm. We

¶As previously stated, this work doesn’t cover the case of an imperfect reference, namely the case in which the reference
model is affected by systematic uncertainties and its optimal configuration given the experimental condition is not constant.
We leave this case for future work.
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apply this strategy to both univariate and multivariate benchmarks representative of typical data dis-
tributions in particle physics experiments. Our experiments show that the split-aggregation strategy
preserves or even surpass the sensitivity power of the NPLM test applied to the full sample (orig-
inal implementation). The reason for the success is mainly related to the uniqueness of its training
strategy, aiming at finding the maximum likelihood fit of the model to the input data, a representa-
tion of the true model underneath the data that over-fits the specific sample used for training. While
over-fitting is commonly evaded in machine learning algorithms, here it assumes a crucial role in
preserving data structures that do not generalise, either because they resemble statistical fluctuations
or because they are especially rare traits of the data. Preserving rare structures is what makes the
NPLM batching successful in recombining subtle hints of anomalous events into a statistically sig-
nificant signal, also suggesting that the density-ratio functions learnt by the NPLM algorithm could
be good candidates to build anomaly-preserving summary statistics.

Moreover, the new NPLM split-aggregation strategy offers a solution to offline signal-agnostic
analyses of collider data, often characterised by large sample sizes. It is beneficial both in terms
of training time and sensitivity performances. thanks to its effect of regularization against statistical
fluctuations, able in some cases to increase the significance of the observed discrepancy. It should
be mentioned that rigorously treating systematic uncertainties affecting the reference sample in this
context is crucial. In this work we don’t address the problem of systematic uncertainties. A way to
address systematic uncertainties in the original NPLM implementation was proposed in Ref. [5] for
neural network based models. In the split-aggregation approach additional challenges arise from the
fact that each batch has access only to “local” information about uncertainties. An accurate global
assessment of the systematic effects via nuisance parameters estimation needs therefore the design
of a successful aggregation strategy over the batches (see for instance Ref. [25]). The extension of
the approach proposed in Ref. [5] to handle systematic uncertainties in the split-aggregation NPLM
strategy is subject of ongoing study and left for future work.

The potential application of the new batch-based NPLM strategy extends beyond the offline anal-
ysis, to quasi-online signal-agnostic analyses of streamed data that are only temporarily available.
Online approaches to data analyses allow to inspect collider data at the experiments prior the stage
of filtering applied by the triggers, opening the way to the exploration of phase space regions never
analysed before, at significantly high rates. Efforts in this direction are ongoing at the LHC experi-
ments. The CMS experiment is investigating new approaches to analyse the experimental data at the
collision rate of 40 MHz with focus on the muon detector chambers and the electromagnetic calorime-
ters [26, 27]. Moreover, the LHCb experiment has recently upgraded to a triggerless data readout at
a rate of roughly 30 MHz, with partial event reconstruction that allows to reduce the rate down to
1 MHz prior the final trigger stage [28]. In this work we proposed two possible solutions to run the
NPLM algorithm over a continuous stream of data under storage and computational resources con-
straints. In case of limited storage, we propose to train NPLM over multiple batches and evaluate the
test only on one batch available for long term storage (NPLM-ONE). In complete absence of perma-
nent storage, we propose to train NPLM over multiple batches and perform a goodness-of-fit test of
the aggregated density model following the saturated likelihood-ratio approach (NPLM-SAT). Exper-
iments run under constrained storage scenarios (NPLM-ONE) show that performing the aggregation
over batches improves the modelling of the signal increasing the power of the NPLM test applied to
a single batch. As for the saturated test, we observe sensitivity powers comparable to those of the
NPLM algorithm applied to the full statistics when the signal lays on high density regions, while the
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power is only partially recovered for signals localised in the tails. In both cases, the sensitivity is ex-
pected to scale as the statistics of the processed data increases. Online analysis is a promising avenue
for anomaly detection. The smart use of machine learning algorithms can leverage large statistics
to efficiently navigate unexplored data and recognise novel rare processes of unexpected nature or
location. The studies presented in this work are a first step in the direction of investigating online or
quasi-online solutions for statistical anomaly detection with the NPLM algorithm. Detailed studies
on scalability and uncertainties quantification in typical LHC data streaming scenarios are left for
future work.
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S1. Supplementary Materials

S1.1. Datasets details

EXPO 1D. This simple univariate setup introduced in Ref. [3] and further studied in Ref. [5, 7]
represents an energy or transverse-momentum spectrum that falls exponentially. Such type of distri-
butions are fairly common in collider physics experiments. Studying GoF techniques in this setup is
thus illustrative of some of the challenges associated with the search for new physics at these experi-
ments. The density distribution under the reference model is defined as

n(x|R) = N(R) e−x , (S1)

where N(R) denotes the number of expected events in the dataset. In our studies we set N(R) at 16k
events for the full dataset D, and we consider batches of size 8k (2 batches), 4k (4 batches) or 2k (8
batches) events. To test the model ability to detect features of various narrowness and in different
locations, we consider four Gaussian signals

n(x|Gµ,σ) = N(S)
1√

2πσNP,i
e−

(x−µ)2

2σ2 , (S2)

and an excess in the tail defined by

n(x|E) = N(S)
2

x2e−x . (S3)

The data distribution under the alternative hypotheses has therefore the following form

n(x|Hi) = n(x|R) + n(x|S) , (S4)

with S = {Gµ,σ, E}. For this toy model, the ideal test statistic according to Neyman–Pearson can be
computed analytically as

tS
id(D) = 2 log

[
e−N(S) ∏

x∈D

n(x|S) + n(x|R)
n(x|R)

]
. (S5)

The fraction of signal injection over reference events, N(S)/N(R), the Z-score|| for the ideal test
(Zid), as well as the location µ and scale σ of the Gaussian signals are reported in Table S1.
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µ σ N(S)/N(R) Zid (full batch)

Gaussian peaks bulk 1.6 0.16 1.5 · 0−2 4.9
broad 4 0.64 6.5 · 0−3 4.2
narrow 4 0.01 1.5 · 0−3 4.8
tail 6.4 0.16 1.5 · 0−3 4.0

Tail excess excess 1.5 · 0−2 4.5

Table S1: Summary of the 1D signal benchmarks.
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Fig. S1: Expo-1D signal benchmarks

Running the NPLM algorithm requires a reference sample (R) to compare the data D with. Our
R sample is composed of NR = 200k events, sampled according to the R hypothesis. It should be
noticed that this studied is conducted under the assumption that we can sample synthetic data from
the R hypothesis, which is perfectly known, at will.

Dimuon 5D. The second benchmark considered in this work consists of a set of Monte Carlo sim-
ulated proton-proton collisions happening at 13 TeV at the LHC, with two opposite charged muons
in the final state Ref. [29]. In this dataset, each event is represented by five variables describing the
kinematics of the dimuon system: the transverse momentum of each muon (pT,1(2)), their pseudo-
rapidities (η1(2)), and the relative azimuthal angle between the two objects (∆ϕ12 = ϕ1 − ϕ2). We
focus on final states with transverse momenta greater than 20 GeV, pseudorapidities lower than 2.1
in absolute value, and with invariant mass of the dimuon system larger than 60 GeV. The dominant
background process in this configuration is the Drell-Yan, that for sake of simplicity we consider
as the only source of background. In our experiments the total number of expected events in the
SM background hypothesis is around N(R) = 8000, after the acceptance selections are applied. We
then study the impact of splitting the data in four batches and combining them via the batch-based
strategy proposed in Section 3. As signal benchmarks, we considered a set of Z′ bosons with vari-
able mass and width and a set of EFT scenarios described by the dimension-6 4-fermions Lagrangian
cW
Λ Ja

Lµ Jµ
La, with variable Wilson coefficients. Details on the signal benchmarks are given in Table S2.

||The Z-score is defined as the quantile of a standard normal distribution whose survival function matches the p-value
p:

Z = Γ−1(1 − p)
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Mass (GeV) Σ (GeV) N(S)/N(R) Zid (full batch)

Z’ scenarios
600

16 6 · 10−4 3
16 1.5 · 10−3 7.1

300
8 2.5 · 10−3 5
8 5 · 10−3 8.8

200
5 5 · 10−3 5.1
5 1 · 10−2 9.1

cw(TeV−2) N(D)/N(R)

EFT scenarios 1.0 1.002 3.7

Table S2: Summary of the MUMU signal benchmarks. The signal yields, N(S), and data yileds, N(D), are the
ones expected for the luminosity of one batch in our experiments configuration.
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CMS-L1 24D. As supplementary material we report the marginal distribution of the SM dataset
and the four signal benchmarks over the 24 input variables considered in this work (Figures S2, S3).
The narrow peak at zero present in all plots is the effect of “zero padding” (see main text for more
comments).
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Fig. S2: Input features for the CMS-L1-24D dataset (panel 1). In each row we show the transverse momen-
tum, pseudorapidity and azymuthal angle of an object.
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Fig. S3: Input features for the CMS-L1-24D dataset (panel 2). In each row we show the transverse momen-
tum, pseudorapidity and azymuthal angle of an object.
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S1.2. Improving regularization and sensitivity by aggregating over batches.

In this Appendix we provide additional plots showing the power curves of the aggregation method
NPLM-ALL proposed in this work, both for the univariate EXPO-1D dataset (Figure S4) and for
the multivariate MUMU-5D one (Figures S5 and S6). The power of the method is compared with a
simple sum of tests (details in Sections 3 and 3.1).
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Fig. S4: EXPO-1D, NPLM-ALL. Power curves for tAGGR (top row) and tSUM (bottom row) at different number
of batches. Each column shows a different signal benchmark. Data splitting improves the performances of
tAGGR, while degrades tSUM.
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Fig. S5: MUMU-5D, NPLM-ALL (panel 1). Power curves for tAGGR (top row) and tSUM (bottom row) at
different number of batches. Each column shows a different signal benchmark. Data splitting maintains or
improves the performances of tAGGR, while degrades tSUM.
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Fig. S6: MUMU-5D, NPLM-ALL (panel 2). Power curves for tAGGR (top row) and tSUM (bottom row) at
different number of batches. Each column shows a different signal benchmark. Data splitting maintains or
improves the performances of tAGGR, while degrades tSUM.

S1.3. Impact of aggregation on a single batch test

We provide in Figure S7 additional plots showing the power curves of the aggregation method
NPLM-ONE proposed in this work. The power of the method is compared with a simple sum of
tests (details in Sections 3 and 3.2).

S1.4. Saturated test statistic

In this Appendix we provide additional plots showing the power curves of the aggregation method
NPLM-SAT proposed in this work (see Figures S8 and S9). The power of the method is compared
with a simple sum of tests (details in Sections 3 and 3.3).
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Fig. S7: NPLM-ONE. DIMUON-5D. Power curves for the aggregated test tAGGR when evaluated over one
single data batch (light blue line) and over the full dataset (green line), compared with the power of the test
learnt and evaluated over one data batch (black line). The aggregation improves the accuracy over the learnt
alternative model enhancing the sensitivity with respect to the single batch test.
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Fig. S8: NPLM-SAT. EXPO-1D. Comparison of the aggregated and saturated test statistic power curves for
a narrow gaussian signal (left panel), a broad gaussian signal (central panel), and a non resonant excess in
the tail (right panel) of the exponential falling reference distribution. The experiments have been performed
splitting the dataset in 8 batches. We show in black the power curve of the saturated test (NPLM-SAT), in
lightblue the power curve of the aggregated test evaluated over the full dataset (NPLM-ALL), and in green the
one of the aggregated test evaluated over one batch (NPLM-ONE).
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Fig. S9: NPLM-SAT. DIMUON-5D. Comparison of the aggregated and saturated test statistic power curves
for a Z’ resonant signal in the bulk (left panel) and in the tail (right panel) of the mass spectrum considered in
this work. The experiments have been performed splitting the dataset in 4 batches.
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