
Gravity and a universal cutoff for field theory

Simon Caron-Huot1, Yue-Zhou Li2

1Department of Physics, McGill University, 3600 Rue University, Montréal, H3A 2T8, QC Canada
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Abstract: We analyze the one-loop effects of massive fields on 2-to-2 scattering processes

involving gravitons. It has been suggested that in the presence of gravity, any local effective

field theory description must break down at the “species scale”. We first observe that unitarity

and analyticity of the amplitude indeed imply a species-type bound GΛd−2N ≤ O(1), where

N counts parametrically light species and Λ is an energy scale above which new unknown

ingredients must modify the graviton amplitude. To clarify what happens at this scale, we

contrast the partial wave decomposition of calculated amplitudes with that of some ultraviolet

scenarios: string theory and strongly interacting Planck-scale physics. Observing that the

latter exhibit a markedly stronger high-spin content, we define nonperturbatively the high-

spin onset scale Λo, which coincides with the string scale and higher-dimensional Planck

scale in respective examples. We argue that, generally, no local field description can exist at

distances shorter than 1/Λo.
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1 Introduction

The nature of gravity at very short distances is an outstanding mystery, with spacetime fluc-

tuating so strongly at the Planck length that it ceases to make sense. Given that current and

foreseeable experiments probe much longer length scales, it might well be that all observable

consequences of these effects can be captured by a local effective field theory (EFT):

S = SEH + Smatter + higher-derivative corrections . (1.1)

The idea is that the Einstein-Hilbert action minimally coupled to matter is supplemented

by derivative corrections which parametrize our ignorance of physics at distances shorter

than some scale Λ−1. To our knowledge, all currently observed gravitational phenomena

fit this framework [1, 2]. In the absence of a unique predictive theory of quantum gravity,

it makes sense to theoretically chart out the space of EFTs which admit a meaningful UV

completion. The Swampland program, inspired by string theory, has led to a number of

intriguing conjectures about such EFTs [3–8]. A basic question to be discussed in this paper

is: down to which length scales can one use EFT logic?

A longstanding observation is that in the presence of a large number N(Λ) of matter

fields below the scale Λ, the “quantum gravity cutoff” Λ should be parametrically lower than

the Planck mass [9–11]:

Λd−2N(Λ) ≲ O(1)Md−2
pl . (1.2)

The simplest way to understand this “species scale” is that it is where loop corrections to the

graviton propagator overwhelm its tree-level expression (see e.g. [12], section 3.2). One could

try to reach higher energies by simply resuming self-energies, however this does not appear to

yield a sensible graviton propagator (as is further discussed below), unless an infinite number

of derivative corrections simultaneously become important; hence, when (1.2) is violated, the

framework (1.1) loses any predictive power and we say that it “breaks down”. Violation of

(1.2) would also be in tension with the Bekenstein-Hawking entropy formula, by enabling,

roughly, too many distinct ways of producing a black hole of radius Λ−1 [13]. Scenarios with

N very large were initially considered as a way to ameliorate the hierarchy problem between

the weak scale and the gravity scale. Since the species scale is closely linked with quantum

gravity, it has recently drawn significant attention, see, e.g., [14–18].

In calculable string theory examples, there are at least two distinct ways to realize a

low cutoff Λ ≪Mpl. The first is through the decompactification of k extra dimensions whose

volume Volk tends to infinity. In this limit, N(Λ) ∼ ΛkVolk from counting Kaluza-Klein modes

and the cutoff (1.2) coincides parametrically with the Planck mass of the higher-dimension

theory: Λd+k−2 ∼ Md−2
pl /Volk ≡ Md+k−2

pl,d+k . The second way is that a fundamental string can

become tensionless, meaning that an infinite tower of high-spin states on the graviton Regge

trajectory become light. The local EFT framework embodied by (1.1) then breaks down at

the string scale. (This is unrelated to the question of whether a more specialized framework
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such as string field theory holds.) In fact, it has been conjectured that these are the only

options, known as the emergent string conjecture [19–21] (see also [22, 23] in the context of

black holes).

The cutoff Λ enters a number of Swampland conjectures, such as the distance conjec-

ture [3, 24] and the recently observed “pattern” [25, 26] which relates the way that the UV

cutoff varies as a function of scalar moduli, ∇⃗ϕ log Λ, with the mass of other massive towers:

(∇⃗ϕ log Λ)·(∇⃗ϕ logM) = 8πG
d−2 .

In order to better understand statements and conjectures involving Λ, it would be helpful

to have a more precise characterization of what happens at this scale without specifying the

UV theory. A single review [8] mentions “the fundamental quantum gravity cutoff”, the

“cutoff on low energy effective field theory in any form”, that “effective field theory breaks

down irrevocably at some scale”, and “the species bound scale” Λsp. While the phrase “species

scale” is becoming more widely used in the literature as a proxy for the UV cutoff, we find this

terminology unsatisfying because it mixes concepts that are a priori distinct. Furthermore,

a precise definition of “N” remains challenging in our opinion.1 From now on, we will refer

thus to the universal cutoff of (1.1) as Λ���QFT.

The central notion which seems consensual is that at lengths shorter then a certain scale

Λ−1
���QFT, the concept of local fields becomes inapplicable. We stress that this scale is unique and

unlike any other EFT cutoff we have encountered before in physics. We are accustomed to

the idea that when an EFT breaks down, it simply gets replaced by a better one: QED with a

point-like proton gets replaced by QED+QCD above ΛQCD, where quarks and gluons become

dynamical; Fermi’s four-fermion description of the weak force upgrades to the electroweak

theory above the mass scale of the W , Z, etc. There is no local field theory, effective or not,

above Λ���QFT.

The main goal of this paper is to clarify what happens at the scale Λ���QFT and to explain

how precise bounds of the form (1.2) naturally arise from suitable definitions.2 We will

consider thought experiments involving the scattering of gravitons and calculate the one-loop

contributions from various types of matter, including scalars, fermions, vectors, and additional

spin-3/2 and spin-2 fields, as well as two- and three-form fields in higher dimensions. We will

analyze these amplitudes from the prism of dispersive sum rules, which the amplitudes must

satisfy if standard S-matrix axioms embodying unitarity and relativistic causality continue

to apply above the scale Λ���QFT.

The basic idea (further reviewed in section 4) is that under these assumptions, gravi-

ton scattering satisfy Kramers-Kronig-type sum rules which relate Newton’s constant at low

1For modes much below the cutoff, what is the correct relative weight to assign to different types of fields—

scalars, fermions, gauge fields etc.—and why? For modes near a weakly coupled cutoff, ie. string theory with

Ms ≪ Mpl, different natural counts change Λsp by O(log(Mpl/Ms)) [21, 27]—which should we use? And when

interactions are strong, is there any well-defined procedure to count modes near the cutoff?
2We stress that the cutoff represents a minimal length, not a maximal energy: apple-Earth scattering can

be well described by EFT despite having a large center-of-mass energy in Planck units, if short distances are

not probed. Also, we consider only simple measurements that are not exponentially complicated in 1/G.
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Figure 1: Illustration of sum rules for Newton’s constant: for any b, calculable positive

contributions from N scalars (orange line) cannot exceed the total required by low-energy

gravity (blue line). Other light matter fields have a qualitatively similar shape while heavier

fields decay more rapidly with b; all are nonnegative.

energies to nonnegative scattering probabilities at high energies:

8πG

p2⊥
=

∫
ds

π
(2s− p2)Im f(s,−p2⊥) ≡ B2(p⊥), (1.3)

which makes sense after integrating both sides against a suitable “focusing” wavepacket ψ(p⊥)

(called smearing function in [28]). This generalizes the positivity argument of [29] to a

gravitational context and also connects with the causality argument of [30]. In practice,

we separate the integral into low energies s < M2, where it can be calculated using EFT, and

high energies s > M2. Importantly, one can choose ψ(p⊥) such that the contribution from

any computable low-energy loop below M is positive, and any unknown high-energy physics

above the scale M also contributes positively. In fact, one can design an infinite set of such

wavefunctions, which are loosely labelled by impact parameter b ≳M−1, leading to a family

of sum rules whose typical shape is sketched in figure 1.3

For any separation scale M , we learn two things from such plots: i) Newton’s constant

sets an upper bound on computable loop contributions to graviton scattering from modes

lighter than M , ie. a bound on N(M) ii) there must exist states heavier than M whose

contributions is qualitatively stronger at bM ≫ 1 than any computable matter loop. Given

the usual relation between angular momentum of two-particle states and impact parameter

(J = bm
2 ), we refer to this second phenomenon as the onset of high-spin states.

We propose that the quantum gravity cutoff is simply the scale of high-spin onset:

Λ���QFT ≡ Λo.

3For illustration, we used B2(b) =
∫M

0
dp⊥

∫
ds
π
(2s−p2)(1−p)2p⊥J0(bp⊥)Im f(s,−p2⊥) in this plot. Techni-

cally, for b fixed, only high-energy states with s ≫ M2 are guaranteed to contribute positively to this specific

sum rule, which allow slight negative contributions from states with s ∼ M2. Better sum rules that are

rigorously sign-definite are described in section 4.
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High-spin onset is a counterpart to the “low-spin dominance” phenomenon observed in [31]

for computable matter loops. The idea is that the physics which UV completes graviton

scattering must be quantifiably less low-spin-dominated than any physics we can describe

using local field theory below the cutoff. The onset of high-spin states at the scale Λo thus

signals the breakdown of any EFT description, and triggers a nontrivial UV completion of

gravity.

More precisely, we propose to define Λo as the lowest scale at which certain ratios of

integrated spectral densities exceed certain order-one constants:∫ Λo

0 s−
d
2 ds Im aJ(s)∫ Λo

0 s−
d
2 ds Im aJ−2(s)

≳ CJ (1.4)

which we will compute in a number of spacetime dimensions and SO(d− 1) representations.

Generally, from this definition and dispersive sum rules, we expect that Λo ≤Mpl×O(1). We

will find that the high-spin scale coincides parametrically with the higher-dimensional Planck

scale in decompactification limits, while in weakly coupled string theory it coincides with the

mass of spin ≥4 string states that couple strongly to two gravitons.

A key feature of the criterion (1.4) is that it makes sense even when physics at the cutoff is

not weakly coupled. As we will discuss, in the context of AdS/CFT, the analogous definition

of Λo (using three-point couplings between two stress tensors and heavy spinning states) gives

a precise meaning to the notion of “higher-spin gap” at finite Nc. It was conjectured in [32]

that CFTs exhibiting such a gap had a local bulk dual to sub-AdS distances.

While the technology to calculate one-loop graviton amplitudes is not new, to our knowl-

edge this is the first time that these amplitudes and their partial waves are systematically

analyzed in d dimensions. Anticipating possible other applications, we record self-energy

corrections, vertex corrections and on-shell four-graviton amplitudes in an ancillary file.

Our graviton-graviton scattering setup deserves a few comments. While the operation of a

graviton collider (or even of a gravity wave collider) is hard to envision with current technology

and budgets, the essential point of thought experiments involving graviton scattering is that

there is no in principle obstruction to preparing a pair of gravitons with center-of-mass

energy above Λ���QFT in an otherwise locally flat region of spacetime, in which our “collider”

resides. By unitarity, we mean that the probability that they scatter nontrivially should

remain nonnegative at any relevant energy. By causality, we mean that near-forward signals

do not arrive superluminally compared with the flat metric in which the collider resides,4 even

with time resolution better than Λ−1
���QFT.

5 Together, these two assumptions ensure analyticity

and dispersive sum rules of the type (1.3).

While the just stated assumptions are standard for the S-matrices of local quantum field

theories, it would be fair to question them in the presence of gravity. For example, the

4In d = 4, infrared divergences make this notion logarithmically sensitive to the size of the collider.
5For relativistic S-matrices, we are unaware of any in principle limit on the accuracy of arrival time mea-

surements. Naively, one could imagine using highly boosted detectors to take advantage of time dilation factors

and thus achieve super-Planckian accuracy on the retarded time at which gravitational radiation arrives.
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convergence of dispersive sum rules has been questioned in [33] in relation to “non-locality”

above Planck energies. Our best answer is that in AdS/CFT, equivalent sum rules can be

derived using the exact causality properties of the boundary CFT [34].6 It appears that

quantum gravity is perfectly compatible with standard S-matrix dispersion relations.

The paper is organized as follows. In section 2, we present the prerequisites for our

discussions of the high-spin onset, including the kinematic structure of graviton scattering,

low-energy effective actions, and the partial wave decompositions. In section 3, we compute all

one-loop contributions to the graviton amplitudes at low energy in general dimensions, from

fields of spin j ≤ 2. This also includes the resummed graviton propagator and effective vertices

as byproducts. In section 4, we first argue that the resummed propagators do not make sense

at scales parametrically above the species scale, although it remains unclear whether this fact

can be used to obtain sharp species-type bound. Then, we review the gravitational sum rules

and use the fixed impact parameter ones to demonstrate the phenomena of high-spin onset.

We also apply the sum rules to put rigorous bounds on the number of light species, followed

by comments on the low-energy Wilson coefficients.

In section 5, we define the integrated spectral densities, as motivated by gravitational

sum rules. We compute such quantities in different spacetime dimensions and SO(d − 1)

irreducible representations for a variety of models, including matter loops, string theory, and

strongly interacting gravitational physics at the Planck scale. We demonstrate that the high-

spin spectral densities of these UV completion scenarios of gravity are qualitatively stronger

than any of the content calculated in field theory. This completes our proposal of defining

the scale of high-spin onset Λo as the universal field theory cutoff, which we also discuss in

the AdS/CFT context. We summarize in section 6, which includes a number of conjectures

regarding Λo.

In appendix A, we review technical aspects of ghost actions for massless Rarita-Schwinger

and two-form fields. In appendix B, we record discontinuities of one-loop master integrals.

In appendix C, we review tree-level amplitudes in various string theories.

2 Generalities and setup

In this section, we prepare necessary ingredients that enter our loop amplitudes and analysis

of Λ���QFT and Λo.

2.1 Polarization structures for graviton scattering

We consider graviton 2-to-2 scattering. The amplitude for this process depends on the polar-

ization and momenta of the gravitons. In d = 4, polarizations can be classified as two helicity

6AdS space also serves as a well-defined infrared regulator, such that the familiar infrared divergence of the

four-dimensional Shapiro time delay appear in the flat space limit as logarithms of the AdS4 radius RAdS → ∞.
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states and the independent amplitudes up to Bose symmetry are [31, 35]

M(1+2−3−4+) = ⟨23⟩4[14]4 f(s, u) , (2.1)

M(1+2+3+4−) = ([12][13]⟨14⟩)4 g(s, u) , (2.2)

M(1+2+3+4+) =
[12]2[34]2

⟨12⟩2⟨34⟩2
h(s, u) , (2.3)

where the Mandelstam variables are defined by

s = −(p1 + p2)
2 , t = −(p2 + p3)

2 , u = −(p1 + p3)
2 . (2.4)

We take the conventions that all momenta are out-going. Energy-momentum conservation

gives s + t + u = 0. The spinor brackets satisfy |⟨12⟩|2 = |[12]|2 = |s| and permutations

thereof.

In general dimensions, similarly, graviton amplitudes can be factorized into the prod-

uct of Lorentz-invariant polynomials of momenta and polarizations times pure functions of

Mandelstam variables

M =
∑
(i)

P(i)({pj , ϵj})×M(i)(s, t) , (2.5)

in which the polarizations vectors are transverse traceless and possess the gauge redundancies

p2j = ϵ2j = pj ·ϵj = 0, ϵµj ≃ ϵµj +#pµj . (2.6)

In generic dimensions d ≥ 8, there are 29 independent structures of P(i). An appropriate

choice of them, called as the local module, ensures that no spurious poles appear in the pure

functions M(i) [36, 37]

singlets : GM(1)(s, u), S2M(10)(s, u),

triplets : H2
14H

2
23M(2)(s, u), H12H13H24H34M(3)(s, u), H14H23(X1243−X1234−X1324)M(4)(s, u),

X2
1243M(6)(s, u), X1234X1324M(7)(s, u), H14H23SM(8)(s, u), X1243SM(9)(s, u),

sextuplet : H12H34X1243M(5)(s, u) . (2.7)

Two singlets, seven cyclic triplets and one sextuplet describe their transformations under

permutations. The building blocks, each gauge and Lorentz invariant, are defined as

H12 = Fµ
1νF

ν
2µ , H123 = Fµ

1νF
ν
2σF

σ
3µ , H1234 = Fµ

1νF
ν
2σF

σ
3ρF

ρ
4µ , V1 = p4µF

µ
1νp

ν
2 ,

X1234 = H1234 − 1
4H12H34 − 1

4H13H24 − 1
4H14H23 ,

S = V1H234 + V2H341 + V3H412 + V4H123 , G = det vi · vj , (2.8)

where Fµ
iν = pµi ϵiν−piνϵ

µ
i and v = (p1, p2, p3, ϵ1, ϵ2, ϵ3, ϵ4). Since the M(i) do not have spurious

poles in this basis, the interpretation of amplitudes and analysis of dispersion relation become

more straightforward [37]; for example, gauge invariant contact interactions between four

gravitons are in one-to-one correspondence with arbitrary polynomial amplitudes M(i)(s, t)

subject only to the correct permutation symmetries.
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2.2 Stress-tensor correlators and effect of matter on gravity amplitudes

The gravity theory we consider is Einstein’s gravity perturbed by its coupling to a large

number N ≫ 1 of matter fields, plus possible higher-derivative terms involving the metric:

S = SEH[g] + Shigher−derivatives[g] + Smatter, SEH =
1

16πG

∫
ddx

√
−gR . (2.9)

As discussed in introduction, at the “species scale” scale M where GNM
D−2
2 ∼ 1, loop

corrections to graviton-graviton scattering become comparable to tree-level contributions. A

reasonable effective field theorist might not immediately conclude that perturbation theory

breaks down at that scale, however, since only a very restricted set of diagrams need to be

resummed: those that are enhanced by the maximal power of N for each loop.

We will thus start by entertaining a scenario in which such a resummation were to make

sense up to a scale parametrically above M . This will indeed be the case at a purely power-

counting level. However, the resummed theory will turn out to be pathological in various

ways. Thus, after we realize the foolishness of this scenario, we will return to doing ordinary

perturbation theory at energies s, t≪M2.

The leading effects of N matter fields on graviton scattering are captured by a non-

local effective action Seff [g] obtained by integrating out the matter fields. We refer to this

framework as “matter weakly coupled to gravity”. For bookkeeping purposes, it will be

convenient to lump matter loops and higher-derivative terms of the metric into the same

effective action:

eiSeff [g] ≡ eiShigher−derivatives

∫
Dϕmattere

iSmatter . (2.10)

To be fully precise, we include also in Seff counter-terms proportional to the cosmological

constant and Einstein-Hilbert action, as well as quadratic terms:

Shigher−derivatives =

∫
ddx

(
δΛ + δRR

16πG
+ cR2R2 +

4(d− 3)

d− 2
δc
(
C2 − E(4)

)
+ cGBE

(4)

)
(2.11)

with C the Weyl tensor and E(4) the four-dimensional Euler density (Gauss-Bonnet term)

E(4) = RµνρσR
µνρσ − 4RµνR

µν +R2 . (2.12)

This parametrization will be especially convenient for conformal matter, where δc
∣∣
div

∼ c and

cGB

∣∣
div

∼ (a − c) with a and c the two central charges in four dimensional conformal field

theories [38, 39].

In d = 4 we stop at quadratic terms in (2.11) since their effect has the same parametric

dependence on momenta as matter loops, ie. Π(p) ∼ p4 for self energies. In d > 4 we include

a finite number of additional terms in agreement with the degree of ultraviolet divergences of

matter loops (ie. we keep up to Riem3 in d = 6).

The effective action Seff [g] is simply the generating function of renormalized stress-tensor

correlators of a non-gravitational QFT, with the higher-derivative terms (2.11) representing

different choices of renormalization schemes.
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We will initially work in the following power-counting scheme: we take cR2 ∼ 1/(8πGM2)

so that the tree-level effect of these terms are of the same order at and above the species scale

as the one-loop effects from N matter fields. We initially also assume that higher-derivative

terms are further suppressed by a higher scale (ie. cR3 ∼M−2M ′−2 with M ≪M ′ ≲Mpl in

d = 4).

The stated power-counting assumptions are self-consistent and they make it reasonable,

a priori, to calculate amplitudes up to energies s ≲ M ′2 by treating the effective action

(2.10) at tree-level, with the 1-loop amplitudes entering it computed ignoring higher-derivative

corrections. (We will ultimately see, however, that such a treatment does not make much

sense at scales parametrically above M due to pathologies in the effective propagator.)

The first correlator is the one-point function. As usual when expanding around Minkowski

space, we fine-tune the bare cosmological constant δΛ to exactly cancel the matter loop

contribution so that the renormalized vacuum energy density vanishes:

⟨0|Tµν |0⟩ ≡ 2
δSeff
δgµν

∣∣∣
gµν=ηµν

= 0. (2.13)

With this choice (and only with this choice!), the two-point function of the effective stress

tensor gives a transverse self-energy. It can be decomposed into scalar and spin-2 parts under

SO(d− 1):

Σµν,ρσ(p) ≡ −i⟨0|Tµν(p)T ρσ(x = 0)|0⟩

=
Πµν(p)Πρσ(p)

d− 1
Σ(0)(p) +

(
Πµρ(p)Πνσ(p) + (ρ↔σ)

2
− Πµν(p)Πρσ(p)

d− 1

)
Σ(2)(p) ,

(2.14)

where we introduced the transverse projector

Πµν(p) ≡ ηµν − pµpν/p2 . (2.15)

Note that in many formulas here we work in units where 8πG = 1, which can be easily

restored when necessary. We represent the self-energy using the following diagram:

(2.16)

As usual in QFTs, we can resum the self-energy to define the full dressed propagator. This is

simply the tree-level two-point function in the theory with action SEH + Seff . In a schematic

notation that omits only Lorentz indices, we have (see also the first line of Fig 2)

Gfull =
1

G−1
GR − Σ

= GGR +GGRΣGGR +GGRΣGGRΣGGR + . . . . (2.17)
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= + + + · · ·

= + = +

Figure 2: Effective Feynman rules obtained from the action SEH + Seff , indicated with

dots. We have separated contributions from pure GR and matter loops, the latter containing

counter-terms as well as higher-derivative corrections to GR.

The next correlator is the three-point one, which gives an effective vertex. We will only

need it when two legs are on-shell and the third off-shell

V µν
3,full(p1, p2) = V µν

3,GR(p1, p2) + ⟨0|(ϵ1·T (p1)) (ϵ2·T (p2))Tµν(x=0)|0⟩ , (2.18)

where ϵi·T stands for ϵiµϵiνT
µν . Finally, the last ingredient we will need is the four-point

function with all legs on-shell:

V4,full(p1, p2, p3) = V4,GR(p1, p2, p3) + ⟨0|(ϵ1·T (p1)) (ϵ2·T (p2)) (ϵ3·T (p3)) (ϵ4·T (x=0))|0⟩ .
(2.19)

Our diagrammatic notation for the GR and matter contributions is shown in Figure 2.

In summary, in terms of ordinary loop diagrams, the four-graviton scattering amplitudes

in the “matter weakly coupled to gravity” framework takes the general form:

M4 = M4,GR +M4,1−loop +M4,≥2 loops, (2.20)

where the first two terms follow the naive loop expansion (treating higher-derivative cor-

rections to GR as the same size as loop effects) and the last term necessarily involves the

resummed propagator and effective vertex (2.18).

The calculation of these ingredients from various types of matter fields will be detailed

in the following subsections. As mentioned, the resummed propagator will turn out to be

pathological above the species scale, so unfortunately we will not find any situation in which

the M4,≥2 loops term is both sensible and important.

2.3 Actions for various matter types

In this subsection, we spell out the action for the matter fields of various spins that we

consider, which all have spin j ≤ 2: a scalar, Dirac fermion, 1-form, Rarita-Schwinger spin-

3/2, massive graviton, as well as 2-form and 3-form fields. Since we wanted to consistently

obtain the resummed propagator and vertices as well as one-loop amplitudes, we did not use

on-shell techniques, but rather used direct Feynman diagrams.
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The total action is

Smatter =
∑
j

njSj . (2.21)

The most familiar actions are those of spin ≤ 1, which are well behaved in the massless limit

S0 = −1

2

∫
ddx

√
g((∇ϕ)2 + (m2 + ξR)ϕ2) ,

S1/2 = i

∫
ddx

√
g ψ( /D +m)ψ ,

S1 = −1

2

∫
ddx

√
g(12FµνF

µν +m2AµA
µ) . (2.22)

Physically, we imagine that for fields of each spin we have a distribution of masses m (ie.

organized in a Kaluza-Klein tower) but we suppress this from our notation. Note that we

don’t add non-minimal couplings except for ξR in the scalar case. In principle one could add

terms such asRµνA
µAν for a spin-1 massive particle, however, we find that such terms give rise

to amplitudes that are power divergent in the massless limit 1/m#, and grow correspondingly

faster with energy. This seems to violate the power-counting scheme articulated in subsection

2.2 and for this reason we did not consider such terms further.

For higher spin particles j = 3/2, 2, it is rather challenging to directly write down ap-

propriate minimal-coupling actions. A shortcut is to consider the Scherk-Schwarz dimension

reduction [40, 41] of d + 1 dimensional massless Rarita-Schwinger and Einstein-Hilbert ac-

tions. The minimal couplings of massless spin-3/2 and gravitons are uniquely well-defined,

and the Scherk-Schwarz dimension reduction serves as a “geometric” Higgs mechanism that

breaks the gauge symmetry and thus generates the masses [40, 41].

For the massless spin-3/2 in higher dimension we have

S
(d+1)
3/2 = i

∫
dd+1x

√
gΨµ

(
γµνρ − d− 1

4
γµγνγρ

)
DνΨ

ρ + S3/2,FP . (2.23)

The first term is the standard Rarita-Schwinger action with an appropriate gauge-fixing term.

On the other hand, S3/2,FP refers to the Faddeev-Popov (FP) ghost action, and it behaves

like −3 times fermion contributions, as shown in appendix A. We then perform the Scherk-

Schwarz dimension reduction for Ψµ to generate a tower of massive spin-3/2 fields minimally

coupled to gravitons in d dimensions.

Massive spin-2 particles have an added subtlety related to the gauge choice. In order to

minimize pain and ensure that the effective action is transverse, we use the background field

method in d+1 dimensions, distinguishing the field running inside the loop and that outside.

This means that we consider linearized perturbation of Einstein gravity in d+ 1 dimensions

around the “background field”

gµν = gdµν +
√
32πGhsµν . (2.24)
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Then hsµν denotes the “virtual” graviton, which will be dimensionally reduced to become

the massive spin-2 particles. The background gdµν = ηµν +
√
32πGhµν describes the real

gravitons, and it remains as massless gravitons after the dimensional reduction. Upon adding

the background field de-Donder gauge-fixing term, we find

Sd+1
2 = −1

2

∫
dd+1x

√
g
(
∇µh

s
νρ∇µhsνρ − 1

2
∇µh

s∇µhs −
(1
2
(hs)2 − hsµνh

sµν
)
R

+ 2
(
hshsµν + hsνρ h

sρµ
)
Rµν + 2hsµνhsρσRµρνσ

)
+ S2,FP , (2.25)

where all the covariant derivatives and the curvatures are defined with respect to the back-

ground field gdµν . The FP ghost action is also straightforward to obtain

S2,FP = −
∫
dd+1x

√
g∇µcν∇ρcσ

(
gµρgνσ + gµσgνρ − gµνgρσ

)
. (2.26)

It is worth emphasizing that Scherk-Schwarz reduction plays nicely with dimensional

regularization and that it is never necessary to work out any reduced action in order to

compute amplitudes. In practice, we simply perform all numerator algebra using the (d+1)-

dimensional Lorentz invariant Feynman rules of the massless theory (not discarding scale-less

integrals), then plug in the (d+ 1)-dimensional loop momentum (ℓµ,
√
ℓ2⊥ +m2) where ℓ⊥ is

the conventional (−2ϵ)-dimensional part of the loop momentum in d−2ϵ dimensions.

In higher dimensions d > 4, it is also necessary to discuss two-form and three-form fields,

which are fully antisymmetric representations with Young-Tableaux (1, 1) and (1, 1, 1). Note

that with the conventional definition of “spin” as the length of the first row, these are all

spin-1 fields. These are low-spin matter fields that can exist in the low-energy EFT; for

example, they play important roles in supergravity. In d = 4, they reduce to combinations of

scalars and vectors via duality. To include them, we start with the (d+1) action and perform

dimension reduction to generate the masses. The general action for a massless p-form Bp is

Sd+1
p = − (p+ 1)2

2(p+ 1)!

∫
dd+1x

√
g∇[µBν1···νp]∇

[µBν1···νp] + Sgf + Sghosts . (2.27)

We use the covariant derivative to write the action, emphasizing that the p-form is coupled

to background gravitons. Again there is a technical subtlety. A massless p-form for p > 1

is known as a reducible gauge theory because the gauge-fixing condition itself can be further

constrained by the background field [42, 43]. Therefore, the usual FP ghost does not fully

capture the gauge redundancy and one needs ghosts for ghosts. We review the counting of

ghosts for the 2-form by closely follwoing [42] in appendix A, where we show that the ghost

of 2-form contributes like three scalars.

For 3-form fields, the ghosts become non-minimally coupled to gravity [43, 44], which

would substantially increase the difficulty of the analysis. Therefore, we by-passed a direct

calculation and instead inferred the 3-form contribution to one-loop by imposing the super-

gravity Ward identities and subtracting other matter contributions (see (2.28) below).
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When recording one-loop amplitudes below and in ancillary files, an effective data com-

pression device is to use a supersymmetric decomposition [45–47], since the contributions

of whole supermultiplets tends to be significantly simpler than that of individual fields. In

addition, we used duality to simplify the p-form results. In general dimensions we use:

MN=0 = M0

MN=1 = 4M0 +
4

dF
M 1

2
,

MN=4 = (9− d)M0 +
8

dF
M 1

2
+M1 ,

MN=6 = 4
(
20 +

1

4
d(d− 17)

)
M0 +

4(18− d)

dF
M 1

2
− 2(d− 9)M1 +

4

dF
M 3

2
+ 2M(1,1) ,

MN=8 = −1

6
(d− 10)

(
(d− 20)d+ 105

)
M0 +

16

dF
(10− d)M 1

2
+

1

2
(d− 11)(d− 10)M1

+
16

dF
M 3

2
+M2 + (10− d)M(1,1) +M(1,1,1) ,

M
(1,1)

= M(1,1) +
1

2
(d− 1)(d− 4)M0 − (d− 3)M1 ,

M
(1,1,1)

= M(1,1,1) + (5− d)M(1,1) −
1

6
(d− 6)(d− 5)(d− 1)M0 +

1

2
(d− 6)(d− 3)M1 ,

(2.28)

where M here can refer to either the one-loop amplitudes, self-energy or three-point effective

vertices; dF = Tr[1] counts the dimension of the spinor representation, for example dF = 4

for a Dirac fermion in four dimensions. We will confirm soon that N = 8 1-loop amplitudes

are indeed simplified to scalar box diagrams [48, 49], and N = 6 amplitudes contain only box

and triangle integrals in any dimension.

The duality-subtracted 2-form M
(1,1)

vanishes in any spacetime dimension whenever all

external momenta and polarizations of the four-graviton process lie within a 4-dimensional

subspace; M
(1,1,1)

vanishes when all data lie within a 6-dimensional subspace. (In general, the

coefficients in these relations are obtained by dimensionally reducing from 4 and 6 dimensions,

respectively.) In particular, this implies that self-energy Σ
(1,1)

and Σ
(1,1,1)

are identically

zero, as well as the effective vertex V
(1,1,1)

= 0. This also implies that the one-loop amplitude

M
(1,1,1)

∝ G defined in (2.8), a fact which eased its extraction using supersymmetry ofMN=8.

In addition, we find that M
(1,1,1)

contains only box and triangle integrals.

2.4 Partial wave decomposition

A powerful technique to understand the deep physics of loop amplitudes and the nature of

their possible UV completion is to analyze them in the partial wave basis. In particular, in

section 5, we will use partial wave coefficients to propose a sharp definition of the UV cutoff

Λ���QFT.

Properly normalized partial waves for graviton scattering have been computed in [37] and

we used the ancillary files provided there; we refer to that paper for further details. Generally
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the partial wave expansion for 2 → 2 graviton scattering takes the form

M = s
4−d
2

∑
ρ

n(d)ρ

∑
ij

(aρ(s))jiπ
ij
ρ (x) , n(d)ρ =

2d(2π)d−2dim ρ

volSd−2
. (2.29)

where ρ labels all finite-dimensional irreducible representations of the little group SO(d− 1)

that preserves p1 + p2. Physically, ρ represents the intermediate states in the center-of-mass

frame. Therefore, properly normalized partial waves πρ can be constructed by gluing the

vertices of two gravitons and one heavy particle [37], where different vertices are labeled by

(i, j). In this formula, x = 1 + 2t/s is the cosine of the scattering angle, and we normalize

the partial waves by ∑
ϵ4=ϵ∗1,ϵ3=ϵ∗2

πijρ (1) = δij . (2.30)

In four dimensions, the partial waves of graviton scattering for any helicity configurations are

known as the Wigner-d function

πh,h
′

J (x) = dJh,h′(x) = N J
h,h′

(
1 + x

2

)h+h′
2
(
1− x

2

)h−h′
2

2F1

(
h− J, J + h+ 1;h− h′ + 1; 1−x

2

)
,

(2.31)

where

N J
h,h′ =

1

Γ(h− h′ + 1)

√
Γ(J + h+ 1)Γ(J − h′ + 1)

Γ(J − h+ 1)Γ(J + h′ + 1)
, dJh,h′(1) = δh,h′ . (2.32)

In higher dimensions, there are more irreducible representations of the little group SO(d−1).

For example, there are 20 graviton-graviton-massive vertices for d ≥ 8. All these vertices are

constructed in [37], and were glued to give the partial waves, recorded in the ancillary file

therein7. For alternative but equivalent constructions, see [50].

We have verified that the partial waves satisfy the orthogonality relation∫ 1

−1
dx(1− x2)

d−1
2 Tr

[
πijρ (x)π

ij
ρ′(x)

]
=

√
π Γ
(
d
2 − 1

)
Γ
(
d−1
2

)
dim ρ

δρρ′ , (2.33)

where “Tr” stands for a sum over all polarizations. We have used this in practice to extract

the partial wave coefficients aρ
8

aijρ =
23−2ds

d−4
2 π

2−d
2

Γ
(
d−2
2

) ∫ 1

−1
dx(1− x2)

d−4
2 Tr

[
πijρ (x)M

]
. (2.34)

7Note that the partial waves recorded in the ancillary file of [37] differ by an overall factor dim(J)/dim ρ

to ensure (2.33).
8This method requires calculating the pairing between the 29 tensor structures listed in (2.8). This pairing

matrix is available from the authors upon request.
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3 Graviton amplitudes with matter loops

3.1 Master integrals

In this section, we review the master integrals that will appear in our final amplitudes. The

master integrals constitute a minimal set of independent integrals to which all other integrals

can be reduced. Although we are considering the nonperturbative resummation due to the

enhancement from a large-N number of particles, all the loop ingredients are limited to just

one loop. Therefore, the master integrals are enumerated by the tadpole, bubbles, triangles

and boxes topologies. Permuting external momenta produces more sub-topologies. Generally,

we can define the inverse of the Feynman propagator by

D(ℓ, p) = (ℓ− p)2 +m2 . (3.1)

The one-loop family is

Ga0a1a2a3(q1, q2, q3) =

∫
ddℓ

(2π)d
1

D(ℓ, 0)a0D(ℓ, q1)a1D(ℓ, q2)a2D(ℓ, q3)a3
, (3.2)

where we use qi to distinguish with the external momenta pi. If ai = 0, we simply drop it out

in the arguments. Eventually, the integrals only depend on the external momenta, especially

as functions of Mandelstam variables. We then define

G1000 = Itad(m) , G1100(p1 + p2) = Ibub(m, s) , G1110(p1,−p2) = G1110(p3,−p4) = Itri(m, s) ,

G1111(p1, p1 + p2,−p4) = Ibox(m, s, t) , (3.3)

and permutations therein. It is important to note that the box integral is defined in the

Euclidean region s < 0, t < 0, and we should analytically continue it to the physical region.

In d = 4, all master integrals are solved by the massive differential equation (see [51]

and references therein) in the dimensional regularization d → 4 − 2ϵ and MS scheme µ2 =

µ2eγE/(4π). We simply collect the results here up to O(ϵ) terms:

µ2ϵItad(m) = − 1

16π2
m2
(1
ϵ
+ 1 + log

( µ2
m2

))
,

Itri(m, s) = − 1

32π2s
log2

(β(s,m)− 1

β(s,m) + 1

)
,

µ2ϵIbub(m, s) =
1

16π2

(1
ϵ
+ 2 + log

( µ2
m2

)
+ log

(β(s,m)− 1

β(s,m) + 1

)
β(s,m)

)
,

Ibox(m, s, t) = − 1

16π2st β(s, t,m)

(
π2 − 4 log2

(β(s, t,m) + β(s,m)

β(s, t,m) + β(t,m)

)
− 2 log

(β(s, t,m)− β(s,m)

β(s, t,m) + β(s,m)

)
log
(β(s, t,m)− β(t,m)

β(s, t,m) + β(t,m)

)
+ 2
{
log2

( β(s,m) + 1

β(s, t,m) + β(s,m)

)
+ 2Li2

(β(s,m)− β(s, t,m)

β(s,m) + 1

)
− 2Li2

( β(s,m)− 1

β(s,m) + β(s, t,m)

)
+
(
s↔ t

)})
, (3.4)
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where

β(s,m) =
(
1− 4m2

s

) 1
2
, β(s, t,m) =

(
1− 4m2

s
− 4m2

t

) 1
2
. (3.5)

For even higher dimensions, we then use the dimensional shift formula to link the master

integral to four dimensional solutions

I
(d)
tad(m) = − m2

2π(d− 2)
I
(d−2)
tad (m) ,

I
(d)
bub(m, s) =

1

4π(d− 3)

(
I
(d−2)
tad (m)− 4m2 − s

2
I
(d−2)
bub (m, s)

)
,

I
(d)
tri (m, s) =

1

4π(d− 4)

(
I
(d−2)
bub (m, s)− 2m2I

(d−2)
tri (m, s)

)
,

I
(d)
box(m, s, t) = − 1

4π(d− 5)u

(
sI

(d−2)
tri (m, s) + tI

(d−2)
tri (m, t) +

st+ 4m2u

2
I
(d−2)
box (m, s, t)

)
.

(3.6)

We do not have access to the integral formulas in generic odd dimensions. Nevertheless, for

our purposes in section 5, only the imaginary part of the master integrals is necessary, which

can be obtained analytically in arbitrary dimensions, as recorded in appendix B.

3.2 Gravitational self-energy

Now we start to compute the gravitational one-loop self-energy. As noted in section 2, there

are non-vanishing tadpole one-point stress-tensor correlators for massive particles, as shown

in Figure 3. These tadpoles should be absorbed by the counterterm δΛ. A simple exercise

yields δΛ = (8πG)2
∑

j njδΛj with

δΛj =
{
− m2

0

d
Itad(m0),

m2
1/2

d
Itad(m1/2),−

(d− 1)m2
1

d
Itad(m1),

(d− 2)m2
3/2

d
Itad(m3/2),

− (d2 − d− 2)m2
2

2d
Itad(m2),−

(d− 2)(d− 1)m2
(1,1)

2d
Itad(m(1,1)),

−
(d− 3)(d− 2)(d− 1)m2

(1,1,1)

6d
Itad(m(1,1,1))

}
. (3.7)

= + ≡ 0

Figure 3: The tadpole one-point stress-tensor correlators and the counterterm from the

cosmological constant are considered together. The net result is identically zero, ensuring

that the graviton one-loop vanishes in the vacuum.

There are two Feynman diagrams contributing to the self-energy because we have both

cubic and quartic vertices, as shown in Fig 4. The resulting integrands are intricate, as they
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= +

Figure 4: The Feynman diagrams for graviton self-energy involve both bubble and tadpole

topologies, because there are both cubic and quartic vertices involving gravitons and matter.

The solid loops represent matters.

involve tensor products of loop momentum with the polarizations. We then perform the

Passarino-Veltman (PV) reduction [52] and apply Integration by Parts (IBP) [53] to reduce

the integrals to master integrals with rational coefficients.9 To simplify the analysis, it is

beneficial to choose a renormalization condition so that the self-energy does not disrupt low-

energy measurement of G. This requires that the low-energy expansion of the self-energy

starts at an order higher than p2. We then find δR = (8πG)2
∑

j nj(δR)j , where

(δR)j =
{1
6
(6ξ − 1)Itad(m0),−

1

12
Itad(m1/2),

1

6
(7− d)Itad(m1),−

1

12
(d− 2)Itad(m3/2),

1

12
(5d2 + 7d+ 26)Itad(m2),−

1

12
(d2 − 15d+ 38)Itad(m(1,1)),

− 1

36
(d− 3)(d2 − 21d+ 74)Itad(m(1,1,1))

}
. (3.8)

Consistently, the results organize into the transverse form (2.14). For example, for scalar

loops, we find

Σ
(0)
0 (p2) = −

(d− 2)
(
24dp2ξ − 24p2ξ − 5dp2 + 12m2

0 + 8p2
)

12(d− 1)
Itad (m0)

−
(
4dp2ξ − 4p2ξ − dp2 + 4m2

0 + 2p2
)2

8(d− 1)
Ibub

(
m0,−p2

)
,

Σ
(2)
0 (p2) = −

(d− 2)
(
dp2 + 12m2

0 + 2p2
)

6(d− 1)(d+ 1)
Itad (m0)−

(
4m2

0 + p2
)2

4(d− 1)(d+ 1)
Ibub

(
m0,−p2

)
. (3.9)

This, as well as the corrections from fermions, vectors, and the graviton itself, has been

computed a long time ago [55–60]; see also [61] for a recent revisit. However, to the best of

our knowledge, we did not find the individual self-energy from the gravitino loop. We record

the self-energy from other fields in the ancillary file. As will be further discussed below,

however, the contributions from gravitino and graviton loops to the self-energy are not gauge

invariant and have unclear physical significance.

3.3 Transverse effective vertices

This organization in section 2.2 is standard but is not quite optimal. The matter contribution

to V3,full is not transverse with respect to ϵ1 nor ϵ2, since Ward identities relate its divergence

9Although public codes exist to generate Feynman rules with gravity and manipulate them [54], we used

our own implementation.
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to the self-energy Σ. Similar Ward identities apply to V3,GR, which is not transverse when

one of its legs is off-shell. However, it is possible to combine these into a “nice” vertex which

is transverse with respect to both ϵ1 and ϵ2:

V3,T = V3,full − V3,GR(1−GGRΣ) . (3.10)

We can illustrate this definition as:

T
= + (3.11)

Notice that the parenthesis in (3.10) is the inverse of the full propagator. This decom-

position enables us to isolate terms that require the resummed propagator, and those that

involve the ordinary GR propagator:

V3,fullGfullV3,full = V3,GRGGRV3,GR

− V3,GRGGRΣGGRV3,GR + V3,GRGGRV3,T + V3,TGGRV3,GR

+ V3,TGfullV3,T .

(3.12)

Each line has a simple interpretation. The first line is the pure GR result (without any higher-

derivative correction), the second line collects all one-loop corrections to it, while the last line

collects all terms with two or more loops, exactly the general form anticipated in (2.20). Note

that the term with the explicit self-energy has a minus sign, to avoid double-counting the

self-energies includes in V3,T . The total can be depicted as:

= − +
T

+
T

+
T T

(3.13)

The other diagram contributing to the four-graviton amplitude is simply the four-point

effective vertex, which involves no resummation.

The transverse vertices include Feynman diagrams for one-loop contributions to the three-

point vertices, with triangle, bubble and the tadpole topologies:

= + +

(3.14)
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We then construct the transverse vertices using (3.10). The transverse vertices are then

organized into the following structures

Ṽ3,µν =
H2

12

4

(
P 2ηµν − PµPν

)
C(0)(P 2) +

H2
12

4

(
P 2ηµν − PµPν

d− 1
+ (p1µ − p2µ) (p1ν − p2ν)

)
C(2A)(P 2)

+
1

2
H12

( H12

2(d− 1)P 2

(
(d− 4)PµPν + 3P 2ηµν

)
+
P 2

2
ϵ1(µϵ2ν) + ϵ1 · ϵ2 p1(µp2ν)

− p2 · ϵ1p1(µϵ2ν) − p1 · ϵ2p2(µϵ1ν)
)
C(2B)(P 2) . (3.15)

where P = p1 + p2 and a(µbν) = aµbν + aνbµ.

We present our result for scalar loops, while leaving other species to the ancillary file.

For scalar loops, we find

C
(0)
0 (p2) =

(d− 4)(d− 2)
(
−p2 (d (4ξ − 1)− 4ξ + 2)− 4m2

0

)
2(d− 1)2dp6

Itad (m0)

+
(d− 4)

(
4(5d− 6)m2

0 − (d− 2)2p2
) (

−p2 (d (4ξ − 1)− 4ξ + 2)− 4m2
0

)
4(d− 2)(d− 1)2dp6

Ibub
(
m0,−p2

)
−

16m4
0

(
4m2

0 − p2 (−4dξ + 4ξ + d− 2)
)

(d− 2)(d− 1)dp6
Itri
(
m0,−p2

)
, (3.16a)

C
(2A)
0 (p2) =

(d− 2)
(
12
(
3d2 + 10d+ 2

)
m2

0 + (d− 4)p2
)

(d− 1)d(d+ 1)(d+ 2)p6
Itad (m0)

−
(
8d
(
d2 − 12d+ 32

)
p2m2

0 − 48
(
d3 + 12d2 − 16d− 12

)
m4

0 + (d− 4)(d− 2)2p4
)

2d (d4 − 5d2 + 4) p6
Ibub

(
m0,−p2

)
−

16m4
0

(
12m2

0 − (d+ 2)p2
)

d (d2 − 4) p6
Itri
(
m0,−p2

)
, (3.16b)

C
(2B)
0 (p2) =

2(d− 2)
(
4
(
d2 + 6d+ 2

)
m2

0 + dp2
)

(d− 1)d(d+ 1)(d+ 2)p4
Itad (m0)

+

(
8
(
d3 − 6d2 + 6d+ 4

)
p2m2

0 + 16
(
d3 − 12d2 + 8d+ 12

)
m4

0 + (d− 2)2dp4
)

d (d4 − 5d2 + 4) p4
Ibub

(
m0,−p2

)
+

128m6
0

d (d2 − 4) p4
Itri
(
m0,−p2

)
. (3.16c)

3.4 Results in d = 4 and the conformal limit

Let’s first apply our building blocks to compute the massless nonperturbative amplitudes in

d = 4. In d = 4, a massive 2-form is dual to a vector, and similarly a 3-form is dual to a

scalar. Therefore, it is only necessary to consider standard low-spin matters. To keep the

discussion short, we only present external + − −+ helicity configuration, where we get for

the f function defined in (2.3)

f(s, u) =
8πG

stu
+

∑
N=0,1,4,6,8

njf
1−loop,GR
j (s, u) +

3

16

t2C(0)(−t)2

2t+Σ0(−t)
+

(6su− t2)C(2A)(−t)2

24(t− Σ2(−t))
.

(3.17)
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We refer to N = 0 as the scalar case. The structures in vertices C should be understood

as those with summation over species. Note that C(2B) does not contribute for external

momenta and polarizations in d = 4, since it is a Gauss-Bonnet type structure.

In the massless limit, the master integrals are simple with the dimensional regularization

d = 4− 2ϵ of UV divergence

Itad(0) = 0 , Ibub(0, s) =
1

(4π)2

(1
ϵ
+ 2 + log

( µ2
−s

))
, lim

m→0
Itri(m, s) = −

log2
(
m2

−s

)
32π2s

,

lim
m→0

Ibox(m, s, t) =
1

(4π)2st

(
2 log

(m2

−s

)
log
(m2

−t

)
− π2

)
. (3.18)

It is important to note that there are IR divergences in the triangles and boxes, where the

mass is naturally served as the IR regulator. To have well-defined amplitudes, we have to

appropriately perform the renormalization to absorb all the UV 1/ϵ divergence. We simply

choose a convenient scheme, which redefines the couplings (cR2 , δc, cGB) to remove all the

divergences and absorb all the constant terms in (Σ(0),Σ(2), C(2B)). It is straightforward to

explicitly write down the self-energy and the effective vertices

Σ(0)(p2) = −8πGp4

6

(
144crenR2 +

1

16π2
log
(µ2
p2

)(
(1− 6ξ)2n0 + n1 − 16n 3

2
+ 83n2

))
,

Σ(2)(p2) = −16πGp4
(
δcren + c log

(µ2
p2

))
,

C(0)(p2) = −
8πG

(
1080n2 log

2
(
m2

p2

)
+ (90ξ − 19)n0 + 33n1 − 6575n2 − 14n 1

2
− 28n 3

2

)
4320π2p2

,

C(2A)(p2) =
8πG

(
n0 + 3n1 + 5n2 − 4n 1

2
− 8n 3

2

)
2880π2p2

,

C(2B)(p2) = 8πG× 8crenGB − 8πG

8π2
n2 log

2
(m2

p2

)
− 8πG× 4(a− c) log

(µ2
p2

)
, (3.19)

where a and c are generalization of central charges in d = 4 CFT

c =
n0 + 13n1 + 95n2 + 6n 1

2
− 148n 3

2

1920π2
, a =

n0 + 63n1 − 115n2 + 11n 1
2
− 218n 3

2

5760π2
. (3.20)

These reduce to usual central charges of conformal field theory when taking n3/2 = n2 ≡ 0

and then specifying the massless modes to be

n0 = nS − nV , n1 = nV , n 1
2
=
nWeyl

2
, (3.21)

which gives, in agreement with [38, 62]:

c =
nS + 12nV + 3nWeyl

1920π2
, a =

2nS + 124nV + 11nWeyl

11520π2
. (3.22)
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This is of course not a coincidence, since, as we discussed in section 2, the self-energy and ef-

fective vertices are simply stress-tensor correlators in the non-gravitational theory. Conformal

stress-tensor two-point functions are usually parametrized as

Σ(2)(p2)

8πG

∣∣
CFT

= 2p4c log
(µ2
p2

)
. (3.23)

Additionally, in CFT we need to have Σ(0) = 0, which is indeed achieved using the conformal

coupling ξ = 1/6 for each scalar (and using that a massless gauge field is the m→ 0 limit of

a massive vector plus −1 scalar with ξ = 0).

When including gravitinos and gravitons in the loop, the physical significance of c and a

in (3.20) becomes less clear. The gravitino contribution to c is even negative! This negativity

of the TT two-point function does not violate unitarity, however, because in a theory with a

gravitino one also needs to have dynamical gravity, and stress tensor correlators are no longer

gauge invariant observables.10 The matter contents for which c = 0 (or a = 0) seem to be

rather random (a and c do not vanish with maximal supergravity).

We conclude that the graviton self-energy and effective vertex are not sensible physical

observables, and that the n3/2 and n2 contributions to them carry limited significance.

Let’s end by recording the one-loop amplitudes. They take significantly simpler forms

when organized using the supersymmetry decomposition (2.28). At the integrand level, we

have verified that our results agree with [31] for all helicity configurations. As another sanity

check, we reproduce the N = 8 multiplets results in d = 4 for any mass [31, 48, 49, 63]:

f1−loop
N=8 (s, u) = (8πG)2

(
Ibox(m, s, t) + Ibox(m, s, u) + Ibox(m, t, u)

)
, (3.24)

while h and g are zero. To give a taste of the expressions, we show the massless limit in d = 4:

f1−loop
N=0 (s, u) =

(8πG)2

16π2

(
− π2s3u3

2(s+ u)8
−
s3u3 log2

(
u
s

)
2(s+ u)8

+
2s4 + 23s3u+ 222s2u2 + 23su3 + 2u4

360(s+ u)6

+
(s− u)

(
s4 + 9s3u+ 46s2u2 + 9su3 + u4

)
log
(
u
s

)
60(s+ u)7

)
,

f1−loop
N=1 (s, u) =

(8πG)2

16π2

(−π2s2u2
(s+ u)6

+
s2 + 14su+ u2

12(s+ u)4
−
s2u2 log2

(
u
s

)
(s+ u)6

+
(s− u)

(
s2 + 8su+ u2

)
log
(
u
s

)
6(s+ u)5

)
,

f1−loop
N=4 (s, u) =

(8πG)2

16π2

( 1

2(s+ u)2
− π2su

2(s+ u)4
−
su log2

(
u
s

)
2(s+ u)4

+
(s− u) log

(
u
s

)
2(s+ u)3

)
,

f1−loop
N=6 (s, u) = −(8πG)2

16π2

( π2

(s+ u)2
+

log2
(
u
s

)
(s+ u)2

)
,

f1−loop
N=8 (s, u) =

(8πG)2

64π2

s log
(
−m2

t

)
log
(
−m2

u

)
+ log

(
−m2

s

)(
u log

(
−m2

t

)
+ t log

(
−m2

u

))
stu

.

(3.25)

10One might have thought that the graviton self-energy must have a definite sign by unitarity because it

can be measured from the S-matrix of scalars that interact only gravitationally. However, it seems that in

any situation in which a gravitino loop can contribute to the self-energy, there must also exist other diagrams

where the gravitino couples directly to the external legs, so no physical process measures only the self-energy.
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It is worth noting that all contributions are finite in the massless limit except from that of

the graviton loop, for which we have kept a small m2 to provide an infrared regulator in the

last line.

3.5 Higher dimensions

At the integrand level, we verify that our scalar loop and vector loop match with [63] up to

finite number of contact terms, representing the higher-dimensional operators added to (2.11).

For example, in d ≤ 6, we can remove all 1/ϵ poles in the on-shell amplitude by adding a

multiple of the (divergent) tadpole integral to various operators with up to six derivatives.

For example, for scalar loop, we obtain the following low-lying counterterms

cGB = crenGB + n0
(d− 2)

720m2
Itad(m) ,

α′
4 = α′ ren

4 − n0
(d− 4)(d− 2)

3780m4
Itad(m) , α4 = αren

4 − n0
(d− 4)(d− 2)

5040m4
Itad(m) , (3.26)

where α4 and α′
4 are coefficients of two six-derivative operators, following the convention of

[37]. It is then clear that there is no one-loop UV divergence in d = 4.

As we mentioned in section 2.3, in higher dimensions, two-form and three-form fields are

unavoidable parts of maximal supergravity. The three-form loop in particular would be tech-

nically challenging. However, we avoided its explicit calculation by turning supersymmetry

around and imposing that the maximal supergravity amplitudes takes the form

M1−loop
N=8 = (8πG)2T (ϵi, pi)

(
Ibox(m, s, t) + Ibox(m, s, u) + Ibox(m, t, u)

)
, (3.27)

where the tensor structures T (ϵi, pi) reads

T (ϵi, pi) =
(
H14H23 +H13H24 +H12H34 + 2(X1234 +X1243 +X1324)

)2
(3.28)

in terms of the tensor basis (2.7). It is worth noting that the massive maximal supergravity

amplitudes do not have, for example, the G polarization in that basis. Nevertheless, all fields

from scalar to massive spin-2 nontrivially contribute to this tensor structure. Furthermore,

since a massive 3-form is duality-equivalent to lower forms in d ≤ 6, we can construct the

duality-subtracted combination in (2.28) which is only nonvanishing when external momenta

and polarizations lie in a 7-dimensional subspace, ie. it must be proportional to G. Using

this property we find that (3.27) is nontrivially satisfied for all polarizations provided that

M1−loop

(1,1,1)
= (8πG)2 G

(4((7− d)st+ 16m2u)

(d− 3)u
Ibox(m, s, t) +

8(d− 7)s2

(d− 3)tu
Itri(m, s) + cyc

)
.

(3.29)

In an ancillary file, we record the coefficients of all the 29 tensor structures in (2.7) for all the

1-loop amplitudes in (2.28) in d dimensions.
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4 Sum rules and the species bound

A generic problem with species-type bounds is that the very idea of “counting species” breaks

down near the cutoff, where any field theory calculation necessarily becomes inapplicable. In

particular, one-loop formulas cannot be trusted near the cutoff. The bounds in this section

will be subject to this caveat, which we will partly circumvent in section 5.

4.1 Resummed propagators do not make sense

Before discussing the four-graviton amplitudes, let us discuss the resummed graviton prop-

agator including 1-loop self-energies. It seems that for sufficiently high energies, GNs ≳ 1,

the propagator develops unphysical poles and it becomes difficult to make sense of it. As

discussed in section 2.2, one might in principle have considered a power-counting scheme

where the 1-loop self-energy remains accurate at these energies, so the issue is not merely a

power-counting one.

To streamline the discussion, we focus on d = 4 and massless loops; including masses (or

a power-law distribution of masses) does not qualitatively change the conclusions. For the

transverse part of the resummed propagator, we have according to (3.19):

P2 =
1

s+ 16πGcs2
(
log[−µ2/s] + δcren/c

) . (4.1)

In quantum field theory, the central charge c > 0 is strictly positive, however note that

according to (3.20), the gravitino contribution is negative and so in a general gravitational

context c could in principle have either sign. If c = 0, then the analysis simplifies and the

propagator develops a pole at s = −1/(16πGδcren), where its residue has the wrong sign, ie.

it is a ghost-like excitation incompatible with unitarity. This is a generic feature of Riem2

modifications to gravity, which implies that |δcren| should be small enough that the pole is

outside the expected regime of validity of the EFT.

The problem becomes more severe when c ̸= 0. Then, depending on the sign of c and

choice of δcren, we find either a pole at spacelike s < 0 (problematic!), a pole at complex

s (problematic!) or a pole at positive s but wrong-sign residue (problematic!). Because of

the nontrivial s-dependence of the self-energy, in particular the log s term, it is not possible

to choose δcren to push this problem parametrically outside |s| ∼ 1/(Gc). In other words,

it seems that it never makes sense to use the resummed propagator P2: as soon as the

renormalized self-energy parametrically becomes important, pathologies appear.

In the absence of gravitinos or gravitons running in loops, such that c is a physical

gauge-invariant quantity, this observation (as also proposed in [12]) would probably lead to a

satisfactory definition of the universal cutoff Λ���QFT. Namely, the position of the first complex

or wrong-sign pole determines a scale at which something qualitatively new must be added

to the calculation. However, as discussed at the top of this section, this definition would still

only be a parametric one, since it is associated with a breakdown of the approximation that

enters its calculation.
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It is amusing to put in numerical values. The central charge of the Standard Model

including only observed fields is approximately that of 283 scalars, giving c ≈ 0.015 in the

standard normalization (see (3.20)), and a scale 1/
√
16πGc = 1.4× 1019GeV. It seems that,

despite the somewhat large effective number of Standard Model fields, the scale at which

the 1-loop graviton propagator develops pathologies is not much lower than the naive Planck

scale, essentially due to loop factors.

In the presence of virtual gravitinos or gravitons, focusing on P2 seems much less mean-

ingful. For one, as noted in section 3.4, c is then not gauge invariant. In fact it is not even

sign definite: gravitinos contribute negatively in the covariant gauge we used (see (3.19)), and

c = 0 occurs for a strange matter content unrelated to supersymmetry. This makes it difficult

to take seriously the scale 1/(Gc). A related observation is that massive gravitinos and gravi-

tons will necessarily have other interactions, leading to more diagrams than the self-energy

chains shown in Fig. 2. Self-energy resummation, while reasonable for matter contributions,

does not seem to be a reasonable model for gravity at higher loops.

It is amusing to note that the contribution from P2 to the four-graviton amplitude van-

ishes with any amount of supersymmetry. Indeed, recall that in d = 4, C(2B) = 0 identically,

and the other vertex according to (3.19) gives a contribution:

M ⊃ C(2A)P2C
(2A), C(2A) ∝ Tr[(−1)F ] . (4.2)

This cancellation holds even for massive fields. (The spectrum does not need to be exactly

supersymmetric, only in an average sense.) This may suggest that with supersymmetry

the pathologies of P2 are not necessarily physical, however there may exist other processes

(ie. matter-matter scattering) where the same cancellation does not occur and thus the

significance of (4.2) is unclear to us.

Similar pathologies appear in the trace part of the graviton propagator, P0. Its contri-

bution to graviton scattering takes the form (3.17)

M ⊃ C(0)P0C
(0), (4.3)

with C(0) in d = 4 given in (3.19). Again, the positions of its pathological singularities seem

to be unphysical combinations, and there may also be situations where C(0) vanishes.

We conclude that the (renormalized) graviton self-energy may be a reasonable probe of

the scale Λ���QFT in situations with only standard matter runs in loops but no virtual gravitinos

nor gravitons (ie. no Kaluza-Klein modes), but in general it is not. But even in the former

case, it does not make physical sense to use the resummed propagator at energies where the

self-energy dominates.

4.2 Review of gravitational sum rule formalism

In the non-gravitational context (amplitudes without a graviton pole), general methods to

constrain EFTs using the forward limit of dispersive sum rules have been discussed in [29, 64–

68]. Here, we review the extension to the gravitational context, following closely [28, 69] (see

also [70–72] for other discussions and [73–75] for other applications).
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Figure 5: The contour deformation for the sum rules in (4.4). The red branch cut represents

the UV branch cut above the species scale M , and the blue branch cut represents all possible

low-energy branch cuts.

In order to benefit from the ∼ t4 behavior of the helicity prefactor in (2.3), we consider

contour integrals at large energies with u fixed, so that t ≈ −s as s→ ∞:

B2(p) ≡
∮
C+∪C−

ds

2πi
(s− t)f(s, u = −p2) , (4.4a)

B3(p) ≡ −
∮
C+∪C−

ds

2πi
f(s, u = −p2) , (4.4b)

where C± are the two halves of the infinite-energy circles shown in Fig. 5. The idea is to exploit

the vanishing of (4.4), together with analyticity in the upper-half s-plane, to relate physics

below and above the scaleM , as shown in Fig. 5. These sum rules are called “superconvergent”

because we have not introduced any denominator (also known as subtraction terms): this

makes them automatically insensitive to all analytic terms at low energies.

Morally, the vanishing of the arcs at infinity is related to the Froissart bound lim|s|→∞M/s2 =

0, or equivalently s2f → 0 at fixed u. However, the Froissart bound is known to not apply

to graviton scattering with fixed exchange momentum in d = 4, due to the long-range nature

of gravitational interactions [76]. This seems to be a mostly technical problem with a simple

physical solution. Together with the singular nature of the graviton pole as p → 0, it is the

key reason why we consider scattering at small impact parameter rather than of plane waves.

In practice, this is achieved by integrating the above sum rules with focusing wavepackets

ψk(p).
11 It will be important to use momenta in a finite range 0 < p < M . After integrating

against suitable ψ(p), corresponding physically to functions whose Fourier transform vanish

11These were called “smearing” functions in [28] due to their role in momentum space. Here we adopt a

terminology that highlights the focusing role of the wavepacket in impact parameter space.
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sufficiently fast at large impact parameter, the integrals along in (4.4) vanish as C± are taken

to infinity, giving the sum rules:

F :=
∑
k=2,3

∫ M

0
pdpψk(p)Bk(p) = 0

⇒ −
∑
k=2,3

∫ M

0
pdpψk(p)Bk(p)

∣∣∣
low

=
∑
k=2,3

∫ M

0
pdpψk(p)Bk(p)

∣∣∣
high

.

(4.5)

The low-energy contribution accounts for arcs going from t =M2 to s =M2:

−B2(p)
∣∣∣
low

=
∑
±

∫ p2−M2

M2

ds

2πi
(p2 − 2s)f(s,−p2) = 8πG

p2
+ loops , (4.6a)

−B3(p)
∣∣∣
low

=
∑
±

∫ p2−M2

M2

ds

2πi
f(s,−p2) = 0 + loops , (4.6b)

where
∑

± refers to the two halves of the small arc shown in the RHS of Fig 5. The high-energy

contribution can be parametrized by its partial wave decomposition:

B2(p)
∣∣∣
high

= 16

∫ ∞

M2

ds

s4
(2s− p2)

 ∑
J≥0, even

|c++
J (s)|2PJ

(
1− 2p2

s

)
+
∑
J≥4

|c+−
J (s)|2d̃J4,4

(
1− 2p2

s

) ,
(4.7a)

B3(p)
∣∣∣
high

= 16

∫ ∞

M2

ds

s4

 ∑
J≥0, even

|c++
J (s)|2PJ(1−

2p2

s
)−

∑
J≥4

|c+−
J (s)|2d̃J4,4(1−

2p2

s
)

 ,
(4.7b)

where d̃a,b is related to Wigner D-functions (2.31) by slipping off the “helicity factors”

dJh,h′ =

(
1 + x

2

)h+h′
2
(
1− x

2

)h−h′
2

d̃Jh,h′ . (4.8)

PJ(x) is the general dimensional Legendre polynomials

PJ(x) = 2F1(−J, J+d−3, (d−2)/2, (1− x)/2) . (4.9)

The |cJ |2 = |cJ |2(2J + 1) are unknown positive quantities which represent probabilities to

scatter at high energies.

4.3 A first view on the high-spin onset scale: fixed impact parameters

We will now use these sum rules to demonstrate the phenomenon of high-spin onset, as a

refined version of Fig. 1 shown in the introduction, focusing here on d = 4.
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Figure 6: Illustration of the (non-optimal) sum rules (4.10), which for each b measures New-

ton’s constant G, together with the 1-loop contributions from N light fields of various types.

The total of shown 1-loop contributions from s < M2, and unknown positive contributions

from energies s > M2, must add up to the low-energy gravity prediction. For interpretation

of the numbers in the legends, see the main text. The 1-loop contributions all have a similarly

rapid decaying shape, and therefore, there is no way for their sum to saturate the low-energy

prediction. We used mIR = 10−20M for illustration.

The basic idea is to choose a wavefunction ψ2 that corresponds to transforming (4.6a)

and (4.7a) to impact parameter space. A subtlety is that we have to be careful to use only

transverse momenta |p| ≤M in the Fourier transform. We thus consider:

B2(b) =

∫ M

0
dp (1− p)2pJ0(bp)B2(p) . (4.10)

The factor (1− p)2 smoothens the cutoff. It has another, less obvious, property: the Fourier-

conjugate function ψ(b) =
∫M
0 dp(1−p)2pJ0(pb) is positive. This means physically that (4.10)

could also be written as a convolution d2b of B̂2(b) with a positive smearing function with

spread of order M−1. This ensures that the action of (4.10) on states with sufficiently large

s ≫ M2 in (4.7a) is automatically positive. (Positivity at all s > M2 will require slightly

more complicated wavefunctions discussed in the next section, which will also include B3.)

The family of sum rules (4.10), labelled by b, allow us to explain the main phenomenom.

Evaluating B2(b) for low-energy Einstein gravity using (4.6a), we find

B2(b)
∣∣∣
grav

= −1

8
b2 2F3

(
1, 1, 2, 2, 2,−b

2

4

)
+ (πHHH1(b)− 2)J0(b) +

(1− πbHHH0(b))J1(b)

b
− logmIR ,

(4.11)

where HHH is Struve function of the second kind. The logarithmic divergence is the usual

infrared divergence of the Shapiro time delay in d = 4 and would be absent if considering

analogous sum rules in higher dimensions.

The arc integrals (4.6a) also receive nontrivial contributions at one-loop from matter

fields with mass m < M/2. Their calculation is technically much more involved. A shortcut
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is to deform the contour in Fig. 5 to wrap around the discontinuities, namely,

B2(p) =

∫
ds

π
(2s− p2)Im f(s,−p2) . (4.12)

The discontinuities of master integrals with fixed u = −p2 are detailed in Appendix B; see

(B.2) for more details. We then numerically perform the integral of (4.10). The main result

are the shapes of the impact parameter sum rules which are displayed in Fig. 6 for different

light fields, and contrasted with the graviton pole contribution in (4.11).

As already sketched in the introduction, we can now clearly see that there has to exist

bounds on N(M) so that the matter loops never exceed the maximum “budget” allowed by

Newton’s constant at low energies, which is first saturated at the smallest impact parameter

we can access with the relevant energy, b ≲ M−1. We make such “species bound” manifest

in the legends of Fig 6. For example, one can read n0 ≤ 4354.87 log(M/mIR)/(GM
2). The

different numbers in the legends are thus suggestive of the relative contributions from different

types of matter fields to the species scale, ie. a massive spin-1 field counts as much as about

25 scalars (despite having just three polarization modes). Note however that the sum rules

(4.10) are rather simple-minded and are neither optimal nor fully rigorous (because they are

not positive for all s > M2, as mentioned above.) They will be improved below.

The main message we would like to highlight here is that all the computable loops have

the wrong shape. They decay at large b like ∼ b−2 for light fields and ∼ e−2bm for massive

fields and there is no way to take any positive linear combinations of them to obtain the flat

total ∼ log(b) required by low-energy gravity. This means that there necessarily exists states

with m ≥ M whose contribution at large spin, bM ∼ 2JM/m ≫ 1, is significantly larger

than any loop effect. This is the phenomenon of high-spin onset.

4.4 A dispersive bound on the number of light species

We can now describe a strategy for finding species-type bounds: we search for wavefunctions

ψ2(p), ψ3(p) that make the right-hand-side of (4.5) positive for all s > M2, and such that

the contribution of each matter loop on the left-hand-side is negative for any choice of mass

m < M/2.

The bounds here are rigorously valid for any cutoff M such that we can use the one-loop

approximation below the cutoff. Of course, as mentioned in introduction, all that one can

really bound in this way is the number of fields parametrically lighter than the universal field

theory cutoff Λ���QFT, ie. modes for which one can trust the one-loop approximation. For this

reason, we didn’t try too hard to optimize the bounds.

Another slightly unsatisfactory feature in d = 4 must be mentioned. Positivity at very

large m requires that ψ2(0) ̸= 0: this is simply the statement that the Fourier transform

of a positive function of impact parameter cannot vanish at zero momentum. On the other

hand, this behavior is incompatible with convergence of the sum rules on the graviton pole,

which require ψ(0) = 0. The resulting bounds thus necessarily depend logarithmically on an
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Figure 7: Sum rules at low-energy measured by the wavefunctions (4.14) for all species with

j ≤ 2 in d = 4. The sign definiteness of these curves ensures the existence of a bound on the

number of each respective species. The legends show the normalizations factor which align

the curves at m =M/10.

infrared cutoff, schematically:

8πG log
M2

m2
IR

− (8πG)2

M2

∑
i

cini ≥ 0 , (4.13)

which gives species-like bounds up to an infrared logarithm cini <
M2

pl

M2 log M2

m2
IR
, where the

ci are O(1) constants to be determined. This is still much stronger than the quadratically

divergent bounds one would obtain from expanding around the forward limit. In the context

of AdS/CFT, it has been shown that the bounds uplift to rigorous CFT sum rules with

m−1
IR ≈ RAdS [34]. This suggests that m−1

IR can be interpreted as the distance from which the

scattered particles are sent in—we see no reason why this size would have to be parametrically

larger than M , and so we will treat log M2

m2
IR

as an unknown large but O(1) constant.

Using the numerical techniques detailed in [69], we then find that the following pair of

wavefunctions

ψ2(p) = (1− p)5
(
0.5 + 2.3p+ 6p2 − 13.4p3 + 45.6p4

)
,

ψ3(p) = (1− p)5
(
0.7 + 3.6p+ 9.4p2 + 28.8p3

)
(4.14)

gives a species bound for the number of massless particles:

n0 + 5.6n1/2 + 9.2n1 + 157n3/2 + 491.7n2 log
M

m2
<
(
1429.6 log

M

mIR
− 1735.6

) 1

GM2
. (4.15)

Note as mentioned previously that the contribution from spin-2 fields is singular in the mass-

less limit in d = 4. If we take all the particles to have mass m = M/10, we get instead the

bound

n0 + 6.6n1/2 + 13.6n1 + 232.4n3/2 + 1983.9n2 <
(
2504.2 log

M

mIR
− 3040.3

) 1

GM2
. (4.16)

– 28 –



spin α2 α4

0 − GNm6

34560π4
GNm4

322560π4

1
2 −7GNdFm6

276480π4 −GNdFm4

322560π4

1 GNm6

5760π4
GNm4

35840π4

3
2

23GNdFm6

34560π4 −GNdFm4

40320π4

2 −149GNm6

34560π4
11GNm4

80640π4

(1, 1) − 7GNm6

11520π4
GNm4

8960π4

(1, 1, 1) −73GNm6

11520π4
GNm4

3840π4

Sharipro-Virasoro 0 0

heterotic string 2
M2 0

bosonic string 4
M2

4
M4

Table 1: Wilson coefficients (α2, α4) from different UV models.

In general, the relative contributions of fields with various mass is shown in Fig. 7. The

relative contributions of different fields are somewhat different than in Fig. 6, although the

general hierarchies are preserved, ie. a massive spin-two field has the same weight as a very

large number of scalar fields.

4.5 Comments on Wilson coefficients from modes with Λ < m < Λ���QFT

Here we briefly discuss the low-energy perspective on “non-maximal” EFTs whose cutoff Λ

is below the universal cutoff Λ���QFT, if one assumes that low-energy Wilson coefficients are

dominated by integrating out calculable matter fields. This setup was considered for example

in [31] and [69] and gives bounds on the number of calculable modes which can exist above

the scale Λ12. Note that this line of logic is distinct from that considered above.

The causality constraints on Wilson coefficients controlling modifications to gravity have

been numerically established in d = 4 in [69] and generalized to higher dimensions in [37].

Here we contrast these bounds with the Wilson coefficients arising in calculable models.

We restrict to d = 10 here and only look at the Wilson coefficients (α2, α4) that control

higher-derivative corrections to the three-graviton vertex, whose causality bounds were es-

tablished in [37] following earlier ideas of [30]. We follow the conventions of [37] so that the

gravitational EFT schematically expands as

S =
1

16πG

∫
d10x

√
−g
(
R+

α2

4
C2 +

α4

12

(
3CµνρσC

ρσ
αβC

αβµν − 4CµνρσC
νασβCα

µ
β
ρ
)
+ · · ·

)
.

(4.17)

We computed the heavy mass expansion of the loop amplitudes computed in section 3 to

obtain (α2, α4) by matching to the low-energy gravitational EFT amplitudes [37]. For string

12See also [77, 78] for the generalization to one-loop effects from nonminimal couplings.
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Figure 8: Allowed region for three-graviton couplings (α2, α4), from [37]. The lines display

the loop amplitudes, and the dots display the string amplitudes. The Shapiro-Virasoro am-

plitude lies at the origin due to maximal supersymmetry.

theory, we simply expand the superstring, as well as the heterotic string and bosonic string

amplitudes (reviewed in Appendix C) to obtain (α2, α4). The resulting Wilson coefficients

are shown in Table 1. A sanity check is that any amount of supersymmetry ensures α4 = 0.

We then compare the specific models in Table 1 with the bounds provided by [37], which are

shown in Fig. 8.

Loop amplitudes are labeled by colored lines in Fig. 8, as they give rise to Wilson

coefficients scaling with the number of species. Different species correspond to different

directions. Note that cancellations between different directions are possible, as indeed required

since α2 and α4 vanish for supersymmetric spectra. As already noted by [37, 69], the lines

corresponding to loop amplitudes extend outside of the allowed region when N becomes too

large. This suggests a naive version of the species bound, however, which turns out to yield

huge numbers in d = 10, around GNM8 ≲ 107. However, the interpretation of these numbers

is fundamentally unclear since Wilson coefficients like α2 and α4 can always be modified by

fine-tuning bare couplings. It is thus hard to see how robust bounds on the number of species

could be obtained from low-energy Wilson coefficients.

The dispersive species bound derived in the preceding subsection are distinct since they

bound calculable modes below the cutoff. We would thus expect significantly different num-

bers in this case. The extension of subsection 4.4 to d > 4 should be technically feasible and

we leave it to future work. In d > 4 the bounds will be infrared finite. Since we expect field

theory methods to break down near the universal cutoff Λ���QFT, however, these bounds will
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necessarily only apply to modes parametrically lighter than the cutoff. To define the cutoff

more sharply, we turn to a different strategy in the next section.

5 The high-spin onset scale Λo and gravity’s UV completion

We now explore the candidate sharp definition of the QFT breaking scale proposed in in-

troduction: Λ���QFT = Λo, the scale at which the high-spin content of graviton scattering

amplitudes “onsets”.

The strategy is inspired by the fixed impact parameters dispersive sum rules in Fig. 6,

but we now work spin-by-spin. Specifically, we seek to measure the contributions a given spin

to a sum rule for Newton’s constant. For any SO(d − 1) representation ρ, we consider the

following moment:

Gρ(s
∗) =

d− 2

π

∫ s∗

0

ds

s
d
2

Im aρ(s) . (5.1)

We will show that computable contributions G from matter loops decay extraordinary fast

with spin. This is related the “low-spin-dominance” phenomenon observed in [31]. However,

we will also stress that other UV scenarios which unitarize the graviton scattering amplitude,

such as the Virasoro-Shapiro amplitude in string theory, the eikonal approximation at large

impact parameter, or strongly interacting physics at the Planck scale, are all qualitatively

different. While they are still all low-spin dominated in the sense of [31], they display a

numerically richer high-spin content.

The high-spin richness of an amplitude can be quantified by comparing the moments Gρ

for adjacent spins:

Gρ+2(s
∗)

Gρ(s∗)
, (5.2)

where here and below ρ+2 denotes the representation whose Young Tableau is obtained from

that of ρ by adding two boxes to the first row. In general we refer to length of the first row

of ρ as the “spin” Jρ of this representation.

The main reason why we use integrated spectral densities in (5.2) is to smooth out possible

resonances: point-like comparison of aρ+2(s) and aρ(s) would assign too much significance

to narrow resonances that have small overall coupling. The reason for the particular weight

in (5.1) is that it endows the moments G with the units of Newton’s constant G. (We use

dimensionless partial waves normalized so that |1+ iaρ| ≤ 1 by unitarity, see subsection 2.4.)

Finally, let us comment on the normalization of (5.1), which is chosen such that in the

eikonal model, where the amplitude is simply the exponential of the tree-level partial wave in

general relativity (which has a simple energy scaling: δGR
ρ = s

d−2
2 δ̂GR

ρ ), the moment recovers

the eikonal phase:

aeikρ = i
(
1− exp

(
is

d−2
2 δ̂ρ

))
⇒ lim

s∗→∞
Geik
ρ (s∗) = δ̂GR

ρ . (5.3)
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The eikonal approximation is expected to be reliable at large enough impact parameters (see

discussion in [33, 76]). Thus we expect that Gρ(s
∗) → δ̂GR

ρ for large spin and sufficiently large

s∗, for any representation ρ which can appear in graviton-graviton scattering, where at large

spin (see below):

δ̂GR
ρ → 8πG

Jd−4
ρ

21−dπ1−
d
2Γ
(
d−4
2

)
(large spin)· (5.4)

Although it is not clear whether the limit (5.3) must be saturated for arbitrary G that corre-

spond to ultraviolet-complete gravity amplitudes, the GR phase shift δ̂GR
ρ provides a useful

baseline for interpreting the value of Gρ(s
∗).

5.1 Loops versus UV completions: d = 10 with maximal supersymmetry

We start with a warm-up with maximally supersymmetric partial waves in d = 10. In the

supersymmetric theory, the graviton lives in the same supermultiplet as a scalar, therefore

sharing the universal polarizations with the Einstein tree-level amplitude

Msusy = T (ϵi, pi)M (5.5)

with T in (3.28). The technical simplification of this setup lies in our ability to directly

decompose M into scalar partial waves and read off the supersymmetric spectral density

using the scalar partial wave (see [79] for further discussion). Susy partial waves have a single

label, J :

M(s, t) = s−4− d−4
2

∑
J even

aJ(s)nJPJ(1 + 2t/s) (5.6)

where nJ = (4π)d/2(2J+d−3)

πΓ( d−2
2

)
(J+1)d−4 and PJ(x) is given in (4.9). For the low-energy super-

gravity amplitude M = 8πG
stu , this gives the known partial wave asugraJ = s

d−2
2 δ̂sugraJ with

δ̂sugraJ = 8πG
21−dπ1−

d
2Γ
(
d−4
2

)
Γ(J + 1)

Γ(d+ J − 3)
, (5.7)

which refines (5.4) into an expression valid also for finite spins.

The first UV scenario we consider is weakly coupled string theory, where in the (sub-

Planckian) energy range of interest M is given by the Shapiro-Virasoro amplitude

Mstring
=

8πG

stu

Γ
(
1− α′s

4

)
Γ
(
1− α′t

4

)
Γ
(
1− α′u

4

)
Γ
(
1 + α′s

4

)
Γ
(
1 + α′t

4

)
Γ
(
1 + α′u

4

) . (5.8)

Setting α′ = 4/M2
s , the imaginary part of the amplitude is given as

ImMstring
= π

∞∑
n=1

(
− Ress=nM2

s
Mstring)

δ
(
s− nM2

s

)
. (5.9)
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Figure 9: Comparison of moments of for ten-dimensional supersymmetric partial waves for

string amplitudes, strongly coupled amplitudes, the eikonal model, and loops of nN=8 light

supermultiplets. In all cases the moments are integrated to s∗ = ∞, but the limit is saturated

rather rapidly above the respective scales (s∗ ∼M2
s or M2

pl).

The second UV scenario we consider is strong coupling, where an amplitude which min-

imizes the first higher-derivative correction (∼ Riem4) to supergravity has been obtained

using the nonperturbative S-matrix bootstrap in [80, 81].13 The idea there is that minimizing

the departure from GR is a way of making the cutoff as high as possible, and indeed the

resulting extremal amplitude only displays structure at the Planck scale.

Both of these UV scenarios are contrasted in Figure 9 with the computable contributions

of N supermultiplets at low energies. In the figure we chose N so that GJ=0 is roughly the

same for all theories.

It is evident from the figure that the high-spin content of candidate UV completions

is very similar to that of the eikonal model, to which they asymptote at large spins, while

supermultiplet loops decay much more rapidly. We stress that in absolute units, all partial

waves do decay rapidly with spin: Geik
J ∼ J−6 and Gloops

J ∼ J−12 in d = 10. The essential

point is that loops decay comparatively faster with spin than UV completions, which seem

flat in Figure 9 because we divide by δ̂eikJ ∼ J−6.

To avoid confusion, we also stress that, due to the nature of the supersymmetric partial

wave decomposition in (5.6), J = 0 in that formula accounts physically for spin-4 states.

Thus, in the present subsection, “higher-spin” means J ≥ 0, whereas in the rest of the paper

where we do not employ supersymmetry, “higher-spin” means J ≥ 4.

As a quantitative illustration of the adjacent-spin ratios (5.2), we consider two models

in d = 10. In Figure 10 we display the moments for the supersymmetric partial waves (5.6)

extracted from the Shapiro-Virasoro amplitude. At energies below the string scale we use the

one-loop formula GJ ∝ (δ̂sugraJ )2, which yields small but nonzero ratios. Note that in the plot

13We thank the authors of [81] for sending us the partial wave data which we used to make figures 9 and 11.
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Figure 10: Adjacent-spin ratios of d = 10 partial wave moments integrated up to s∗ for the

Veneziano-Shapiro amplitude. High-spin onset happens rapidly after the second mass level.

we divided by the eikonal model to get a more meaningful normalization:

ĜJ(s) ≡ GJ(s)/δ̂
sugra
J . (5.10)

The figure shows a sequence of plateaus corresponding to each mass level, which quickly rise

to an O(1) value. This shows that Λo ≈ Ms in string theory. More precisely, defining for

example the scale of high-spin onset for susy partial waves by Ĝ2(Λo)

Ĝ0(Λo)
≈ 0.5, one gets either

Λo =Ms

√
2 or Λo =Ms

√
3 depending on the precise criterion.

We also consider the dimensional reduction of d = 11 M -theory on a large circle of cir-

cumference R11Mpl,11 ≫ 1. Then we have a 10-dimensional theory with a large number of

light Kaluza-Klein modes (corresponding to the light D0 branes of strongly coupled IIA su-

perstring theory). In this scenario, at energies R−1
11 ≪

√
s≪Mpl,11 we recover the amplitude

of a 11-dimensional theory with a single massless graviton supermultiplet running in the loop,

for which Im aJ,11 ∝ (δ̂GR
J,11)

2. Reducing to d = 10, we get integrated spectral densities that

are proportional to (s∗)9/2 in this regime such that adjacent-spin ratios are s∗-independent,

equal to small constants which we find numerically to be

Ĝ2(s
∗)

Ĝ0(s∗)
≈ 0.026 ,

Ĝ4(s
∗)

Ĝ2(s∗)
≈ 0.104 , (for R−2

11 ≪ s∗ ≪M2
pl,11). (5.11)

When we approach the 11-dimensional Planck scale, which represents the scale Λ���QFT of the

10-dimensional theory, we expect the ratio to increase sharply until it saturates to a value

close to unity as suggested by the flatness of the upper curves in Fig. 9.

Of course, our knowledge of strongly interacting M -theory amplitudes is limited, but we

find it very satisfying that exactly such a transition is visible in the bootstrapped amplitudes

of strongly coupled d = 11 supergravity which were generously provided to us by the authors
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Figure 11: Adjacent-spin ratios of d = 10 partial wave moments integrated up to s∗ in the

scenario of M -theory compactified on a large circle, computed by dimensionally reducing the

strongly-coupled d = 11 supergravity amplitude bootstrapped in [81]. High-spin onset is seen

to happen near the 11-dimensional Planck scale. We truncated at low s∗ where the ratio

becomes noisy.

of [81]. We dimensionally reduced their d = 11 amplitude and integrated over s according

to (5.1) with d = 10. The result for the ratios in (5.11) at higher energies is displayed in

Fig. 11. Defining the scale of high-spin onset for example by Ĝ2(Λo)

Ĝ0(Λo)
= 0.5 gives Λo ≈ 4πMpl,11

whereMpl,11 = (8πG(11))−9 is the 11-dimensional Planck scale.14 This demonstrate that, in a

decompactification scenario, high-spin onset happens at the higher-dimensional Planck scale.

These two examples support the identification of Λo with the universal field theory cutoff

Λ���QFT: in both stringy and decompactification limits, high-spin onset happens at the expected

scales, Ms and Mpl,d+k.

5.2 Loops versus UV completions in d = 10 without supersymmetry

We can perform a similar partial wave analysis for non-supersymmetric matter loops, by

applying the general partial wave decomposition reviewed in section 2.4 to the matter loops

computed in section 3. The main technical complication is that partial waves exist in many

SO(d−1) Young Tableaux. Using orthogonality of partial waves, we extracted the correspond-

ing moments Gρ by integrating the (imaginary part of the) calculated amplitudes against the

partial waves given in the ancillary files of [37]. For reference, we provide the low-lying partial

wave data of tree-level graviton scattering δ̂GR in Table 2.

Relaxing supersymmetry also allows us to consider graviton scattering for other string

amplitudes, such as the heterotic string and bosonic string, reviewed in appendix C. (The

bosonic string amplitude has an unphysical tachyon pole, but its residue does not contribute

to higher-spin partial waves and so we ignored this issue.)

14At low s∗ the numerical results of [81] seem consistent with (5.11) but show significant oscillations. It is
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ρ (8πG)−1δ̂GR
ρ ρ (8πG)−1δ̂GR

ρ ρ (8πG)−1δ̂GR
ρ

(0) 0.31 (2,2) (8.77,0.63) (3,3,1) 1.4

(2) (3.92, 0.47) (3,2) 2.8 (5,3,1) 1.2

(4) (141.85, 2.19, 0.63) (4,2) (6.57,2.6,0.79) (4,3) 1

(6) (14.9, 1.76, 0.74) (5,2) 1.9 (5,3) 2

(1,1,1) 1.2 (6,2) (3.31,1.74,0.87) (6,3) 1

(3,1,1) (21.94,1.02) (2,2,2) 3.2 (4,4) 1

(5,1,1) (4.57,1.03) (4,2,2) 1.55 (6,4) 1

(2,1) 0.6 (6,2,2) 1.27

(3,1) 1.35 (3,2,1) 1.8

(4,1) (5.76,0.74) (4,2,1) 2.91

(5,1) (11.07,1.23) (5,2,1) 1.4

(6,1) (3.04,0.83) (6,2,1) 1.89

Table 2: Eigenvalues of the GR phase shift δ̂GR
ρ for various low-lying partial wave represen-

tations in d = 10.

Figure 12: Comparison of partial wave moments in the traceless symmetric representation

ρ = (J) for various string amplitude and computable massless matter loops. Matter loops

were normalized to match the eikonal model at spin J = 4. Treating G(4)/δ
GR
(4) ≲ O(1) as an

overall budget, we see that (roughly) the maximum number of spin-2 species which can exist

below any scaleM is n2 ≲ 64/(8πGMd−2), whereas the allowed number of scalars n0 is larger

by a factor 688516/64.

The resulting moments are shown for traceless symmetric representations (J) for all

matter fields in Fig 12. Again we observe a qualitative distinction between all string models

of the UV, whose moments are relatively flat after dividing by the GR partial waves δGR

(where we take the trace of the phase shift matrix), while all loop scenarios decay much more

not clear to us whether these are significant, given the small size of the amplitudes in this region.
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Figure 13: Ratios Rρ of successive moments for various representations ρ and amplitudes.

A clear gap is visible between computable loops and UV completions, for all representations.

rapidly.

We also briefly explored the partial waves for the Veneziano amplitude for 10D super-

gluons. Although it is hard to do an apple-to-apple comparison since the external states are

different, we observed a rapid decay with J similar to matter. We conclude that the flat

behavior of the Shapiro-Virasoro data in Fig. 12 is specific to string models which unitarize

gravity.

We also find that the traceless symmetric representation (J) is not special in any way.

Partial waves in all representations display similar behavior. In Fig. 13 we show the ratios

Rρ(s
∗) =

Gρ(s
∗)/δ̂GR

ρ

Gρ−2(s∗)/δ̂GR
ρ−2

(5.12)

for various amplitudes for a variety of representations. For matter loops, we consider s∗ ≫M

in which case the ratios essentially do not depend on s∗. We can easily observe that for

sufficiently high spins, these ratios are always significantly larger (by a factor 4 or more) for

strings than for loops.15 The gap between these values gives estimates for the constants Cρ

which can be used to define the high-spin onset scale Λo in (1.4).

5.3 d = 5 and d = 4 with mass distributions

We now repeat the same exercise for other dimensions. As prototypes, we focus on d = 5

and d = 4. In lower dimensions, taking the massless approximations for towers of spin-2 and

spin-3/2 particles may be misleading because their contributions to the sum rules may not

15We found a single exception: the ratio R5,1 is larger for spin-2 and three-form fields than for the Shapiro-

Virasoro amplitude. For this Tableau shape, we simply take R7,1 instead to be the first high-spin case.
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Figure 14: Five-dimensional comparison of supersymmetric partial wave coefficients between

the string amplitude, supergravity and the eikonal model.

decay fast enough with increasing J . This then shows a fake high spin prevalence, as we

neglect significant contributions from massive particles. The worst situation occurs in four

dimensions, where taking the massless limit of spin-2 amplitudes simply yields the infrared

divergence. To deal with this subtlety, we have to sum over all possible masses with certain

distributions ρ(m) ∫ m=M
2

m=0
dρ(m) = n . (5.13)

For simplicity, we only consider a mass distribution corresponding to a single extra dimension,

ρ(m) = n
2m

M
. (5.14)

To simplify the analysis without losing generality and validity, whenever the mass distribution

is needed, we actually count the contribution to s∗ where we estimate the dispersive moments

(5.1).

It is also instructive to start with the supersymmetric partial wave in d = 5, as shown

in Fig 14. As expected, supergravity exhibits much faster decay behavior at large spin, even

without the mass distribution.

Next, we display the traceless symmetric representation. In d = 5, there are both even

spin and odd spin; we only present the even spin in Fig. 15. The behavior for odd J follows

a similar pattern. We observe that all string amplitudes behave similarly flat by increasing

the spin, demonstrating significant high-spin prevalence. In contrast, the matter loops are

significantly dominated by the low-spin states. It is worth noting that we use the dashed line

to display the massless limit of spin-2 particles to emphasize that their dispersive moments are

not physical without being weighted by the mass distribution. More generally, we demonstrate
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Figure 15: Five-dimensional comparison of partial wave coefficients in the traceless sym-

metric representation (even spin) between the string amplitudes and matter loops. The red

dashed line is for the massless limit of spin-2 species, which is not physical.
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Figure 16: Ratios of successive coefficients of partial waves in five dimensions for different

matter fields, in comparison with the string amplitudes. While the scenario of a large number

of massless spin-2 fields (dashed triangle) gives ratios close to those of strings, the more

physically relevant scenario of a distribution of massive spin-2 fields yields smaller ratios.

the ratios Rρ (with J = 3, 5, 7) of all amplitudes in all representation, see Fig 16. The pattern

for matter loops shows that although there could exist anomalously large ratios for certain

states, there always exists representations with highly suppressed ratios. On the other hand,

all ratios are around O(1) for string amplitudes!

We can repeat this analysis in d = 4. Here, it is worth noting that the phase shift of

Einstein gravity contains an IR divergence in d = 4. For this reason, we do not normalize
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Figure 17: Four-dimensional comparison of partial wave coefficients in the traceless sym-

metric representation (even spin) between the string amplitudes and matter loops. The top

plot shows ordinary matter while the second plot shows gravitino and graviton loops, the

dashed lines labelling unphysical cases: large numbers of nearly massless spin-3/2 and spin-2

species (as opposed to power-law mass distributions of these fields).

the moments by the Einstein phase shift. We display the even spin traceless symmetric

representation in Fig. 17, separating it into two subfigures for the j < 3/2 (17a) and j = 3/2, 2

cases ((17b)). In subfigure (17b), we also contrast the massless limit (with a numerical

IR regulator for spin-2) with an actual distribution of masses. In these plots we added in

quadrature the couplings to different external graviton helicity.
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5.4 Partial wave moments in AdS/CFT

Our considerations readily extent to theories of gravity in AdSd space, where by the AdS/CFT

duality the natural observables are correlation functions in the boundary conformal field the-

ory (CFTd−1). The four-graviton scattering amplitude, in particular, becomes the correlation

function of four stress tensors.

The analog of the partial waves aρ(s) in (5.1) are the three-point couplings squared

f2TTO∆,ρ
which appear in the conformal block decomposition of the ⟨TTTT ⟩ correlator. More

precisely, for proper normalization, we should divide by the analog of the disconnected part

of the S-matrix, which is the OPE data of the generalized-free-fields correlator (GFF) (a

product of factorized ⟨TT ⟩ two-point functions). Furthermore, taking the imaginary part of

the amplitude corresponds to its so-called “double-discontinuity” which multiplies the data

by a factor 2 sin2(π2 (. . .)) [82]. Thus, altogether (see [34, 83–86] for more details):

R2
AdS

∫
ds Im aρ(s) ⇐⇒ 4

∑
∆

2 sin2
(
π
2 (∆− J − 2∆T )

)(fTTO∆,ρ
)2

(fGFF
TTO∆,ρ

)2
∆, (5.15)

where the sum is over the scaling dimensions of operators in the SO(d−1) representation ρ,

and the denominator is regarded as a smooth function of ∆.16 (There is an extra factor of

4 on the right because of the state spacing for GFF,
∫
d(∆2) → 4

∑
∆.) Thus, up to inverse

powers of RAdS (or equivalently, of ∆), the moments (5.1) can be written in CFTd−1 as

GCFT
ρ (∆∗) ≡ 8

d− 2

π

∑
∆

sin2
(
π
2 (∆− J − 2∆T )

)(fTTO∆,ρ
)2

(fGFF
TTO∆,ρ

)2
∆1−d . (5.16)

A famous conjecture is that any CFT with a large-N expansion and a large gap of

higher-spin single-trace operators should be holographic, in the sense of being described by

a local effective theory of gravity down to lengths RAdS/∆gap in the bulk [32]. Essentially,

the assumptions mean that the higher-spin contribution to sums like (5.16) receive negligible

contributions from states with ∆− J < ∆gap.

Important aspects of this conjecture are now well established. For example, it has been

shown that contributions from states with twist τ > ∆gap to certain CFT sum rules admit a

1/∆gap expansion which makes these sum rules identical to S-matrix dispersion relations [34]

(see [86] for technical extension to spinning operators), enabling to uplift S-matrix dispersive

sum rules to CFT sum rules. It is then shown in [37] that dispersion relations for four-graviton

S-matrices with corresponding spectral assumptions (namely Im aρ(s) = 0 for J > 2 and s <

4M2
gap) imply that the amplitude is equal to Einstein’s prediction plus corrections suppressed

by inverse powers of Mgap. Together, these show that ⟨TTTT ⟩ in holographic theories can

only differ from the prediction of Einstein’s theory in the bulk by 1/∆gap corrections.

We expect that the partial wave moments in (5.16) will enable to strengthen this result,

by allowing for small but nonzero contributions from states below ∆gap, ie. loops in the bulk

16When couplings with multiple tensor structures exist, we assume in (5.15) that a basis is used in which

(fGFF
TTO∆,ρ

)2 is diagonal at large ∆, as constructed in [87] and earlier in AdS4/CFT3 in [88].
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theory. In particular, it should now be possible to make do without the “large-N expansion”

assumption and deal directly with CFTs at finite N , ie. SU(Nc) gauge theory with Nc = 100.

It would be interesting to evaluate the adjacent-spin-ratios in various CFTs that are

known to not be dual to local gravity, ie. the 3D critical Ising model, and to verify that

high-spin onset then happens at low ∆. In general, we expect a bound of the form ∆o <

C (cT )
1/(d−2) on the scale of high-spin onset in any CFTd−1. Other S-matrix conjectures

stated below should also have direct CFT analogs.

6 Conclusion

In this paper we analyzed graviton-graviton scattering amplitudes at moderate energies, below

or near the Planck scale. We considered calculable one-loop effects at low energies as well

as examples of ultraviolet completions, namely weakly coupled strings or strongly coupled

Planck-scale physics.

Our main motivation stems from Kramers-Kronig-type dispersion relations which relate

Newton’s constant at low energies to positive scattering probabilities at other energies. Thus,

Newton’s constant sets an overall “budget” for graviton scattering at arbitrary energies. It is

natural to ask how this budget can be distributed among known and unknown ingredients,

and what this tells us about gravitational physics at various length scales.

Our main technical results are explicit formulas for the one-loop contributions of various

fields of spin j ≤ 2 to graviton-graviton scattering, and their partial wave decompositions.

This was then used to quantify, in various ways, how much of the graviton scattering “budget”

can be carried by field-theoretic contributions. Our main conclusions are two-fold.

First, in section 4, we obtain, for any cutoff M in d = 4, a species-like bound of the

form GM2N ≲ O(log) on the number N of species below the scale M for which the one-loop

approximation is reliable. This gives a relatively sharp notion of the species bound. In cases

where all the species are ordinary matter fields of spin ≤ 1, somewhat stronger estimates can

be obtained by considering the graviton propagator, as discussed in section 4.1.

Second, figures 12-17 reveal a clear numerical distinction between the high-spin content

of any field-theoretic contribution, and that of ultraviolet completions of gravity, in various

space-time dimensions. By their nature, field theory correlators exhibit either exponential or

strong power-law decay. This motivates the conjecture that the scale of high-spin onset of the

graviton amplitude represents a universal cutoff, such that at lengths shorter than 1/Λ���QFT

spacetime, cannot be described using local fields.

The high-spin onset scale Λo has several appealing properties. As demonstrated in section

5.1, for weakly coupled string theory, the onset scale coincides with the mass of spinning string

scales on the graviton trajectory. In scenarios where a large extra dimension decompactifies,

the onset scale automatically picks up the Planck mass of the higher-dimensional theory, even

though the graviton-graviton amplitude of the compactified theory is still far from saturating

unitarity.
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It is also worth noting that Λo is expected to be insensitive to spinning bound states

held together by ordinary field-theoretic interactions, since all states enter weighted by their

couplings to two gravitons. Thus, for example, near the positronium threshold
√
s ≈ 2me,

the graviton cross-section is still low-spin dominated despite the existence of many high-

spin bound states, simply because the graviton wavelength is much shorter than their size.

Furthermore, when integrating to s∗ ≳ 4m2
e, one can evaluate (5.1) perturbatively using

constituent fields and avoid any discussion of bound states altogether.17 Similarly, Λo is

insensitive to the existence of many spinning mesons bound by the QCD string, since stress

tensor correlators at distances ≪ Λ−1
QCD can be computed using approximately free quark and

gluon fields, rather than mesons. The QCD string is very different from a fundamental string

because it admits a local stress tensor.

Many questions remain.

A main corollary of the conjecture Λ���QFT = Λo is that, at distances shorter than 1/Λo,

all scattering amplitudes must be profoundly modified, not only those of gravitons. Can this

be shown directly? Experimentally, this would immediately establish that Λo > O(TeV).

Proving the converse would also be interesting: is effective field theory guaranteed to work

at lengths larger than 1/Λo, possibly in a higher dimensional sense? Tentatively, this means

that as far as low-multiplicity scattering amplitudes of matter and gravitons are concerned,

one has an ordinary non-gravitational QFT possibly strongly interacting with itself but weakly

coupled to gravity, together with a list of spin-3/2 and spin-2 fields which interact weakly

among themselves and with the QFT. Irrelevant interactions should be bounded by inverse

powers of Λo.

Technical refinements on the moments (5.1) could be useful. Are there universal lower

and upper bounds on the “budget” Gρ(∞) for each representation ρ, in any UV-complete

graviton S-matrix,

Cmin
ρ ≤ Gρ(∞)/δ̂GR

ρ ≤ Cmax
ρ ? (6.1)

Furthermore, does there exist “thresholds”, such that if Gρ(s)/δ̂
GR
ρ > Cthres

ρ in some repre-

sentation ρ, then onset becomes unavoidable in all representations? What are best choices

for the constants Cρ in (1.4), besides that they should separate the scenarios in figure 13?

Could the onset condition be phrased in a technically simpler way that would not require

computing partial waves? Can the condition be somehow related to arguments involving the

entropy of small black holes?

One can also ask if matter-matter interactions can significantly modify the shape of the 1-

loop partial waves in ie. figure 17? This question could be answered by studying stress-tensor

four-point correlators in non-gravitational QFTs (for spins Jρ > 2 and to leading order in

gravity-matter interactions, graviton self-interactions do not contribute to Im aρ). For three-

17One may object that perturbation theory breaks down when
√
s/(2me) = 1+O(α2), necessitating Coulomb

resummation. However, this near-threshold region can be avoided by deforming the contour in (5.1) away from

the real axis.
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point stress tensor correlators in CFT, it is known that indeed an arbitrary unitary theory

lies within the convex hull of free theories [89, 90].

Are there constraints on the matter content below Λo? The 1-loop contributions from

different fields contribute very differently to different partial waves. For example, scalar loops

only contribute to symmetric traceless tensor representations (J) whereas only loops of spin-

two particles contribute to (J, 3) and (J, 4) representations, as can be seen in figure 13. One

could also refine the partial waves by looking at different tensor structures, ie. in d = 4 one has

separate couplings to ++ and +− helicity states. It might be, for example, that saturating

the budget in some structures but not in others is incompatible with crossing symmetry

at high energies. This could rule out scenarios where there is a large number of ordinary

matter fields but no graviton KK modes, or perhaps even scenarios where the spectrum is

not supersymmetric on the average, providing a concrete step towards the emergent string

conjecture mentioned in introduction.

Can the identification Λo = Λ���QFT lead to progress on conjectures involving the rate of

change ∂ϕ log Λ of the cutoff along moduli space, such as the “pattern” of [25, 26]? At the

very least, it suggests a novel definition of ∂ϕ log Λ using three-point coupling between a light

scalar field and two higher-spin states at the onset scale. Indeed, such couplings determine

how the onset mass is influenced by the scalar (in much the same way that Yukawa couplings

set fermion masses in the Standard Model).
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A Ghosts for Rarita-Schwinger and two-form fields

In this appendix, we review the derivation of ghost actions for spin-3/2 Rarita-Schwinger

particle and two-form.

Rarita-Schwinger The ghost of Rarita-Schwinger can be derived by following the standard

FP procedure. A simple way is to consider the gauge-fixing conditions for Ψ and Ψ separately

γµ /DΨµ = ω , γµΨµ = ω , (A.1)

where we treat ω and ω independently. Then we can follow the FP trick to insert the Dirac

delta functions in the path integral

Z[g] =

∫
DΨDΨ δ

(
γ ·Ψ− ω

)
δ
(
γ · /DΨ− ω

)
det[ /D]−1det[ /D /D]−1e−S[Ψ,Ψ,g] , (A.2)
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where the determinants come from the infinitesimal gauge transformation

δΨµ = ∂µϵ . (A.3)

Because the partition function does not depend on ω and ω, we can shift the partition function

by

const =

∫
DωDωe

− 1
ξ

∫
ωω
. (A.4)

Integrating out ω, ω yields

Z[g] =

∫
DΨDΨdet[ /D]−3e−S[Ψ,Ψ,g]+Sgf , (A.5)

where the gauge-fixing term is

Sgf ∼
1

ξ

∫
ddx

√
gΨµγ

µγνγρDνΨρ . (A.6)

We choose ξ = 4/(1−d) to remove additional 1/p2 pole in the propagator. The partition func-

tion (A.5) contains det[ /D]−3, suggesting that the FP ghosts of Rarita-Schwinger contributes

like −3 of fermions.

Two-form The theory with massless two-form is known as the reducible gauge theory

[42, 43]. A subtlety arises from the fact that its FP ghosts are also gauge fields, therefore

requesting the ghosts for ghosts. For 2-form, this fact is manifest by the gauge transformation

δBµν = ∇[µθν] . (A.7)

However, the naive application of the standard FP quantization does not produce the correct

results. The essential reason is that the gauge-fixing functions are constrained. We consider

the gauge-fixing function by inserting a Dirac delta function

δ
(
∇µBµν − ων

)
. (A.8)

However, different from ordinary gauge fields, this gauge-fixing function introduces nontrivial

field ω, which is constrained by

∇νων = ∇µ∇νBµν ≡ 0 . (A.9)

The constraints on the gauge-fixing function completely spoil the FP quantization procedure.

There are several procedures are developed to systematically deal with this reducible gauge

theory [91–94], the famous one is Batalin-Vilkovisky formalism as the generalization of BRST

[43].
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Here, we focus on 2-form, which is simple enough to avoid those intricate quantization

procedures, and we simply review a slight generalization of FP procedure in [42]. We follow

the same routine to make the delta function manifest

Z[g] =

∫
DB δ

(
∇µBµν − ων

)
det[∇ · d]e−S[B,g] , (A.10)

where d is the exterior derivative. As we mentioned, now inserting e−ω2
does not give the

averaging due to ∇ · ω = 0, namely∫
Dωe

− 1
ξ

∫
ω2

δ(∇ · ω) ̸= const . (A.11)

To rescue this, we now disentangle the constraint on ω by introducing its own “gauge-fixing”

function δ(∇ · ω − ω′). Then one obvious constant averaging is

∫
DωDω′ δ(∇ · ω − ω′)e

− 1
ξ

∫ (
ω2+(ω′)2+ω′ 1

∇2 ω
′
)
det[∇] = const . (A.12)

To prove this, we can integrate ω, this integration cancels det[∇] and sets ωµ = 1/∇µω
′ to

eliminate ω′1/∇2ω′ in the exponent. The remaining is the trivial Gaussian ω′. To proceed,

we can integrate ω′ first and then integrate ω

Z[g] =

∫
DB det[∇ · d]det[∇]e−S[B,g]+Sgf , (A.13)

where the gauge-fixing term is

Sgf ∼ 1

ξ

∫
ddx

√
g∇µBµν∇ρBρ

ν . (A.14)

We can now count the ghosts. First, we have det[∇ · d], this term gives the ghosts as −2

spin-1 gauge fields. Since this ghost is itself a gauge field, it induces further ghost behaving

like +4 scalars. Besides, we have det[∇], contributing −1 scalars. Therefore, we have ghosts

for ghosts contributing as +3 real scalars. To keep the terminology light, we may say that

the ghosts for 2-form contribute like −2 vectors and −1 real scalar. This is consistent with

the degrees of freedom for massless 2-form.

B Discontinuities of 1-loop master integrals in d dimensions

In this appendix, we provide the necessary formulas for taking the discontinuity of master

integrals.

In general dimensions, we can obtain the imaginary part of all master integrals in the

physical s-channel kinematics s > 4m2, t < 0. This is sufficient for computing the spectral

– 46 –



density of one-loop amplitudes in section 5.

Im Ibub(s,m) =
πΓ
(
d−2
2

)
(4π)

d
2Γ(d− 2)

s
d−4
2 β(s,m)d−3 ,

Im Itri(s,m) =
πΓ
(
d−2
2

)
(4π)

d
2Γ(d− 2)

2d−3md−4β(s,m)d−3

s
2F1

(
d− 3

2
,
d− 2

2
,
d− 1

2
, β(s,m)2

)
,

Im Ibox(s, t,m) = −
πΓ
(
d−2
2

)
(4π)

d
2Γ(d− 2)

2d−2md−4β(s)d−3

stβ(s, t,m)2
×

(
(d− 3)

(
1− β(s)2

)2− d
2

(
1− 1

β(s, t)2

)2− d
2

F1

(
1

2
,
4− d

2
, 1,

3

2
,

1

β(s, t)2
,
β(s)2

β(s, t)2

)
− (d− 4) 2F1

(
d− 3

2
,
d− 2

2
,
d− 1

2
, β(s)2

)
2F1

(
d− 3

2
, 1,

3

2
,

1

β(s, t)2

))
. (B.1)

For Im Ibox(s, u,m), we simply repace t→ u. All others discontinuities are identically zero.

In section 4, we apply the dispersive sum rules to constrain the number of species in

d = 4, where we have to evaluate arc integrals for the low-energy contribution to sum rules,

coming from massive fields below the cutoff. The arc integral can be performed by wrapping

around the discontinuities but with fixed-u or fixed-t. Let’s fix u = −p2 < 0. In addition to

the normal threshold captured by the preceding formula, the discontinuities now also include

anomalous thresholds (especially for Ibox(s, t,m)). Specializing here to d = 4, a careful
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analysis yields in the s plane:

Disc Ibub(s,m) = 2iπ β(s,m)θ(s− 4m2) ,

Disc Ibub(t,m) = −2iπ β(p2 − s,m)θ(p2 − s− 4m2) ,

Disc Itri(s,m) =
2iπθ(s− 4m2)

s
log

(
1 + β(s,m)

1− β(s,m)

)
,

Disc Itri(t,m) = −2iπθ(p2 − s− 4m2)

s
log

(
1 + β(p2 − s,m)

1− β(p2 − s,m)

)
,

Disc Ibox(s, u,m) =
4πiθ(s− 4m2)

p2sβ (s,−p2,m)
log

(
β
(
s,−p2,m

)
+ β(s,m)

β (s,−p2,m)− β(s,m)

)
,

Disc Ibox(t, u,m) = − 4πiθ(−4m2 + p2 − s)

p2 (p2 − s)β (p2 − s,−p2,m)
log

(
β
(
p2 − s,m

)
+ β

(
p2 − s,−p2,m

)
β (p2 − s,−p2,m)− β (p2 − s,m)

)
,

Disc Ibox(s, t,m) = 4πi
{ θ(4m2 − s)θ(−4m2 + p2 − s) log

(
β(p2−s,m)+β(s,p2−s,m)
β(s,p2−s,m)−β(p2−s,m)

)
s (p2 − s)β (s, p2 − s,m)

+

θ(s− 4m2)θ(4m2 − p2 + s) log

(
β(s,p2−s,m)+β(s,m)

β(s,p2−s,m)−β(s,m)

)
s (s− p2)β (s, p2 − s,m)

−
θ(s− 4m2)θ(−4m2 + p2 − s)

(
log

(
β(s,p2−s,m)+β(s,m)

β(s,m)−β(s,p2−s,m)

)
− log

(
β(p2−s,m)+β(s,p2−s,m)
β(p2−s,m)−β(s,p2−s,m)

))
s (p2 − s)β (s, p2 − s,m)

}
,

(B.2)

while others are zero.

C Tree-level string amplitudes

In this appendix, we collect the tree-level closed string amplitudes with arbitrary polarizations

so that we can use them in higher dimensions. We take the open string amplitudes from [95]

and perform the double copy to explicitly write down the closed string amplitudes.

As we have already mentioned in the main text, due to the maximal supersymmetry, the

Shapiro-Virasoro (superstring) amplitude is proportional to the tree-level Einstein gravity.

We then have (5.5) and (5.8), which we copy here but setting α′ = 4 to keep the expression

light

MSV = −8πG
Γ
(
− s
)
Γ
(
− t
)
Γ
(
− u
)

Γ
(
1 + s

)
Γ
(
1 + t

)
Γ
(
1 + u

)T (ϵi, pi)·, (C.1)

where T (ϵi, pi) is explicitly given in (3.28). As expected, this tensor structure is the square

of the tensor structure of supersymmetric open string amplitude T = (Ksusy)2 where [95]

Ksusy(ϵi, pi) = H14H23 +H13H24 +H12H34 + 2(X1234 +X1243 +X1324) , (C.2)
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The tensor structure of the bosonic open string is

Kbos(ϵi, pi) = (1 + s)(1 + u)(su− t− 1)H14H23 + (1 + t)(1 + s)(st− u− 1)H13H24

+ (1 + t)(1 + u)(tu− s− 1)H12H34 + 2(1 + s)(1 + t)
(
(1− 2u)X1234 + (1− 2t)X1243 + (1− 2s)X1324

)
+ 4S(1 + s)(1 + t)(1 + u) (C.3)

Using the KLT relation [95], the bosonic and heterotic closed string amplitudes are given by

Mbos = −8πG
(Kbos)2

(1 + s)2(1 + t)2(1 + u)2
Γ
(
− s
)
Γ
(
− t
)
Γ
(
− u
)

Γ
(
1 + s

)
Γ
(
1 + t

)
Γ
(
1 + u

) ,
Mhet = −8πG

KbosKsusy

(1 + s)(1 + t)(1 + u)

Γ
(
− s
)
Γ
(
− t
)
Γ
(
− u
)

Γ
(
1 + s

)
Γ
(
1 + t

)
Γ
(
1 + u

) . (C.4)
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