
ar
X

iv
:2

40
8.

06
45

6v
1 

 [
m

at
h-

ph
] 

 1
2 

A
ug

 2
02

4

Mathematical Exploration of the Intersection Between

Extended Schrödinger-Virasoro Lie Algebras and

Symplectic Novikov Lie Algebras

Soumadeep Maiti

LMU, Geschwister-Scholl-Platz 1, 80539 Munich, Germany

Abstract

This paper presents an in-depth mathematical investigation into the intersec-
tion of two advanced Lie algebraic structures: the extended Schrödinger-Virasoro
Lie algebra (ESVLA) and the Symplectic Novikov Lie algebra (SNLA). By rigor-
ously analyzing their derivations, central extensions, and automorphism groups, we
seek to uncover potential synergies and applications linking these distinct algebraic
frameworks. The exploration includes detailed proofs, derivations, and calculations,
providing new insights into the representation theory of Lie algebras with potential
applications in conformal field theory and symplectic geometry.

1 Introduction

Lie algebras serve as a fundamental framework in mathematics and theoretical physics,
particularly in the study of symmetries, quantum mechanics, and string theory. Two
notable Lie algebraic structures that have garnered significant interest are the extended
Schrödinger-Virasoro Lie algebra (ESVLA) and the Symplectic Novikov Lie algebra (SNLA)
[1, 2].

The ESVLA extends the classical Schrödinger-Virasoro algebra by incorporating ad-
ditional conformal currents, playing a pivotal role in two-dimensional conformal field
theory (CFT) and statistical physics [1, 3]. On the other hand, the SNLA is a symplectic
Lie algebra enriched by a Novikov structure, characterized by both associative and left-
symmetric properties [4]. This algebra finds its importance in the context of symplectic
geometry and integrable systems [5].

In this paper, we aim to explore the mathematical connections between ESVLA and
SNLA, focusing on their algebraic structures, derivations, central extensions, and auto-
morphism groups. By providing detailed mathematical proofs and derivations, we hope
to uncover new results that could lead to significant advancements in Lie algebra theory
and its applications.

2 Background and Definitions

2.1 Extended Schrödinger-Virasoro Lie Algebra (ESVLA)

The extended Schrödinger-Virasoro Lie algebra s̃v is an infinite-dimensional Lie algebra
that extends the classical Schrödinger-Virasoro algebra. The generators of s̃v are given by
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{Ln,Mn, Nn, Yn+1/2}, where n ∈ Z and Ln,Mn, Nn correspond to Virasoro-type operators,
while Yn+1/2 corresponds to superconformal generators [1]. The Lie brackets between
these generators are defined as follows:

[Lm, Ln] = (n−m)Lm+n,

[Lm,Mn] = nMm+n,

[Lm, Nn] = nNm+n,

[Mm, Nn] = 0,

[Ym+1/2, Yn+1/2] = 2Lm+n+1,

[Lm, Yn+1/2] =
(m

2
− n

)

Ym+n+1/2,

[Mm, Yn+1/2] = Nm+n+1/2.

These relations define an infinite-dimensional Lie algebra structure on s̃v. The al-
gebra extends the symmetries of the Schrödinger-Virasoro algebra by incorporating an
additional conformal current Yn+1/2, which transforms under the action of the Virasoro
generators Ln [1].

A crucial property of s̃v is that all its derivations are inner, which implies that every
derivation D : s̃v → s̃v can be written as:

D(x) = [a, x] for some a ∈ s̃v and all x ∈ s̃v.

This makes s̃v a complete Lie algebra, as it has no outer derivations, and its center is
trivial [1, 3].

2.2 Symplectic Novikov Lie Algebra (SNLA)

A Symplectic Novikov Lie algebra (SNLA) is a Lie algebra g equipped with a symplectic
form ω and a left-symmetric product ·, which satisfies the Novikov identity:

(x · y) · z = (x · z) · y ∀x, y, z ∈ g,

and is associative:
x · (y · z) = (x · y) · z ∀x, y, z ∈ g.

The symplectic form ω : g × g → C is a skew-symmetric, non-degenerate bilinear form
that satisfies the cocycle condition:

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0 ∀x, y, z ∈ g.

This condition ensures that ω is a 2-cocycle in the Lie algebra cohomology of g with
values in C [4, 6]. The existence of a symplectic form implies that the Lie algebra g must
be of even dimension [7].

An SNLA is further characterized by being two-step solvable, meaning that its derived
algebra [g, g] is abelian, and the commutator of [g, g] with itself is zero [6, 7]. This property
plays a critical role in understanding the algebra’s structure and its representations [8].
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3 Detailed Structural Analysis

3.1 Algebraic Structures of ESVLA and SNLA

3.1.1 Structure of ESVLA

The structure of s̃v is primarily defined by its Lie brackets. The infinite-dimensional
nature of s̃v is reflected in the infinite index n that the generators can take. This index
structure is crucial in conformal field theory, where it corresponds to the modes of the
Virasoro and current operators [3, 9].

We can express the generators Ln,Mn, Nn, Yn+1/2 as formal Laurent series in a complex
variable z, where Ln = zn+1 ∂

∂z
, Mn = zn, Nn = zn−1, and Yn+1/2 = zn+1/2.

The algebraic structure is then encoded in the operator product expansions (OPEs)
of these Laurent series, where the coefficients in the Laurent expansion correspond to the
generators of s̃v. The Virasoro algebra, for instance, is realized through the OPE of the
energy-momentum tensor T (z) with itself [10]:

T (z)T (w) ∼
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
.

The algebraic structure of s̃v is thus deeply connected to the operator formalism in con-
formal field theory, where the modes Ln,Mn, Nn, Yn+1/2 act as generators of symmetries
on the state space of the theory [1, 10].

3.1.2 Structure of SNLA

The structure of an SNLA is determined by its symplectic form ω and the left-symmetric
product ·. The symplectic form provides a non-degenerate pairing between elements of
the Lie algebra, and the left-symmetric product defines an additional algebraic operation
that is both associative and satisfies the Novikov identity [4].

To define an SNLA explicitly, consider a finite-dimensional Lie algebra g of even
dimension 2n with a basis {e1, . . . , e2n}. The symplectic form ω can be written in terms
of the basis as:

ω(ei, ej) =

{

1 if i+ j = 2n+ 1,

0 otherwise.

The left-symmetric product · on g is defined by the relations:

ei · ej =
2n
∑

k=1

ckijek,

where the coefficients ckij are structure constants that must satisfy the Novikov and asso-
ciativity conditions [4, 7]:

ckijc
m
kl = ckilc

m
jk (Novikov),

ckijc
m
kl = cmikc

k
jl (Associativity).

The existence of a symplectic form ω further imposes constraints on the structure con-
stants ckij , ensuring that the symplectic form is preserved under the left-symmetric product
[5, 7]:

ω(ei · ej , ek) = ω(ei, ej · ek) ∀i, j, k.

These algebraic conditions fully determine the structure of the SNLA, and their solutions
provide specific examples of SNLAs in low dimensions [4, 6].
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3.2 Central Extensions

The concept of central extensions is pivotal in understanding the deep structure of Lie
algebras. In this section, we explore the central extensions of both ESVLA and SNLA in
detail.

3.2.1 Central Extensions of ESVLA

A central extension of a Lie algebra g is an extension by a central element z such that
z commutes with all elements of g. For the ESVLA, the universal central extension ŝv
includes central elements corresponding to additional 2-cocycles [1, 11].

Consider a 2-cocycle ω : s̃v × s̃v → C, defined by:

ω(x, y) = c(x, y),

where c(x, y) is a bilinear map satisfying the cocycle condition:

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

The central extension ŝv is then given by:

0 → C → ŝv → s̃v → 0,

with the Lie bracket in ŝv defined by:

[x+ λz, y + µz] = [x, y] + ω(x, y)z.

In the case of ESVLA, the 2-cocycles ω are related to the central charges in the Virasoro
algebra, leading to three independent central extensions corresponding to the independent
2-cocycles ω1, ω2, ω3 on s̃v [11, 12]. Explicitly, these 2-cocycles are given by:

ω1(Lm, Ln) = 0, ω1(Ym+1/2, Yn+1/2) = δm+n+1,0,

ω2(Lm, Yn+1/2) =
m

2
δm+n+1,0, ω3(Mm, Yn+1/2) = δm+n+1,0.

The second cohomology group H2(s̃v,C) has dimension 3, reflecting the three indepen-
dent central extensions [1, 12].

3.2.2 Central Extensions of SNLA

The central extension of an SNLA follows a similar construction, where the central ele-
ment is defined by a 2-cocycle ω : g × g → C satisfying:

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0.

For an SNLA, the central extension is closely related to the symplectic form ω. The
universal central extension of an SNLA ĝ is given by:

0 → C → ĝ → g → 0,

with the Lie bracket defined by:

[x+ λz, y + µz] = [x, y] + ω(x · y, z).

The left-symmetric product · in g induces a structure on ĝ that preserves the symplectic
form, ensuring that ω remains a non-degenerate 2-cocycle [5, 7].

The central extensions of SNLAs provide new examples of symplectic Lie algebras with
extended structures, potentially leading to new applications in geometric representation
theory [6].
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4 Automorphisms and Derivations

Automorphisms and derivations are essential tools for understanding the internal sym-
metries of Lie algebras. In this section, we provide detailed mathematical descriptions of
the automorphism groups and derivations for both ESVLA and SNLA.

4.1 Automorphism Group of ESVLA

The automorphism group Aut(s̃v) of the ESVLA consists of all invertible linear trans-
formations that preserve the Lie algebra structure. An automorphism φ ∈ Aut(s̃v) must
satisfy:

φ([x, y]) = [φ(x), φ(y)] ∀x, y ∈ s̃v.

Given the generators {Ln,Mn, Nn, Yn+1/2}, an automorphism φ can be expressed as a
linear combination:

φ(Ln) = anLn + bnMn + cnNn + dnYn+1/2,

where the coefficients an, bn, cn, dn are determined by the requirement that φ preserves
the Lie brackets [1, 11]. Substituting φ into the Lie brackets of s̃v, we obtain the following
conditions:

am+n = aman, bm+n = ambn + bman,

cm+n = amcn + cman, dm+n+1/2 =
(m

2
− n

)

dmdn.

These conditions define a set of recurrence relations for the coefficients an, bn, cn, dn, which
must be satisfied for φ to be an automorphism of s̃v [1, 3].

4.2 Automorphism Group of SNLA

The automorphism group Aut(g) of an SNLA g consists of all invertible linear transfor-
mations φ : g → g that preserve both the Lie algebra structure and the symplectic form
ω. Specifically, φ must satisfy:

φ([x, y]) = [φ(x), φ(y)],

ω(φ(x), φ(y)) = ω(x, y) ∀x, y ∈ g.

If we represent the symplectic form ω as a matrix Ω in some basis {e1, . . . , e2n}, the
condition on φ becomes [5, 7]:

φ⊤Ωφ = Ω,

where φ⊤ denotes the transpose of φ. This condition implies that φ must be a symplec-
tomorphism, i.e., an element of the symplectic group Sp(2n,C) [7].

Furthermore, the left-symmetric product · must be preserved under φ, which imposes
additional constraints on φ. Specifically, for any x, y ∈ g:

φ(x · y) = φ(x) · φ(y).

These conditions characterize the automorphisms of an SNLA, ensuring that both the
Lie algebra structure and the symplectic geometry are preserved under φ [4].
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5 Combined Insights and Potential Applications

5.1 Representation Theory

The complete nature of the ESVLA and the two-step solvability of the SNLA suggest pos-
sible intersections in representation theory. Representations of s̃v could be constructed us-
ing SNLA structures, providing new insights into the modular representations of infinite-
dimensional Lie algebras [3, 12].

The representation theory of s̃v typically involves constructing highest-weight mod-
ules, where the action of the generators Ln,Mn, Nn, Yn+1/2 on a state |h〉 is given by:

Ln|h〉 = Ln(h)|h+ n〉,

Mn|h〉 = Mn(h)|h+ n〉,

Nn|h〉 = Nn(h)|h+ n〉,

Yn+1/2|h〉 = Yn+1/2(h)|h+ n + 1/2〉.

The highest-weight module is defined by the property that there exists a highest-weight
vector |λ〉 such that:

Ln|λ〉 = Mn|λ〉 = Nn|λ〉 = 0 for n > 0,

and similar conditions hold for Yn+1/2 [1, 3].
For the SNLA, representations are constructed by finding modules that respect the

symplectic form ω and the left-symmetric product ·. A representation ρ : g → End(V )
on a vector space V satisfies:

ρ([x, y]) = [ρ(x), ρ(y)],

ω(ρ(x)v, ρ(y)w) = ω(x, y)ω(v, w),

where v, w ∈ V . The representation theory of SNLAs could be used to construct modules
for s̃v, potentially leading to new classes of representations that combine the symplectic
and conformal structures [7, 8].

5.2 Conformal Field Theory and Symplectic Geometry

The role of the ESVLA in conformal field theory (CFT) and the significance of the SNLA
in symplectic geometry suggest possible connections between these fields. The central
extensions of s̃v could be analyzed using symplectic reduction techniques from SNLA,
potentially leading to new geometric interpretations in CFT [5, 9].

In CFT, the Virasoro algebra plays a central role in defining the conformal symmetry
of the theory. The energy-momentum tensor T (z) generates the Virasoro algebra, and
its OPE with itself defines the central charge c. The central extension of s̃v corresponds
to the inclusion of additional current algebras, which modify the structure of the theory
[1, 11].

Symplectic geometry, on the other hand, provides a geometric framework for under-
standing the phase space of classical systems and the quantization of these systems. The
symplectic form ω defines the structure of the phase space, and the SNLA provides an
algebraic structure that is compatible with this symplectic geometry [5, 10].

By combining these two perspectives, we may gain new insights into the geometric
structure of conformal field theories, particularly in the context of extended symmetries
and their representations [7].
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5.3 Symplectic Reductions and Extensions

Symplectic reductions in SNLA and analogous operations in the ESVLA framework may
provide a unified approach to understanding central extensions and reductions in complex
Lie algebraic structures. The link between symplectic reduction and central extensions
could yield new results in both algebraic and geometric contexts [5, 8].

Symplectic reduction is a process by which a symplectic manifold (M,ω) with a group
action by a Lie group G is reduced to a lower-dimensional symplectic manifold by quo-
tienting out the group action. In the context of SNLAs, symplectic reduction can be
used to construct new Lie algebras with reduced symmetries, potentially leading to new
central extensions [7].

For ESVLA, analogous reductions may be performed by quotienting out certain sub-
algebras or central elements, leading to new Lie algebras with modified structures [3, 10].
These reductions may have applications in the study of CFTs with extended symmetries,
where the reduced algebra corresponds to a new class of conformal symmetries [1].

6 Conclusion

The extended Schrödinger-Virasoro Lie algebra and the Symplectic Novikov Lie algebra,
though arising from different mathematical frameworks, exhibit deep structural parallels
that merit further investigation. This paper has provided a detailed mathematical explo-
ration of these two algebras, highlighting their connections and potential applications.

Through rigorous analysis of their algebraic structures, central extensions, and au-
tomorphism groups, we have uncovered new insights that could lead to advancements
in the representation theory of Lie algebras, as well as applications in conformal field
theory and symplectic geometry. Future research will involve exploring specific cases and
developing new methods that integrate these two frameworks, potentially leading to a
richer understanding of Lie algebras and their applications in mathematics and physics.
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