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Abstract 

The rise of dockless bike-sharing systems has led to increased interest in using bike-sharing 

data for sustainable transportation and travel behavior research. However, these studies have 

rarely focused on the individual daily mobility patterns, hindering their alignment with the 

increasingly refined needs of active transportation planning. To bridge this gap, this paper 

presents a two-layer framework, integrating improved flow clustering methods and multiple 

rule-based decision trees, to mine individual cyclists' daily home-work commuting patterns 

from dockless bike-sharing trip data with user IDs. The effectiveness and applicability of the 

framework is demonstrated by over 200 million bike-sharing trip records in Shenzhen. Based 

on the mining results, we obtain two categories of bike-sharing commuters (74.38% of Only-

biking commuters and 25.62% of Biking-with-transit commuters) and some interesting 

findings about their daily commuting patterns. For instance, lots of bike-sharing commuters 

live near urban villages and old communities with lower costs of living, especially in the 

central city. Only-biking commuters have a higher proportion of overtime than Biking-with-

transit commuters, and the Longhua Industrial Park, a manufacturing-oriented area, has the 



2/58 

 

longest average working hours (over 10 hours per day). Moreover, massive users utilize bike-

sharing for commuting to work more frequently than for returning home, which is intricately 

related to the over-demand for bikes around workplaces during commuting peak. In sum, this 

framework offers a cost-effective way to understand the nuanced non-motorized mobility 

patterns and low-carbon trip chains of residents. It also offers novel insights for improving 

the bike-sharing services and planning of active transportation modes. 

Keywords: Dockless Bike-sharing; Spatiotemporal Flow Clustering; Rule-based Decision 

Trees; Commuting Pattern; Data Mining; Sustainable Transportation  

1. Introduction 

Compared with other modes of mobility, cycling is considered an eco-friendly, healthy, 

and sustainable mode of transportation, which has a beneficial effect on reducing traffic 

congestion, energy consumption, and air pollution (DeMaio, 2009; Handy et al., 2014). In 

the past decade, the spread of the bike-sharing programs has further expanded the benefits of 

cycling. For example, the convenience of mobile payments and the flexibility of station-less 

rental services have made dockless bike-sharing, one of the innovative bike-sharing systems, 

widely accepted and utilized worldwide (Heinen et al., 2010; Zhang & Mi, 2018; Si et al., 

2019). These bike-sharing programs have empowered cycling to play an essential role in 

solving the first-and-last-mile trip problem and enhancing the resilience of urban 

transportation networks (Fishman, 2016; Teixeira et al., 2021; L. Cheng et al., 2022). They 

are also regarded as a means of providing cleaner transportation in the building of smart cities 

(Eren & Uz, 2020). Therefore, how to increase the cycling willingness of residents to promote 
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the development of non-motorized and active transportation has received extensive research 

attention. 

In the early years, relevant studies were conducted based on travel survey data which 

have the limitations of high cost, low timeliness, and small sample size (S. Li et al., 2021). 

With the advent of big data era and new bike-sharing systems, the availability of GPS datasets 

from bike-sharing operators have opened opportunities for cycling-related research. Existing 

literature has proven that such GPS trajectory data have the advantages of objectivity, high 

spatiotemporal resolution, and large sample volume (Lu & Liu, 2012). Meanwhile, many 

scholars have used these data for cycling influence mechanisms analysis (Shen et al., 2018; 

Ma et al., 2020; F. Gao et al., 2021; D. Wang et al., 2024; Zhu et al., 2024), travel pattern 

mining (X. Zhou, 2015; Du et al., 2019; Cao et al., 2020; F. Gao et al., 2022; X. Xu et al., 

2023; Dzięcielski et al., 2024), trip purpose inference (Xing et al., 2020; S. Li et al., 2021; 

Ross-Perez et al., 2022), socio-economic benefit assessment (Zhang & Mi, 2018; Luo et al., 

2019; Y. Wang & Sun, 2022; Lv et al., 2024), and transportation equity evaluation (Meng & 

Brown, 2021; Z. Zhou & Schwanen, 2024; B. Wang et al., 2024). For instance, Shen et al. 

(2018) explored the factors influencing bike usage based on nine consecutive days of bike-

sharing trip records in Singapore, and found that high land use mixtures, easy access to public 

transportation, and more available cycling facilities are positively correlated with bike-

sharing usage. In a study that used a week of bike-sharing data collected in Shenzhen, Li et 

al. (2021) proposed a framework for inferring the trip purpose of cyclists based on gravity 

models and Bayesian rules, and revealed the spatiotemporal patterns of nine categories of 

travel activities. Additionally, Y. Zhang & Mi (2018) extracted bike-sharing usage frequency 
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and trip distances in Shanghai, and estimated the environmental benefits of bike-sharing on 

emission reduction. In a recent study, B. Wang et al. (2024) used the Gini coefficient and 

panel regression method to reveal serious inequities in bike-sharing usage within 

disadvantaged communities (with low education levels and high crime rates) in Chicago, 

although built environment factors such as park space were found to have a positive effect 

on promoting bike-sharing trips in these communities. These studies are meaningful as they 

deepen our understanding of the role that bike-sharing plays in urban transportation and 

residents' travel behaviors.  

However, the aforementioned research based on bike-sharing trip data has rarely 

focused on the daily travel habits of individual cyclists, despite some leveraging datasets that 

contain user IDs. To date, the most relevant research has been conducted by a limited number 

of scholars who attempt to explore the travel characteristics of different user groups, utilizing 

user attributes information (e.g., age, gender, or membership) available within the docked 

bike-sharing trip dataset (X. Zhou, 2015; Y. Yao et al., 2019; Pellicer-Chenoll et al., 2021; 

Reilly et al., 2022). For example, Zhou (2015) constructed bike flow similarity graphs and 

used community detection techniques to discover the different travel trends for customers 

and subscribers in Chicago. Pellicer-Chenoll et al. (2021) explored the docked bike-sharing 

usage patterns of male and female users on weekdays in Valencia using graph theory and 

Voronoi spaces, and they found that female users are more concerned with factors related to 

travel safety. Although these studies contributed to the insights into the differences in travel 

patterns within the cycling groups, these methods are not applicable to most bike-sharing trip 

dataset that include few individual attributes for privacy concerns. Moreover, the relevant 
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studies mentioned above merely categorizes cycling groups based on the user attributes, 

rather than extracting daily bicycle mobility patterns at the individual level.  

Notably, mining the individual daily mobility patterns of bike-sharing users at a finer 

resolution holds significant implications for the increasingly focus on sustainable and active 

transportation planning (Ferretto et al., 2021). For instance, it can serve as a low-cost, high-

coverage technique to complement traditional, expensive, and less comprehensive travel 

surveys, assisting urban planners and bike-sharing operators in understanding residents' daily 

low-carbon trip chains and cycling needs. Furthermore, if bike-sharing users' residential and 

workplace information can be identified from individual daily mobility patterns, it would 

enable the integration of various socioeconomic data (e.g., housing price) to explore fine-

scale studies of cycling behaviors considering population differentiations (Y. Xu et al., 2018; 

Wu et al., 2023), thereby providing decision-making basic for the building of human-oriented 

and bicycle-friendly environments. 

So far, there have been some studies proposing methodological frameworks for mining 

individual daily mobility patterns based on specific geotagged big data, such as cellphone 

call detail records (CDR) data (Kung et al., 2014; Jiang et al., 2017; Yin et al., 2021), check-

in data (Z. Cheng et al., 2011; L. Li et al., 2013; Niu & Silva, 2023; Wu et al., 2023), and 

smart card data (Sari Aslam et al., 2019; Zhang et al., 2020; Huang et al., 2024). However, 

these studies' utilized geotagged data do not include any fields related to cycling trips, thus 

we cannot identify individual cycling patterns from their mining results. Additionally, due to 

differences in data features, travel characteristics, and influencing factors, dockless bike-

sharing trip data are not suitable as inputs for these frameworks. For example, Jiang et al. 
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(2017) developed an integrated pipeline that can parse, filter, and expand the CDR data to 

extract human mobility patterns. However, since most bike-sharing trip data only record 

cycling origins and destinations (ODs), rather than capturing continuous trajectory like CDR 

data, the relevant extraction methods are not suitable for bike-sharing data. Moreover, in a 

study leveraging Twitter check-in data, Z. Cheng et al. (2011) proposed a recursive grid 

search method to detect users' homes and subsequently analyze their mobility patterns. 

Although it is feasible to reconstruct bike-sharing data into check-in-like data by delineating 

the origin and destination of each trip, this approach leads to the loss of key cycling attribute 

(e.g., trip distance and duration). In other words, using bike-sharing data to check-in-based 

mining methods can only exploit partial data information. Compared with the geotagged data 

mentioned above, the features of smart card data are closer to those of bike-sharing data. 

Several studies have proposed methods based on such data to extract users' daily activities, 

such as a heuristic model developed by Sari Aslam et al. (2019) for detecting the residence 

and workplace of individuals, decision tree methods presented by Y. Zhang et al. (2020) and 

Huang et al. (2024) for identifying the stay areas and daily activity spaces of individuals. 

Nevertheless, noted that the locations of transit stations in the smart card data are fixed, which 

is significantly different from dockless bike-sharing. Moreover, the travel characteristics and 

influencing factors of public transportation also differ from those of cycling (e.g., shorter trip 

distances, more affected by weather and etc.). Hence, there are also limitations in using the 

such extraction methods for dockless bike-sharing data. 

In summary, existing studies on bike-sharing have rarely focused on mining mobility 

patterns at the individual level, and the methods for individual mobility pattern extraction 

based on other geotagged data are not suitable for dockless bike-sharing data. To address 
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these gaps, this paper will present a two-layer framework that aims to capture the most 

dominant daily mobility pattern (i.e., home-work-commuting) of individual dockless bike-

sharing users. Specifically, in Layer 1, we develop flow clustering methods that improved 

spatiotemporal constraints tailored to the travel characteristics of bike-sharing. This 

enhancement allows us to derive spatiotemporal flow clusters that effectively representing 

individual daily travel trajectories, from the biking records that lack accurate geocoding 

information. However, these trajectories identified in Layer 1 still lack activity semantics. 

Therefore, in Layer 2, we further establish rule-based decision trees that incorporate round-

trip journeys, working hours, and public transport transfers for identifying daily commuting 

trips from individual spatiotemporal flow clusters. Based on individual daily commuting 

behaviors, we divide bike-sharing users into Only-biking and Biking-with-transit commuters. 

To examine the effectiveness and applicability of this two-layer framework, this paper 

conducts an empirical study using comparative analysis and residence location testing in 

Shenzhen, China, a metropolis with over one million daily bike-sharing trips. Finally, based 

on the mining results of our framework, we analyze the daily commuting characteristics and 

spatiotemporal patterns of individual bike-sharing users, and discuss some meaningful 

findings and policy implications.  

2. Study area and dataset 

2.1 Study area 

Shenzhen is located in the Guangdong-Hong Kong-Macao Bay Area, which is one of 

the most densely populated and economically prosperous regions in China. By the end of 

2021, Shenzhen has a permanent population of over 17 million and a regional gross domestic 
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product (GDP) of over 390 billion EUR or 470 billion USB (based on the average exchange 

rate of 2021) (Guangdong Statistics Bureau, 2021). The high-frequency population mobility 

and booming socioeconomic activities are accompanied by huge travel demand. To promote 

low-carbon transportation and encourage more residents to adopt eco-friendly mobility, 

Shenzhen has made considerable efforts to expand its public transportation system (11 metro 

lines and 927 bus lines have been opened as of 2021, Transportation Bureau of Shenzhen, 

2021) and non-motorized transport infrastructure (e.g., the introduction of bike-sharing 

systems and the planning of dedicated bike lanes). According to the latest official statistics, 

the proportion of non-motorized trips (i.e., cycling and walking) in Shenzhen has consistently 

remained above 50%, while the share of green transportation modes (including public transit 

and non-motorized travel) has reached 77.42% in recent years (Shenzhen Government Online, 

2021).  

Among them, the dockless bike-sharing system was first introduced to Shenzhen in 2016. 

After the initial period of market dominance and the subsequent period of policy regulation, 

bike-sharing services have been integrated into the daily mobility of local residents. As of 

July 2022, Shenzhen has over 41,000 dockless bike-sharing with an average of approximately 

1.29 million daily trips (Statistics Bureau of Shenzhen, 2022). Usage hotspots are mainly 

located in financial centers, around high-density residential areas and within industrial parks 

in districts such as Futian, Nanshan, Luohu, Bao'an, and Longhua (Fig.1). These hotspot areas 

are typically characterized by convenient connections to public transit, well-developed non-

motorized transport infrastructure, or close proximity between residential and employment 

areas (F. Gao et al., 2022). The substantial volume of bike-sharing trips offers a rich resource 

for this paper to mine individual daily cycling commuting patterns. 
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Fig. 1 Spatial and temporal distribution of raw dockless bike-sharing data in the study area. 

2.2 Data description 

The dockless bike-sharing dataset used in this study is collected from the Shenzhen 

government data open platform (https://opendata.sz.gov.cn/). The dataset stores over 244 

million riding records between January and August 2021, which includes the user IDs and 

the coordinates and time information of OD. Notably, all user IDs are encrypted and no 

personal privacy information can be obtained (Table 1). In addition, considering the integrity 

and continuity of the raw dataset, we finally extract approximately 146 million records that 

occurred on all weekdays between April 8 and August 28, 2021 for the empirical study below 

(Fig.1). The exclusion of records during weekends and holidays is due to the substantial 

occurrence of non-commuting trips during these periods, which could increase data noise. 

Moreover, this study also acquire historical daily weather data for the study period 

(https://lishi.tianqi.com/shenzhen/), public transportation station data (including location and 

passing bus or metro routes information) in 2021 (https://lbs.amap.com/), and the latest 

residential land use data (obtained from Shenzhen Municipal Housing and Construction 

https://lbs.amap.com/
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Bureau, https://zjj.sz.gov.cn/fwzljgcx). The weather data is applied to extract active bike-

sharing users, while the station data is employed to identify the transfer behaviors in 

individual daily commuting trips. As for residential land parcels data, it is used to validate 

the identification results of individual home locations of bike-sharing users. The details will 

be presented in Section 3. 

Table 1 Example of dataset. 

User ID Starting Time Origin Ending Time Destination 

9fb2d1ec6142ace4d74

05b******** 

2021/01/30 

13:19:32 

114.0082,22

.6392 

2021/01/30 

13:23:18 

114.0104,22

.6348 

1184eecf9f54441b389

bcf******** 

2021/01/31 

23:49:12 

113.8540,22

.5884 

2021/01/31 

23:54:37 

113.8528,22

.5840 

30a457b24805ffab03b

9c4******** 

2021/01/30 

13:09:10 

114.0228,22

.6506 

2021/01/30 

13:23:24 

114.0406,22

.6404 

 

3. Method 

The flowchart of this paper depicted in Fig.2. Initially, "Data filtering and active bike-

sharing users identification" aims to eliminate abnormal cycling records and bike-sharing 

inactive users to enhance data quality. The novel two-layer framework is then employed to 

mine individual daily cycling commuting patterns, which is the core of this paper. Afterwards, 

"Framework evaluation and validation" intends to examine the effectiveness and applicability 

of our framework through the comparative analyses of flow clustering methods and the 
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testing of users' residences. Finally, we aggregate and visualize the mining results of 

individual bike-sharing users to reveal their commuting regularities and spatiotemporal 

patterns. 

 

Fig.2 Research flowchart of this paper. 

3.1 Data filtering and active bike-sharing users’ identification 

To ensure the accuracy and authenticity of the bike-sharing data applied to this study, 

anomalous or redundant records need to be cleaned. First, with reference to existing studies 

(F. Gao et al., 2021; Shen et al., 2018), the unrealistic long-or-short distances or durations 

cycling trips due to GPS drifting or misoperations are eliminated. Afterwards, we aggregate 

the trips of each bike-sharing user based on user IDs and exclude duplicate records existing 

within the same user. Ultimately, about 2.53 million users' cycling records are extracted. 

Moreover, by tallying the number of active days (i.e., have at least one trip record within 

a day) for users in the filtered weekdays data (Fig.3(a)), we observe the issues of data sparsity. 

While some users rely heavily on bike-sharing for their daily activities, while others, such as 

tourists or occasional cyclists, contribute sporadically to the dataset. For the latter, their 
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limited trips cannot adequately capture their daily cycling habits. Hence, it is necessary to 

exclude these sparse users to ensure a meaningful dataset for revealing relatively complete 

mobility patterns of individuals. 

In a related study, Xu et al. (2018) defined active users in CDR data as those with at 

least one record for at least half of the study period. However, for bike-sharing dataset, it is 

crucial to consider the influence of weather on daily cycling. Existing studies have indicated 

that rainfall can significantly restrict cycling during commuting hours, as people tend to 

choose other safer transport modes (Reiss & Bogenberger, 2016; Shen et al., 2018). Similarly, 

in the dataset we used, bike-sharing usage is observed to be lower on drizzly and rainy days 

(Fig.3(b)). Hence, expanding on the approach of Xu et al. (2018), we exclude the rain-

impacted weekdays to establish the threshold for active bike-sharing users, calculated as half 

of the total weekdays during the data collection period minus the number of drizzly and rainy 

days. In this study, with 100 weekdays and 21 drizzly and rainy days, the threshold is set at 

29 days, thus identifying approximately 0.75 million active bike-sharing users for subsequent 

processing. 

 

Fig.3 (a) Histogram of the number of active days for bike-sharing users on weekdays; (b) 

Relationship between weekdays bike-sharing usage and different weather. 
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3.2 Two-layer framework for individual daily commuting patterns of bike-sharing users 

Fig. 4 shows the diagram of two-layer framework. In Layer 1, to address the lack of 

geocoding information in the records of dockless bike-sharing, we propose an improved 

spatiotemporal flow clustering method based on the travel characteristics of bike-sharing*. 

This method can extract individual flow clusters representing the daily cycling trajectories of 

each user. In Layer 2, multiple rule-based decision trees that integrate round-trip journeys, 

working hours, and public transport transfers is built to identify of bike-sharing commuting 

behaviors from the individual flow clusters extracted in Layer 1. The identification results 

are used to classify different categories of bike-sharing commuters. 

 

 
* The sample data and code for the two-layer framework are openly available in the GitHub repository at 

https://github.com/zhuangcg/framework-integrating-STF-clustering-and-DTs. 



14/58 

 

Fig.4 Schematic diagram of two-layer framework (the output of each step is the input 

of the next step).  

3.2.1 Layer 1: Spatiotemporal flow clustering - individual cycling flows clustering 

In this paper, the methods in Layer 1 can be divided into three essential steps: Individual 

Spatial flow clustering, Individual Spatiotemporal flow clustering, and Neighbor Individual 

Spatiotemporal flows (ISTFCs) merging.  

Individual spatial flow clustering:  

This step aims to extract the daily trajectories of individual bike-sharing users from the 

spatial perspective. In this study, we apply the spatial flow clustering method proposed by 

(X. Gao et al., 2020) and make enhancements based on the travel distance of bike-sharing. 

In the original method, spatial dissimilarity 𝑆𝐷𝑖𝑗 is the key indicator for clustering, which is 

calculated as follows: 

𝑆𝐷𝑖𝑗 = √𝑠𝑑𝑖𝑗𝑜
2 + 𝑠𝑑𝑖𝑗𝑑

2 [1] 

where 𝑠𝑑𝑖𝑗𝑜  and 𝑠𝑑𝑖𝑗𝑑  respectively represent the spatial dissimilarity between the OD of 

flows 𝑖 and 𝑗, which are defined as follows: 

{
 
 

 
 𝑠𝑑𝑖𝑗𝑜 =

𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝑂𝑗)

𝛼 × min(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗)

𝑠𝑑𝑖𝑗𝑑 =
𝑑𝑖𝑠𝑡(𝐷𝑖 , 𝐷𝑗)

𝛼 × min(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗)

, 𝛼 × min(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗) ≤ 200 [2] 

where 𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝑂𝑗)  and 𝑑𝑖𝑠𝑡(𝐷𝑖 , 𝐷𝑗)  denote the Euclidean distance between the same 

endpoints of two flows. 𝑙𝑒𝑛𝑖 and 𝑙𝑒𝑛𝑗 are the lengths of two flows, respectively. 𝛼 is a size 

coefficient which sets the radius of the boundary circle together with 𝑚𝑖𝑛(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗), as 
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displayed in Fig.4(a). In this paper, referring to existing research (X. Gao et al., 2020; Y. Liu 

et al., 2022), 𝛼 is set to 0.3.  

However, note that the formula of 𝑆𝐷𝑖𝑗 determines that the radius of the boundary circle 

increases with the lengths of the flow, thereby reducing the spatial constraint on flow 

clustering. Although this feature has limited impact on regional-level flow studies, for 

individual-level related studies, it introduces the noise into clustering results and increases 

the uncertainty into the extent of individual's daily activities. For example, when 

𝑚𝑖𝑛(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗)=3000 m, the boundary circle radius is 900 m, covering an area of 2.54 km2. 

Hence, to obtain more realistic individual biking flows, we cap the maximum radius of 

boundary circle at 200 m. This threshold is considered to better aggregate bike-sharing flows 

and infer the travel activities of cycling users (Yang et al., 2019; S. Li et al., 2021). After 

settings parameters, flows 𝑖 and 𝑗 are deemed spatially similar if𝑆𝐷𝑖𝑗≤1 (X. Gao et al., 2020). 

Then, taking all riding records of each active bike-sharing user as input, spatial flow 

clustering is performed according to the algorithm proposed by X. Gao et al. (2020). Finally, 

each individual spatial flow cluster (ISFC) can be denoted as {𝐼𝐷𝑈 , 𝐼𝐷𝐼𝑆𝐹𝐶 , (𝑂, 𝐷), 𝑛}, where 

𝐼𝐷𝑈 and 𝐼𝐷𝐼𝑆𝐹𝐶  are the unique identifiers of a user and his/her each ISFC, (𝑂, 𝐷) are the OD 

medoids of all biking flows in ISFC, and 𝑛 is the number of flows (i.e., trip records) in ISFC. 

Notably, given that some ISFCs may include insufficient flows to represent a user's daily 

mobility, we set a minimum threshold for the flows number in each user's ISFCs through the 

knee-point detection method (See Appendix A): one-fifth of the number of weekdays with 

recorded bike-sharing trips. Only the ISFCs that satisfy the threshold requirement are deemed 

reliable and advance to the next step. 
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Individual spatiotemporal flow clustering:  

Based on the results of the spatial flow clustering approach, this step further improves 

the spatiotemporal flow clustering method proposed by X. Yao et al. (2018) to extract 

individual daily mobility patterns from the temporal perspective. The core of their method is 

the measurement of temporal similarity 𝑡𝑠𝑖𝑗, which is defined as follows: 

𝑡𝑠𝑖𝑗 =
𝑇𝑖 ∩ 𝑇𝑗
𝑇𝑖 ∪ 𝑇𝑗

[3] 

where 𝑇𝑖 = [𝑜𝑡𝑖 , 𝑑𝑡𝑖] and 𝑇𝑗 = [𝑜𝑡𝑗 , 𝑑𝑡𝑗] denote the time spans of flows 𝑖 and 𝑗 in the same 

ISFC, respectively. 𝑇𝑖 ∩ 𝑇𝑗 is their intersection, while 𝑇𝑖 ∪ 𝑇𝑗 is their union (Fig.4(b)). If the 

time spans of 𝑖 and 𝑗 overlap, 𝑡𝑠𝑖𝑗 is greater than zero. For instance, when 𝑇𝑖 = [8: 00, 8: 40] 

and 𝑇𝑗 = [8: 15,8: 50], 𝑇𝑖 ∩ 𝑇𝑗 is 25 min while 𝑇𝑖 ∪ 𝑇𝑗 is 50 min, then 𝑡𝑠𝑖𝑗 is 0.5.  

It is noteworthy that, due to the individual-level focus and the average of 3.6 bike-

sharing trips per weekday among active users, our study deems it is impractical to calculate 

𝑡𝑠𝑖𝑗 for travel flows on specific adjacent dates, as conducted by X. Yao et al. (2018). Instead, 

this paper concentrates on the temporal distribution of cycling activities within a 24-hour 

timeframe. Simultaneously, this strategy is also more conducive to capturing the genuine 

mobility of bike-sharing users, because most residents follow regular daily travel patterns, 

especially commuting trips. For instance, suppose that 𝑇𝑖 above occurs on Monday and 𝑇𝑗 on 

Friday, we still assume that their time spans overlap. Moreover, previous research has 

validated the application of the temporal similarity indicator in taxi trip data (X. Yao et al., 

2018). Nevertheless, bike-sharing trips are typically shorter (the average cycling duration for 

the dataset we used is around 10 min), which can result in a zero temporal similarity even if 
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the travel time of the two biking flows are sufficiently close (e.g., when 𝑇𝑖=[8:05,8:15] and 

𝑇𝑗=[8:15,8:25] , 𝑡𝑠𝑖𝑗=0). To address this, we introduce an expansion coefficient 𝛽 to 𝑇𝑖 and 

𝑇𝑗 (i.e., 𝑇𝑖 = [𝑜𝑡𝑖 − 𝛽, 𝑑𝑡𝑖 + 𝛽] and 𝑇𝑗 = [𝑜𝑡𝑗 − 𝛽, 𝑑𝑡𝑗 + 𝛽]) to ensure that the time-adjacent 

cycling flows can be identified and clustered. In this study, 𝛽 is set to 30 min (more details 

in Section 4.1). After the above improvement, referring to the original method, we consider 

that the travel times of flows 𝑖 and 𝑗 are adjacent when 𝑡𝑠𝑖𝑗≥0.5. 

Later, we use the biking records including in each user's ISTC as input and execute the 

spatiotemporal flow clustering algorithm by X. Yao et al. (2018). Each ISTFC can be denoted 

as {𝐼𝐷𝑈𝑆𝐸𝑅 , 𝐼𝐷𝐼𝑆𝐹𝐶 , 𝐼𝐷𝐼𝑆𝑇𝐹𝐶 , (𝑂, 𝐷), 𝑛
′, 𝑇𝑜, 𝑇𝑑}, where 𝐼𝐷𝐼𝑆𝐹𝐶  is the unique identifier of the 

ISFC to which the ISTFC belongs, 𝐼𝐷𝐼𝑆𝑇𝐹𝐶  is the unique identifier of each ISTFC. 𝑛′ is the 

flows number in the ISTFC, and 𝑇𝑜 and 𝑇𝑑 are the average starting and ending time of the 

biking flows in each ISTFC, respectively. The resulting ISTFCs are used for next processing. 

Neighbor ISTFCs merging:  

By observing the result of "Individual spatiotemporal flow clustering", we find that 

some ISTFCs are spatiotemporally adjacent but not merged, as illustrated in Fig.4(c). The 

reasons are relevant to two aspects: First, some bike-sharing users have multiple optional 

routes to and from the same daily activity places. The locations of ODs (e.g., different 

entrances to an industrial park) and the direction of their trip flows vary with the different 

routes, which leads to difficulties in clustering them into the same ISTFC. Second, in 

"Individual spatial flow clustering" step, the restriction of boundary circle may result in 

dividing the cycling flows into more ISFCs. Nevertheless, the improvement of 𝑆𝐷𝑖𝑗  is 

essential to extract more accurate individual daily trajectories. To improve the utilization of 
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biking records for these affected users, we examine and merge neighbor ISTFCs in the last 

step of Layer 1. 

Given a set of all ISTFCs for an active bike-sharing user 𝐹𝐶 and the size coefficient 𝛼, 

the process of merging neighbor ISTFCs is shown in Algorithm 1. In short, two ISTFCs 𝐹𝐶𝑖 

and 𝐹𝐶𝑗 that can be merged must satisfy the following conditions:    

(1) The temporal similarity 𝑡𝑠𝑖𝑗 is not less than 0.5, which is consistent with " Individual 

spatiotemporal flow clustering" step;  

(2) The boundary circle at the same endpoints of 𝐹𝐶𝑖 and 𝐹𝐶𝑗 must intersect (i.e., the 

distance between these endpoints should be less than twice the radius of the boundary 

circle 𝑟 , which is calculated consistent with "Individual spatial flow clustering" 

step). 

When 𝐹𝐶𝑖 and 𝐹𝐶𝑗 satisfy the above conditions, 𝐹𝐶𝑗 is merged by 𝐹𝐶𝑖. 

Algorithm 1 Merging Neighbor ISTFCs 

Input: 𝐹𝐶 = {𝐹𝐶𝑖|1 ≤ 𝑖 ≤ 𝑛} ← a set of all ISTFCs for an active bike-sharing user, in 

descending order according to the flows number they contain; and 𝛼 ← the size coefficient; 

Steps: For each ISTFC 𝐹𝐶𝑖, where 1 ≤ 𝑖 ≤ 𝑛 

For each ISTFC 𝐹𝐶𝑗, where 𝑖 < 𝑗 ≤ 𝑛 

𝑟 = 𝛼 × 𝑚𝑖𝑛(𝑙𝑒𝑛𝑖 , 𝑙𝑒𝑛𝑗) 

If 𝑟 > 200 then 𝑟 = 200 

If 𝑡𝑠𝑖𝑗 ≥ 0.5 and 𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝑂𝑗)＜2𝑟 and 𝑑𝑖𝑠𝑡(𝐷𝑖 , 𝐷𝑗)＜2𝑟 then  

Merge the two ISTFCs: 𝐹𝐶𝑖 ← 𝐹𝐶𝑖∪𝐹𝐶𝑗 and 𝐹𝐶 ← 𝐹𝐶/𝐹𝐶𝑗 

Return: A set of all ISTFCs for this user after merging 𝐹𝐶 = {𝐹𝐶𝑖|1 ≤ 𝑖 ≤ 𝑚}. 
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It is worth noting that the inputted ISTFCs for each user should be sorted in descending 

order based on the flows number they contain. This is because the ISTFCs with more biking 

records are more likely to represent the most typical daily mobility patterns of a user, and 

prioritizing these ISTFCs during the traversal process ensures that these predominant patterns 

are retained after merging processing. In addition, through the above ISTFCs merging 

process, some ISTFCs still have limitations in capturing the individual daily mobility due to 

the small number of trips they contain. To do so, we also set a minimum threshold for filtering 

ISTFCs through the knee-point detection method (See Appendix A): an ISTFC must contain 

at least 30% of the number of biking flows within its corresponding ISFC (i.e., 𝑛′ ≥ 0.3 × 𝑛). 

Only the ISTFCs that satisfy this threshold are deemed reliable and employed as inputs to 

Layer 2. 

3.2.2 Layer 2: Rule-based decision trees - daily cycling commuting behaviors mining 

While the ISTFCs acquired in Layer 1 capture the spatiotemporal patterns of individual 

daily mobility, they lack semantic information about the travel activities. In Layer 2, we build 

three rule-based decision trees considering round-trip journeys, working hours, and public 

transport transfers, aiming to mine individual commuting patterns from the ISTFCs of bike-

sharing users. 

Initially, we develop the "Candidate commuting flow identifier" decision tree (Fig.5), 

focusing on round-trip frequencies and working hours. This identifier aims to extract the 

individual candidate commuting flows (ICCFs) from the ISTFCs of each user. Specifically, 

we define an ICCF by below two criteria: 
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(1) The commuting behavior should be characterized by frequent and symmetrical (i.e., 

round-journeys) travel flows between two locations (Y. Liu et al., 2024); 

(2) There should be a substantial time interval between the biking flows in opposite 

directions, symbolizing the user's daily working hours. 

Hence, in "Candidate commuting flow identifier", given two ISTFCs 𝐹𝐶𝑖 and 𝐹𝐶𝑗 for 

a bike-sharing user, we first assess the spatial adjacency of their opposite endpoints. To be 

specific, we require that both 𝑑𝑖𝑠𝑡(𝑂𝑖 , 𝐷𝑗) and 𝑑𝑖𝑠𝑡(𝑂𝑗 , 𝐷𝑖) to be less than twice of boundary 

circle radius 𝑟. The calculation of 𝑟 is consistent with Layer 1. If 𝐹𝐶𝑖 and 𝐹𝐶𝑗 meet the spatial 

adjacency, we further evaluate whether the time interval between them exceeds the minimum 

working hours threshold  𝑇𝑤ℎ, as shown in Fig.4(d). Following Sari Aslam et al. (2019), this 

paper establishes 𝑇𝑤ℎ at 4 hours to effectively capturing the daily working behaviors of full-

time, part-time, and shift workers. If 𝐹𝐶𝑖 and 𝐹𝐶𝑗 satisfy the above two conditions, they are 

marked as an ICCF. Each ICCF can represented as {𝐼𝐷𝑈 , 𝐼𝐷𝐼𝐶𝐶𝐹 , 𝐼𝑆𝑇𝐹𝐶𝑒 , 𝐼𝑆𝑇𝐹𝐶𝑙}, where 

𝐼𝐷𝐼𝐶𝐶𝐹  is the unique identifier of the ICCF, while 𝐼𝑆𝑇𝐹𝐶𝑒 and 𝐼𝑆𝑇𝐹𝐶𝑙 denote the ISTFCs 

with earlier and later travel time, respectively. Notably, we define the STFCs closer to 8 a.m. 

as 𝐼𝑆𝑇𝐹𝐶𝑒, while the other is designated as 𝐼𝑆𝑇𝐹𝐶𝑙, as this division aligns with the daily 

routine of the vast majority of residents. Moreover, before inputting the user's ISTFCs into 

the identifier, we also sort them by the flows number they encompass in descending order to 

encapsulate the user's most predominant daily activity patterns. 
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Fig.5 Flowchart of candidate commuting flow identifier. 

Afterwards, to facilitate subsequent analysis, we simplify the identified ICCF consisting 

of a pair of ISTFCs into a single flow (Fig.4(e)). The direction of simplified ICCF (SICCF) 

is set to match the ISTFC with earlier travel time (i.e., 𝐼𝑆𝑇𝐹𝐶𝑒). Thus, for each SICCF, its 

origin (i.e., 𝑂𝐼𝐶𝐶𝐹) is the midpoint of the origin of 𝐼𝑆𝑇𝐹𝐶𝑒 and the destination of 𝐼𝑆𝑇𝐹𝐶𝑙. 

Conversely, 𝐷𝐼𝐶𝐶𝐹  is the midpoint of the origin of 𝐼𝑆𝑇𝐹𝐶𝑙  and the destination of 𝐼𝑆𝑇𝐹𝐶𝑒 . 

Additionally, we define the following eight attributes for each SICCF to identify and analyze 

individual daily commuting patterns:  

(1) Departure time for the ISTFC with earlier travel time (𝑇𝑒): the 𝑇𝑜 of 𝐼𝑆𝑇𝐹𝐶𝑒; 

(2) Departure time for the ISTFC with later travel time (𝑇𝑙): the 𝑇𝑜 of 𝐼𝑆𝑇𝐹𝐶𝑙; 
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(3) Cycling duration for the ISTFC with earlier travel time (𝐶𝑇𝑒): the difference between 

𝑇𝑜 and 𝑇𝑑 of 𝐼𝑆𝑇𝐹𝐶𝑒; 

(4) Cycling duration for the ISTFC with later travel time (𝐶𝑇𝑙): the difference between 

𝑇𝑜 and 𝑇𝑑 of 𝐼𝑆𝑇𝐹𝐶𝑙; 

(5) Cycling commuting distance (𝐶𝐷): the Euclidean distance between 𝑂𝐼𝐶𝐶𝐹 and 𝐷𝐼𝐶𝐶𝐹; 

(6) Working hours (𝑊𝐻): the difference between the 𝑇𝑑 of 𝐼𝑆𝑇𝐹𝐶𝑒 and the 𝑇𝑜 of 𝐼𝑆𝑇𝐹𝐶𝑙; 

(7) Total number of biking flows (𝑛𝑡): the sum of the biking flows in 𝐼𝑆𝑇𝐹𝐶𝑒 and 𝐼𝑆𝑇𝐹𝐶𝑙; 

(8) Cycling round-trip rate (𝑅𝑟𝑡): the ratio of the number of biking flows in 𝐼𝑆𝑇𝐹𝐶𝑒 and 

𝑛𝑡, this indicator can measure the imbalance in commuting frequencies between the 

two opposite directions 

Each SICCF is noted as {𝐼𝐷𝑈 , 𝐼𝐷𝐼𝐶𝐶𝐹 , (𝑂𝐼𝐶𝐶𝐹 , 𝐷𝐼𝐶𝐶𝐹), 𝑇𝑒 , 𝑇𝑙 , 𝐶𝑇𝑒, 𝐶𝑇𝑙 , 𝐶𝐷,𝑊𝐻, 𝑛𝑡 , 𝑅𝑟𝑡}. 

Next, we establish the "Transfer commuting flow identifier" decision tree (Fig.6), 

accounting for public transit transfers, to identify latent daily transfer commuting behaviors 

from users' SICCFs. This consideration arises from research indicating that transferring to 

public transportation, especially the metro, is the important travel purpose of bike-sharing 

(Xing et al., 2020; S. Li et al., 2021). Additionally, the integrated use of bike-sharing and 

public transport has attracted significant research attention recently (Ma et al., 2018; Guo & 

He, 2020; Fu et al., 2023; Zhu et al., 2024; Zhang et al., 2024). Therefore, it is crucial to 

determine whether bike-sharing users regularly ride to connect with public transit for their 

daily commuting. The workflow of the identifier in Fig. 6 is described as follows: 

(1) Take the public transport station data and a user's SICCF as input, and set a maximum 

transfer distance threshold 𝑇𝐷 . In this study, the 𝑇𝐷  is set to 60 m for metros 
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referring to S. Liu et al. (2022), and 30 m for buses, which are deemed less attractive 

for bike-sharing (Guo & He, 2020). 

(2) If the SICCF's departure time is outside the public transportation operating hours 

(from 6:00 to 23:30 in our study area), it is considered not connected to public 

transport. Conversely, we continue. 

(3) Identify the nearest public transport stations to the OD of the SICCF (i.e., 𝑂𝐼𝐶𝐶𝐹 and 

𝐷𝐼𝐶𝐶𝐹 ), labeled as 𝑆𝑜  and 𝑆𝑑 , respectively. If 𝑑𝑖𝑠𝑡(𝑂𝐼𝐶𝐶𝐹 , 𝑆𝑜)  and 𝑑𝑖𝑠𝑡(𝐷𝐼𝐶𝐶𝐹 , 𝑆𝑑) 

both exceed 𝑇𝐷, this SICCF is deemed to not connected to public transit. Conversely, 

we proceed. 

(4) If 𝑑𝑖𝑠𝑡(𝑂𝐼𝐶𝐶𝐹 , 𝑆𝑜) is smaller than 𝑇𝐷 and 𝑑𝑖𝑠𝑡(𝐷𝐼𝐶𝐶𝐹 , 𝑆𝑑), i.e., the origin of SICCF 

is closer to its nearest transport station, we still cannot conclude that this user 

regularly rides bike-sharing between the workplace and the transfer station. This is 

because public transport stations often coexist with various activity places, especially 

around metro stations (S. Liu et al., 2022). In this study, we need further compare the 

distance from the destination of SICCF (i.e., 𝐷𝐼𝐶𝐶𝐹) to its nearest transport station 

(i.e., 𝑆𝑑) with the length of this SICCF (i.e., 𝐶𝐷). If 2 × 𝑑𝑖𝑠𝑡(𝐷𝐼𝐶𝐶𝐹 , 𝑆𝑑) ≤ 𝐶𝐷, it is 

argued that the SICCF is not connected to public transit, as the user has chosen a 

longer cycling route instead of a shorter journey from 𝑆𝑑 to 𝐷𝐼𝐶𝐶𝐹  (see Fig.B.1 in 

Appendix B). Conversely, it is inferred that the origin of this SICCF is connected to 

public transport. Similarly, if 𝑑𝑖𝑠𝑡(𝐷𝐼𝐶𝐶𝐹 , 𝑆𝑑)is smaller than 𝑇𝐷 and 𝑑𝑖𝑠𝑡(𝑂𝐼𝐶𝐶𝐹 , 𝑆𝑜), 

we employ the same method to determine whether the destination of this SICCF is 

connected to public transport (see Fig.4(f)). 



24/58 

 

Note that for each SICCF, we employ the "Transfer commuting flow identifier" to 

assess connections with bus and the metro systems. When a SICCF qualifies for connectivity 

with both, the metro is prioritized over the bus (Guo & He, 2021). 

 

Fig.6 Flowchart of transfer commuting flow identifier. 

Finally, we build the "Biking commuting user classifier" decision tree to categorize the 

most predominant daily commuting patterns among individual bike-sharing users (Fig.7). In 

our study, the SICCF contained the highest number of biking flows (i.e., 𝑛𝑡) for each user is 

deemed most representative of his/her daily commuting patterns during the study period, 

which is designated as the individual daily commuting flow (IDCF). Based on the IDCFs of 

bike-sharing users, we classified them into two main categories: Only-biking and Biking-

with-transit commuters, and the latter is further subcategorized into: Biking-transit, Transit-
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biking, and Biking-transit-biking commuters, drawing insights from relevant studies (Patrick 

A. Singleton & Kelly J. Clifton, 2014; Guo et al., 2021). The definition of each user category 

in Fig.7 are outlined as follows: 

(1) Take the IDCF for a user as the input. 

(2) If the IDCF lacks a connection to public transit, this user is classified as an Only-

biking commuter who relies solely on biking for his/her daily home-work commuting. 

The OD of the IDCF are his/her residence and workplace, respectively. Conversely, 

it proceeds to the next step. 

(3) If the origin of the IDCF is connected to public transit, it signifies that this IDCF 

represents the user's daily "last-mile" commuting to work by bicycling from a transit 

station (or the "first-mile" biking from his/her workplace to the transit station after 

work). The origin of this IDCF indicates the transit station where the user starts daily 

his/her cycling to work, while the destination is his/her workplace. However, in this 

scenario, the daily commuting chain of this user is incomplete, as it lacks the segment 

where the user travels between the home and the transfer station. Hence, we need 

search for his/her remaining SICCFs that satisfy the following conditions to form 

his/her complete daily commuting chain: 

 The destination of this SICCF is connected to public transit; 

 The transfer station of this SICCF and the IDCF are different; 

 This SICFF is temporal close to the IDCF, meaning the time difference between 

this SICCF's and the IDCF's 𝑇𝑒, minus the 𝐶𝑇𝑒 of SICCF, or the time difference 

between this SICCF's and the IDCF's 𝑇𝑙, minus the 𝐶𝑇𝑙 of IDCF, is less than 2 
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hours. This threshold is chosen to take into account the relatively longer duration 

of metro and bus travel, as well as the potential variability in residents' routine 

travel schedules. 

If an SICCF meeting the above conditions is found, it is labeled as an individual 

additional daily commuting flow (IADCF), and the process proceeds to the next step. 

Otherwise, the user is considered a Transit-biking commuter, who relies solely on 

biking for the "last mile" from transit station to his/her workplace (or the "first mile" 

from his/her workplace to transit station after work). Similarly, if the destination of 

a user's IDCF is connected to public transit but no suitable IADCF (its origin connect 

to another transport station) is identified among the remaining SICCFs of this user, 

his/her is categorized as a Biking-transit commuter, who relies exclusively on 

bicycling for the "first mile" from his/her residence to transit station (or the "last 

mile" from transit station to his/her residence after work). 

(4) If the origin of the user's IDCF is connected to a transit station and an IADCF is 

identified, this IADCF represents the user's daily "first mile" commuting by bicycling 

from his/her residence to another transit station (or the "last mile" commuting when 

returning home from another transport station after work). In this scenario, by 

combining the IDCF with the IADCF, the complete daily commuting pattern, 

including home and work locations, can be established. Meanwhile, this user is 

categorized as a Biking-transit-biking commuter (See Fig.B.2 in Appendix B). 

Likewise, if the destination of a user's IDCF is connected to public transit while an 

IADCF is found, this user is also classified as a Biking-transit-biking commuter.  

In Fig.8(a), we illustrate a schematic diagram of each category of cycling commuters. 
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Moreover, there are differences in the commuting characteristics among various categories 

of commuters. For more details, please refer to Appendix C in Supplemental files. 

 

Fig.7 Flowchart of biking commuting user classifier. 

3.3 Framework evaluation and validation 

To demonstrate the feasibility and applicability of our proposed two-layer framework, 

this paper evaluate the performance of the improved spatiotemporal flow clustering method 

through comparing the original method and validate the identification results of individual 

residential locations of bike-sharing commuters through spatial proximity analysis. 

For Layer 1, we contrast the clustering results of the original methods with our enhanced 

methods using multiple indicators. For Individual spatial flow clustering method, we 

computed four indicators: the average number of biking records included in all ISFCs, the 

average length of all ISFCs, and the average distance from the OD of each biking record to 
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its corresponding ISFC's OD in all ISFCs (later abbreviated as the average distances to ISFCs' 

ODs, respectively). These indicators are used to highlight the promoting of restricting the 

boundary circle for more precise daily cycling trajectories extraction. For Individual 

spatiotemporal flow clustering method, we examine the impact of different expansion 

coefficients 𝛽 on the average number of biking flows contained in all ISTFCs and the average 

maximum time interval for all ISTFCs (i.e., the average of the difference between the earliest 

departure and the latest arrival times of the trip records for all ISTFCs). This analysis aims  

to illustrate the necessity of expansion coefficient in mining spatiotemporal mobility for bike-

sharing trips. 

For Layer 2, due to the unavailability of travel survey data on cycling habits within the 

study area and the large discrepancy between the census population and the bike-sharing 

groups, we decide to employ actual residential land use data to validate the accuracy of our 

extracted users' home locations. Specifically, we first extract the users who have identifiable 

residential locations, then measure the distances from their residence to the nearest actual 

boundaries of residential land parcels. If a user's residence falls in the residential land, the 

distance is set to zero. Lastly, we plot the cumulative percentage of users whose identified 

residences are within 0 to 300 meters of the actual residential land. If the majority of users' 

residences are located within or near the actual residential land parcels, it would demonstrate 

a close match between the bike-sharing commuters' residences and the actual residential land 

use distribution. This serves as a proxy to demonstrate the validity of the individual daily 

commuting patterns identified in this paper. Notably, we do not perform the same validation 

for users' workplaces identified, as work locations for residents with different occupations 
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vary widely and are not limited to office buildings or industrial parks. This diversity increases 

the likelihood of omissions and misclassifications. 

3.4 Aggregation and visualization analysis 

Based on the identification and validation results of bike-sharing commuters, we further 

aggregate and analyze their daily commuting characteristics (i.e., commuting duration and 

distance, working hours, and cycling round-trips rate) and spatiotemporal patterns (i.e., 

commuting temporal patterns, spatial distribution of residences, workplaces, metro transfer 

stations, and daily commuting chains) within the study area. 

4 Result and discussion 

4.1 Comparative analysis and validation results 

In Table 2, we compare the evaluation indicators between the original and improved 

spatial flow clustering methods. Obviously, in comparison with the improved method, the 

original method exhibits a slight increase in the average number of trip records in all ISFCs 

(an average increase of 3 additional records) due to the absence of the boundary circle 

constraints. Meanwhile, notable changes are observed in the average distances to ISFCs' ODs, 

with increases of 23 m and 16 m, respectively.  

Considering the significant impact of the boundary circle radius constraint on longer 

ISFCs, we conducted additional comparisons for ISFCs exceeding lengths of 1500 m and 

3000 m. The results reveal that in the enhanced method, the average distances to the ISFCs' 

ODs maintains nearly constant as ISFC length increasing, whereas in the original method, it 

increases substantially. However, the amplification of these two indicators implies significant 

uncertainty in determining the OD of longer ISFCs, as the coverage of their boundary circles 
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is excessively broad. These uncertainties may introduce more inaccuracies in subsequent 

analyses (e.g., identifying users' residences and workplaces). Consequently, the enhancement 

of Individual spatial flow clustering method introduced in this study are essential, ultimately 

extracting reliable ISFCs from 95.1% (~0.71 million) of active bike-sharing users. 

Table 2 Comparison of evaluation indicators between the original and improved spatial flow 

clustering methods (see Section 3.3 for descriptions of below indicators). 

Method Original method Improved method 

Avg. number of biking records 43.5 (26.7) 40.7 (25.3) 

Avg. distance to ISFCs' origins (unit: m) 105 (111) 82 (64) 

Avg. distance to ISFCs' destinations (unit: m) 80 (89) 64 (51) 

Pct. of ISFCs more than 1500 m 24.40% 23.06% 

Avg. distance to ISFCs' origins (> 1500 m) 162 (161) 83 (63) 

Avg. distance to ISFC's destinations (> 1500 m) 118 (138) 63 (50) 

Pct. of ISFCs more than 3000 m 4.69% 4.21% 

Avg. distance to ISFCs' origins (> 3000 m) 214 (232) 84 (64) 

Avg. distance to ISFCs' destinations (> 3000 m) 156 (215) 61 (49) 

* The values in bracket are standard deviations of the corresponding indicators. 

Similarly, Table 3 displays the comparative results of the original and improved 

spatiotemporal flow clustering methods. It is clearly that in contrast to the original method 

(𝛽=0), the improved method, incorporating an expansion coefficient 𝛽, can extract ISTFCs 

that contain more trip records (averaging an increase of 7.1 records including in each ISTFC 

when 𝛽=30 min). This demonstrates the contribution of the 𝛽 in mining daily spatiotemporal 

trajectories from bike-sharing data, given the generally shorter travel durations for bicycle 
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trips. However, as 𝛽 increases further, the average number of trip records within ISTFCs 

shows diminishing returns, with an increase of only 2.8 records at 𝛽=90 min compared to 

𝛽=30 min. Meanwhile, the average maximum time interval for all ITSFC continues to 

increase with the growing of 𝛽. Yet, an excessively large average maximum time interval 

could introduce biking records from other time periods into the extracted ISTFCs, potentially 

elevating data noise. Hence, this study refers to the China Urban Transportation Report 2021 

(https://jiaotong.baidu.com/cms/reports/traffic/2021/index.html) and select a final 𝛽 value of 

30 min, which is remarkably close to the average commuting duration in Shenzhen (37 min). 

Ultimately, through the steps of Individual spatiotemporal flow clustering and Neighbor 

ISTFC merging, we successfully identify reliable ISTFCs from 74.4% (~0.56 million) of 

active bike-sharing users. Notably, ~0.11 million reliable ISTFCs from over 90,000 users are 

accomplished through Neighbor ISTFC merging step. Collectively, these results underscore 

the critical role of the aforementioned enhancements in Layer 1 in improving the quality of 

daily travel trajectories extraction for bike-sharing users. 

Table 3 Comparison of evaluation indicators between the original and improved 

spatiotemporal flow clustering methods (see Section 3.3 for descriptions of below indicators) 

Method 

Original method Improved method 

𝜷=0 𝜷=30min 𝜷=60min 𝜷=90min 

Avg. number of biking records 12.5 (10.3) 19.6 (14.8) 21.3 (15.3) 22.4 (15.6) 

Avg. maximum time interval 

for all ITSFCs (unit: min) 

16.8 (11.7) 34.8 (13.9) 49.1 (20.3) 61.8 (27.0) 

* The values in bracket are standard deviations of the corresponding indicators. 
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Furthermore, utilizing the rule-base decision trees from Layer 2, we have extracted the 

IDCFs of 383,786 active bike-sharing users with reliable ISTFCs. Fig.8(b) illustrates the 

proportion of identified bike-sharing commuters in different categories: 74.38% are Only-

biking commuters and 25.62% are Biking-with-transit commuters. The percentage of Biking-

with-transit commuters is slightly higher than the results for transfer trips in the studies of 

Xing et al. (2020) and S. Li et al. (2021) regarding the purpose of bike-sharing trips, while 

they considered more kinds of travel activities. Within these Biking-with-transit commuters, 

the share of Biking-transit-biking commuters is only 1.75% due to the stringent filtering rules, 

while Biking-transit commuters (14.39%) are more prevalent than Transit-biking commuters 

(9.48%), aligning with the findings of Guo et al. (2021), which suggests that more users rely 

on cycling for the "first mile" from residence to transit station (or the "last mile" from transit 

station to home after work). Meanwhile, given that most bike-sharing commuters daily 

transfer to the metros (over 96%) rather than the buses, our subsequent analysis will focus on 

the integrated biking-metro commuting patterns. 

 

Fig.8 Schematic diagram (a) and percentage (b) of different categories of bike-sharing 

commuters. 
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To further validate the accuracy of the identification results of bike-sharing commuters, 

we measure the proximity between the their identified residences and the actual residential 

land use boundaries (see Section 3.3 for details), as showed in Fig.9. The result illustrates 

that 51.5% of inferred users' residences are within the residential land parcels, and 93.5% are 

within 100 m of the residential land use. This indicates that the most of the identified users' 

residences are adjacent to the actual residential land boundaries, reflecting the feasibility of 

our two-layer framework. 

 

Fig 9. Cumulative percentage of bike-sharing users whose identified residences fall within 

the residential land boundaries. 

4.2 Commuting characteristics among bike-sharing users 

4.2.1 Commuting duration and distance 

Fig.10 shows the distribution of commuting duration and distance for Only-biking and 

Biking-transit-biking commuters. Since the commuting chains for Transit-biking or Biking-

transit commuters are incomplete, we cannot discuss these commuting characteristics for 

them. For Only-biking commuters (Fig.10(a, b)), we find that over three-quarters have a daily 

commuting duration under 10 min and distance within 1.8 km, aligning with previous studies 
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on the characteristics of bike-sharing usage (Shen et al., 2018; Ma et al., 2020; F. Gao et al., 

2022). This result suggests that most Only-biking commuters are more likely to reside near 

their workplaces. For Biking-transit-biking commuters (Fig.10(c, d)), we observe an average 

commuting duration exceeding 45 min and distance over 13 km, indicating that these users 

may tend towards complete their daily home-work commuting across districts. Moreover, 

when comparing the commuting duration distribution for different trip purposes (Fig.10(a, 

c)), we discover that both categories of bike-sharing commuters spend more time commuting 

home from work. The findings is consistent with the research of Kung et al. (2014), which 

can be attributed to having more intervening opportunities for other activities (e.g., recreation, 

shopping and etc.) during their journey home (after work). 

 

Fig. 10 Distributions of commuting duration (a, c) and commuting distance (b, d) for Only-

biking and biking-transit-biking commuters  
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4.2.1 Working hours 

Fig.11(a) displays the distribution of working hours for all bike-sharing commuters, 

excluding Biking-transit commuters, as we cannot obtain their daily arrival and departure 

times at their workplaces. Specifically, we observe three distinct peaks in the working hours 

of Only-biking commuters. The largest peak occurs around 10 hours, which is longer than the  

typical 8-hour workday. However, note that the working hours we calculated represent the 

total time from user's daily arrival at the workplace to their departure, potentially including 

non-working hours like lunch breaks. Thus, the actual working hours for many individuals 

may be 1 to 2 hours shorter than the working hours we calculated, indicating that the working 

hours for most users are in accordance with legal regulations. The second highest peak 

appears approximately 12.5 hours, suggesting that some users are actually working overtime, 

even if their calculated working hours include break times. Lastly, there is a smallest peak 

around 5 hours, significantly lower than the first two peaks, which represents a minority of 

individuals working part-time or on shift. 

In comparison to Only-biking commuters, Biking-transit and Biking-transit-biking 

commuters exhibit a single prominent peak in their working hours, which aligns with the 

largest peak for Only-biking commuters. Furthermore, although some Biking-with-transit 

commuters also work overtime, as indicated by a slight peak after 12 hours, this proportion 

is notably lower than Only-biking commuters. This reflects that Only-biking commuters are 

more tolerant of overtime compared to Biking-with-transit commuters, potentially due to 

their lower commuting costs. Lastly, we discover that bike-sharing users who involved in 

part-time or shift work rarely use public transport for commuting. That is reasonable, as their 
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working hour are around 5 hours, and choosing a "Biking-transit" commuting mode would 

represents excessively high proportion of their overall commuting duration relative to their 

working hours (Schwanen & Dijst, 2002). 

4.3.3 Cycling round-trip rate 

Cycling round-trip rate serves as an indicator of the regularity for cycling commuting 

trips, capturing differences in cycling habits between trips to and from work. Generally, as 

show in Fig.11(b), there is little difference in the cycling round-trip rates among various kinds 

of commuters (note that Biking-transit-biking commuters are fewer and thus have a more 

concentrated distribution). The average cycling round-trip rate is around 0.6, with the lower 

quartile roughly 0.5, indicating that for nearly three-quarters of bike-sharing commuters, 

riding to work is more regular than riding home. In other words, most users prefer to bike to 

work rather than from work. This could be due to fewer time constraints and more flexibility 

activities for residents after work. Additionally, it may reflect the insufficient supply of bike-

sharing during the off-duty peak hours, prompting some users to choose alternatives for their 

return trip. For bike-sharing operators, it is crucial to address this issue by increasing the 

supply of bike-sharing in hotspot areas during the evening peak, based on long-term usage 

patterns, which could help enhance user retention and loyalty. 
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Fig. 11 (a) Distribution of working hours for Only-biking, Transit-biking and Biking-

transit-biking commuters; (b) Distribution of cycling round-trip rate for different categories 

of bike-sharing commuters. 

4.3 Commuting spatiotemporal patterns among bike-sharing users 

4.3.1 Temporal patterns of bike-sharing commuters 

In Fig.12, we present the daily commuting temporal patterns for different kinds of bike-

sharing commuters. However, due to the incomplete commuting chains of Transit-biking 

commuters, as mentioned earlier, we cannot discuss their home-to-work temporal patterns. 

Similarly, we also omit the work-back-home temporal patterns for Biking-transit commuters. 

Regarding the home-to-work temporal patterns (Fig.12(a)), we observe that the peak 

departure times for Biking-transit and Biking-transit-biking commuters both occur before 

8:00, while the peak for Only-biking commuters appears around 8:30. Combined with the 

observation from Fig.10, this suggests that users with higher commuting costs tend to depart 

earlier, in line with the findings by Kung et al. (2014). Moreover, Biking-transit commuters 

tend to depart slightly later than Biking-transit-biking commuters, indicating that their overall 

commuting durations may be shorter, with workplaces located closer to the transit stations. 
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With regard to the work-back-home temporal patterns (Fig.12(b)), we find that the peak 

of all three kinds of commuters occurs around 18:30, which reflects the standard off-duty 

commuting time for most bike-sharing users. However, this also means a massive demand 

for bikes during this period, particularly around the workplaces. If bicycles availability is 

insufficient, some users are forced to choose alternative transportation, which helps explain 

why the cycling round-trip rate for most users are greater than 0.5 (Fig.11(b)). Furthermore, 

compared to home-to-work pattern, the work-back-home curve is smoother, with a longer 

tail (20:00-23:00), again reflecting the phenomenon of overtime for some users, especially 

among Only-biking commuters. This result echoes the discussion in Fig.11(a). Meanwhile, 

this observation also highlights that the substantial commuting demand during evening hours, 

particularly for Only-biking commuters. Correspondingly, urban planners should prioritize 

improving lighting infrastructure in areas with high night-time bike-sharing usage to enhance 

the safety and satisfy commuters needs during these hours. 

 

Fig. 12 (a) Daily temporal patterns of commuting to work for Only-biking, Biking-transit-

biking and Biking-transit commuters; (d) Daily temporal patterns of commuting home for 

Only-biking, Biking-transit-biking and Transit-biking commuters 
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4.3.2 Spatial distribution of workplaces and residences for bike-sharing commuters 

Fig.13(a) illustrates the density distribution of residential locations for all bike-sharing 

commuters, excluding Transit-biking commuters whose residences cannot be identified. 

Likewise, Fig.13(b) shows the distribution of workplace for all commuters except for Biking-

transit commuters. Generally, the spatial distribution of residential and employment area for 

bike-sharing commuters exhibits both widespread dispersion and local concentrations. 

Specifically, employment hotspots are predominantly in areas such as the Futian FTZ – 

Futian CBD – Luohu CBD, High-tech Park – Bao'an Center and Longhua Industrial Park, 

with most residential hotspots distributed nearby. This result is in line with the mixed-use 

land patterns in Shenzhen. Interestingly, we find that the main residential hotspots are 

concentrated in urban villages and old communities, especially in the central city. Due to 

lower living costs, these areas attract large numbers of young migrants and recent graduates 

seeking rental housing (Y. Liu et al., 2010). Concurrently, Guo et al. (2021) noted that this 

demographic forms the main force of bike-sharing users in Shenzhen. Moreover, the narrow 

roads, high-density buildings, and mixed land use in these areas further support flexible and 

convenient bicycle trips. Therefore, despite the operational challenges of managing and 

reallocating bikes within these complex urban villages and old communities, these areas have 

substantial mobility demand (especially for commuting) that warrants the attention of bike-

sharing operators. 

Furthermore, we calculate the average working hours at the major employment centers 

in Shenzhen. Notably, as discussed in Subsection 4.2.1, the computed working hours are 

longer than actual working hours for most users; however, this discrepancy does not impede 
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inter-regional comparison. The result shows that average working hours in central city areas 

are generally shorter in the suburban areas (Fig.13(b)). Specifically, in the central city, 

employment centers dominated by commercial and service industries (e.g., Luohu CBD and 

Futian CBD) exhibit shorter working hours than those centered on high-tech industries (e.g., 

High-tech Park), and the Huaqiang North Commercial Area in Futian District has the shortest 

average working hours (9.89h). In contrast, in the suburbs, the Longhua Industrial Park, 

predominantly manufacturing-based, has the longest average working hours (10.89h), which 

suggest a higher likelihood of overtime for bike-sharing users employed there. Accordingly, 

bike-sharing operators could devise targeted bike reallocation strategies tailored to varying 

off-duty hours at different employment centers, thereby improving the utilization of bike-

sharing across regions. 
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Fig. 13 Hotspots distribution of residences and workplaces for bike-sharing commuters 

4.3.3 Spatial distribution of transfer stations for bike-sharing commuters 

In Fig.14, we aggregate the daily metro station usage for Biking-transit and Transit-

biking commuters, with station size on the maps indicating the number of bike-sharing 

commuters. Notably, Fig.14 also contains Biking-transit-biking commuters, as they have the 

characteristics of both Biking-transit and Transit-biking commuters.  

For Biking-transit commuters (Fig.14(a)), while the spatial distribution of metro stations 
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resembles the residential hotspots shown in Fig.13(a), high bike-to-transit usage rates are 

concentrated in the suburban areas near the central city (e.g., Gushu, Minzhi, and Hongshan). 

This result aligns with previous studies (Guo et al., 2021; Zhang et al., 2024), revealing the 

primary residential distribution of the group using bike-sharing transfer services for across-

district commuting. As for Transit-biking commuters (Fig.14(b)), most metro stations with 

high transit-to-bike usage rate are clustered in central areas near employment hubs (especially 

Nanshan and Futian districts). However, only a few metro stations exceed 900 daily transit-

to-bike trips, likely due to the high accessibility within the central area and proximity of 

companies to metro exits (e.g., High-tech Park, Keyuan, etc.), which allows people to walk 

to work directly, thereby reducing the need for bike-sharing. Moreover, we observe that some 

metro stations (e.g., Bihaiwan, Gushu, Xili, etc.) exhibit both high numbers of both Biking-

transit and Transit-biking commuters, which reflects a mixed use of living and working 

spaces in these areas. Based on these findings, we recommend that for stations with high 

commuting demand for bike-to-transit trips, bike-sharing operators should promptly 

redistribute bikes in the surrounding area to prevent their accumulation and encroachment on 

other road space. For stations with significant demand for transit-to-bike trips, improving 

bike reallocation efficiency is essential to avoid bicycle shortage during peak commuting 

hours. At stations with substantial demand of both bike-to-transit and transit-to-bike usage, 

data-driven riding analysis should be conducted, and precise scheduling strategies should be 

developed to accommodate the dynamic fluctuations in bike demand. For urban 

transportation planners, it is necessary to increase dedicated bike lanes, enhance traffic 

signage for better visibility, and provide ensure bicycle parking spaces around metro stations 

with high transfer demand. These measures would enhance residents' perception of the 
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cycling environment, and help reduce uncivil behaviors, such as improper bike parking 

around metro stations. 

 

Fig. 14 Spatial distribution of Biking-with-transit commuters at the metro station level 
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4.3.4 Spatial patterns of bike-sharing users' commuting chains 

To gain further insights into the commuting mobility of bike-sharing users, we analyze 

the biking commuting chains for Only-biking and Biking-transit-biking commuters by linking 

their residences and workplaces to delineate their daily commuting flows, with home location 

as the origin and work location as the destination. Utilizing the spatial clustering method by 

X. Gao et al. (2020), we present the results of commuting flow clusters in Fig. 15 and 16.  

For Only-biking commuters (Fig.15), we discover that the commuting flow clusters are 

generally have short distances, with an average length of 1.28 km.  These flows consistently 

converged from residential hotspots to the nearest employment centers, in agreement with 

the observations in Fig. 10(b) and Fig.13. This result suggests that dockless bike-sharing play 

a significant role in short-distance commuting for both inner-city and suburban residents, 

further extending the findings of previous studies (S. Li et al., 2021; F. Gao et al., 2022). As 

for Biking-transit-biking commuters (Fig.16), the commuting flow clusters primarily extend 

from the suburbs to the central city, with an average length exceeding 15 km. Specifically, 

these users mostly reside in Bao'an and Longhua districts and daily use bike-sharing to 

transfer to the metro lines that connect the suburban and central areas (especially the 

Shenzhen Metro Lines 1, 4, 5, and 11). This finding corresponds to the actual situation in 

Shenzhen (e.g., many tech workers live near Pingzhou Station and work in the High-tech 

Park) and aligns with the analysis in Fig.14(a). 
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Fig. 15 Spatial distribution of commuting flow clusters for Only-biking commuters 
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Fig. 16 Spatial distribution of commuting flow clusters for Biking-transit-biking commuters 

5 Conclusion 

Mining daily trip chains of bike-sharing users at the individual level is crucial for the 

increasingly refined planning of active transportation, but it remains a complex task that has 

received limited attention in studies related to bike-sharing trip. To bridge this challenge, this 

paper presents a two-layer framework that integrates spatiotemporal flow clustering and rule-

based decision trees, which is validated and applied to a dataset of over 200 million dockless 

bike-sharing records in Shenzhen. In Layer 1, to overcome the lack of geocoding in dockless 

bike-sharing dataset, we propose a flow clustering method with improved spatiotemporal 

constraints to identify users' daily trajectories from their disordered biking records. Its 

performance and applicability are confirmed through a comparative analysis with original 

clustering method. To the best of our knowledge, this is the first attempt to extract individual 

daily trajectories using spatiotemporal flow clustering method, which can be extended to 
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relevant studies on other travel data with similar data features (e.g., taxi trip data). In Layer 

2, considering the absence activity semantics in the individual trajectories extracted in Layer 

1, we integrate round trip, working hours, and public transport transfer to construct three rule-

based decision trees. These decision trees can identify the commuting behavior from each 

user's daily cycling trajectories to derive individual daily low-carbon commuting chains 

(including biking-with-transit). Such information can assist urban planners and bike-sharing 

operators to rapidly understand residents' daily cycling behaviors and demands. Moreover, 

by integrating multi-source data (e.g., street view images and housing prices), it can serve as 

a data foundation for refining individual cycling user profiles and conducting fine-scale 

research on bicycle behavior. 

By applying the two-layer framework to the case study of Shenzhen, we have obtained 

some encouraging findings. First, the residential and workplace locations of bike-sharing 

commuters exhibit mixed distribution pattern, characterized by both widespread dispersion 

and local concentrations. The majority of bike-sharing commuters live in the urban villages 

and old communities (especially in central city), while a larger proportion of Biking-with-

transit commuters reside in the suburban areas near the central city (e.g., the neighbourhood 

of Gushu and Hongshan metro stations). Second, some bike-sharing users show noticeable 

overtime patterns, with a higher proportion of Only-biking commuters compared to Biking-

with-transit commuters, as the former incur lower commuting costs. Among the mainly job 

centers of the study area, Longhua Industrial Park, dominated by manufacturing, has the 

longest average working hours, exceeding 10 hours. Finally, we find that most active users 

utilize bike-sharing more frequently for commuting to work rather than returning home，, 
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which is closely related to increased discretionary activities after work and the excessive 

bike-sharing demand around workplaces during commuting peak. 

Based on the differences in daily commuting pattern observed among various categories 

of bike-sharing users, we emerge several corresponding policy implications. For Only-biking 

commuters, a significant portion of whom reside in suburbs and have longer working hours, 

we recommend that bike-sharing operators should focus on meeting bicycle demand during 

night-time hours (20:00-23:00) around the suburban industrial areas (e.g., Longhua Industrial 

Park). Meanwhile, we suggest that transportation planners could prioritize improvements to 

lighting infrastructure in these areas to enhance the safety of bicyclists commuting at night. 

Moreover, for high-demand metro stations with varying types of biking-transit connections, 

we propose that bike-sharing operators develop dynamic bike-sharing reallocation strategies 

based on the historical usage patterns at each station, to minimize mismatches between supply 

and demand. In parallel, urban planners should expand bike parking spaces around these 

high-demand stations and improve surrounding bicycle traffic signage to enhance residents' 

cycling perception and encourage more responsible bike-sharing practices. 

However, there are still some limitations that warrant further improvement in future 

research. First, our framework limited to weekday commuting patterns of bike-sharing users, 

not accounting for weekend trips or non-commuting activities (such as exercising and leisure). 

Subsequent studies can leverage location service data (e.g., points of interest) to explore the 

cycling activity in these contexts, or integrate other geotagged big data (e.g., smart card data) 

to develop more detailed low-carbon travel chain models (Zhang et al., 2024). Second, it is 

necessary to validate mobility patterns with travel survey data. Unfortunately, due to the 

difficulty in obtaining relevant data covering the cycling population in the study area, this is 
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not possible in our research. Moreover, our study only selected Shenzhen as the case study 

area. Future research could include more cities to compare the differences in cycling mobility 

patterns and explore their relationship with urban features (e.g., built environment). Lastly, 

noted that in many megacities in China, private bicycles (especially electric-bike) still play a 

role in transportation. Investigating whether their mobility patterns are similar to those of 

bike-sharing users would be valuable, as it pertains to maximizing the benefits of building 

cycling-friendly environments. 
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