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We investigate isoscalar axial-vector mesons using a coupled-channel formalism. The kernel am-
plitudes are constructed from meson-exchange diagrams in the t- and u-channels, which are derived
from effective Lagrangians based on hidden local symmetry. We incorporate six channels: πρ, ηω,
KK̄∗, ηϕ, η′ω, and η′ϕ, and solve the off-shell coupled integral equations. We first discuss the
dynamical generation of the h1(1170). The pole diagram for h1(1595) has a certain effect on the
generation of h1(1170). We observe two poles at (1387−i6) MeV and (1452−i51) MeV, which exhibit
a two-pole structure of the h1(1415) meson. This two-pole structure may resolve the discrepancy
in the experimental data on the mass of h1(1415). The results show that the lower pole couples
strongly to the KK̄∗ channel, while the higher pole couples predominantly to the ηϕ channel. This
provides insights into the nature of h1 mesons and explains possible discrepancies in the mass of
h1(1415).

I. INTRODUCTION

Recently, the BESIII Collaboration reported new data on the excited h1(1415) meson with quantum numbers
IG(JPC) = 0−(1+−), based on a partial-wave analysis of J/ψ → γη′η′. They found its mass to be mh1(1415) =

(1384±6+9
−0) MeV and width Γ = (66±10+12

−10) MeV [1]. These new results are consistent with the earliest measurements
of h1(1415)[2], which reported mh1(1415) = (1380 ± 20) MeV and Γ = (80 ± 30) MeV from the K−p → K0

SK̄πΛ
process. However, they differ from several other experimental findings. The Crystal Barrel experiment[3] measured
respectively its mass and width as (1440 ± 60) MeV and (170 ± 80) MeV from pp̄ → KLKSπ

0π0. An earlier BESIII
experiment [4] found m = (1412 ± 12) MeV and Γ = (84 ± 52) MeV from χ1,2,J → ϕKK̄π. In 2018, BESIII [5]
reported m = (1423.2± 9.4) MeV and Γ = (90.3± 27.3) MeV from J/ψ → η′KK̄π, with interference effects yielding
m = (1441.7± 4.9) MeV and Γ = (111.5± 12.8) MeV. Notably, the KK̄∗ threshold energy (EKK̄∗

th ≈ 1390 MeV) lies
between the h1(1415) masses reported in Refs.[1, 2] and those in Refs.[3–5]. It is crucial to understand the origin
of these discrepancies. While h1(1415) decays primarily into KK̄∗, other channels near its mass likely contribute as
well. The lowest h1(1170) state decays into πρ, suggesting this channel may also affect h1(1415) production.

The Particle Data Group (PDG) classifies the h1 mesons as isoscalar qq̄ states, i.e. c1(uū+ dd̄) + c2ss̄ like η, η′, ω,
and ϕ [6]. This indicates that the h1 mesons are considered to be orbitally excited states as the isoscalar pseudoscalar
or vector mesons with the same quark content. Similarly, the a1(1260) isovector axial-vector meson is also regarded
as the isovector qq̄ state. However, a series of studies suggests that the a1(1260) meson may be a possible molecular
state [7–11]. Very recently, we have investigated the b1 isovector axial-vector mesons, demonstrating that they can be
dynamically generated by considering the four different channels, i.e. πω, ηρ, πϕ, and KK̄∗ channels. Interestingly,
it was shown that the b1(1235) arises from the b1(1306) and b1(1356) [12], indicating that the b1(1235) has a two
pole structure. As will be shown in the current work, the h1(1415) meson originates from the two poles: h1(1387)
and h1(1452). In fact, various hadrons exhibit the two-pole structures. For example, the K1(1270) may possibly be
regarded as the meson with the two-pole structure [8, 13]. Albaladejo et al. [14] showed that the D∗(2400) arises as
a two-pole structure, based on light pseudoscalar and D meson interactions in the coupled-channel formalism (see a
recent review [15] for detailed discussion). The two-pole structure is also found in the baryonic sector: Λ(1405) is now
well established as the hyperon with the two-pole structure [6, 16–18].

In the present work, we will show that the discrepancy in the experimental data on the mass of h1(1415) is rooted
in its two-pole structure. To this end, we formulate the off-shell coupled-channel formalism [11, 12, 19], introducing
six different channels, i.e. πρ, ηω, KK̄∗, ηϕ, η′ω, and η′ϕ of which the threshold energies lie below 2 GeV. We first
construct the kernel amplitude corresponding to each channel, using the meson-exchange diagrams. We compute the
coupled Blankenbecler-Sugar (BbS) equations, which are obtained from the three-dimensional (3D) reduction of the
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Bethe-Salpeter equations [20, 21]. We have already investigated how the a1(1260) and b1(1235) axial-vector mesons,
D∗

s0(2317) and B∗
s0 mesons, and the hidden charm pentaquark states are generated dynamically within the same

framework [11, 12, 19, 22]. We will demonstrate that the h1(1170) and h1(1415) are dynamically generated even
without introducing the corresponding pole diagrams. Remarkably, the two poles emerge in the second Riemann
sheet, which are related to the h1(1415) meson, of which one lies just below the KK̄∗ threshold, and the other is
found to have a larger mass than its threshold energy.

The outline of the current work is sketched as follows: In Section II, we first explain how the kernel amplitude
for each channel can be constructed by using the Feynman diagrams based on the effective Lagrangian. Then, we
perform the partial-wave expansion for the coupled BbS integral equations, so that we examine the relevant partial
waves with proper quantum numbers corresponding to the h1 mesons. In Section III, we discuss the results for the h1
mesons. We examine the role of each channel in producing them dynamically. In particular, we focus on the two-pole
structure of the h1(1415) meson. The last section summarizes the present work.

II. GENERAL FORMALISM

The scattering amplitude is defined as

Sfi = δfi − i(2π)4δ(Pf − Pi)Tfi, (1)

where Pi and Pf stand for the total four momenta of the initial and final states, respectively. The transition amplitude
Tfi for a two-body reaction can be derived from the Bethe-Salpeter integral equations

Tfi(p′, p; s) = Vfi(p
′, p; s) +

1

(2π)4

∑

k

∫
d4qVfk(p

′, q; s)Gk(q; s)Tki(q, p; s), (2)

where p and p′ denote the relative four-momentum of the initial and final states, respectively. q is the momentum
transfer for the intermediate states in the center of mass (CM) frame. s represents the square of the total energy,
which is just one of the Mandelstam variables, s = P 2

i = P 2
f . The coupled integral equations given in Eq. (2) can

be illustrated as in Fig. 1. The summation Σ represents the inclusion of various coupled channels. To avoid the

T = V +
∑




V T

G



Figure 1. Graphical representation of the coupled integral scattering equation.

complexity due to the four-dimensional integral equations, we make a 3D reduction. Among several methods for the
3D reduction, we employ the BbS scheme [20, 21], which expresses the two-body propagator in the form of

Gk(q) = δ

(
q0 −

Ek1(q)− Ek2(q)

2

)
π

Ek1(q)Ek2(q)

Ek(q)

s− E2
k(q)

. (3)

Here, Ek represents the total on-mass-shell energy of the intermediate state, Ek = Ek1 + Ek2, and q designates the
three-momentum transfer of the intermediate state. Utilizing Eq. (3), we obtain the following coupled BbS integral
equations

Tfi(p′,p) = Vfi(p
′,p) +

1

(2π)3

∑

k

∫
d3q

2Ek1(q)Ek2(q)
Vfk(p

′, q)
Ek(q)

s− E2
k(q) + iε

Tki(q,p), (4)

where p and p′ are the relative three-momenta of the initial and final states in the CM frame, respectively. In this
manner, the T matrix can be generated, the entire Hilbert space being considered with the off-shell components.

Before we solve the coupled BbS integral equations, we need to construct the kernel amplitudes V. We compute
Vfi by using the effective Lagrangians for the meson-meson interactions. Since the vector mesons are involved, we
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consider hidden local symmetry, where the vector meson is considered as a dynamic gauge boson [23, 24]. In Ref. [24],
the effective interactions among vector, vector, and pseudoscalar mesons were derived, based on the SU(3) hidden
local symmetry. The effective Lagrangians are then expressed as

LPPV = −igPPV

√
2Tr ([P, ∂µP ]V

µ) ,

LV V V = igV V V

√
2Tr ((∂µVν − ∂νVµ)V

µV ν) ,

LPV V = −gPV V

mV

√
2 εµναβTr (∂µVν∂αVβP ) , (5)

where P and V represent respectively the pseudoscalar and vector matrices in flavor space

P =




1√
2
π0 + 1√

6
η8 +

1√
2
η1 π+ K+

π− − 1√
2
π0 + 1√

6
η8 +

1√
2
η1 K0

K− K̄0 − 2√
6
η8 +

1√
2
η1


 ,

V =




1√
2
ρ0µ + 1√

2
ωµ ρ+µ K∗+

µ

ρ−µ − 1√
2
ρ0µ + 1√

2
ωµ K∗0

µ

K∗−
µ K̄∗0

µ ϕµ


 . (6)

We assume the ideal mixing of the isoscalar vector meson singlet and octet. For η and η′, we define them in terms of
the pseudoscalar octet η8 and singlet η1:

η = η8 cos θP − η1 sin θP , η′ = η8 sin θP + η1 cos θP , (7)

with mixing angle θP = −17◦ taken from Ref. [25]. Note that the universal coupling constant is given as g = gPPV =
gV V V due to the hidden local symmetry.

As done in the previous works [11, 12, 19], we consider the five different isoscalar axial-vector channels coupled to
the πρ channel, which are relevant to the h1 mesons, i.e., the ηω, KK̄∗, ηϕ, η′ω, and η′ϕ channels. Thus, the kernel
matrix is now expressed as

V =




Vπρ→πρ Vηω→πρ VKK̄∗→πρ Vηϕ→πρ Vη′ω→πρ Vη′ϕ→πρ

Vπρ→ηω Vηω→ηω VKK̄∗→ηω Vηϕ→ηω Vη′ω→ηω Vη′ϕ→ηω

Vπρ→KK̄∗ Vηω→KK̄∗ VKK̄∗→KK̄∗ Vηϕ→KK̄∗ Vη′ω→KK̄∗ Vη′ϕ→KK̄∗

Vπρ→ηϕ Vηω→ηϕ VKK̄∗→ηϕ Vηϕ→ηϕ Vη′ω→ηϕ Vη′ϕ→ηϕ

Vπρ→η′ω Vηω→η′ω VKK̄∗→η′ω Vηϕ→η′ω Vη′ω→η′ω Vη′ϕ→η′ω

Vπρ→η′ϕ Vηω→η′ϕ VKK̄∗→η′ϕ Vηϕ→η′ϕ Vη′ω→η′ϕ Vη′ϕ→η′ϕ




(8)

Each matrix element Vfi is obtained from the corresponding tree-level Feynman diagram illustrated in Fig. 2. Note

V

V

P

P

P, V

V

V

P

P

V

Figure 2. Meson-exchange diagrams in the u- and t-channels are depicted in the left and right panels, respectively. P and V
stand for the pseudoscalar and vector mesons.

that we do not have any pole diagrams in the s-channel, which indicates that the h1(1170) and h1(1415) mesons will
be dynamically generated. However, the h1(1595) meson requires the s-channel pole digram, which we will discuss
later its physical implications. The Feynman amplitudes for the tree-level diagrams are evaluated from the effective
Lagrangians given in Eq.(5). Imposing flavor SU(3) symmetry for the coupling constants, we find that the following
kernel amplitudes become null: Vπρ→ηϕ, Vπρ→η′ϕ, Vηω→ηϕ, Vηω→η′ϕ, Vηϕ→η′ω and Vη′ω→η′ϕ.
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The amplitudes of the meson exchange diagrams shown in Fig. 2 from left to right are written as

Au
P (p

′,p) =− IS g2PPV F
2(p,p′) (2p2 − p3) · ϵ∗P(p1 − p4) (2p4 − p1) · ϵ, (9)

Au
V (p

′,p) =− IS
g2PV V

m2
V

F 2(p,p′) εµναβ p
µ
3 ϵ

∗ν(p3 − p2)
α Pβδ(p1 − p4) εγσηδp

γ
1ϵ

σ(p1 − p4)
η, (10)

At
V (p

′,p) =− IS g2PPV F
2(p,p′) (p2 + p4)

µ Pµν(p1 − p3)

× [(2p1 − p3) · ϵ∗ϵν + (2p3 − p1) · ϵϵ∗ν − ϵ · ϵ∗(p1 + p3)
ν ] , (11)

where the IS factor is related to the corresponding SU(3) Clebsch-Gordan coefficient and isospin factor. In Table I,
we list the values of the IS factors for all relevant processes. For the coupling constants, we use the values for the
coupling constants: g2PPV /4π = 0.72 and g2PV V /4π = 1.88 from the previous works [11, 12]. The propagators for the
spin-0 and spin-1 mesons are expressed by

P(p) =
1

p2 −m2
, Pµν(p) =

1

p2 −m2

(
−gµν +

pµpν
m2

)
, (12)

where m denotes the mass corresponding to the exchange meson. As done in the previous works [11, 12], we have
turned off the energy-dependence in the denominator of the propagator.

Table I. The IS factors and cutoff parameters (Λ0) in unit of MeV for each reaction.

Reaction Exchange meson Type IS Λ0(MeV)
πρ→ πρ π u −8 600

ρ t −8 600
ω u 4 600

πρ→ ηω ρ u −5.48 1550
πρ→ KK̄∗ K u

√
6 700

K∗ t
√
6 750

πρ→ η′ω ρ u −4.24 1600
ηω → ηω ω u 2.50 600
ηω → KK̄∗ K u −2.34 600

K∗ t −2.34 700
ηω → η′ω ω u 1.94 600
KK̄∗ → KK̄∗ ρ t −3 600

ω t −1 600
ϕ t −2 1400

KK̄∗ → K̄K∗ π u 3 600
η u 2.74 600
ρ u −3 600
ω u −1 600
ϕ u −2 1400

KK̄∗ → ηϕ K u −3.31 600
K∗ t −3.31 1710

KK̄∗ → η′ω K u 0.72 600
K∗ t 0.72 700

KK̄∗ → η′ϕ K u 1.01 600
K∗ t 1.01 1700

ηϕ→ ηϕ ϕ u 3.00 600
ηϕ→ η′ϕ ϕ u −3.87 600
η′ω → η′ω ω u 1.50 600
η′ϕ→ η′ϕ ϕ u 5.00 600

Since hadrons have finite sizes, we introduce a form factor at each vertex. We employ the following parametriza-
tion [26]:

F (p,p′) =

(
nΛ2 −m2

nΛ2 + p2 + p′2

)n

, (13)

where n is the power of the form factor. The form given in Eq. (13) has a notable advantage: the value of Λ remains
constant regardless of change in n. As n approaches infinity, Eq. (13) converges to a Gaussian form. In most cases,
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we use n = 1. However, we need to use n = 2 for vector-meson exchange, because they have stronger momentum
dependence. While the cut-off masses Λ in Eq. (13) are experimentally unknown for the current hadronic processes,
we minimize associated uncertainties using the following strategy as done in the previous works [11, 12, 19]: we choose
Λ by adding approximately (500− 700) MeV to the corresponding masses of the exchange meson. Consequently, we
define the cutoff mass as Λ = Λ0 +m. We set Λ0 to be 600 MeV for most cases, as listed in Table. I. However, to
fit the total cross section for πρ scattering, we need to use larger values of Λ0 for some of the vector-meson exchange
diagrams, as shown in Table I.

To compute the coupled integral equations, we utilize a partial wave decomposition, transforming the equation into
a one-dimensional integral equation as follows

T J(fi)
λ′λ (p′,p) = VJ(fi)

λ′λ (p′,p) +
1

(2π)3

∑

k,λk

∫
q2dq

2Ek1Ek2
VJ(fk)
λ′λk

(p′, q)
Ek

s− E2
k

T J(ki)
λkλ

(q,p). (14)

Here, λ′, λ and λk denote the relative helicity of the final, initial and intermediate two-body states, respectively. Their
corresponding momenta are represented by p′, p and q, respectively. The partial-wave component is given by

VJ(fi)
λ′λ (p′,p) = 2π

∫
d(cos θ) dJλ′,λ(θ)Vfi

λ′λ(p
′,p, θ), (15)

where θ stands for the scattering angle, and dJλ′,λ are the Wigner d-matrices.
To obtain the transition amplitudes numerically, it is crucial to deal with the singularities in the BbS propagator.

The one-dimensional integral, free from energy singularities, takes the form

T fi
λ′λ(p

′,p) = Vfi
λ′λ(p

′,p) +
1

(2π)3

∑

k,λk

[∫ ∞

0

dq
qEk

Ek1Ek2

F(q)−F(q̃k)

s− E2
k

+
1

2
√
s

(
ln

∣∣∣∣
√
s− Ethr

k√
s+ Ethr

k

∣∣∣∣− iπ

)
F(q̃k)

]
,

(16)

where q̃k represents the momentum when Ek1 + Ek2 =
√
s and F(q) is defined as

F(q) =
1

2
qVfk

λ′λk
(p′, q)T ki

λkλ
(q,p). (17)

Regularization is applied only when the total energy
√
s surpasses the threshold energy of the k-th channel, denoted

as Ethr
k . Notably, the transition amplitudes derived from these equations can be analytically continued to the complex

energy plane directly, as the energy singularities have been eliminated. Moreover, Eq. 16 enables the use of the matrix
inversion method to compute the transition amplitudes. The partial-wave transition amplitudes are then obtained by
transforming the helicity basis into the LSJ basis. For the specific case of pseudoscalar and vector meson scattering,
this transformation is represented as

T JS
L′L =

√
(2L+ 1)(2L′ + 1)

2J + 1

∑

λ′λ

(L′0Sλ′|Jλ′) (1λ′00|1λ′) (L0Sλ|Jλ) (1λ00|Sλ) T J
λ′,λ. (18)

Here, (j1m1j2m2|JM) denotes the Clebsch-Gordan coefficient.

ρ

ρ

π

π

h1(1595)

Figure 3. h1(1595) pole diagram in the πρ elastic scattering.
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So far, we have focused on using only the t and u channel exchange diagrams. However, it is necessary to include
the pole diagram for the h1(1595) meson in the s channel. It is essential to improve the results in comparison with the
experimental data on πρ scattering. A similar approach was demonstrated in the case of ππ scattering [27], where the
explicit inclusion of the f0(1400) pole was necessary to reproduce the experimental phase shift of the scalar-isoscalar
channel in the energy region below 2 GeV. The presence of f0(1400) influenced both the high-energy region and
the structure below 1 GeV. Similarly, we incorporate the s-channel pole diagram for h1(1595) in πρ scattering, as
illustrated in Fig. 3. The interaction vertices are determined by the following effective Lagrangian

Lh1πρ =
gh1πρ

m0
h1

(∂µρν − ∂νρµ)π∂
µhν1 . (19)

The bare mass and coupling of h1(1595) are set to be m(0)
h1(1595)

= 1320 MeV and g2h1(1595)πρ
/4π = 0.54. Additionally,

we employ the form factor in the s channel

Fs(p) =

(
Λ2 + (m0

h1
)2

Λ2 + p2

)4

, (20)

to ensure that the contribution of the pole diagram in the high momentum region is negligible. Consequently, the pole
diagram has a small impact on the dynamical generation of the h1 meson. We set the cutoff mass, denoted as Λ, to
be 1920 MeV, following the previously mentioned rule. As a result, the dressed mass and width of h1(1595) evaluated
in the complex energy plane match the PDG average value [6]. We found the u-channel contribution to the transition
amplitude to be negligible and omitted it for simplicity. The t-channel diagram is not allowed due to G parity and
isospin symmetry. The necessity of including the pole diagram suggests that the h1(1595) may be predominantly a
genuine qq̄ state.

III. RESULTS AND DISCUSSIONS

A. h1 resonances

The ground state of the h1 axial-vector meson was first observed in the 3π mass spectra of the charge exchange
reaction π−p → π+π−π0n [28]. Its existence was later confirmed by only one other experiment using the same
reaction [29]. According to the PDG, there are two excited states of h1 meson: h1(1415) and h1(1595) [6]. The latter
was observed in the ηω mass distribution [30], while the former exhibits an intriguing structure similar to the renowned
Λ (1405). Initially, referred to as h1(1380), subsequent experimental studies determined its mass to be approximately
1.42 − 1.44 GeV, leading to its renaming as h1(1415). However, a very recent experiment again suggests that the
mass of h1(1415) is roughly 1.38 GeV. Currently, there is no explanation for the conflicting mass measurements of
h1(1415). Interestingly, h1(1380) is located just below the KK̄∗ threshold, whereas the renamed h1(1415) is found to
be above KK̄∗ threshold. This implies that h1(1380) (h1(1415)) may have a two-pole structure. In this work, we will
examine each h1 meson within the coupled-channel framework. Specifically, we will demonstrate that the conflicting
mass measurements of h1(1415) can be explained by a two-pole structure.

In Ref. [28], two axial-vector resonances, a1 and h1, were identified in the charge exchange reaction. Previously, we
analyzed experimental data on the former one, and in this current study, we extend our analysis to the latter one,
keeping values of the parameters the same as the earlier investigation [11]. The assumption of mixing between η and
η′ alters the isospin value of η exchange in the KK̄∗ elastic channel. However, the mixing has a negligible effect on
the previous results for the a1 meson, given the fact that η exchange barely contributes to KK̄∗ elastic scattering.

To describe the experimental data in the isoscalar channel, we relate the total cross section to the transition
amplitude T using a constant factor C, expressed as

σ ≡ −C Im [Tπρ(Mπρ)] , (21)

where C has a different value from that in the isovector channel due to the absorption of the isospin factor into
C. The pole diagram for h1(1595) comes into essential play in enhancing the width of h1(1170), resulting in good
agreement with the experimental data. The total cross section for πρ scattering in the isoscalar channel clearly reveals
the resonance of the h1(1170) meson, of which the mass and width are determined to be mh1(1170) = (1.19 ± 0.06)
GeV and Γ = (0.32± 0.05) GeV, respectively [28]. The present results describe the experimental data well. We also
compare them with those in Ref. [31] that utilized a single πρ channel including explicitly the h1(1170) pole diagram.
As shown in Fig. 4, the single channel with the explicit pole of the h1(1170) is insufficient to describe the experimental
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ηω KK̄∗ ηφ η′ωπρ→ πρ (IJL = 010)

Full

Janssen et al.

Exp. Data

Figure 4. Total cross section for πρ scattering in the IJL = 010 channel as a function of the πρ invariant mass. The solid curve
depicts the present results, whereas the dashed one draws that from Ref. [31]. The experimental data are taken from Ref. [28].

data, specifically the h1(1170) peak structure. In contrast, we find that the h1(1595) pole diagram has an important
contribution to explain the h1(1170) resonance. Moreover, various coupled channels play essential roles in dynamically
generating the h1 (1170) resonance. The dynamical generation of h1 (1170) has also been observed in Ref. [8]. So, we
conclude that the h1(1170) does not solely originate from the qq̄ state but contains a substantial component of the
molecular state. Furthermore, we predict a small peak structure near the KK̄∗ threshold, which is barely seen in the
experimental data.

To identify dynamically generated resonances in the current approach, we examine the T amplitude in the second
Riemann sheet. Since the T amplitude generated by Eq. (16) is a meromorphic function in the complex energy plane,
we can directly identify the h1 resonances in the second Riemann sheet. In Fig. 5, the contour plot of the modulus of
T clearly exhibits the existence of four poles. The first pole below the ηω threshold is positioned at (1080−i118) MeV,
so its mass and width are respectively given as 1080 MeV and 236 MeV. The value of the width given in the PDG is
(375 ± 35) MeV [6], which was taken from the fit by using the Bowler model. Compared with it, the current result
is smaller than the empirical data. In Ref. [8], the corresponding pole for h1(1170) was found at

√
s = (919 − i17)

MeV, which deviates significantly from the experimental data. The second and third poles are located at (1387− i6)
MeV and (1452 − i51) MeV, respectively. These two poles are related to h1(1415), once called as h1(1380). Since
the second pole lies just below the KK̄∗ threshold, it may be considered as the KK̄∗ molecular state in the isoscalar
channel. Interestingly, its width is very small. The third pole is located at about 60 MeV above the KK̄∗ threshold,
and its width is 102 MeV. While the average value from the PDG is given as (78±11) MeV, the experimental data on
its width ranges from (66± 10+12

−10) MeV [1] to (170± 80) MeV [3]. Thus, the width of h1(1415) should be measured
more precisely. If h1(1415) has a two-pole structure, its width may be determined more precisely.

Finally, the fourth pole is observed at (1603 − i158) MeV that corresponds to the h1(1595) meson, placed above
the ηϕ threshold. Note that we have included the pole diagram for h1(1595) in the s channel with the bare mass
m

(0)
h1(1595)

= 1320 MeV. It is dressed to be 1603 MeV, as the pole diagram for h1(1595) is “renormalized ” by the
coupled integral equations. When considering only the πρ elastic channel, the dressed mass is smaller than the bare
one. However, the pole diagram gains additional mass after being coupled to all channels. A similar effect is observed
in ππ elastic scattering, where the scalar-isoscalar meson f0(1400) has a bare mass of 1300 MeV with the scalar
coupling, and after coupling to other channels, the physical mass becomes 1400 MeV [27]. While a recent study shows
that the h1(1595) is a ground state of a light tetraquark state [32], the current result suggests that the structure of
the h1(1595) has a large component of the qq̄, being dressed by various channels.
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Figure 5. Contour plot of the modulus of the πρ transition amplitude in the complex
√
s plane. Four poles are found in the

second Riemann sheet. The contour plot in the red rectangle is enlarged and shown in Fig. 6.

The coupling strengths of the h1 resonances can be derived from the residues of the T matrix, defined as

Ra,b := lim
s→sR

(s− sR) Ta,b/4π = gagb. (22)

It is impossible to determine the signs of the coupling strengths, so we choose the coupling strengths to the πρ
channel to be positive. Then, we can determine the relative signs for other coupling strengths. Table II lists the
results for the coupling strengths to all possible channels. The first resonance, h1(1170), couples most strongly to

Table II. Coupling strengths in units of GeV of the h1 resonance to the S and D wave states in the six different channels. Note
that we fix the relative signs of the coupling strengths choosing the coupling strengths to the πρ channel to be positive.
√
sR [MeV] 1080− i118 1387− i6 1452− i51 1603− i158

gπρ(S-wave) 4.23− i1.80 0.43 + i0.20 0.85− i1.37 2.81 + i0.28
gπρ(D-wave) 0.48− i0.42 0.18 + i0.17 1.09 + i0.11 1.51− i0.15
gηω(S-wave) −1.05 + i0.87 1.74 + i0.49 1.69 + i1.49 2.42− i2.01
gηω(D-wave) −0.12 + i0.03 −0.09− i0.02 −0.19− i0.01 −0.77 + i0.80
gKK̄∗(S-wave) −0.47 + i0.12 −4.23− i0.95 −1.20− i2.74 1.92− i0.80
gKK̄∗(D-wave) −0.04− i0.01 0.00 + i0.01 −0.21 + i0.50 −1.78 + i0.32
gηϕ(S-wave) −3.96 + i0.79 4.84 + i1.23 8.83 + i1.52 0.04 + i4.12
gηϕ(D-wave) −0.51− i0.03 −0.21− i0.06 −0.22− i0.15 −0.42 + i0.43
gη′ω(S-wave) −0.74 + i0.69 −0.06 + i0.19 1.26 + i0.23 2.51− i0.95
gη′ω(D-wave) −0.20 + i0.12 0.01− i0.02 −0.11− i0.04 −0.15− i0.09
gη′ϕ(S-wave) 0.66− i0.13 −1.52− i0.31 −1.83− i0.67 0.30− i0.67
gη′ϕ(D-wave) 0.16− i0.01 0.23 + i0.05 0.23 + i0.11 −0.05 + i0.05

the πρ channel, which is in line with the experimental observations of the h1(1170) → πρ decay [28, 29, 33]. The
next strongest coupling comes from the ηϕ channel. Considering that the ηϕ threshold energy is around 1570 MeV,
it is remarkable that the ηϕ channel is the second most dominant one for h1(1170). This indicates that the h1(1170)
contains a significant ss̄ component, resembling the case of dynamically generated a1(1260) and b1(1235) [11, 12]. The
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ηϕ channel couples most strongly to the second and third resonances, located at (1387−i6) MeV and (1452−i51) MeV,
which are considered to be h1(1415). As depicted in Fig. 6, one can clearly observe the strongest peak structure below
the KK̄∗ threshold in the squared modulus of the ηϕ → ηϕ transition amplitude multiplied by qπρ, qπρ|T |2, where
qπρ is the magnitude of the momentum of the πρ system. Interestingly, we also have nonvanishing πρ→ ηϕ transition
amplitudes, as shown in Fig. 6. Although we impose the flavor SU(3) symmetry, which results in the absence of the
πρ → ηϕ kernel amplitude, the πρ → ηϕ transition amplitude is generated through the KK̄∗ intermediate states,
revealing a resonance structure below the KK̄∗ threshold. As expected, the second resonance has a strong coupling
strength to the KK̄∗ channel (see also the dash-dotted curve in Fig. 6). On the other hand, the coupling strengths
to the S-wave ηω, KK̄∗, η′ω, and η′ϕ channels are of the same order. It is worth noting that the D-wave πρ channel
has a sizable coupling strength. As for the h1(1595), many channels are strongly coupled to it. As explained eralier,
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Figure 6. Results for qπρ |T |2 for various channels. qπρ is the magnitude of the momentum of the πρ system.

the mass of h1(1595) would have been less than the bare mass had we considered the πρ channel only. As shown in
Table II, the πρ, ηω, KK̄∗, and η′ω contribute to the generation of the h1(1595) meson.

B. Two-pole structure of the h1(1415)

Table III. The experimental results on the mass and width of h1(1415) from various collaborations.

Collaboration Reference Process Mass [MeV] Width [MeV]
LASS [2] K−p→ K0

SK̄πΛ 1380± 20 80± 30
Crystal Barrel [3] pp̄→ KLKSπ

0π0 1440± 60 170± 80
BESIII [4] χ1,2,J → ϕKK̄π 1412± 12 84± 52
BESIII [5] J/ψ → η′KK̄π 1423.2± 9.4 90.3± 27.3

1441.7± 4.9(∗) 111.5± 12.8(∗)

BESIII [1] J/ψ → γη′η′ 1384± 6+9
−0 66± 10+12

−10

(∗)Interference effect is considered

Table III presents the mass of the h1(1415) as measured by various experiments. The LASS Collaboration initially
detected a signal of h1(1415) in the KK̄π system using the K−p → K0

SK̄πΛ reaction [2]. The data exhibited an
enhancement near 1.4 GeV, diminishing rapidly as the energy increased. Using the Breit-Wigner parameterization, the
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mass and width were determined to beM = 1380±20 MeV and Γ = 80±30 MeV, respectively. Subsequent experiments,
however, reported different results. The Crystal Barrel Collaboration [3] performed proton annihilation to produce
the KK̄π system and discovered the h1 meson above the KK̄∗ threshold, with a mass of M = (1440± 60) MeV and
a width of Γ = (170 ± 80) MeV. Two experimental results from the BESIII Collaboration, obtained from different
charmonium state decays, confirmed these findings with a slightly lower mass. It is noteworthy that interference
influences the determination of the mass and width of the h1(1415) [5], and these results align with those of the
Crystal Barrel experiment. In a recent experiment conducted by the BESIII [1] Collaboration, the mass and width
of the h1(1415), measured in the γη′ invariant mass, were found to be consistent with those obtained by the LASS
Collaboration but contradictory to the two previous BESIII results. This discrepancy strongly suggests that the
h1(1415) does not originate from a single pole, indicating a more complex structure. Evidently, this structure cannot
be explained by the quark model alone. Consequently, based on the results of this study, we propose a two-pole
structure to account for the discrepancy in the measurements of the h1(1415) meson mass.
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KK̄∗

|Tπρ→πρ| (IJL = 010)

Figure 7. Contour plot of πρ→ πρ transition amplitude in the complex
√
s plane, which enlarges the red rectangle in Fig. 5.

The current work reveals two poles around 1.4 GeV, one at (1387− i6) MeV and the other at (1452− i51) MeV, as
shown in Table II. Figure 7 demonstrates how these two poles appear in the complex energy plane. The lower pole is
located close to the KK̄∗ threshold, while the higher pole is situated 80 MeV above it. Due to its narrowness, detecting
the lower pole experimentally may pose a challenge. Examining the coupling strengths in Table II, we observe that
both poles couple strongly to open strange and hidden strange channels. However, the higher pole couples to the ηϕ
channel far more strongly than to other channels. This suggests that the higher pole might be an ηϕ molecular state,
while the lower pole, being located very close to the KK̄∗ threshold, could be a KK̄∗ molecular state. Notably, the
gKK̄∗ for the higher pole has a larger imaginary part than its real part, causing destructive interference. This results
in the disappearance of the higher pole in KK̄∗ elastic scattering, a feature also observed in the case of the higher
pole of the b1 meson in a previous study [12]. This characteristic is the essential clue to explaining the absence of the
higher pole in the LASS Collaboration experiment.

Based on this analysis, we propose an explanation for the conflicting mass measurements of h1(1415). As shown in
Fig. 6, the crucial aspect is that the higher pole vanishes in KK̄∗ elastic scattering, leaving only the KK̄∗ threshold
enhancement. The LASS collaboration investigated the h1(1415) in the K−p→ K0

SK̄πΛ process, which can effectively
be represented as KK̄∗ elastic scattering. They observed a threshold enhancement near the KK̄∗ threshold, aligning
with the current results. In contrast, the Crystal Barrel [3] and BESIII experiments [4, 5] measured the KK̄π state
as a final state, which can be considered as the KK̄∗ state. Consequently, both collaborations measured the h1(1415)
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above the KK̄∗ threshold. The most recent measurement from the BESIII Collaboration comes from the J/ψ → γη′η′

decay. In conclusion, we propose that the h1(1415) can be constructed from two different resonances: the h1(1380)
and h1(1440) mesons, with the higher pole vanishing in KK̄∗ elastic scattering. This two-pole structure accounts for
the seemingly conflicting experimental results.

IV. SUMMARY AND CONCLUSIONS

In this work, we aimed at investigating the isoscalar axial-vector h1 mesons using a coupled-channel formalism. We
first constructed kernel amplitudes from meson-exchange diagrams in the t- and u-channels, derived from effective
Lagrangians based on hidden local symmetry. In addition, we introduced the pole diagram for h1(1595) to generate
the h1(1595) resonance. We found that the h1(1595) pole diagram also has a significant effect on the generation of
h1(1170). Six channels were incorporated: πρ, ηω, KK̄∗, ηϕ, η′ω, and η′ϕ channels. We solved the off-shell coupled
integral equations and discussed the dynamical generation of the h1(1170). The present analysis revealed two poles
at (1387 − i6) MeV and (1452 − i51) MeV, exhibiting a two-pole structure of the h1(1415) meson. This two-pole
structure may resolve the discrepancy in the experimental data on the mass of h1(1415). The results showed that
the lower pole couples strongly to the KK̄∗ channel, while the higher pole couples predominantly to the ηϕ channel.
This provides an essential clue to understand the nature of h1 mesons and explains possible discrepancies in the mass
of h1(1415). The two-pole structure of h1(1415) can account for the seemingly conflicting experimental results, with
the lower pole corresponding to h1(1380) and the higher pole to h1(1440). Notably, the higher pole vanishes in KK̄∗

elastic scattering, which explains why some experiments observe only the lower pole.
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