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We use supervised machine learning together with the concepts of classical density functional the-
ory to investigate the effects of interparticle attraction on the pair structure, thermodynamics, bulk
liquid-gas coexistence, and associated interfacial phenomena in many-body systems. Local learning
of the one-body direct correlation functional is based on Monte Carlo simulations of inhomogeneous
systems with randomized thermodynamic conditions, randomized planar shapes of the external po-
tential, and randomized box sizes. Focusing on the prototypical Lennard-Jones system, we test
predictions of the resulting neural attractive density functional across a broad spectrum of physical
behavior associated with liquid-gas phase coexistence in bulk and at interfaces. We analyse the bulk
radial distribution function g(r) obtained from automatic differentiation and the Ornstein-Zernike
route and determine i) the Fisher-Widom line, i.e. the crossover of the asymptotic (large distance)
decay of g(r) from monotonic to oscillatory, ii) the (Widom) line of maximal correlation length, iii)
the line of maximal isothermal compressibility and iv) the spinodal by calculating the poles of the
structure factor in the complex plane. The bulk binodal and the density profile of the free liquid-gas
interface are obtained from density functional minimization and the corresponding surface tension
from functional line integration. We also show that the neural functional describes accurately the
phenomena of drying at a hard wall and of capillary evaporation for a liquid confined in a slit pore.
Our neural framework yields results that improve significantly upon standard mean-field treatments
of interparticle attraction. Comparison with independent simulation results demonstrates a consis-
tent picture of phase separation even when restricting the training to supercritical states only. We
argue that phase coexistence and its associated signatures can be discovered as emerging phenomena
via functional mappings and educated extrapolation.

I. INTRODUCTION

The emergence of two or more distinct thermodynamic
stable phases on varying thermodynamic conditions is ar-
guably one of the most striking phenomena in statistical
mechanics, whether this occurs in bulk or at interfaces,
in pure or in multi-component systems. Unsurprisingly,
the recent surge in the use of machine-learning techniques
in physics [1, 2] has focused on the prototypical (lattice-
based) Ising model for developing appropriate techniques
and strategies to investigate phase-separating systems.
Such work includes the finite-size analysis in neural net-
work classification of critical phenomena [3] and mapping
out phase diagrams with generative classifiers [4]. De-
tecting the approach to a critical point also constitutes
a central task in more general dynamical systems, which
commonly requires the application of advanced compu-
tational methods [5–7].

In this paper we focus on using machine learning to
investigate liquid-gas phase separation and related phe-
nomena in a continuum model fluid, namely the Lennard-
Jones system, arguing that understanding the physics in
such a simple model, which encompasses both repulsive
and attractive interparticle interactions, provides a basis
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for understanding the occurrence of the same phenomena
that arise in more complex fluids [8, 9].

We choose to employ the formal techniques of classi-
cal density functional theory (DFT) [8, 10–12] to inves-
tigate both bulk and inhomogeneous (interfacial) prop-
erties. Going from a bulk (homogeneous) system with
constant density to the locally resolved one-body density
profile ρ(r) of an inhomogeneous fluid, where r indicates
position, allows one to formulate the statistical mechan-
ics based on functional relationships, as described briefly
below. Although the DFT framework is formally exact,
approximations are required in implementations. The
conventional approach is to treat short-ranged repulsion
in terms of a hard-sphere free energy functional, e.g. via
fundamental-measure theory [13, 14], and the attractive
interaction via a simple mean-field factorization ansatz,
see Ref. [11] and recent papers [15–17]. Such a treat-
ment, which is in the spirit of van der Waals, generates
an explicit (analytical) formula for the excess (over ideal
gas) intrinsic Helmholtz free energy functional that in-
corporates information about the effects of repulsion and
attraction.

As DFT is an exact formulation of the many-body
statistical mechanics, the choice of the excess free en-
ergy functional is the only approximation that enters a
given study. Once it is specified consistent and com-
plete investigation of a wide variety of properties can be
made. Computational limitations, leaving aside some in-
tricacies of implementing nonlocal treatments for hard
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spheres [13, 14], are minor, certainly for systems which
exhibit planar or spherical symmetry. Hence wide param-
eter sweeps and close monitoring of the effects of small
changes in control parameters, especially near phase co-
existence, are readily carried out enabling the investiga-
tion of subtle phenomena such as phase transitions at
substrates and in confinement.

However, despite these virtues, making direct quan-
titative comparisons with data from many-body simu-
lations is often not straightforward. Using the concept
of corresponding states, i.e. scaling the bare thermody-
namic parameters by their corresponding values at the
bulk critical point, can enable meaningful comparisons
but this is a pragmatic approach. In essence, one of-
ten performs separate simulations and theoretical calcu-
lations and from their combination attempts to gather,
a posteriori, a complete picture of the physics. Find-
ing an accurate, versatile and computationally manage-
able improvement on the standard mean-field treatment
of attraction continues to pose a significant challenge in
classical DFT.

Machine learning provides a very different perspective
for addressing the limitations of analytical approaches
(meaning writing down explicit free energy functionals)
by incorporating quasiexact simulation reference data for
the construction of functional relationships, as was pur-
sued for the classical [18–34] and quantum (electronic)
worlds [35–42]. The review by Simon and Oettel [31]
gives a valuable overview of very recent applications of
machine-learning techniques within classical DFT and
addresses methodological connections to electronic DFT
and to nonequilibrium systems. Amongst the different
approaches [18–43] that were put forward, the neural
functional theory based on local one-body learning [24–
29, 33] in inhomogeneous training systems has proved to
be a versatile and highly accurate tool, both in equilib-
rium [25–28, 33] as well as for microscopically resolved
nonequilibrium flow problems [24, 29]. In the latter case
the required functional relationships are those of power
functional theory [44, 45].

The initial appeal of the local learning approach stems
from its simplicity. In equilibrium, sampling the one-
body density profile in spatially inhomogeneous systems
is all that is required for the generation of a training data
set. A neural network with a simple multilayer percep-
tron architecture is then trained to represent the func-
tional relationship from the density profile to the one-
body direct correlation function. The latter object is di-
rectly accessible from the input simulation data. More-
over, it also arises as a central functional mapping in
DFT; further details and comments on its significance
are given below. In particular, the short-ranged nature
of direct correlation functions permits one to consider
the functional mapping locally, thereby aiding the train-
ing procedure and making efficient use of the input data.
Although applications of the resulting neural functional
are rather straightforward in practical terms, these are
powerful and provide access to a multitude of physical

properties by making use of the underlying formal struc-
ture of DFT and liquid state theory. These include the
prediction of density profiles, also in multiscale settings
[25], employing automatic differentiation [26, 32, 46] and
numerical functional integration to determine correlation
functions and thermodynamical properties, and using ex-
act statistical mechanical sum rules [47–49], specifically
those that follow from Noether’s theorem [50–55], to ex-
amine self-consistency.

The neural functional approach was investigated in
great detail for models with purely repulsive (hard core)
potentials. It provides an excellent approximation for
Percus’ exact free energy functional for hard rods in one
dimension [26] and was shown to constitute a clear im-
provement [25] over the already highly accurate White-
Bear Mk. II version of fundamental-measure theory
[14, 56] for hard spheres in three dimensions. Impor-
tantly, the neural functional method is not restricted to
hard cores; it applies to general interatomic potentials
which may also include attraction. That the neural func-
tional can treat attraction successfully was illustrated
in determinations of the structure of the Lennard-Jones
fluid at a fixed supercritical temperature [25, 28]; this
constitutes an important test case [23].

These recent investigations did not address the funda-
mental issue of how the presence of a phase transition
might be accounted for within the framework of a neu-
ral density functional. Here we focus on the liquid-gas
transition which is a basic manifestation of the presence
of interparticle attraction and seek to assess whether the
neural functional can describe i) phase coexistence and
the approach to the associated critical point, ii) surface
tension and density profiles of the liquid-gas interface, iii)
drying and capillary evaporation transitions that occur
at subcritical temperatures and iv) how accurately the
approach performs for both bulk and interfacial prop-
erties. To the best of our knowledge, none of these is-
sues were addressed in previous machine-learning inves-
tigations. Specifically, we extend the neural methodol-
ogy [25, 26] by introducing thermal training and inves-
tigate whether neural functionals can describe physical
phenomena that occur in the three-dimensional Lennard-
Jones system in sub- as well as supercritical regions of the
phase diagram. The answer is emphatically: yes.

The paper is organized as follows. We describe our
methodology of working with machine learning within a
rigorous statistical mechanical framework in Sec. II. This
includes a summary of the formally exact density func-
tional foundation in Sec. IIA and a description of the
simulation-based generation of training data in Sec. II B.
Details of the neural network and of the supervised train-
ing procedures are given in Sec. II C. The resulting neu-
ral density functional theory together with the associated
methods of functional calculus are laid out in Sec. II D.

All subsequent results originate from this neural func-
tional method and are described in Sec. III. An account
of the emerging bulk pair correlation structure is given
in Sec. III A. Results for the lines in the phase diagram
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where the isothermal compressibility and the true cor-
relation length are maximal, together with the Fisher-
Widom line and the spinodal, are presented Sec. III B.
Our results for the liquid-gas binodal and estimate of
the critical point are described in Sec. III C. The bulk
equation of state, liquid-gas density profiles, and the cor-
responding surface tension are laid out in Sec. III D. A
description of the divergence of the correlation length in
the critical region and corresponding Ornstein-Zernike
plots are given in Sec. III E. Results for inhomogeneous
fluids, that describe our predictions for drying at a hard
wall, for capillary evaporation in a slit pore and for the
corresponding behavior of locally resolved density fluc-
tuations, are presented in Sec. III F. In Sec. III G we
compare with results obtained from a neural functional
trained with data from supercritical states only. Remark-
ably this procedure also predicts liquid-gas coexistence
and associated phenomena.

We conclude with a discussion in Sec. IV. This includes
an assessment of the strengths of the neural functional
methodology in Sec. IVA, an overview of the physical
phenomena that we investigated and what remains to be
ascertained in Sec. IV B, some speculations on the ex-
tent to which the prediction and discovery of phase co-
existence can be based on functional mappings and their
extrapolation in Sec. IV C, and an outlook on possible
future work in Sec. IV D.

II. METHOD

A. Overview of classical density functional theory

We briefly sketch the essentials of classical DFT as a
method to treat the statistical mechanics of many-body
systems. The system itself is defined by its Hamiltonian
H =

∑
i p

2
i /(2m) + u(r1, . . . , rN ) +

∑
i Vext(ri), where

the sums over i run over all N particles, pi and ri are
the momentum and position of particle i = 1, . . . , N in d
dimensions, m denotes the particle mass, u(r1, . . . , rN ) is
the interparticle interaction potential, and Vext(r) is an
external one-body potential. The thermodynamic con-
trol parameters are the temperature T and the chemical
potential µ when working in the grand ensemble. The
associated thermodynamic potential is the grand poten-
tial (or grand canonical free energy), which is given as
Ω0(T, µ) = −kBT ln Ξ(T, µ), where Ξ(T, µ) is the grand
partition sum and kB is the Boltzmann constant. For
compactness of notation we have suppressed the depen-
dence on the system volume V .

Classical DFT [8, 10, 11] ascertains the existence and
uniqueness of the grand potential density functional,
Ω([ρ], T, µ), which consists of ideal, excess (over ideal
gas), external, and chemical contributions according to

the sum

Ω([ρ], T, µ) = Fid([ρ], T ) + Fexc([ρ], T )

+

∫
dr ρ(r)[Vext(r)− µ],

(1)

where the position integrals run over the system vol-
ume V . Here and throughout we indicate functional
relationships by square brackets. The ideal gas free
energy functional is known exactly as Fid([ρ], T ) =
kBT

∫
dr ρ(r)[ln(ρ(r)Λd)− 1], where Λ is the thermal de

Broglie wavelength (which we will set to the particle size
below). The excess free energy functional Fexc([ρ], T )
accounts for the effects of the nonvanishing interparti-
cle interactions. Crucially, instead of operating only on
the true equilibrium density profile ρ0(r), the grand po-
tential density functional (1) accepts any general “test”
function profile ρ(r) that does not need to have particular
physical significance for the system at hand. Identifying
the true equilibrium density profile ρ0(r) is ensured by
the formally exact minimization principle Ω([ρ0], T, µ) ≤
Ω([ρ], T, µ) and hence

δΩ([ρ], T, µ)

δρ(r)

∣∣∣
ρ=ρ0

= 0 (min). (2)

Here δ/δρ(r) indicates the functional derivative with re-
spect to the test function ρ(r) and the result of the differ-
entiation is evaluated at the equilibrium density profile,
ρ(r) = ρ0(r), as indicated in the notation (brief accounts
of functional differentation are available [26, 45]). Fur-
thermore, the value of the grand potential is obtained by
evaluating the grand potential density functional at the
equilibrium density profile:

Ω0(T, µ) = Ω([ρ0], T, µ). (3)

Access to Ω0(T, µ) provides, in principle, full thermo-
dynamic information, including knowledge of the phase
diagram. (In the subsequent sections, for notational sim-
plicity, we drop the label 0 as an indicator for equilib-
rium.) Despite operating entirely on the one-body level
of correlation functions, in principle all higher-body cor-
relation functions are accessible. While this information
can come from the test-particle limit [57] and hyperden-
sity functional concepts [27], the standard route is via
functional differentiation and the Ornstein-Zernike rela-
tion, as we sketch and use below.

The above framework is formally exact. Having an ex-
act form of the excess free energy functional Fexc([ρ], T )
in Eq. (1), as is available for very few one-dimensional
systems [26, 58], then merely requires solution of the min-
imization problem (2), which is typically performed nu-
merically (as described below in the current neural con-
text). No approximation has entered at this point and in
principle the exact statistical mechanics is retained.

In practice, approximations are required in order to
treat the nontrivial effects of interparticle interactions.
For the common case of liquid-gas phase separating sys-
tems where particles interact via a pair potential ϕ(r)
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with interparticle distance r, such that the total inter-
particle interaction energy is given by u(r1, . . . , rN ) =∑

ij(i ̸=j) ϕ(|ri − rj |)/2, the standard mean-field approxi-
mation consists of assuming the splitting

Fexc([ρ], T ) = Fhs([ρ], T )

+
1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)ϕattr(|r− r′|).

(4)

The repulsive part of the interparticle potential, which
gives rise to packing effects, is treated in terms of the
hard sphere reference functional Fhs([ρ], T ) in Eq. (4).
This depends linearly on temperature and is typically
represented by fundamental-measure theory (FMT) [13,
14]. The longer-ranged, attractive part of the potential,
ϕattr(r), needs to be split off from (and continued into
the core of) the full pair potential ϕ(r). The approxima-
tion (4) provides the essential ingredients for successful
competition of entropy (first term) and energy (second
term) to drive bulk liquid-gas and certain surface phase
transitions. The dependence on temperature T remains
simplistic: linear variation (first term) on top of a con-
stant (second term). In bulk, Eq. (4) yields a generaliza-
tion of the van der Waals equation of state.

Instead of working with the mean-field approxima-
tion (4) here we rather use machine-learning methods
[25, 26] to represent simultaneously both the packing
and the attraction effects of the interparticle interactions.
While the excess free energy functional Fexc([ρ], T ) it-
self can be trained on the basis of inhomogeneous local
learning [28], we choose to start with the one-body direct
correlation functional

c1(r; [ρ], T ) = −δβFexc([ρ], T )

δρ(r)
, (5)

where β = 1/(kBT ) is the inverse temperature. As we
show in Sec. IID, c1(r; [ρ], T ) is directly relevant for solv-
ing the minimization problem (2), but it also provides ac-
cess to further physical quantities by utilization of func-
tional calculus, in particular implemented via automatic
differentiation [26, 32, 46]. The nontrivial information
for training c1(r; [ρ], T ) is straightforward to access in
many-body simulations, as we lay out in the following.

B. Generation of training data

Throughout this work, we consider the truncated
Lennard-Jones (LJ) fluid as specified by the pairwise in-
teraction potential

ϕ(r) =

{
4ε

[(
σ
r

)12 − (
σ
r

)6]
, r ≤ rc,

0, r > rc,
(6)

for separation distance r. The LJ well-depth ε and par-
ticle diameter σ set the energy and length scales, re-
spectively. We choose a typical truncation distance of

rc = 2.5σ, which allows for the direct comparison of our
subsequent findings to numerous simulation studies [59–
64]. Note that we do not apply an energy shift in the
pair potential (6).

Training data are acquired in grand canonical Monte
Carlo (MC) simulation runs [9] with randomly generated
inhomogeneous potential energy landscapes in planar ge-
ometry, i.e. Vext(r) = Vext(x) [25]. We further random-
ize the thermodynamic state point as specified by the
chemical potential µ and the temperature T , which are
chosen uniformly within the ranges −7 < µ/ε < 4 and
1 < kBT/ε < 2. For ease of sampling and histogram
construction, the system length in the (inhomogeneous)
x-direction is kept fixed at a value of Lx = 20σ. To al-
leviate finite-size effects, at least to some extent, we also
vary the lateral system lengths Ly = Lz = L uniformly
within the interval 5 < L/σ < 20. The advantages and
limitations of this procedure, in particular regarding the
resulting behavior in the vicinity of the critical point, are
described in Sec. III E.

In each simulation run, the density profile ρ(x) is mea-
sured via straightforward sampling of microstates into a
position-resolved histogram with bin width ∆x = 0.01σ.
The one-body direct correlation function then follows
pointwise according to

c1(x) = ln ρ(x) + β [Vext(x)− µ] (7)

for all x where ρ(x) > 0. In total, 880 individual simu-
lations have been performed to gather training data for
ρ(x) and c1(x) profiles at different temperatures, chemi-
cal potentials, lateral system sizes, and for varying shapes
of the imposed inhomogeneities in the external potential.
The total computation time of ∼ 104 CPU hours for the
generation of the entire data set is moderate owing to the
relative ease of determining the one-body profile ρ(x) in
simulations.

Fig. 1 (left panel) shows the thermodynamic state
points of all training simulations. Note that we also
show the coexistence curve (gray line) in the (µ, T )
plane, obtained in grand canonical MC simulations by
Wilding [59]. This ends at the critical temperature
kBTc/ε = 1.188 which provides an important indication
of where we might hope to find phase separation using
our present neural functional. As an example of a simu-
lation within the training set, namely at µ/ε ≈ −0.17
and kBT/ε ≈ 1.76, we show the relevant inhomoge-
neous one-body profiles ρ(x) and c1(x) for a particular
shape of Vext(x). In the right panel of Fig. 1, we show
a schematic illustration of the neural density functional
mapping, which we describe in the following.

C. Neural network and training procedures

We proceed analogously to Ref. [25] and aim at rep-
resenting the direct correlation functional c1(x; [ρ], T ) lo-
cally via a neural network. That is, for a given position
x0, one considers the functional mapping from a section
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FIG. 1. Left panel: training data are acquired via grand canonical MC simulations of the truncated LJ fluid in inhomogeneous
planar environments at randomized chemical potential µ and temperature T . We show the thermodynamic state points of all
contributing simulations. The symbol size indicates the lateral system length L, which is also varied randomly. Small symbols
refer to values of L closer to 5σ and big symbols to values where L is closer to 20σ. The binodal and critical point taken
from Ref. [59] are shown in gray. The critical temperature kBTc/ε ≈ 1.188 provides an indicator of where we might ‘expect’
to find liquid-gas phase separation. Note that the systems are inhomogeneous, thus rendering the value of µ inconclusive for
determining the emerging phases. Middle panel: an example from the training set. The randomly generated planar external
potential Vext(x) (black curve, hard walls indicated in gray) creates an inhomogeneous density profile ρ(x) (blue), which is
sampled in the simulation. The one-body direct correlation function c1(x) (orange) follows pointwise from Eq. (7). Right
panel: a neural network is trained to extract and represent the underlying functional relationship c1(x; [ρ], T ) in a local manner
[25]. The parametric temperature dependence and the finite-size scaling are taken into account via additional nodes in the
input layer. We also indicate in the left panel the temperature cutoff of kBT/ε = 1.3 (horizontal dotted pink line) for the case
of purely supercritical training, where only simulations with higher temperature contribute—see text.

of the density profile in the vicinity of x0 to the scalar
value c1(x0) of the direct correlation functional at that
location, see Fig. 1 (right panel). Hence, for each x0, the
density profile ρ(x) is given only within a cutoff range
|x − x0| ≤ xc as input to the neural network. We deem
xc = 3.5σ sufficient, which leads to 701 neural input
nodes for the resulting density window with the given
discretization ∆x of the histograms. The local learning
of one-body direct correlations implies a quick decay of
their functional dependence on the surrounding density
profile, which should be valid for short-ranged interpar-
ticle interactions, provided that one stays clear of the
critical region [8]. Considering such a local functional
mapping is beneficial both during training and in predic-
tive tasks. In particular, the neural functional remains
applicable to virtually arbitrary system sizes, enabling
efficient multiscale investigations [25, 26]. This proves
to be crucial for the prediction of phase coexistence and
interfacial profiles, see Secs. III C and III D, where the
system size Lx must be increased substantially to yield
an accurate account of liquid-gas phase separation.

To incorporate the parametric dependence of one-body
direct correlation functions on temperature T and lat-
eral system size L, additional nodes in the input layer
are provided, which accept the respective scalar values
as indicated in Fig. 1. As a technical detail, we input

1/L instead of L, which allows us to set 1/L = 0 dur-
ing inference to extrapolate to large lateral system sizes.
We argue that the variability in L has advantages over
training with fixed lateral system size, although it may
not account for the true finite-size scaling behavior due
to insufficient information in the training data (see also
Sec. III E for limitations in the critical region). Never-
theless, one may hope to avoid ingraining the specific
finite-size effects of a particular choice of L via this pro-
cedure.

Investigating the extrapolation capabilities of the neu-
ral network is important for practical applications but
also from a conceptual point of view. Recall that the neu-
ral functional framework relies upon extracting a func-
tional mapping from reference data obtained for inhomo-
geneous equilibrium fluids, which satisfy the minimiza-
tion principle (2) by definition. However, the underlying
functional relationship might be much more general; it is
not restricted a priori to true equilibrium density profiles,
thereby raising profound mathematical questions about
the existence of a unique continuation. In order to scru-
tinize this problem from a data-driven perspective, and
in particular to show how much can be learned in the
absence of any possible input information about coexis-
tence, we train a second neural functional on the basis
of supercritical data only by excluding simulations where
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kBT/ε < 1.3—see horizontal pink line in Fig. 1.
The training routines are implemented in

Keras/Tensorflow [65] following the methodology
laid out in Ref. [25]. The neural network possesses a
simple mulitlayer perceptron architecture and consists
of four hidden layers with 512 nodes each; we employ
softplus activation functions [25, 66]. Training takes
approximately 30min on a recent workstation GPU.
Evaluating the trained neural functional is fast (∼ ms)
and can be performed on the GPU in parallel for batches
of input densities and parameters. Hence, all numerical
calculations presented below are computationally inex-
pensive, which, e.g., facilitates mapping out whole fluid
phase diagrams in seconds to minutes. Crucially, after
having trained the neural network, no further simulation
results are required. Predictions rely solely on evaluating
and analysing the resulting neural representation of the
one-body direct correlation functional c1(x; [ρ], T ), for
which we elucidate common techniques in the following.

D. Neural density functional theory and functional
calculus

From a fundamental point of view, the availability of
the entire density functional relationship c1(r; [ρ], T ) suf-
fices in principle to predict the full structural and ther-
modynamic behavior of any fluid model. We lay out in
this section common theoretical and numerical methods,
which are taylored to the neural correlation functional
and which differ in some aspects from the usual treatment
of analytical (meaning explicit) free energy functionals.

The central application of classical DFT concerns the
determination of the one-body inhomogeneous equilib-
rium density profile for a given state point µ, T and ex-
ternal potential Vext(r). One solves the Euler-Lagrange
equation

ρ(r) = exp [−β(Vext(r)− µ) + c1(r; [ρ], T )] , (8)

which emerges from the minimization principle (2)
and which determines the density profile ρ(r) self-
consistently. Eq. (8) can be solved efficiently, e.g. with
a standard mixed Picard iteration, allowing for vast pa-
rameter studies, thereby commonly outperforming many-
body simulation techniques by orders of magnitude in
computational cost. The entirety of the nontrivial in-
terparticle correlation effects are captured in the one-
body direct correlation functional c1(r; [ρ], T ), which are
crucial in determining the resulting equilibrium state.
Instead of approximating c1(r; [ρ], T ) analytically, see
e.g. the mean-field functional (4) that yields the one-
body direct correlation functional explicitly upon func-
tional differentiation (5), the machine-learning routine in
Secs. II B and IIC provides an immediate neural repre-
sentation of this central functional mapping, which can
be readily utilized in Eq. (8).

Functional differentiation of c1(r; [ρ], T ) yields infor-
mation about higher-order correlations in the model fluid

considered. The two-body direct correlation functional,
defined as the functional derivative

c2(r, r
′; [ρ], T ) =

δc1(r; [ρ], T )

δρ(r′)
, (9)

can be evaluated efficiently from a computational rep-
resentation of c1(r; [ρ], T ) with reverse mode automatic
differentiation (autodiff) [46]. This technique is partic-
ularly suited to our neural-network-based description of
c1(r; [ρ], T ), as autodiff is paramount to machine learn-
ing, specifically being the central mechanism for the back-
propagation of errors during training [65]. As such,
machine-learning libraries come with ready-to-use imple-
mentations that make autodiff available as an efficient
high-level operation, which we leverage for the evalua-
tion of Eq. (9).

Contrary to standard analytical DFT approaches,
which usually commence by expressing the excess free
energy Fexc([ρ], T ) as an explicit density functional, e.g.
in the form of the mean-field treatment (4), our start-
ing point is given by the neural representation of the
one-body direct correlation functional, which emerges
formally as the functional derivative (5). Nevertheless,
the free energy is pertinent both in its mathematical
role as a generating functional as well as for the calcula-
tion of physical quantities such as the equation of state
and the surface tension (see Sec. III D). For evaluating
Fexc([ρ], T ) given a (neural) functional c1(r; [ρ], T ), we
utilize functional line integration [11, 25–27], which con-
stitutes formally integrating the functional derivative (5).
Making the functional line integral explicit via the lin-
ear parametrization of the density profile ρa(r) = aρ(r),
0 ≤ a ≤ 1, gives the expression [11, 25]

Fexc([ρ], T ) = −kBT
∫

dr ρ(r)

∫ 1

0

da c1(r; [ρa], T ), (10)

which can be evaluated straightforwardly on the basis of
the neural correlation functional.

III. RESULTS

A. Bulk pair correlation functions

As a first investigation, we deliberately stay clear of
any liquid-gas phase transition and consider pair cor-
relations in bulk at constant supercritical temperature
kBT/ε = 1.5. Evaluating Eq. (9) via autodiff with con-
stant density input ρ(r) = ρb and exploiting translational
invariance yields the bulk two-body direct correlation
function c̄b2(x) in planar geometry (indicated here and
in the following by the overbar); we drop the parametric
dependence on temperature in the notation.

The numerical result can be transformed to the stan-
dard radial representation cb2(r) by writing out the lateral
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FIG. 2. Bulk pair correlation functions from the neural func-
tional for constant supercritical temperature kBT/ε = 1.5 and
different bulk densities ρbσ

3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and
0.7, as indicated by ticks on the colorscale and labeling of
the curves. Shown are (a) the planar two-body direct correla-
tion function c̄b2(x) along with the radial representation cb2(r)
(inset), (b) its Fourier transform c̃b2(k) and the total correla-
tion function h̃(k) in Fourier space (inset) as obtained from
the OZ equation (13), (c) the static structure factor S(k) and
the radial distribution function g(r) (inset). For three bulk
densities ρbσ

3 = 0.1, 0.4, and 0.7, we show results for each
quantity (dotted lines), obtained from Fourier transform and
OZ inversion of bulk grand canonical MC simulation data for
g(r).

integration

c̄b2(x) =

∫
dy

∫
dz cb2

(
r =

√
x2 + y2 + z2

)
= 2π

∫ ∞

x

dr rcb2(r)

(11)

that arises due to the planar geometrical setup. Differ-
entiation of Eq. (11) with respect to x gives the inverse

transformation

cb2(r) = − 1

2πr

dc̄b2(x)

dx

∣∣∣∣
x=r

. (12)

The total correlation function is obtained via the
Ornstein-Zernike (OZ) route. A one-dimensional Fourier
transform of c̄b2(x) yields the radial quantity c̃b2(k) in
Fourier space (indicated by the tilde). The Ornstein-
Zernike equation

h̃(k) =
c̃b2(k)

1− ρbc̃b2(k)
(13)

then determines the Fourier transform of the total corre-
lation function h(r) algebraically, from which the static
structure factor follows as

S(k) = 1 + ρbh̃(k). (14)

The radial distribution function g(r) = h(r) + 1 is de-
termined by a radial Fourier(-Hankel) backtransform of
h̃(k) to real space:

h(r) =
1

2π2r

∫ ∞

0

dk k sin(kr)h̃(k). (15)

Results for the various bulk pair correlation functions
are shown in Fig. 2 for a supercritical temperature of
kBT/ε = 1.5 and different bulk densities. See also
Ref. [28] for comparative data obtained with isothermal
training and from other methods, e.g. pair-correlation
matching [23], and Ref. [25] for pair correlations of the
hard sphere fluid. From Fig. 2 we note: i) noisy artifacts
arise in cb2(r) and g(r) for r < σ due to numerical intrica-
cies associated with the transformations (12) and (15), ii)
cb2(r) and c̄b2(x) are independent of density ρb for r > σ,
reflecting the fact that cb2(r) quickly reaches its asymp-
totic limit −βϕ(r) [67], iii) S(k) exceeds 2.0 for small
wave numbers k at reduced densities ρbσ3 = 0.2, 0.3, a
possible sign of the approach to a critical point, and iv)
the neural predictions match very closely the simulation
results extracted from separate grand canonical MC for
g(r)—see dotted lines referring to three specific densities
in Fig. 2. We emphasize that no information regarding
pair correlations was incorporated during training.

B. Lines of maximal isothermal compressibility and
correlation length, Fisher-Widom line and spinodal

In bulk, the inverse of the isothermal compressibility
χT is accessible from the pair direct correlation function:

χ−1
T = kBTρb(1− ρbc̃

b
2(k = 0)). (16)

Although we obtain the planar quantity c̄b2(x) from
the autodifferentiated neural functional via Eq. (9), we
have shown that a simple one-dimensional Fourier trans-
form suffices to acquire c̃b2(k) in radial geometry [25].
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FIG. 3. First column: the inverse of the isothermal compressibility obtained from c̃b2(k = 0) according to Eq. (16). The
spinodal corresponds to χ−1

T = 0, and the predicted values of χ−1
T inside of it are negative. The line of maximal isothermal

compressibility is indicated in red. Second column: true correlation length ξ from pole analysis according to Eq. (22). The
Widom line of largest correlation length is indicated in red. Third column: difference ∆α0 between the imaginary parts of the
leading monotonic and oscillatory poles, which determines the Fisher-Widom line via ∆α0 = 0. On the low density side (green)
the ultimate decay of h(r) is monotonic whereas on the high density side it is damped oscillatory (purple). Simulation results
from Ref. [67] are reproduced (black line) after applying corresponding states rescaling, see text. The blue circles denote neural
liquid-gas coexistence densities, see Fig. 4 below. Results obtained from a neural correlation functional that has been trained
with data including subcritical temperatures (first row) as well as from purely supercritical training (second row) are shown.
The lowest temperatures of the simulations that contribute to the training are indicated by the horizontal dotted pink lines.

Hence, evaluation at k = 0 gives direct access to χ−1
T

and results are shown in Fig. 3 in the temperature-density
plane. Strikingly, the neural functional predicts a spin-
odal where χ−1

T = 0 and which bounds an unstable region
where χT < 0. The first column in Fig. 3 shows the (red)
line of maximal compressibility obtained from scans of
varying density at fixed temperature. The quantity χ−1

T
vanishes as T is reduced and below a critical value the
spinodal emerges. In the first row results are presented
for training above kBT/ε = 1.0 whereas the second row
includes only training data at supercritical temperatures,
kBT/ε > 1.3. Note that both training protocols deliver
a spinodal, albeit with slightly different critical points.

We turn now to the asymptotic (large r) decay of
h(r). Specifically, we determine both the Widom line

of maximal true correlation length, middle column, and
the Fisher-Widom crossover line, third column of Fig. 3.
A pole analysis of the total correlation function deter-
mines the asymptotic behavior of h(r) at long range,
r → ∞, where either (damped) oscillatory or monotonic
decay is exhibited [67–69]. In Fourier space, the poles
α = α1 + iα0 of the total pair correlation function are
readily determined by the OZ equation (13), leading back
to the analysis of the direct correlation function c̃b2(k).
The zeroes of the denominator 1 − ρbc̃

b
2(α) in Eq. (13)
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yield the conditions [67]

1 = 4πρb

∫ ∞

0

dr r2cb2(r)
sinh(α0r)

α0r
cos(α1r), (17)

1 = 4πρb

∫ ∞

0

dr r2cb2(r) cosh(α0r)
sin(α1r)

α1r
, (18)

where cb2(r) is the bulk two-body direct correlation func-
tion in direct space and in radial geometry. A pure imag-
inary pole gives rise to monotonic decay and is given by
Eq. (17) with α1 = 0; Eq. (18) does not arise in this case.

It remains to express Eqs. (17) and (18) in terms of
c̄b2(x) instead of cb2(r) in order to accommodate the planar
geometrical setup. The identity (12) enables us to rewrite
Eqs. (17) and (18), via partial integration, as

1 = 2ρb

∫ ∞

0

dr c̄b2(x = r)
[
cosh(α0r) cos(α1r)

− α1

α0
sinh(α0r) sin(α1r)

]
,

(19)

1 = 2ρb

∫ ∞

0

dr c̄b2(x = r)
[α0

α1
sinh(α0r) sin(α1r)

+ cosh(α0r) cos(α1r)
]
.

(20)

A pure imaginary (monotonic) pole amon
0 is determined

by the simpler condition

1 = 2ρb

∫ ∞

0

dr c̄b2(x = r) cosh(αmon
0 r), (21)

which follows from setting α1 = 0 either directly in
Eq. (19) or, consistently, in Eq. (17) and performing the
partial integration using Eq. (12). Solving Eq. (21) along
with the coupled Eqs. (19) and (20) for a complex (os-
cillatory) pole is implemented efficiently in terms of a
minimization procedure.

At low bulk densities, and in the neighbourhood of
the critical point, one expects monotonic asymptotic
decay of the total pair correlation function: h(r) ∼
exp(−αmon

0 r)/r at large r. It follows that the leading
pole, i.e. with the smallest imaginary part, will be given
by Eq. (21). The true correlation length is

ξ =
1

αmon
0

, (22)

which is plotted for a range of bulk densities and temper-
atures in the second column in Fig. 3. The behavior of ξ
is consistent with the results for the isothermal compress-
ibility χT : the correlation length increases rapidly when
approaching the critical region and indicates a spinodal
where ξ diverges when continuing to lower the temper-
ature. Tracing ξ → ∞ or χT → ∞ yields numerically
identical spinodals. Of course, this is expected since set-
ting αmon

0 to zero in Eq. (21) is equivalent to requiring
the right hand side of Eq. (16) to vanish. Within the
spinodal, Eq. (21) yields no solution and ξ is undefined.

The difference between the imaginary parts of the
leading monotonic and oscillatory (α̃) poles determines

whether monotonic or oscillatory decay pertains at
longest range, which in turn determines the Fisher-
Widom line via the condition ∆α0 = αmon

0 − α̃0 = 0,
see Fig. 3, third column. The black line in the third col-
umn denotes the MC simulation results of Dijkstra and
Evans [67] obtained for a truncated and shifted LJ po-
tential rescaled to take account of how the critical point
alters when shifting the potential at cutoff. Note how
close their Fisher-Widom line lies to our present neural
functional prediction (see white line where ∆α0 = 0) and
that determining the Fisher-Widom line is a subtle task
requiring accurate knowledge of the decay of bulk pair
correlation functions not easily accessible from simula-
tions. That our neural functional discovers this crossover
line, never having encountered directly bulk pair corre-
lation functions in the learning process, is remarkable.
The Fisher-Widom line is estimated to cross the liquid
branch of the neural coexistence curve, described in the
next subsection and denoted by blue circles in Fig. 3, at a
temperature of kBT/ε ≈ 1.04. This has implications for
the structure of the liquid-gas interface, see Sec. III D.

C. Liquid-gas coexistence, binodal and estimate of
critical point

In order to investigate liquid-gas phase coexistence, the
neural direct correlation functional is used in the itera-
tion of the Euler-Lagrange equation (8) keeping the mean
density ρ̄ =

∫
dx ρ(x)/Lx fixed. When initialized with a

step-like density profile at sufficiently low temperature,
the minimization yields a phase-separated system with
a liquid and a gas domain, from which one can deter-
mine the coexisting densities provided that the system
has been chosen large enough. We set Lx = 100σ for the
following investigations and hence exploit here the mul-
tiscale applicability of the neural functional. Perform-
ing this procedure at different temperatures allows us to
trace the binodal, which is shown and compared with
simulation data in Fig. 4.

One can attempt to fit the binodal and determine the
critical point in various ways that can incorporate criti-
cal exponents beyond mean-field. Following Wilding [59],
we exclude the near critical region and take the neu-
ral coexistence densities within the temperature range
0.95 ≤ kBT/ε ≤ 1.15 to fit the binodal via [59]

ρ± = a|T ∗ − T ∗
c | ± b|T ∗ − T ∗

c |β + ρc (23)

with scaled temperature T ∗ = kBT/ε, liquid/gas densi-
ties ρ+ = ρl and ρ− = ρg, and critical density ρc, tem-
perature Tc, exponent β, and amplitudes a and b. Note
that the exponent β should not be confused with the in-
verse temperature. Eq. (23) is empirical; it fails at low
temperatures.

Unlike in Ref. [59], the critical point is, a priori, unde-
termined in Eq. (23); ρc and T ∗

c are to be deduced in the
fit along with all other parameters. To demonstrate the
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FIG. 4. Liquid-gas coexistence densities (blue circles) from neural minimization of the free interface, obtained with neural
correlation functionals trained (a) on the basis of the whole reference data set, kBT/ε > 1.0, and (b) with supercritical data
only, kBT/ε > 1.3. The temperature cutoffs are indicated by the pink horizontal lines. For comparison, we show data from
Refs. [59, 64] as well as the binodal from the standard analytical DFT treatment [64] of the LJ fluid based on the Rosenfeld
[13] hard-sphere FMT functional plus mean-field attraction (brown line). Fitting the neural coexistence data in panel (a) to
Eq. (23) yields the dotted black line (binodal) with the parameters displayed. The resulting estimates of the critical point and
the binodal are close to those of Wilding [59] (gray). Panel (b) shows corresponding results for the case of purely supercritical
training.

robustness of the fitting procedure, we also keep the (crit-
ical) exponent β as a free parameter, although we bear
in mind the Ising result β = 0.32630(22) [70]. The re-
sults of the binodal fit are shown in Fig. 4 and agree very
well with the data from highly accurate simulations [59].
This procedure, which focuses on coexistence densities at
temperatures sufficiently far below the critical point such
that the correlation length ξ is less than the system size,
attempts to avoid some of the intricacies of the critical
region that are also pertinent for the neural functional
(see Sec. III E). We note that the resulting value of the
‘critical’ exponent β is, from full training, 0.330 which
lies close to the Ising value [70], demonstrating that the
fit is meaningful as well as indicating possible beyond-
mean-field character of the neural functional. Note also
that the corresponding parameters/results from Wild-
ing’s MC simulations and fitting [59]: kBTc/ε = 1.188,
ρcσ

3 = 0.320, aσ3 = 0.182, bσ3 = 0.523, β = 0.326, are
close to the present.

Following the work of Panagiotopoulos [60], an alterna-
tive estimate of the critical temperature Tc and density ρc
proceeds by a regression and extrapolation of the cubed
difference of coexistence densities and of the rectilinear
diameter law, respectively. As before, coexistence data
in the close vicinity of the critical point needs to be ex-
cluded. The thrust of this approach is the prediction that
ρl − ρg should decay approximately as (Tc − T )1/3 near
the critical point rather than as (Tc−T )1/2, which is the
mean-field prediction. Fig. 5(a) indicates that our neural
functional yields results consistent with non-mean-field
behavior and the estimate of the critical temperature is
close to the simulation result. Fig. 5(b) plots the recti-

linear diameter versus temperature which allows for an
estimate of the critical density that is again close to the
simulation result. The results shown in Fig. 5 are consis-
tent with the previous fit to the binodal using Eq. (23).

D. Bulk equation of state, liquid-gas interface and
surface tension

Evaluating the excess free energy on the basis of the
neural direct correlation functional is facilitated via func-
tional line integration, for which Eq. (10) provides a
straightforward parametrization. We utilize the efficient
access to such thermodynamic information for both ho-
mogeneous (bulk) and inhomogeneous systems in the fol-
lowing to obtain the bulk equation of state and the sur-
face tension of the liquid-gas interface.

In bulk, evaluation of Eq. (10) for constant target
density ρ(r) = ρb yields the excess free energy density
ψb = Fexc([ρb], T )/V , where V is the system volume.
This allows us to calculate the bulk pressure

P (ρb, T ) = kBTρb(1− cb1)− ψb, (24)

where cb1 = c1(x; [ρb], T ) follows from direct evaluation of
the neural correlation functional with constant density
input and at arbitrary position x due to translational in-
variance. Note that the excess chemical potential can be
identified as µexc = −kBTcb1. We show the neural pre-
diction for the equation of state P (ρb, T ), obtained from
Eq. (24), for a range of temperatures in Fig. 6. Note that
a van der Waals loop emerges for subcritical tempera-
tures, i.e. for kBT/ε ≲ 1.2 and that negative pressures
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FIG. 5. Critical temperature and density (black dots) ob-
tained by extrapolation of (a) the cubed difference of liquid-
gas densities ρl and ρg, and of (b) the rectilinear diameter
law. Data points utilized for the linear regressions are indi-
cated in cyan and the dotted black lines depict the resulting
fit functions. The results for the critical point and the bin-
odal parameters are consistent with Fig. 4. We also show in
(a) the squared difference of the the coexisting densities (the
mean-field prediction)—see text.

arise at low temperatures. The inset to Fig. 6 plots pres-
sure versus volume. Performing a Maxwell equal area
construction yields, within the expected numerical ac-
curacy, values of the coexisting liquid and gas densities
equal to those determined in Sec. III C by direct solution
of the Euler-Lagrange equation for an inhomogeneous
phase-separated system. This attests to the consistency
of the neural functional.

As the functional line integral (10) is constructed
for inhomogeneous density input, evaluation with the
liquid-gas interfacial density profiles provides direct ac-
cess to the surface tension. Determining Fexc([ρ], T )
from Eq. (10) facilitates to calculate the grand poten-
tial Ω([ρ], T ) via Eq. (1), which in turn yields the liquid-
gas tension as the surface excess grand potential per unit
area:

γlg =
Ω+ PV

A
(25)

with system volume V , lateral system area A and pres-
sure P at coexistence as given by Eq. (24). We note that
subtle discrepancies in the values of the liquid and gas
pressures Pl and Pg arise for low temperatures due to
the accumulation of numerical errors when integrating
through the van der Waals loop in Eq. (24). To alleviate
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FIG. 6. Bulk equation of state: pressure P as a func-
tion of the bulk density ρb for temperatures kBT/ε =
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3, as labeled and indicated on
the colorscale. The inset shows the same data plotted with
respect to the inverse bulk density, i.e. proportional to the
system volume. Note the appearance of a van der Waals loop
at subcritical temperatures.

this numerical issue, we compute PV = PlVl +PgVg and
employ this relation consistently in Eq. (25); Vl and Vg
denote the volumes of liquid and gas domains, respec-
tively. This procedure is inline with the definition of the
surface tension γlg as a genuine excess quantity. We also
note that the pressures predicted at bulk coexistence are
generally small, with values of the order of 10−2ε/σ3.

Neural predictions of the interfacial density profile and
the surface tension for a range of temperatures are shown
in Fig. 7. The density profiles shown in panel (a) ex-
hibit damped oscillatory decay into the bulk liquid for
the two lowest temperatures plotted: kBT/ε = 0.7 and
0.8. Both correspond to temperatures well below that
where the Fisher-Widom line meets the liquid binodal,
i.e. kBT/ε ≈ 1.04, see Sec. III B. For higher tempera-
tures the decay of the density profile into bulk appears
to be monotonic. Such a scenario is similar to an early
DFT study by Evans et al. [69] for a square-well model
fluid. We return to the issue of how oscillations in the
density profile might be eroded by capillary wave fluctua-
tions in the discussion, cf. Sec. IV B. The values obtained
for the surface tension are close to state of the art simu-
lation data [62–64], notably also for temperatures signif-
icantly below the training cutoff kBT/ε = 1.0—see the
vertical pink dotted line in Fig. 7. This demonstrates
both the validity of the minimization (8) for obtaining
liquid-gas density profiles as well as of the functional in-
tegration (10) for the evaluation of γlg. Both procedures
remain robust when extrapolating to lower temperatures,
see Sec. III G for further discussion.
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FIG. 7. (a) Liquid-gas interfacial density profiles as obtained
from solution of Eq. (8) for a phase-separated system upon
keeping the mean density fixed. Results are shown for five
temperatures kBT/ε = 0.7, 0.8, 0.9, 1.0, and 1.1, see labels.
The inset indicates the respective bulk coexistence densities,
the fitted binodal (dotted black line) and critical point (black
dot) reproduced from Fig. 4; the horizontal dotted pink line
shows the temperature cutoff of kBT/ε = 1.0 during training.
Oscillations of the interfacial density profile that extend into
the liquid domain are visible for the two lowest temperatures.
(b) Surface tension γlg of the liquid-gas interface as deter-
mined from functional line integration of interfacial density
profiles. Simulation results are taken from Refs. [62–64]. The
cutoff for training, kBT/ε = 1.0, is indicated again, now by
the vertical dotted pink line. Fitting to neural data yields the
effective exponent for the tension µ̃ ≈ 1.26—see text.

The data in Fig. 7 obtained for a range of subcriti-
cal temperatures allows us to investigate the near-critical
behavior of the surface tension. Recall that the latter
should vanish as γlg ∼ (Tc − T )µ̃ with a critical expo-
nent µ̃, given by µ̃ = 2ν ≈ 1.26 for the three-dimensional
Ising case, where the correlation length diverges as ξ ∼
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FIG. 8. OZ plot of the inverse structure factor S with respect
to k2 for supercritical temperatures at constant critical den-
sity ρc, from which one can determine S(0), the short-range
correlation length R, and the OZ correlation length ξOZ—
see text. Plots of S(0) and ξOZ with respect to |T − Tc|/Tc

determine the critical exponents γ and ν (inset); our neural
functional yields the mean-field values as shown. The true
correlation length ξ, calculated from Eq. (22), lies very close
to ξOZ for temperatures close to Tc, as shown (in green) in
the inset.

(Tc − T )−ν . We proceed analogously to Sec. III C and
perform a fit of subcritical data within the same tem-
perature range 0.95 ≤ kBT/ε ≤ 1.15. Importantly, we
thereby fix the critical temperature kBTc/ε = 1.1883 as
obtained from the binodal regression in Fig. 4. This
choice of fitting procedure yields the ‘effective’ critical
exponent µ̃ ≈ 1.26, consistent with the Ising value. Re-
call that the mean-field exponent is µ̃ = 3/2. We also
examined the ‘10-90’ width of the liquid-gas interface in
the same temperature range. This appears to diverge
in the same fashion as the correlation length, i.e. with
exponent ν ≈ 0.63, as expected from scaling arguments.

We conclude that using density profiles of the free in-
terface, in a suitably chosen range of subcritical tem-
peratures, allows one to perform fits to both the coex-
istence densities, cf. Fig. 4, and the surface tension, cf.
Fig. 7, that suggest non-mean-field behavior. Of course,
in making such fits one is deliberately avoiding the direct
evaluation of the neural functional for temperatures very
close to Tc, where the correlation length becomes very
long. We might expect results to cross over to mean-field
behavior, as a result of the finite size of our systems as
we lay out in the following section.
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E. Critical region and Ornstein-Zernike plots

Although the neural functional is straightforward to
evaluate for state points in the vicinity of the critical
point, the resulting predictions must be treated with par-
ticular caution. The limitations are already apparent
by comparing results obtained for the spinodal, see the
isothermal compressibility χT and correlation length ξ in
Fig. 3, and the estimate of the critical point from fitting
to the binodal using Eq. (23) in Fig. 4. One observes
that the critical point obtained from the latter does not
match exactly the top of the spinodal from the former.
To be precise, we get kBTc/ε ≈ 1.188 from the binodal
fit in Fig. 4 but kBTc/ε ≈ 1.203 from the locus of either
χ−1
T = 0 or ξ−1 = 0 in Fig. 3. It is important to note

that simply tracing the neural binodal (blue circles) in
Fig. 4 will also yield the identical critical temperature
kBTc/ε ≈ 1.203 and critical density as obtained from the
spinodal, as is expected from a DFT approach. On the
other hand, our determination of the critical tempera-
ture, kBTc/ε ≈ 1.188, obtained by fitting to a suitably
chosen range of subcritical data, is inspired by simula-
tion studies [59, 60] and deliberately invokes additional
physics by excluding results in the near-critical region
that will be beset by finite-size artifacts.

We first should place our results in perspective: we are
focusing on estimates of the critical point, obtained via
our neural functional that had no prior knowledge of the
existence of phase separation let alone a critical point,
which lie within about one percent of the most accurate,
independent, simulation study of the critical point of the
LJ fluid [59] which finds kBTc/ε = 1.188.

In the following, we scrutinize further issues that arise
when inferring properties in the critical region. Recall
that, for a suitably chosen temperature range, the neu-
ral functional yields coexisting densities that are fitted
better, within our procedures, by a non mean-field crit-
ical exponent close to the Ising value β ≈ 0.33 than by
the mean-field result β = 1/2, see Sec. III C. Similarly,
for the surface tension we find via an analogous proce-
dure the critical exponent µ̃ ≈ 1.26 instead of the mean-
field prediction µ̃ = 3/2. Of course, when approaching
Tc very closely the physics is more subtle. For example,
Panagiotopoulos [60] argues that certain properties in the
critical region could be forced to appear mean-field-like
because of the finite size of the simulation. The basic
idea is that one cannot access correlation lengths that
are larger than or of the same order as the simulation
box size. In our study we provide training data from MC
simulations of planar density profiles in boxes of lateral
size L < 20σ. It is clear that large correlation lengths
will be suppressed, and one might therefore expect the
neural functional to inherit mean-field critical behavior.

We choose to examine this issue by performing an
OZ plot of the static structure factor, cf. Sec. III A and
Eq. (14), in the super-critical regime, employing the tra-
ditional OZ description S(k) = S(0)/(1+ξ2OZk

2) for small
wavenumbers k. The inverse of S(k) is plotted against

k2, at supercritical temperatures approaching Tc, and at
fixed critical density ρcσ

3 = 0.322, in Fig. 8. Note that
the reference value of the critical temperature refers here
to kBTc/ε ≈ 1.2031 as given by the maximum of the
spinodal, defined, of course, by 1/S(0) = 0.

From the OZ plot, we can investigate the isothermal
compressibility critical exponent γ by analysing the scal-
ing of the y-intercept 1/S(0), which determines S(0) ∼
χT ∼ |T − Tc|−γ . The slope of the lines in Fig. 8 deter-
mines the OZ correlation length ξOZ given by

ξ2OZ = R2S(0), (26)

where the short-range correlation length R is the second
moment of cb2(r):

R2 =
2πρb
3

∫ ∞

0

dr r4cb2(r)

= ρb

∫ ∞

0

dxx2c̄b2(x),

(27)

and the second equation, involving the planar two-body
direct correlation function, follows via Eq. (12) and par-
tial integration. The gradient of 1/S(k) in the OZ plot is
R2. From Fig. 8 we observe this is constant close to the
critical temperature; we find R/σ ≈ 0.97.

Defining the critical exponent ν by ξOZ ∼ |T −Tc|−ν it
follows that our analysis predicts γ = 2ν, since R remains
finite. This implies a (Fisher) exponent η = 0. The in-
set in Fig. 8 shows a log-log plot of S(0) and the OZ
correlation length ξOZ as functions of the reduced super-
critical temperature difference (T − Tc)/Tc. Our neural
functional results yield the mean-field critical exponents
γ = 1 and ν = 0.5 to high accuracy, in keeping with ideas
of Panagiotopoulos [60] and others.

We also investigated the critical behavior of the true
correlation length ξ as given by the pole analysis, see
Sec. III B and Eq. (22). As expected, see the inset, ξ and
ξOZ are almost identical near the critical point. Hence,
we find the true correlation length also exhibits mean-
field behavior with critical exponent ν = 0.5. That these
two different correlation lengths obtained from the neural
functional are consistent in the critical region, albeit both
exhibiting mean-field scaling, gives us confidence in our
numerical implementations.

F. Inhomogeneous fluids: predictions for drying,
capillary evaporation and local fluctuations

Previous subsections have focused mainly on bulk be-
havior, i.e. the fluid in the absence of any external po-
tential. Here we turn to inhomogeneous systems and, in
particular, to the physics of adsorption at substrates and
of fluids in confinement. Specifically, we show that the
neural functional allows one to capture accurately fluid
structure for phenomena associated with phase transi-
tions at state points close to bulk coexistence. These are
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FIG. 9. Density ρ(x) and local compressibility χµ(x) pro-
files for drying at a hard wall (a, b) and for capillary evap-
oration between hard walls with weak attraction (c, d), cf.
Eq. (28). Results are shown for chemical potentials µ =
µcoex + ∆µ approaching, from the liquid side, the respec-
tive bulk coexistence values µcoex—see text. We investigate
∆µ/ε = 0.3, 0.1, 0.01, 0.001, and 0.0001, as labeled. In the
drying case kBT/ε = 0.93 and density profiles (a) show a gas
layer at the wall whose thickness grows for decreasing val-
ues of ∆µ. The local compressibility profile (b) develops a
sharp maximum (note the logarithmic scale) at a position lo-
cated in the emerging gas-liquid interface whose height grows
rapidly on approaching bulk coexistence. In the case of cap-
illary evaporation kBT/ε = 1.0 and the density profiles in (c)
refer to the condensed ‘liquid’ states (solid lines) and the sta-
ble ‘gas’ states (dotted lines) plotted for the same chemical
potential differences as in (a). The inset displays the differ-
ence ∆Ω = Ωl − Ωg between the liquid and gas grand po-
tentials Ωl and Ωg per lateral system area A. Positive values
of ∆Ω indicate metastability of the condensed state. Similar
to (b), the local compressibility profiles (d) display maxima
located in the interface which increase for decreasing ∆µ.

challenging to access via simulation studies. We inves-
tigate the phenomena of i) density depletion and drying
at a hard-wall and ii) capillary evaporation in a planar
slit. Quantifying the properties associated with such phe-
nomena serves as a stringent test of the neural functional;
recall that the training data consist of systems with ran-
domized state points and inhomogeneities not tailored to
feature the subtle physics occurring near surface phase
transitions.

As before, the equilibrium density profile is calculated
via iteration of Eq. (8), where now a given external po-
tential Vext(r) induces inhomogeneity in ρ(r). Examining
states close to bulk coexistence requires increased nu-
merical effort, as the equilibrium density profile is highly
susceptible to small changes in the control parameters,
specifically the deviation of the chemical potential from
bulk coexistence. Nevertheless, the self-consistent cal-
culation via Eq. (8) remains numerically robust, albeit
requiring an increasing number of iteration steps.

We consider first the case of a single planar hard wall:
Vext(x) = ∞ for x < 0 and 0 for x > 0 and show results
in Fig. 9(a). We choose kBT/ε = 0.93 and approach
bulk coexistence from the liquid side by decreasing the
chemical potential µ = µcoex + ∆µ towards the neural
prediction µcoex/ε ≈ −3.55357 for the chemical poten-
tial at bulk coexistence. The resulting density profiles
show the formation of a gas layer adsorbed at the hard
wall whose thickness increases continuously when lower-
ing ∆µ. This is the classic signature of complete drying,
i.e. complete wetting of the wall-liquid interface by gas—
see e.g. Ref. [48], early DFT studies by Sullivan [71] and
Tarazona and Evans [72], and the important 43 page arti-
cle by Henderson and van Swol [73] that laid out the rich
physics involved and presented pioneering simulation re-
sults for a square-well model fluid. This phase transition
corresponds to gas layer thickness, or the negative of the
Gibbs adsorption, diverging slowly, i.e. logarithmically,
as ∆µ approaches zero. We note that the shape of the
density profile for the smallest value of ∆µ plotted resem-
bles closely that of the free interfacial liquid-gas profile
shown in Fig. 7(a) for a similar temperature, confirming
once again that complete drying occurs.

We next consider confinement between two repulsive
hard walls with additional (weak) long-range attraction.
The left wall is described by the external potential

Vext(x) =

∞, x ≤ 0,

εw

[
2
15

(
σ

x+xm

)9

−
(

σ
x+xm

)3
]
, x > 0.

(28)
The parameter εw sets the attraction strength and the
minimum of the potential well is shifted to x = 0 by
setting xm = (2/5)1/6σ. The right wall is obtained anal-
ogously by a mirrored version of Eq. (28) and the sym-
metric confinement potential is the sum of these. We
choose this potential to correspond to a recent MC sim-
ulation study by Wilding et al. [74] and set the attrac-
tion strength of the wall εw = 0.01ε, wall separation
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L = 25σ and temperature kBT/ε = 1.0 to be the same
as in Ref. [74]. For such a weak attraction we expect
complete drying to occur at a single wall, i.e. the corre-
sponding contact angle should be 180◦. Results for the
density profiles are shown in Fig. 9(c) for the same values
of ∆µ as in panel (a). For this temperature the neural
prediction is µcoex/ε ≈ −3.46154. The density profiles
are typical of those found for a fluid in a slit with hard or
very weakly attractive walls: a liquid-like density plateau
forms at the center of the slit and as ∆µ decreases in-
creasing density depletion occurs and eventually a layer
of gas develops at the walls. An early (analytical) DFT
study [75], see also Ref. [76], showed that the ‘liquid’ be-
comes metastable with respect to the evaporated ‘gas’,
whose density is small throughout the slit, and deter-
mined the capillary evaporation (first-order) transition
point for a model fluid.

Importantly we find that metastability can be inves-
tigated using the neural functional. Recall that Eq. (8)
emerges from the minimization (2). For fixed ∆µ, ini-
tialization from an empty system yields the ‘gas’ state,
whereas starting with a sufficiently high initial bulk den-
sity yields the condensed ‘liquid’ state. We calculate the
grand potential difference ∆Ω = Ωl−Ωg between the ‘liq-
uid’ and ‘gas’ states as a function of chemical potential
by evaluating the density functional (1), where the excess
free energy Fexc([ρ], T ) follows from the functional line in-
tegral (10) employing the previously determined density
profiles. Note that we obtain the grand potential per lat-
eral system area A due to the planar geometry. We find
positive values of ∆Ω/A for a chemical potential differ-
ence ∆µ/ε ≤ 0.01—see the inset to Fig. 9(c). Such states
are therefore metastable with respect to capillary evapo-
ration: a gas-like density profile, see the dotted lines in
Fig. 9(c), is associated with a lower value of the grand
potential.

The one-body density profile provides the crudest mea-
sure of the effects of correlations. We consider also the
local compressibility χµ(r) = ∂ρ(r)/∂µ for fixed T which
provides a spatially resolved measure of density fluctu-
ations in the particle number and which was shown to
be important in characterizing surface phase transitions
[16, 64, 74, 77–80]. We investigate this quantity for the
two cases described above. Rather than evaluating χµ(r)
as the partial derivative of the density profile with re-
spect to µ numerically in terms of a finite difference, we
choose to utilize a route employing the fluctuation OZ
equation [79, 80]

χµ(r) = ρ(r)

∫
dr′ c2(r, r

′; [ρ], T )χµ(r
′) + βρ(r), (29)

as the inhomogeneous pair direct correlation function
c2(r, r

′; [ρ], T ) is explicitly accessible from the neural
functional by autodiff, cf. Eq. (9). Obtaining the local
compressibility numerically from Eq. (29) reduces to solv-
ing a system of linear equations and is hence much sim-
pler than the solution of the standard inhomogeneous OZ
equation, see e.g. Ref. [45], owing to the fact that χµ(r)

is a one-body property. Such a simplification was already
recognized in an early study of wetting transitions [81].

Panels (b) and (d) in Fig. 9 show results for the lo-
cal compressibility profiles corresponding to the density
profiles depicted in panels (a) and (c), respectively. Ap-
proaching bulk coexistence, by decreasing ∆µ, the local
compressibility develops sharp peaks located in the ‘gas-
liquid’ interface that emerges as the ‘gas’ layer grows at
a wall. The values of the maxima of χµ(x) increase by
orders of magnitude: note the logarithmic scale. For the
case of drying at a hard wall, see panels (a) and (b), in-
vestigated at kBT/ε = 0.93, well below the temperature
kBT/ε ≈ 1.04 where the Fisher-Widom line intersects the
binodal, we observe, for the largest ∆µ, damped oscilla-
tions in χµ(x) reflecting those in the density profile. For
small ∆µ we expect from the theory of complete drying,
for the potentials we consider here, that the maximum
of χµ(x) should increase as ∆µ−1 which corresponds to
the logarithm of the maximum increasing linearly with
the thickness of the drying (gas) layer. Our results are
consistent with this prediction.

The contact values χµ(0
+) at the hard wall remain al-

most unchanged as ∆µ is reduced. This behavior is con-
sistent with the contact theorem χµ(0

+) = βρb that es-
tablishes an important connection between the bulk den-
sity ρb far from the wall and a quantity local to the wall
[77, 79, 80]. Our numerical results satisfy this sum rule
to within 1%, apart from the lowest value of ∆µ, where
numerical errors become more important. In our inves-
tigation of capillary evaporation we chose our system to
correspond to that of the MC simulations in Ref. [74]
which examined the local compressibility at bulk coexis-
tence. The density and local compressibility profiles that
we obtain mimic those observed in simulation. However,
there are subtleties in making direct comparisons that
we return to in Sec. IV B. We chose to study the profiles
at decreasing values of ∆µ monitoring the growth of the
maximum in the local compressibility which increases in
a similar fashion to what is observed for the complete
drying case at a single hard wall in Fig. 9(b).

G. Purely supercritical training

As described in Sec. II B, we deliberately trained a sec-
ond neural network with supercritical data by including
only simulations with kBT/ε > 1.3, see the dotted pink
line in Fig. 1 showing the temperature cutoff. In the fol-
lowing we focus on the extrapolation capabilities of this
neural network and, in particular, expound how much
information can be deduced from learning data at tem-
peratures well above our (subsequent) determination of
the critical temperature.

In Fig. 3, we observe that analyses of the isothermal
compressibility χT (first column), true correlation length
ξ (second column) and long-range decay of the total cor-
relation function (third column) carry over straightfor-
wardly when using the supercritical neural functional;
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there are no problems for inferring results at lower tem-
peratures. Specifically, the predicted phenomenology re-
mains identical to the case of training with data including
some subcritical states: a spinodal emerges, as character-
ized by diverging isothermal compressibility and correla-
tion length, χ−1

T = 0 and ξ−1 = 0. The top of the spin-
odal marks a critical point, from which the lines of max-
imal compressibility and maximal correlation length can
be traced and the Fisher-Widom line emerges from the
pole analysis of h(r). Despite requiring extrapolation to
substantially lower temperatures than encountered dur-
ing training, only minor differences occur from the case
of full (sub- and supercritical) training. We note that the
critical point is predicted at a slightly higher temperature
and density.

Results from purely supercritical training are shown in
Fig. 4 also for the binodal. Remarkably, the supercrit-
ical neural functional in the Euler-Langrange minimiza-
tion (8) delivers at lower temperatures, predicting bulk
liquid-gas coexistence. Moreover, the resulting binodal
agrees very well with our previous findings based on the
full training data set; small deviations occur for liquid
densities at low temperatures. We emphasize that these
predictions of liquid-gas coexistence arise from probing
only supercritical states that have no direct signature of
possible liquid-gas phase separation.

IV. DISCUSSION

A. Methodology

Employing the neural functional approach is very dif-
ferent from what one encounters in pure simulation stud-
ies or in analytical density functional studies where an
explicit approximation to the excess free energy func-
tional is provided from the outset. Setting up a neural
functional from scratch requires an upfront investment in
compute resources in order to deliver a suitable training
data set. This (perceived) hurdle is not encountered in
working with simulations only; the first run can deliver
useful information. However, once the initial threshold
has been passed the method scales very well. As retrain-
ing the neural network itself is relatively cheap, it is en-
tirely feasible and sensible to provide additional training
data, be it for changing system size 1/L, extending pa-
rameter ranges, such as temperature T , or simply to pro-
vide better statistics in an iterative cycle, possibly guided
by active machine-learning techniques. Crucially, the ini-
tial investment is never lost, as the original training data
can continue to be used in updated training cycles.

What sets aside our neural functional approach is the
range of phenomena and results that it can describe:
these far exceed the information provided during train-
ing. How this comes about is nontrivial and relies upon
the mathematical structure of DFT. Investigating physi-
cal phenomena, i.e. calculating the structure and thermo-
dynamic properties, reduces to standard analysis tasks

within the (neural-network-based) functional mapping
c1(r; [ρ], T ). Inputting only MC training data of one-
body profiles in planar geometry and then examining
c1(r; [ρ], T ) through the functional lens provides access to
quantities which could not be obtained directly from the
input data. Indeed determining these usually requires ad-
vanced simulation techniques [9]; note the array of com-
putational methods tailored to study liquid-gas coexis-
tence, interfacial profiles, free energies and the surface
tension as well as two-body correlation functions. These
properties and the physical scenarios they encompass fol-
low, in our treatment, from a single numerical object,
namely the neural network representing c1(r; [ρ], T ). Our
results achieve accuracy comparable with direct simula-
tions of phase coexistence but with much reduced compu-
tational cost, and without requiring any additional sim-
ulations after training.

We consider our present methodology to be more
closely interwoven with the basic theoretical physics at
play, in this case DFT, than are the more generic data-
based machine-learning methods [1–4]. Importantly, the
formal structure of density functional relationships be-
tween generating functionals and hierarchical levels of
correlation functions is built into our neural density func-
tional approach and guides application using functional
calculus (see Sec. II D). In this regard, it might be inter-
esting to explore similarities to and differences from other
recent work [82–84] which employs liquid integral equa-
tion theory in the context of physics-informed machine
learning.

B. Physical phenomena investigated

In this subsection we summarize some of the physics
that we considered together with the results we found and
raise issues that require further investigation. For the
bulk LJ (continuum) fluid the trained neural direct cor-
relation functional yields an accurate description of pair
structure. The pair correlation function g(r) and static
structure factor S(k) exhibit signatures typical for fluids
with attractive interactions, see Fig. 2 (Sec. III A). More-
over, a comprehensive account of very subtle correlation
phenomena can be obtained with relative computational
ease from our determination of the bulk pair direct cor-
relation function. Specifically we determined the lines in
the phase diagram where the isothermal compressibility
and true correlation length have their maximal value, and
the Fisher-Widom line that denotes the crossover from
damped oscillatory to purely monotonic decay of g(r) at
large distances, see Fig. 3 (Sec. III B). Recall, once again,
that the neural network had not encountered bulk pair
correlation functions, let alone their asymptotic decay, in
training.

Clearly our analysis rests on the familiar (bulk)
Ornstein-Zernike (OZ) equation together with the neu-
ral representation of the pair direct correlation func-
tion cb2(r) obtained from automatic differentiation of the
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(planar) one-body direct correlation functional. It is
tempting to argue that the neural functional provides
a highly accurate closure relation for the OZ equation,
making stand-alone prediction feasible and avoiding re-
liance upon approximate closures [82–84]. Furthermore,
as our approach is DFT-based, there is a unique route
to the bulk free energy thereby avoiding inconsistencies
that can plague liquid integral equation theories [8]. Note
that i) our approach differs from neural functional meth-
ods based on pair-correlation matching [23, 28] and ii)
it allows us to access three-body direct correlations, as
demonstrated for hard spheres in Ref. [25].

Our results for the spinodal and the location of the
liquid-gas critical point as determined from the diver-
gence of the true correlation length, or equivalently of
the compressiblity, are also obtained from cb2(r); these
are shown in Fig. 3. The OZ plots in Fig. 8 provide fur-
ther information about the approach to criticality from
above Tc: we find mean-field critical exponents for the OZ
correlation length and for the compressibility. Separately
we find that the true correlation length diverges in the
same fashion as the OZ correlation length. The spinodal
is a concept commonly associated with employing ana-
lytic functionals that incorporate attraction, e.g. via the
mean-field approximation (4); of course, in reality there
is only a horizontal tie-line in the density-temperature
plane linking coexisting gas and liquid. It seems that our
simulation-based machine-learning procedure generates a
neural functional, which, for appropriate bulk densities
and temperatures, also gives rise to a spinodal. We ex-
amine this further in the next subsection.

In many respects our determination of the gas-liquid
binodal (bulk coexistence curve) is one of the most strik-
ing results; see Sec. III C. Our training data had no
knowledge of bulk phase separation. Comparison with
existing simulation results in Fig. 4 shows how well the
neural prediction performs and how it out-performs the
standard analytical DFT. Using fitting procedures ap-
plied previously to simulation data [59, 60] for coexist-
ing densities we found evidence for a nonclassical critical
exponent β and obtained an estimate of Tc that agrees
very closely with the best simulation estimate. The sub-
tleties involved with finite-size effects were discussed in
Sec. III E. We have demonstrated that the neural predic-
tion for the binodal is i) highly accurate and ii) internally
consistent: results from neural density functional mini-
mization of coexistence states that feature both gas and
liquid in a single computational system agree with those
from functional line integration for the free energy. Prac-
tical implementation of the latter method requires only
a cheap numerical routine; the neural functional is the
integrand in Eq. (10). The bulk equation of state from
functional line integration, Eq. (24), displays a van der
Waals loop, see Fig. 6, at subcritical temperatures. We
comment further on this result in Sec. IV C.

The former method of direct numerical stabilization of
phase coexistence provides access to one-body liquid-gas
interfacial structure. As remarked in Sec. III D, the den-

sity profiles ρ(x) for the two lowest temperatures show
the presence of damped oscillations extending into the
liquid, see Fig. 7(a). Such behavior is commonly found
in DFT calculations that utilize the standard mean-field
approximation (4), e.g. Ref. [69] for the square-well and
Tschopp et al. [85] for the hard-core Yukawa model.
Equivalent behavior is also found in FMT-based DFT cal-
culations for the Asakura-Oosawa model that describes
colloid-polymer mixtures. Pronounced oscillations are
found on the (colloid-rich) liquid side of the fluid-fluid
interface for states in the neighbourhood of the triple
point [86]. The physical origin of the oscillations lies, of
course, in the packing of particles in the dense liquid.
The argument [69], based on asymptotics, is that in the
oscillatory region of the bulk phase diagram, as deter-
mined by the Fisher-Widom line, the one-body liquid-
gas density profile should decay into the bulk liquid at
coexistence with the same exponential decay length 1/α0

and same wavelength 2π/α1 as would be determined for
the bulk state from the pole analysis, i.e. Eqs. (17)–(20).
Unfortunately there is no simple means of determining
the amplitude of oscillations. Moreover, the argument
is based on mean-field ideas and omits effects of ther-
mally induced capillary wave fluctuations. The physical
picture adopted in Ref. [69], and in subsequent work,
is that the DFT results provide a ‘bare’ profile that is
then ‘dressed’ by unfreezing the fluctuations which serve
to erode the oscillations. For a Gaussian treatment of
the fluctuations the decay length and the wavelength of
the oscillations are unchanged but the amplitude is re-
duced by a factor that depends on the interfacial rough-
ness which depends, in turn, upon the interfacial area
A; see Brader et al. [87] for a thorough discussion. The
profiles we find here for the LJ fluid exhibit very weak
oscillations even at the lowest temperature shown, sug-
gesting that our neural functional might already capture
some fluctuation effects. In this context, it is instructive
to take note of Tschopp et al. [85] who show that profiles
obtained from a DFT that incorporates correlations into
a reference hard-sphere system yields liquid-gas density
profiles that have much less pronounced oscillations than
those that emerge from employing Eq. (4). It is tempt-
ing to surmise that our neural functional provides a very
accurate, albeit still mean-field, description of the ‘bare’
interface.

The liquid-gas surface tension is not beset by subtle
issues of including capillary wave fluctuations and we ex-
pect our results, obtained from an inhomogeneous func-
tional line integral, to be reliable. Indeed these match
closely high quality simulation data for the LJ system,
see Fig. 7(b). Moreover, our neural functional was able
to probe the surface tension for the same range of tem-
peratures as investigated in the calculation of the binodal
and we found evidence for a nonclassical critical exponent
µ̃.

The free liquid-gas interface was the first of our neural
density functional investigations of interfacial phenom-
ena. In Sec. III F we presented results for two further
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inhomogeneous situations: i) complete drying at a single
planar hard wall and ii) capillary evaporation inside a
planar slit pore with very weakly attractive walls. Both
constitute demanding tests. For the former the density
and local compressibility profiles must reflect the proper
growth of the thickness of the ‘gas’ layer as the chemi-
cal potential deviation ∆µ is reduced to zero. Complete
drying is a continuous (critical) surface phase transition.
Our neural density functional minimization accounts well
for this phenomenon, see Fig. 9(a,b). In particular we
find that the logarithm of the maximum of the local com-
pressibility χµ(x) increases linearly with the layer thick-
ness, in agreement with theoretical predictions. More-
over, we find that the contact theorem for the local com-
pressibility at the hard wall, χµ(0

+) = βρb, is satisfied
accurately; this provides a valuable check on the consis-
tency of our approach. In case ii), capillary evaporation,
we deliberately chose the confining external potential and
temperature to be those employed in the MC study of
Wilding et al. [74]. Our methods allow us to investigate
efficiently several values of the chemical potential devia-
tion ∆µ and to measure the grand potential of metastable
states thereby allowing us to estimate the value of ∆µ at
which the (first-order) evaporation transition occurs, see
Fig. 9(c,d). This task is demanding within direct simula-
tion. For the three smallest values of ∆µ, corresponding
to the three thickest gas layers, the condensed ‘liquid’
state is metastable with respect to the evaporated ‘gas’
state. For these metastable states χµ(x) takes on very
large values similar to what we find for drying at the
planar hard wall in Fig. 9(b). Note that this quantity
does not reach the corresponding bulk value in the mid-
dle of the slit; the density fluctuations remain very large
throughout. We find that our results for ∆µ/ε = 0.01
match well with the density and local compressibility pro-
files plotted in Ref. [74]; the maximum of χµ(x) is about
100 times the bulk value. However, the results in Ref. [74]
refer to ∆µ = 0, i.e. to bulk coexistence as measured in
simulation. This begs, once again, the question as to how
best to make comparisons between DFT results and sim-
ulation. Neither the simulation nor the neural functional
value of µcoex is known precisely; the former depends on
the finite size of the simulation box and the latter on the
numerics we employ. One might argue that for this par-
ticular problem the chemical potential itself is a better
control parameter than ∆µ; unlike the case of complete
drying there is no critical divergence associated with the
approach to coexistence. We intend to return to this is-
sue in future work. That we are discussing such subtle
matters in this first application of our neural functional
to phase transitions attests to the overall potential of our
approach.

C. Discovering phase coexistence and
extrapolation of functional mappings

The successful reproduction of results with supercriti-
cal training only, cf. Sec. IIIG, calls for a reassessment of
the importance of the one-body direct correlation func-
tional c1(r; [ρ], T ); recall this is the quantity we seek to
capture from simulation data via a neural network. It
seems feasible to infer this particular functional mapping
even when excluding substantial ranges of the parame-
ter space in the training data. Our findings point to the
fundamental nature of the one-body direct correlation
functional and its favorable mathematical properties. It
is arguably the object most appropriate for machine-
learning tasks—recall also the simplicity of Eq. (7) for
determining c1(x) from simulation data—in contrast to
other possible functional mappings [21, 22]. Importantly
our results show that liquid-gas phase coexistence is an
emerging phenomenon that can already be gleaned far
from its onset, i.e. from training data taken above the
critical temperature.

We note in this context that the extrapolation capabil-
ities of the neural functional, and of the underlying func-
tional mapping it represents, are arguably much more ex-
tensive than one might initially expect. Recall that the
data used during training, see Sec. II C, comprise only
true equilibrium states obtained via many-body simula-
tions, and that the resulting density profiles fulfill the
Euler-Lagrange equation (8) by construction. However,
when using the trained neural functional for predictions,
one cannot guarantee a priori that only such ‘physical’
density profiles are encountered. This may be the case
during the iteration of Eq. (8) as well as for the evaluation
of the excess free energy via the parametrized functional
integral (10). For the latter the scaled density profiles
ρa(r) = aρ(r) are not merely transient, rather they enter
as genuine contributions to the total value of Fexc([ρ], T ).

That the predictions remain accurate despite requir-
ing the evaluation of the neural functional with possibly
‘unphysical’ density profiles, i.e. ones that cannot corre-
spond to minimization in the presence of any external
potential, indicates there is a well-defined continuation
of the functional relationship to such states. Further-
more, it seems feasible to infer this extended mapping
from physical data alone, using only the restricted func-
tion space of the true equilibrium density profiles that
provided input. We attribute the successful extrapola-
tion to i) the beneficial mathematical properties of the
functional mapping c1(r; [ρ], T ) and ii) the prowess of the
utilized machine-learning techniques.

This is important in practical applications. Although
the evaluation of the neural functional remains valid for
‘unphysical’ density input, the resulting predictions will
not correspond directly to what one would find in simula-
tions or in experiments. For instance, the van der Waals
loop in Fig. 6 at T < Tc arises from the neural predic-
tion for the pressure corresponding to spatially constant
bulk densities ρ(r) = ρb, which are imposed to lie in the
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metastable or unstable coexistence region. Clearly, this
is not the sequence of density profiles that one encounters
in practice where, for fixed mean density, the system will
form liquid and gas domains separated by an interface.
If one evaluates the equation of state along this path of
physically realizable density profiles, one will indeed find
a flat isotherm that is numerically consistent with per-
forming a Maxwell construction in Fig. 6. Of course,
this feature is not unique to the neural functional. For
an analytical DFT, e.g. employing the mean-field func-
tional (4), one could also solve Eq. (8) for a range of fixed
mean densities and determine the resulting density pro-
files, which will show liquid-gas phase separation within
the coexistence region. These will not be as accurate as
the present neural results; leave this aside. One could
then examine the prediction of the theory for the bulk
free energy density and calculate the pressure, analogous
to Eq. (24). Making a Maxwell construction will con-
firm that the coexisting densities agree with those from
solving Eq. (8).

The ability to analyze the neural functional for (vir-
tually) arbitrary density input is useful and necessary to
make certain calculations. Recall that the determination
of the surface tension γlg, cf. Fig. 7, requires evaluating
the functional line integral (10) along a path of density
profiles which crosses the coexistence region. That our
neural results for γlg agree well with simulation serves as
an indirect verification of the validity of the neural func-
tional predictions for such unseen inputs. Similarly, im-
portant bulk quantities such as the isothermal compress-
ibility χT and the correlation length ξ can be monitored
in states of the bulk fluid that might not be physically
accessible, but which provide additional insight—see e.g.
the emerging spinodal in Fig. 3. Of course, this is not
conceptually different from using analytical DFT: an ex-
plicit approximation for the excess free energy functional
will provide these quantities for all states. What does dif-
fer is the mechanism by which the underlying functional
is obtained. Whereas an analytic functional, e.g. Eq. (4),
is arguably conceived with a certain phenomenology in
mind, features such as a spinodal and a van der Waals
loop arise for the neural functional solely from training
with appropriately chosen simulation data for a given
model fluid.

D. Outlook

There are several problems which should be addressed
in future work and which point to possible extensions of
the framework we present.

As described in Sec. III E, mean-field behavior is found
from OZ plots in the close vicinity of the critical point,
inline with the construction of the neural functional with
a finite box size. Nevertheless, we envisage that access-
ing ‘true’ critical behavior is not excluded per se from
the neural functional. The strategy used for the extrap-
olation to large box sizes via the input node 1/L might

well prove to be helpful for this purpose. Supplying ad-
ditional training data that feature the slow decay of den-
sity profiles associated with long-range correlations might
also be necessary. Further, the architecture of the neu-
ral network might need to be modified to accommodate
the growing correlation length which could require incor-
porating a larger density window as input to the neural
functional.

Although we have focused in this work on the proto-
typical Lennard-Jones fluid, for ease of comparison with
previous accurate simulation data, we see no fundamental
problems in applying our methodology to more complex
fluids. As the formal structure of DFT remains intact
for arbitrary interaction potentials, the method could be
transferred directly to the investigation of systems that
feature more elaborate force fields, including three- and
higher-body contributions, as used e.g. to model interac-
tions in water [88, 89] or in colloidal gels [90]. Method-
ological extensions arise already for the particular case
of pairwise interactions only. These include the incor-
poration of bulk pair correlation data during training
[23, 28] and the generalization of the functional depen-
dence to feature explicitly the pair potential ϕ(r) [33]. In
the future, it would be interesting to investigate further
test particle concepts and the topical problem of invert-
ing structural data to infer interparticle interactions, and
their uniqueness [91], via neural functional methods.

For the case of anisotropic and molecular fluids, orien-
tational degrees of freedom must be accounted for: the
one-body density profile ρ(r,ω) which enters the func-
tional mapping must be resolved with respect to both
position r and orientation ω. In a first venture, Si-
mon et al. [30] demonstrated that machine learning a
classical density functional is feasible for the anisotropic
Kern-Frenkel model in planar geometry. Notably, the au-
thors found that the external flat-wall potentials for the
generation of training data had to incorporate nontrivial
orientation-dependence in order to probe the functional
mapping sufficiently. Another very recent work consid-
ers an application to a model of carbon dioxide, where
orientations become important [34]. Methods developed
in the context of molecular DFT [92, 93] could serve as a
practical guide on how to deal with numerical challenges
arising from the additional orientational resolution; see
the recent Ref. [94].

For mixtures, the relevant functionals depend on the
density profiles ρi(r) of the individual species i = 1, . . . , s.
A machine-learning scheme aiming to represent the direct
correlation functional c1,i(r; [ρ1, . . . , ρs], T ) must there-
fore account for the additional species labeling. Tackling
the fluid phase behavior of multi-component systems is,
of course, important in physical chemistry and chemical
engineering. Note, for example, that rich phase behav-
ior emerges already for the case of a very simple binary
mixture [95]. In ionic systems, charge ordering is key
and appropriate number-number and charge-charge cor-
relation functions should be distinguished. For the re-
stricted primitive model, Bui and Cox [96] have success-
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fully demonstrated training a neural density functional,
taking into account ideas from local molecular field the-
ory to curb the long-range electrostatic interactions.

We have shown that employing only planar geome-
try in the input is sufficient to predict various aspects
of liquid-gas phase coexistence. Crystallization presents
an even bigger challenge. Describing the freezing tran-
sition is likely to require input with knowledge of the
three-dimensional geometry. Equivariant neural net-
works [97, 98], which implement certain symmetry condi-
tions directly in the neural network architecture, could be
beneficial in this case to ensure efficient data utilization
and performant inference.

As a final remark we point out that describing in-
teracting many-body systems in terms of functional re-
lationships is not only relevant for classical statisti-
cal physics and systems in thermodynamic equilibrium.
Electronic DFT, specifically in its Kohn-Sham formula-
tion, plays a role completely analagous to that of classi-
cal DFT. It provides an exact formulation of the many-
body quantum mechanical treatment of interacting elec-
trons and, of course, constitutes a cornerstone in modern
computational chemistry and condensed matter physics
[99]. The formal similarities are deep: the electron den-
sity n(r) takes on the role of ρ(r) as functional input,
with the central functionals now being the exchange-
correlation energy functional Exc[n] and the exchange-
correlation potential vxc(r; [n]), which is generated from
Exc[n] via functional differentiation. Our findings in
the classical case, where the direct correlation functional
c1(r; [ρ], T ) is generated from the excess free energy func-

tional Fexc([ρ], T ), cf. Eq. (5), immediately suggest rep-
resenting vxc(r; [n]) as a neural functional and then tak-
ing inspiration from the functional calculus methods de-
scribed in Sec. IID.

While classical and quantum DFT, as described, oper-
ate strictly in thermodynamic equilibrium, power func-
tional theory [44, 45] establishes a formally exact exten-
sion to dynamics and nonequilibrium systems. The perti-
nent functional relationships must be augmented. For the
case of classical overdamped Brownian motion, besides
the density profile, the entire history of the one-body cur-
rent J(r, t) enters the functional mapping, which is now
formulated in terms of the internal force fint(r, t; [ρ,J]).
For steady states, where dependence on time t vanishes,
constructing a neural force functional has been demon-
strated successfully [24, 29]; this offers a promising per-
spective for further generalizations.
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