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Abstract

We examine convergence properties of continuous-time variants of accelerated Forward-Backward (FB) and Douglas-Rachford
(DR) splitting algorithms for nonsmooth composite optimization problems. When the objective function is given by the sum
of a quadratic and a nonsmooth term, we establish accelerated sublinear and exponential convergence rates for convex and
strongly convex problems, respectively. Moreover, for FB splitting dynamics, we demonstrate that accelerated exponential
convergence rate carries over to general strongly convex problems. In our Lyapunov-based analysis we exploit the variable-metric
gradient interpretations of FB and DR splittings to obtain smooth Lyapunov functions that allow us to establish accelerated
convergence rates. We provide computational experiments to demonstrate the merits and the effectiveness of our analysis.

Key words: Nesterov’s acceleration; proximal gradient method; forward-backward splitting; Douglas-Rachford splitting;
envelope functions; primal-dual gradient flow dynamics.

1 Introduction

The convergence properties of gradient descent (GD),

xk+1 = xk − α∇f(xk) (1)

can be improved by adding a momentum term,

xk+1 = xk + γ(xk − xk−1) + α∇f(xk + β(xk − xk−1)).
(2)

where k is the iteration index, α is the stepsize, β is
the extrapolation parameter, and γ is the damping co-
efficient. In particular, the Polyak’s Heavy-Ball Method
(HBM) is obtained by setting β = 0 in (2) [22] and Nes-
terov’s Accelerated Algorithm (NAA) results from γ = β
in (2) [14]. For a convex objective function f : Rn → R
with an L-Lipschitz continuous gradient ∇f , NAA with
(α, β) = (1/L, (k − 2)/(k + 3)) improves the sublinear
convergence rate O(1/k) of GD to O(1/k2). Further-
more, for anm-strongly convex f , the linear convergence
rate O(e−k/κ) of GD [15, Section 2.1.5] is improved to
O(e−k/

√
κ) with (α, β) = (1/L, (

√
κ − 1)/(

√
κ + 1)). In

both cases, these rates are optimal in the sense that there
exists a smooth convex function f for which the rates
cannot be improved [15, Theorems 2.1.7 and 2.1.13].

A wide-spread use of accelerated algorithms has inspired
efforts to understand the underlying mechanisms. In par-
ticular, a growing body of literature views optimization
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algorithms as continuous-time dynamical systems that
allow familiar methods to be recovered upon proper dis-
cretization [1,6,7,13]. For example, the continuous-time
equivalent of GD is given by the gradient flow dynamics,

ẋ = −α∇f(x) (3)

and celebrated Arrow-Hurwicz-Uzawa primal-dual gra-
dient flow dynamics can be used to effectively solve a
class of constrained optimization problems [17]. A dy-
namical systems perspective of NAA offered in [24] was
further exploited by leveraging a variational formulation
based on Lagrangian and Hamiltonian frameworks from
classical mechanics [25, 26] and contraction theory [5].
Furthermore, NAA was obtained using the semi-implicit
Euler discretization of the differential equation [13],

ẍ + γẋ + α∇f(x + βẋ) = 0 (4)

where α, β, and γ are possibly time-varying algorithmic
parameters that differ for convex and strongly convex
problems. The following Lyapunov function,

V (x, ẋ) = af(x) + (1/2)∥bx + ẋ∥2
2 (5)

with positive parameters a and b was also utilized
in [13] to show that (4) achieves the optimal conver-
gence rate of discrete-time algorithms for both convex
and strongly convex problems with proper choices of
(α, β, γ). Moreover, for β + γ = 1, the discretization
of (4) preserves the accelerated convergence rate. This
provides a system-theoretic characterization of acceler-
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ation and helps bridging the gap between discrete and
continuous-time analyses.

Our contributions. We generalize accelerated dynam-
ics (4) to nonsmooth composite optimization problems
in which the objective function is given by the sum of a
smooth and a nonsmooth term. Our approach is moti-
vated by [10] which obtains the Forward-Backward (FB)
and Douglas-Rachford (DR) splitting dynamics by re-
placing ∇f in (3) with the generalized gradient map as-
sociated with the nonsmooth objective function. Based
on the relation between gradient flow dynamics (3) and
its accelerated variant (4), we introduce accelerated FB
and DR splitting dynamics by replacing gradient ∇f
in (4) with the generalized gradient map. We also uti-
lize a Lyapunov-based approach to establish accelerated
sublinear and linear convergence rates that match the
optimal discrete-time rates for convex and strongly con-
vex problems, respectively. Our Lyapunov function is
similar to (5) with two important differences: (i) the
Euclidean distance is replaced with a suitable weighted
norm; and (ii) the FB or DR envelopes are used instead
of the objective function. The latter choice is motivated
by the variable-metric gradient method interpretation of
associated splittings [20, 21]. We also note that, in our
analysis, the condition β+γ = 1 is satisfied, which is an
integral requirement for discretization analysis of [13] to
be applicable to the proposed accelerated dynamics.

Although accelerated rates for the FB and DR splittings
are known in discrete-time, the continuous-time analy-
sis in the problem settings that we examine has not been
done before. An accelerated sublinear convergence rate
matching our result has been proposed in [24], but the
approach relies on a dynamical system that is based on
directional subgradients whose evaluation requires solv-
ing linear program argmaxz∈∂g(x) z

T ẋ at every time in-
stant, where g denotes the nonsmooth term in the objec-
tive function. Moreover, the existence and uniqueness of
a solution to this dynamical system has been assumed
without formally establishing it [24, Theorem 24]. An ac-
celerated sublinear convergence rate has also been pro-
posed in [2,4] for a differential inclusion that models ac-
celerated FB splitting, but no analysis was provided.

It is also worth mentioning that the FB and DR split-
tings are special cases of the primal-dual gradient flow
dynamics associated with the proximal augmented La-
grangian [6, 10, 16]. Thus, insights about acceleration
of these splitting methods can also pave the way to
accelerated primal-dual algorithms, which is of critical
importance to the design of fast gradient-based meth-
ods for constrained optimization problems. We note
that (4) was used as a motivation in [3, 11, 27] to ac-
celerate primal-dual gradient flow dynamics. However,
in contrast to [13], the algorithmic parameters are not
bounded in time in these references. Thus, it is unclear
if the primal-dual dynamics proposed in [3, 11, 27] al-
low rate-preserving discretization that leads to efficient

first-order iterative schemes.

Paper structure. In Section 2, we introduce the prob-
lem setup and provide background material. In Section 3,
we summarize our main findings, and in Section 4 we pro-
vide the proofs. In Section 5, we utilize computational
experiments to demonstrate the merits of our analyses,
and in Section 6, we conclude the paper with remarks.
2 Problem formulation and preliminaries

In this section, we formulate the problem and provide
background on the proximal operators; Moreau, FB, and
DR envelopes; as well as FB and DR splittings.

We consider convex optimization problem

minimize
x

F (x) := f(x) + g(x) (6)

where f : Rn → R is, unless noted otherwise, a continu-
ously differentiable convex function with an L-Lipschitz
continuous gradient ∇f and g: Rn → R is a possibly
non-differentiable closed proper convex function.

2.1 Proximal operator and Moreau envelope

The proximal operator of a proper lower semi-continuous
convex function g for a positive penalty parameter µ is
the mapping defined as proxµg(v) = (I + µ∂g)−1(v),
where ∂g is a subdifferential of g and I is the identity
map [19]. Alternatively, proxµg can be obtained as

proxµg(v) = argmin
z

(
g(z) + 1

2µ ∥z − v∥2
2

)
.

The value function of this optimization problem deter-
mines the Moreau envelope associated with g,

Mµg(v) = g(proxµg(v)) + 1
2µ ∥ proxµg(v) − v∥2

2 (7)

which is, even for a non-differentiable g, a continuously
differentiable function [19],

∇Mµg(v) = 1
µ (v − proxµg(v)) ∈ ∂g(proxµg(v)).

(8)
2.2 The FB and DR envelopes

Using Lipschitz continuity of ∇f , we have the following
upper bound on the objective function F in (6) [21],

F (y) ≤ J(x, y) :=
f(x) + g(y) + 1

2µ ∥y − (x − µ∇f(x))∥2
2 − µ

2 ∥∇f(x)∥2
2

which holds for any x, y ∈ Rn and µ ∈ (0, 1/L). Mini-
mizing J(x, y) over y yields the FB envelope of F [21]

Fµ(x) := minimize
y

J(x, y)

= f(x) + Mµg(x − µ∇f(x)) − µ
2 ∥∇f(x)∥2

2.
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For a particular choice of a distance function (instead of
the Euclidean norm), the FB envelope can also be inter-
preted as a generalized Moreau envelope of F [12]. The
DR envelope associated with (6) is another useful value
function resulting from evaluation of the FB envelope
Fµ(x) at x = proxµf (z) with z ∈ Rn [8, 20], i.e.,

Dµ(z) := Fµ(proxµf (z)).

When f is a twice continuously differentiable function
with a bounded Hessian ∇2f(x), the FB envelope is also
continuously differentiable with gradient

∇Fµ(x) = (I − µ∇2f(x))Gµ(x) (9)

where Gµ is the generalized gradient map defined as

Gµ(x) = 1
µ (x − proxµg(x − µ∇f(x))). (10)

Consequently, the DR envelope is also continuously dif-
ferentiable and its gradient is determined by

∇Dµ(z) = ∇ proxµf (z)∇Fµ(proxµf (z)). (11)

Here, ∇ proxµf (z) can be obtained by differentiating (8)

∇ proxµf (z) := (I + µ∇2f(proxµf (z)))−1 (12)

Using (9) and (11), ∇Dµ can also be expressed in terms
of the generalized gradient map as

∇Dµ(z) = (2∇ proxµf (z) − I)Gµ(proxµf (z)). (13)

We note that for µ ∈ (0, 1/L),

min F = min Fµ = min Dµ

argmin F = argmin Fµ = proxµf (argmin Dµ)
(14)

which together with the smoothness of the envelope
functions motivates studying acceleration of dynam-
ics (16) and (20) through the FB and DR envelopes [21].

2.3 The FB and DR splittings

Proximal gradient algorithm [19],

xk+1 = xk − αGµ(xk) (15)

replaces ∇f in (1) with the generalized gradient mapGµ,
thereby extending gradient descent to composite opti-
mization problem (6). Iterations (15) are also known as
the FB splitting and their continuous-time equivalent is
determined by the proximal gradient flow dynamics [10],

ẋ = −αGµ(x). (16)

Furthermore, evaluation of the generalized gradient
map at x = proxµf (z) facilitates extension of FB split-
ting (15) to composite optimization problem (6) in
which both f and g are allowed to be non-differentiable,

zk+1 ∈ zk − αGµ(proxµf (zk)). (17)

Using (10) and setting α = µ in (17) yields,

zk+1 ∈ zk − proxµf (z) +
proxµg(proxµf (z) − µ∂f(proxµf (z))).

(18)
Moreover, (8) can be used to rewrite (18) as,

zk+1 = zk − proxµf (z) + proxµg(2 proxµf (z) − z)
(19)

which is known as DR splitting [23]. While (6) can be
solved via (19) even for a non-differentiable f , when f
is continuously differentiable Gµ(proxµf (z)) becomes a
single-valued function and (17) can be used to obtain
the DR splitting dynamics [10],

ż = −αGµ(proxµf (z)). (20)

Lemma 1 characterizes stability properties of proximal
gradient flow (16) and DR splitting dynamics (20) under
the following assumption.

Assumption 1 In (6), f is an m-strongly convex func-
tion with an L-Lipschitz continuous gradient ∇f and g
is a proper closed convex function.

Lemma 1 (Thms. 3 and 7, [10]) Let Assumption 1
hold with m > 0 and let µ = 1/(2L). Then, the proximal
gradient flow (16) and DR splitting dynamics (20) are
globally exponentially stable with rate ρ = αm.

3 Main results

In this section, we examine convergence properties of
continuous-time variants of accelerated proximal gradi-
ent and DR splitting algorithms for nonsmooth com-
posite optimization problem (6). In Theorems 1 and 2,
we show that the corresponding dynamical systems pro-
vide acceleration when the smooth part of the objective
function f is either convex or strongly convex quadratic
function, respectively. Furthermore, in Theorem 3, we
demonstrate that properties of accelerated proximal gra-
dient flow dynamics carry over from quadratic to gen-
eral strongly convex problems. To improve readability,
we relegate the proofs of theorems to Sections 4.

Inspired by (4), which provides accelerated convergence
for smooth problems, we propose the following differ-
ential equation to accelerate proximal gradient flow dy-
namics (16),

ẍ + γẋ + αGµ(x + βẋ) = 0. (21a)

3



Similarly, we introduce

z̈ + γż + αGµ(proxµf (z + βż)) = 0 (21b)
x = proxµf (z)

as an accelerated variant of DR splitting dynamics (20),
where Gµ is the generalized gradient map associated
with problem (6); see (10) for definition.

Our analysis of (21a) and (21b) utilizes Lyapunov func-
tions obtained by replacing f in (5) with smooth enve-
lope functions Fµ or Dµ, respectively. This choice is mo-
tivated by the variable-metric gradient method interpre-
tations of FB and DR splittings. The lack of convexity of
the FB and DR envelopes when f in (6) is not a convex
quadratic function is the main challenge in convergence
analysis. When f is either a convex or a strongly convex
quadratic function, we show that (21a) and (21b) con-
verge to a solution of problem (6) at an accelerated rate.
We then remove this quadratic restriction on f and show
that acceleration carries over to general strongly convex
problems for FB splitting dynamics (21a).

3.1 Convex quadratic f

We first restrict our attention to a nonsmooth optimiza-
tion problem (6) with quadratic f . In Theorem 1, we
establish accelerated sublinear convergence for convex
problems and, in Theorem 2, we show that the conver-
gence rate can be improved to exponential for strongly
convex problems. This extends results from the litera-
ture from a discrete-time to a continuous-time setting.

Assumption 2 In (6), f is a convex quadratic function
with a strong convexity constant m ≥ 0 and a Lipschitz
continuity constant L, and g is a proper closed convex
function.

Theorem 1 Let Assumption 2 hold and let µ ∈ (0, 1/L).
If the algorithmic parameters are given by (α > 0, γ(t) =
3/(t + 3), β(t) = 1 − γ(t)) then the solutions to (21a)
and (21b) for t ≥ 0 satisfy

F (pµ(x(t)))−F (x⋆) ≤ c1
(t + 3)2 (∥x(0)−x⋆∥2

2 + ∥ẋ(0)∥2
2)

where pµ(x) := proxµg(x−µ∇f(x)), x⋆ ∈ argminF (x),
and c1 > 0 is a constant that depends on the problem
parameters.

Theorem 1 establishes accelerated sublinear convergence
rate for convex problems with quadratic smooth part of
the objective function. This matches the optimal rate
O(1/k2) of discrete-time gradient-based methods [14].
Furthermore, in Theorem 2 we show that the use of con-
stant algorithmic parameters for strongly convex prob-
lems with quadratic f and known m > 0 leads to an ac-
celerated exponential convergence rate. In proof of The-
orem 2, we utilize Lemma 2 which provides estimates of

the smoothness and strong convexity constants of the
FB and DR envelopes under Assumption 2.

Lemma 2 (Thm. 2.3 [21] and Proposition 4.6 [8])
Let Assumption 2 hold and let µ ∈ (0, 1/L). The FB and
DR envelopes Fµ and Dµ are convex functions with the
following smoothness and strong convexity constants

L̃ =

 2(1 − µm)/µ for Fµ

(1 − µm)/
(
µ(1 + µm)2)

for Dµ

m̃ =


min {(1 − µm)m, (1 − µL)L} for Fµ

min
{

(1 − µm)m
(1 + µm)2 ,

(1 − µL)L
(1 + µL)2

}
for Dµ

If the condition number κ = L/m of f satisfies κ ≥ 2,
then Lemma 2 shows that for µ = 1/(kL) with k ≥ 2,
the condition numbers of the FB and DR envelopes, κ̃ :=
L̃/m̃, are both upper bounded by 2kκ.

Theorem 2 Let Assumption 2 hold with m > 0, let µ ∈
(0, 1/L), and let L̃ and m̃ be the smoothness and strong
convexity constants of either the FB or the DR envelope.
If the algorithmic parameters in (21) are given by (α >
0, γ = 2

√
αm̃

/
(
√
αm̃+ 1), β = 1 − γ) then the solutions

to (21a) and (21b) for t ≥ 0 satisfy

∥x(t) − x⋆∥2
2 ≤ c2(∥x(0) − x⋆∥2

2 + ∥ẋ(0)∥2
2) e−ρt

where ρ =
√
αm̃−αm̃/2 is the convergence rate and c2 >

0 is a constant that depends on the problem parameters.

3.2 Strongly convex f

We next show that an additional restriction on µ allows
us to obtain an accelerated exponential convergence rate
for (21a) even when the smooth part of the objective
function f in (6) is not quadratic but strongly convex.

Theorem 3 Let Assumption 1 hold and let µ ∈(
0,

√
γβ/(2L)

]
. If the algorithmic parameters in (21a)

are given by (α > 0, γ = 2
√
αm

/
(
√
αm+ 1), β = 1 − γ)

then the solutions to (21a) for t ≥ 0 satisfy

∥x(t) − x⋆∥2
2 ≤ c3(∥x(0) − x⋆∥2

2 + ∥ẋ(0)∥2
2)e−ρt

where ρ =
√
αm−αm/2 is the convergence rate, and c3 >

0 is a constant that depends on the problem parameters.

Setting α = 1/L̃ and α = 1/L in Theorems 2 and 3,
respectively, gives an exponential convergence rate, ρ ∼
O(1/

√
κ). This rate matches the best-achievable rate of

discrete-time gradient-based methods for strongly con-
vex problems [15]. Moreover, for α = 1/L, the upper
bound on the penalty parameter µ in Theorem 3 is of
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O(1/(L 4
√
κ)) and is smaller than the upper bound on µ

in Theorem 2 by a factor of O(1/ 4
√
κ).

Remark 1 For the rate-preserving discretization pro-
posed in [13] to be applicable to accelerated dynam-
ics (21a) and (21b), we require β + γ = 1 in Theo-
rems 1-3. For general convex problems, this additional
constraint on algorithmic parameters together with the
lack of convexity of envelope functions makes the anal-
ysis challenging. For (21a), we obtain acceleration by
introducing additional constraints on the penalty pa-
rameter µ and two novel inequalities that substitute the
strong convexity inequalities; see Lemma 3 for details.

4 Proof of main results

We next present a system-theoretic framework that can
be specialized to particular problem setups addressed in
Theorems 1-3. To simplify notation, we assume without
loss of generality that in (21a), minx Fµ(x) = 0 and that
x⋆ = 0 is a minimizer; similarly, for (21b), minz Dµ(z) =
0 and z⋆ = 0 is a minimizer.

System representation. We rewrite (21) as a feedback
of a linear system with a static nonlinear block,

ψ̇ = Aψ + Bu, y = Cψ, u = ∆(y) (22a)

where ψ = [ xT ẋT ]T and ψ = [ zT żT ]T denote the
respective state vectors for (21a) and (21b). On the other
hand, the system matrices are given by

A B

C 0

 =


0 I 0
0 −γI −αI
I βI 0

. (22b)

Here, the partition is done conformably with the parti-
tion of the state vector ψ = [ ψT

1 ψT
2 ]T and the corre-

sponding nonlinear terms are

∆(y) =
{
Gµ(y), FB splitting
Gµ(proxµf (y)), DR splitting.

(22c)

4.1 Theorems 1 and 2: convex quadratic f

We first prove our results for convex quadratic f in (6),
f(x) = (1/2)xTQx+ qTx, where Q ∈ Rn×n is a positive
semidefinite matrix and q ∈ Rn. In this case, the Lips-
chitz continuity and strong convexity parameters L and
m are given by the largest and smallest eigenvalues of Q.

Lyapunov function. Inspired by (5) which was used
to establish accelerated convergence rates for (4) in [13],
we propose the Lyapunov function candidate for (21),

V (t;ψ) = αE(ψ1) + (1/2)∥θ(t)ψ1 + ψ2∥2
H (23)

where the envelope E (either Fµ or Dµ) and the associ-
ated weight matrix H are determined by the selection of
the nonlinear term ∆ in (22c), and ∥x∥2

H := ⟨x, x⟩H =
xTHx. Our aim is to show that V̇ (t) + θ(t)V (t) ≤ 0 for
t ≥ t0 which in conjunction with the Grönwall inequality
implies V (t) ≤ V (t0) exp(−

∫ t

t0
θ(τ)dτ). The inequalities

presented in the theorems are then obtained by lever-
aging various properties of associated envelopes and the
proximal operators. Hence, θ(t) in (23) determines the
convergence rate. As we elaborate in the forthcoming
subsections, in Theorem 1 we set θ(t) = 2/(t + 3) and
in Theorem 2 we set θ(t) = ρ to establish sublinear and
exponential convergence rates, respectively.

Characterization of FB and DR envelopes. To up-
per bound θV , we first derive an upper bound on the en-
velope function E . For a (strongly) convex quadratic f ,
the FB and DR envelopes E are also (strongly) convex;
see Lemma 2. Thus, for any x, x′ ∈ Rn,

E(x) − E(x′) ≤ ⟨∇E(x), x − x′⟩ − m̃

2 ∥x − x′∥2
2 (24)

where m̃ is the parameter of strong convexity of E . More-
over, (9) and (13) yield ∇E(x) = H∆(x). For the FB
envelope E = Fµ, ∆(x) = Gµ(x), and

H = I − µ∇2f(x) = I − µQ.

On the other hand, for the DR envelope E = Dµ, ∆(x) =
Gµ(proxµf (x)) and the matrix H is determined by

H = 2∇ proxµf (x) − I = (I − µQ)(I + µQ)−1.

In both cases, 0 ≺ H ⪯ I for µ ∈ (0, 1/L), which to-
gether with (24) implies that for any x, x′ ∈ Rn

E(x) − E(x′) ≤ ⟨∆(x), x − x′⟩H − m̃

2 ∥x − x′∥2
H . (25)

An upper bound on the Lyapunov function. We
first rewrite the Lyapunov function candidate using sys-
tem representation (22a) as

V (t;ψ) = αE(C1ψ) + (1/2)∥R(t)ψ∥2
H (26)

where C1 = [I 0], R(t) = [θ(t)I I]. We define C2 =
[0 βI], v = ∆(C1ψ), and recall our assumption that
ψ⋆

1 = C1ψ
⋆ = 0 and E(ψ⋆

1) = 0. Using inequality (25)
twice, for (x, x′) = (Cψ,C1ψ

⋆) and (x, x′) = (C1ψ,Cψ),
along with u = ∆(Cψ) and C = C1 + C2 yield,

E(Cψ) ≤ ⟨u,Cψ⟩H − (m̃/2)∥Cψ∥2
H

E(C1ψ) − E(Cψ) ≤ −⟨v, C2ψ⟩H − (m̃/2)∥C2ψ∥2
H .

5



Finally, using the definition of V in (26) and summing
the last two inequalities gives an upper bound on θV ,

θV ≤ αθ (⟨u,Cψ⟩H − ⟨v, C2ψ⟩H)

− αm̃θ

2
(
∥Cψ∥2

H + ∥C2ψ∥2
H

)
+ θ

2∥Rψ∥2
H .

(27)

We next examine the derivative of V along the solutions
of (22) and use (27) to obtain an upper bound on V̇ +θV .

Lyapunov analysis. The derivative of (26) along the
solutions of (22) is determined by

V̇ = α⟨v, C1(Aψ +Bu)⟩H + ⟨Rψ, Ṙψ +R(Aψ +Bu)⟩H

(28)
where Ṙ = [(dθ(t)/dt)I 0]. Finally, combining (28)
with (27) leads to

V̇ + θV ≤ 1
2

 ψu
v

T  Π Γ Λ
ΓT 0 0
ΛT 0 0

  ψu
v

 (29)

where matrices Π, Γ, and Λ differ for convex and strongly
convex cases. Now, we prove that the matrix on the
right-hand-side of (29) is negative semidefinite for the
parameters given in Theorems 1 and 2.

4.1.1 Theorem 1: convex quadratic f

For a (non-strongly) convex quadratic function f , m̃ =
0, the upper bound on θV given in (27) simplifies to

θV ≤ αθ (⟨u,Cψ⟩H + ⟨v,−C2ψ⟩H) + (θ/2)∥Rψ∥2
H .

We let P := RTHR and utilize this upper bound
and (28) to write Π in (29) as

Π = ATP + PA + θP + Ṗ

=
[

2θ̇θ + θ3 θ̇ + 2θ2 − θγ

θ̇ + 2θ2 − θγ 3θ − 2γ

]
⊗H

(30)

where Ṗ = ṘTHR + RTHṘ and ⊗ is the Kronecker
product. A necessary condition for negative semidefi-
niteness of the matrix on the right-hand-side of (29) is
the negative semidefiniteness of Π. One way to simplify
the conditions that guarantee Π ⪯ 0 is to set the off-
diagonal blocks in (30) to zero, i.e.,

θ̇ + 2θ2 − θγ = 0. (31)

When (31) is satisfied, Π ⪯ 0 if its diagonal blocks are
negative semidefinite. The first diagonal block requires
θ ≤ 2/(t+r) and the largest θ that satisfies this condition
is θ(t) = 2/(t + r) for some r > 0. Substituting this
value to (31) yields γ(t) = 3/(t + r). For this choice of

parameters, Π ≡ 0. While any choice of r > 0 works
here, different constants c1 in Theorem 1 are obtained
for different values of r. In what follows, we set r = 3 to
ensure positivity of β(t) in Theorem 1 for any t ≥ 0.

Since the off-diagonal blocks in (29) are given by

Γ = PB + αθCTH =
[

0
−α(1 − θβ)H

]

Λ = α

β
(1 − θβ)CT

2 H =
[

0
α(1 − θβ)H

]
= −Γ.

(32)
for the above selection of θ and γ, (29) simplifies to

V̇ + θV ≤ −(α/β)(1 − θβ)⟨u − v, C2ψ⟩H . (33)

Moreover, monotonicity of the gradient of the envelope
function implies ⟨u − v, C2ψ⟩H ≥ 0. Thus, the right-
hand-side of (33) is upper bounded by zero and the use
of Grönwall inequality yields V (t) ≤ V (0)/(t+ 3)2, t ≥
0. The inequality in Theorem 1 is obtained as follows.
We first use the smoothness of the envelope function
together with our assumption that minx Fµ(x) = 0 and
x⋆ ∈ argminx Fµ(x) to obtain

E(ψ1(0)) ≤ L̃
2 ∥ψ1(0)∥2 ≤ L̃

2 ∥ψ(0)∥2

where L̃ is given in Lemma 2. Then, application of the
triangle inequality, H ⪯ I, and the fact that θ(t) ≤ 1 for
t ≥ 0 yield the upper bound on the Lyapunov function,

V (ψ(0)) = αL̃
2 ∥ψ(0)∥2 + 1

2 ∥θ(t)ψ1(0) + ψ2(0)∥2
H

≤ ( αL̃
2 + 1)∥ψ(0)∥2. (34)

We note that for both (21a) and (21b), E(ψ1) = Fµ(x).
Hence, a lower bound on the Lyapunov function can
be obtained using the identity [21, Theorem 2.2],
F (pµ(x)) ≤ Fµ(x) for any x ∈ Rn. This lower bound in
conjunction with (34) leads to the inequality in Theo-
rem 1 for (21a) with constant c1 = 1/L̃+ 1/α.

In the case of (21b) for which ψ = [zT żT ]T , while the
lower bound on the Lyapunov function stays the same,
the upper bound (34) can be expressed in terms of x and
ẋ using the following relations [20],

x = proxµf (z) = (I + µQ)−1z,

ẋ = ∇ proxµf (z)ż = (I + µQ)−1ż

which lead to the inequality in Theorem 1 with constant
c1 = (1 + µL)(1/L̃+ 1/α).
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4.1.2 Theorem 2: strongly convex quadratic f

For a strongly convex f , the use of constant α, β, and
γ in (21) leads to time-invariant dynamics (22a). In
this case, the Lyapunov function candidate does not ex-
plicitly depend on time, i.e., R in (26) becomes a con-
stant matrix. We again let P = RTHR and utilize (27)
and (28) to write Π in (29) as

Π = ATP + PA + θP − αm̃θ(CTHC + CT
2 HC2).

Since the off-diagonal blocks Γ and Λ in (29) remain the
same as in (32), we have

⟨ψ,Γu + Λv⟩ = −(α/β)(1 − θβ)⟨C2ψ, u− v⟩H . (35)

Moreover, strong monotonicity of gradient of the enve-
lope function along with H ⪯ I implies ⟨u−v, C2ψ⟩H ≥
m̃∥C2ψ∥2

H which together with (35) simplifies (29) to

V̇ + θV ≤ (1/2)ψT (Π − Υ)ψ (36)

where
Υ = (2αm̃/β)(1 − θβ)CT

2 HC2.

Substitution of the system matrices in (22b) gives

Π − Υ =
[

θ(θ2 − αm̃) θ(2θ − γ − αm̃β)
θ(2θ − γ − αm̃β) 3θ − 2γ − 2αm̃β

]
⊗H.

The conditions that guarantee Π − Υ ⪯ 0 can be simpli-
fied by setting off-diagonal blocks in Π − Υ to zero, i.e.,

θ = (γ + αm̃β)/2. (37)

When (37) is satisfied, the second diagonal block in Π−Υ
is clearly negative definite. Since β = 1−γ, the negative
semidefiniteness of the first diagonal block requires γ ≤
(2

√
αm̃ − αm̃)/(1 − αm̃) which is trivially satisfied by

the choice of γ = (2
√
αm̃− 2αm̃)/(1 −αm̃) given in the

theorem. Hence, the right-hand-side of (36) is negative
semidefinite, leading to V (t) ≤ V (0)e−θt for t ≥ 0.

The strong convexity and smoothness of the envelope
functions yield quadratic lower and upper bounds on the
Lyapunov function, which completes the proof for (21a).
For (21b), the proof is completed as in Section 4.1.1, i.e.,
utilizing linearity of the proximal operator together with
ẋ = ∇ proxµf (z)ż and (12).

4.2 Theorem 3: strongly convex f

To prove our results for general strongly convex f , we
use system representation given by (22) with constant
parameters but with a different Lyapunov function and
a different characterization of the FB envelope.

Lyapunov function. For general strongly convex f ,
since the weight matrix H(t) = I − µ∇2f(x(t)) is time-
dependent, in lieu of (26) we propose the following time-
invariant Lyapunov function candidate

V (ψ) = αFµ(Cψ) + (1/2)ψTPψ (38)

where C is given in (22b), P = RTR, and R is given
in (26). In contrast to (26), the envelope function in (38)
is evaluated at y = Cψ and the quadratic form does not
use the time-dependent weight matrix H.

Characterization of the FB envelope. For general
strongly convex problems, the FB envelope is not nec-
essarily convex and the upper bounds (24) and (25) no
longer hold. In Lemmas 3, we derive two novel inequali-
ties that substitute (24); see Appendix for the proof.

Lemma 3 Let Assumption 1 hold and let µ ∈ (0, 1/L).
For every x, x′ ∈ Rn and x⋆ ∈ argminF (x), FB envelope
satisfies

Fµ(x) − F (x′) ≤
⟨Gµ(x), x − x′⟩ − m

2 ∥x − x′∥2
2 − µ

2 ∥Gµ(x)∥2
2.

(39a)

Fµ(x) − F (x⋆) ≥ m2(1 − µL)
2L ∥x − x⋆∥2

2. (39b)

We note that in contrast to strong convexity inequal-
ity (24), in Lemma 3, the gradient of Fµ is not involved
and we characterize the difference between envelope Fµ

and objective function F . Still, Lyapunov function (38)
can be upper bounded via Lemma 2 based on the equiv-
alence given in (14).

An upper bound on the Lyapunov function. The
following upper bound on (38) can be directly obtained
using Lemma 3, (14), and system representation (22a),

θV ≤ αθ⟨u,Cψ⟩ − αmθ
2 ∥Cψ∥2

2 − αµθ
2 ∥u∥2

2 + θ
2ψ

TPψ.

(40)

Lyapunov analysis. The derivative of (38) along the
solutions of (21a) is determined by

V̇ = α⟨Hu,CAψ + CBu⟩ + ⟨Pψ,Aψ + Bu⟩.

Summing V̇ with the upper bound given in (40) yields

V̇ + θV ≤ 1
2

[
ψ

u

]T [
Π Γ + ΛH

ΓT +HΛT −2α2βH

] [
ψ

u

]
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where

Π = ATP + PA + θP − αmθCTC

Γ = PB + αθCT

Λ = αATCT .

(41)

Since H ≻ 0, the Schur complement implies that V̇ +
θV ≤ 0 if and only if

2α2βΠ + (ΓΛT + ΛΓT ) + ΓH−1ΓT + ΛHΛT ⪯ 0. (42)

Substitution of system matrices (22b) into (41) gives

ΓΛT + ΛΓT =
[

0 0
0 −2α2(1 − θβ)(1 − γβ)I

]
(43a)

ΓH−1ΓT + ΛHΛT =[
0 0
0 α2(

(1 − θβ)2H−1 + (1 − γβ)2H
) ]

. (43b)

The eigenvalue decomposition of H can be used to show

ΓH−1ΓT + ΛHΛT ⪯

[
0 0
0 α2ηI

]
(44a)

η := maximize
σ ∈ [m,L]

(1 − θβ)2

1 − µσ
+ (1 − γβ)2(1 − µσ). (44b)

If (1−θβ) ≥ (1−µσ)(1−γβ) for all σ ∈ [m,L], then the
objective function in (44b) is increasing for σ ∈ [m,L]
and the maximum occurs at σ = L,

η = (1 − θβ)2/(1 − µL) + (1 − γβ)2(1 − µL). (45)

Combining (43a) with (44a) and (45) yields

(ΓΛT + ΛΓT ) + ΓH−1ΓT + ΛHΛT ⪯[
0 0
0 α2

1−µL

(
(1 − θβ) − (1 − µL)(1 − γβ)

)2
I

]
.

Moreover, since the entries of the matrix Π are given by

Π =
[

θ(θ2 − αm) θ(2θ − γ − αmβ)
θ(2θ − γ − αmβ) 3θ − 2γ − αmθβ2

]
⊗ I

setting the off-diagonal blocks in Π to zero yields

θ = (γ + αmβ)/2. (46)

When (46) is satisfied, verifying V̇ + θV ≤ 0, or equiva-
lently (42), amounts to checking these three conditions,

(i) (1 − θβ) ≥ (1 − µσ)(1 − γβ) for all σ ∈ [m,L]
(ii) θ2 ≤ αm

(iii) ((1−θβ)−(1−µL)(1−γβ))2

2β(1−µL) ≤ αmθβ2 + 2γ − 3θ.

While condition (i) is necessary for upper bound (45),
conditions (ii) and (iii) ensure negative semidefiniteness
of the diagonal blocks in (42).

For γ given in Theorem 3 and β = 1 − γ, we obtain
θ =

√
αm − αm/2 using (46). Thus, θ ≤ γ and condi-

tions (i) and (ii) are trivially satisfied. For large values
of κ = L/m, the numerator of the left-hand-side in con-
dition (iii) is dominated by µL. On the other hand, the
largest term in the product of the denominator and the
right-hand-side is γβ, which suggests that condition (iii)
holds if µ ∼ O(

√
γβ/L). Due to space limitations, we

use computational tools to verify this hypothesis. With
the above choices of (γ, β, θ) and µL =

√
γβ/2, con-

dition (iii) can be written as wh(w) ≤ 0 where w =√
αm ∈ [0, 1] and h: [0, 1] → R. In Fig. 2(a), we show

that h is negative for all w ∈ [0, 1]. Moreover, since (i)
implies that wh(w) is an increasing function of µL, con-
dition (iii) is satisfied for all µL ∈ (0,

√
γβ/2].

h
(w

)

0 0.5 1
-1.5

-1

-0.5

0

w

Fig. 1. Plot of the function h that demonstrates h < 0. Thus,
wh(w) ≤ 0 for w ∈ [0, 1] and condition (iii) is satisfied.

As a result, using Grönwall inequality, we conclude that
V (t) ≤ V (0)e−θt for t ≥ 0 along the solutions of (21a).
A quadratic upper bound on the Lyapunov function can
be obtain by using the smoothness of the FB envelope
as in the proof of Theorem 1. Moreover, since CTC +
P is invertible, inequality (39b) in Lemma 3 yields a
quadratic lower bound on V (t). These upper and lower
quadratic bounds completes the proof.

5 Computational experiments

We use Matlab’s function ode45 to evaluate performance
of our approach. We choose zero initial conditions, α =
1/L, and provide comparison with Accelerated ADMM
and Tseng’s Splitting [7]. Parameters for these discrete-
time algorithms are selected as described in [7, Sec. IX.C]
with decaying (Example 1) and constant (Example 3)
damping. Error trajectories of these are plotted at times
determined by tk = kh/α, where k is the iteration in-
dex, h = 1/L is the stepsize of the discrete-time algo-
rithm, and α is the time scale in (21). While all acceler-
ated algorithms exhibit similar convergence behavior in
the convex case (Example 1), our proposed accelerated
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proximal gradient flow achieves slightly faster conver-
gence in the strongly convex problem (Example 3).

5.1 Example 1: ℓ1-regularized least squares

Let us examine an ℓ1-regularized least squares problem,

minimize
x

(1/2)∥Ex − q∥2
2 + λ∥x∥1 (47)

where the problem data E ∈ R100×2000, q ∈ R100, λ > 0
are generated as described in [18]. Since ETE is a sin-
gular matrix, this problem is not strongly convex. Thus,
the time-varying parameters given in Theorem 1 with
µ = 1/(2L) are used to illustrate improved sublinear
convergence rate of accelerated proximal gradient flow
and DR splitting dynamics (21a) and (21b) in Fig. 2(b).

5.2 Example 2: Box-constrained quadratic program

For a box-constrained quadratic program,

minimize
x

(1/2)xTQx + qTx + IC(x) (48)

where IC(x) is the indicator function of the convex set
C = {x | l ≤ x ≤ u}, we generate problem data with
positive definite Q ∈ R500×500, and vectors q, l, u ∈ R500

as described in [9] and set the condition number κ =
105. Linear convergence of the algorithms for constant
parameters given in Theorem 2 is illustrated in Fig. 2(b).

5.3 Example 3: ℓ1-regularized logistic regression

We examine the ℓ1-regularized logistic regression prob-
lem

minimize
x

n∑
i = 1

(
−yia

T
i x+ log(1 + eaT

i x)
)

+λ∥x∥1+ ϱ
2 ∥x∥2

2

(49)
where the problem data A = [a1 · · · an]T ∈ R200×1000

as well as the scalars λ and yi are generated as described
in [24]. In Fig. 2(c), we validate linear convergence
of accelerated proximal gradient flow dynamics (21a)
with constant parameters given in Theorem 3 and
µ = 1/(L 4

√
κ) ≈ 1/(26L) for this strongly convex prob-

lem with ϱ = 0.1, and the condition number κ ≈ 5 · 105.

6 Concluding remarks

We have introduced continuous-time accelerated FB
and DR splitting dynamics for composite optimization
problems where the objective function is given by the
sum of smooth and nonsmooth terms. Motivated by
the variable-metric gradient method interpretation of
FB and DR splittings, we have leveraged smoothness
of associated envelopes and utilized a Lyapunov-based
approach to establish convergence rates for both convex
and strongly convex problems.

A Proof of Lemma 3

Our proof is based on an equivalent definition of the FB
envelope [21, Eq. (2.8b)]

Fµ(x) = f(x)+g(p(x))−µ⟨∇f(x), Gµ(x)⟩+ µ
2 ∥Gµ(x)∥2

2
(A.1)

and the subgradient inequality,

g(x) ≥ g(x′) + ⟨r, x− x′⟩, ∀x, x′ ∈ Rn, ∀r ∈ ∂g(x′).
(A.2)

Proof of (39a). Let p(x) := proxµg(x− µ∇f(x)). The
identity (8) together with (10) implies that

Gµ(x) − ∇f(x) ∈ ∂g(p(x)).

Hence, the subgradient inequality (A.2) for an arbitrary
x′ ∈ Rn yields

g(x′) ≥ g(p(x)) + ⟨G(x) − ∇f(x), x′ − p(x)⟩

which in conjunction with (A.1) results in

Fµ(x) ≤ f(x) + g(x′) − ⟨G(x) − ∇f(x), x′ − p(x)⟩
−µ⟨∇f(x), Gµ(x)⟩ + µ

2 ∥Gµ(x)∥2
2.

Rearranging terms and then upper bounding f(x) via
strong convexity,

f(x) ≤ f(x′) + ⟨∇f(x), x − x′⟩ − m
2 ∥x − x′∥2

gives

Fµ(x) ≤ f(x′) + g(x′) − m
2 ∥x − x′∥2

2

+ ⟨G(x), p(x) − x′⟩ + µ
2 ∥Gµ(x)∥2

2

= F (x′) − m
2 ∥x − x′∥2

2 + ⟨Gµ(x), x − x′⟩
− ⟨Gµ(x), x − p(x)⟩ + µ

2 ∥Gµ(x)∥2
2

where the equality is obtained by adding and subtracting
x from the second argument of the inner product. Sub-
stituting (10) into the second inner product completes
the proof.

Proof of (39b). Let p(x) := proxµg(x−µ∇f(x)), x̃ :=
x − x⋆, and p̃ := p(x) − p(x⋆). Substitution of (10)
into (A.1) gives

Fµ(x) − F (x⋆) = f(x) − f(x⋆) + g(p(x)) − g(x⋆)
− ⟨∇f(x), x̃ − p̃⟩ + µ

2 ∥Gµ(x)∥2.

(A.3)
The optimality condition for problem (6) implies that
−∇f(x⋆) ∈ ∂g(x⋆) and x⋆ = p(x⋆). Using these two
identities in the subgradient inequality (A.2) yields

g(p(x)) ≥ g(x⋆) − ⟨∇f(x⋆), p̃⟩
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Fig. 2. (a) Sublinear convergence of accelerated dynamics (21a) and (21b) with the time-varying parameters given in Theorem 1
for ℓ1-regularized least squares problem (47). (b) Linear convergence of accelerated dynamics (21a) and (21b) with the
constant parameters given in Theorem 2 for box-constrained quadratic program (48). (c) Linear convergence of accelerated
dynamics (21a) eith the constant parameters given in Theorem 3 and µ = 1/(L 4√κ) ≈ 1/(26L) for the ℓ1-regularized logistic
regression problem (49) with ϱ = 0.1, and condition number κ ≈ 5 · 105.

which together with (A.3) results in

Fµ(x) − F (x⋆) ≥ f(x) − f(x⋆) − ⟨∇f(x), x̃⟩
+⟨∇f(x) − ∇f(x⋆), p̃⟩ + µ

2 ∥Gµ(x)∥2.

Substituion of the lower bound given by the cocoercivity
of gradient ∇f(x),

f(x) − f(x⋆) ≥ ⟨∇f(x⋆), x̃⟩ + 1
2L ∥∇f(x) − ∇f(x⋆)∥2

2

into the right-hand-side yields

Fµ(x) − F (x⋆) ≥ ⟨∇f(x⋆) − ∇f(x), x̃ − p̃⟩
+ 1

2L ∥∇f(x) − ∇f(x⋆)∥2
2 + µ

2 ∥Gµ(x)∥2

= µ
2 ∥Gµ(x) − (∇f(x) − ∇f(x⋆))∥2

+ 1
2L (1 − µL)∥∇f(x) − ∇f(x⋆)∥2

≥ m2

2L (1 − µL)∥x − x⋆∥2
2

where the equality follows from (10) and the completion
of squares; the second inequality is obtained by ignoring
the first (nonnegative) term and using m-strong convex-
ity of f on the second one.
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