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Abstract: We present the first calculation of same-sign WW scattering at the

LHC in the fully leptonic decay channel including the modelling of polarisation for

intermediate electroweak bosons and radiative corrections up to NLO EW+QCD

accuracy. The predictions rely on a pole expansion and on the split of polarisation

states at matrix-element level. Doubly-polarised and unpolarised signals are inves-

tigated together with full off-shell results. A detailed phenomenlogical analysis is

carried out focusing on differential observables that discriminate between polarisa-

tion states, paving the way for refined polarisation-oriented analyses of vector-boson

scattering with Run-3 LHC data.
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1 Introduction

The scattering of massive electroweak (EW) bosons represents a gold-plated channel

to access the electroweak-symmetry-breaking (EWSB) mechanism realised in nature.

As such, it provides a strong probe of the EW and scalar sectors of the Standard

Model (SM), as well as a crucial handle to unveil potential new-physics effects [1–3].

In the SM, the scattering of longitudinally polarised W and Z bosons at high energy

is characterised by delicate cancellations among large contributions coming from
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pure-gauge-boson and Higgs-mediated diagrams, which individually violate pertur-

bative unitarity [4–7]. This motivates the strong interest in accessing vector-boson

scattering (VBS) processes at the LHC.

The ATLAS and CMS collaborations have invested a huge effort to measure VBS

at the LHC, leading to the measurement of W±W± [8–12], ZZ [13–15], ZW± [11, 16–

18], and W+W− [19, 20] scattering in fully leptonic decay channels. The search for

new-physics effects in VBS has targeted possible deviations from the SM quartic-

gauge couplings [8, 21–23]. More recently, the investigation of VBS in the semi-

leptonic decay channel has started [23–25]. The first, and so far unique, measurement

of polarised VBS has been achieved by CMS in the same-sign WW channel with

leptonic decays [26].

The calculation of higher-order corrections in the SM to VBS including off-shell

effects in the fully leptonic channel is known up to next-to-leading-order (NLO)

QCD [27–38] and NLO EW accuracy [32, 34–39] for all production channels. For

the production of W+W+ and ZZ in association with two jets, the complete NLO

corrections, including those to the QCD irreducible background, have been computed

[32, 36, 38]. The matching of fixed-order corrections to parton-shower (PS) effects

has been achieved for VBS in case of leptonic decays at NLO QCD [33, 40–47] and

more recently at NLO EW accuracy [48].

The importance of VBS in unveiling possible new-physics effects is proven by

several studies in the context of the SM effective-field theory [49–56] and of the

Higgs effective-field theory [57–63], as well as within UV-complete models beyond

the SM, like singlet extensions [64] and composite Higgs models [65].

Owing to the delicate cancellations between Higgs and pure-gauge contributions

at high energies in the longitudinal-vector-boson scattering, the LHC community

has recently started to access the polarisation state of intermediate EW bosons pro-

duced at the LHC. Together with modern machine-learning approaches [66–72], the

paradigm for polarisation extraction from LHC Run-2 and Run-3 data is the so-

called polarised-template method. This has lead to the measurement of polarisation

fractions and spin correlations in inclusive di-boson production [73–77] and, although

to a lesser extent owing to limited statistics, also in VBS [26]. Sensitivity studies for

longitudinally polarised VBS with upcoming LHC runs are promising [78, 79]. To en-

able the measurement of polarised cross-sections, the SM theoretical predictions have

to be tailored to specific helicity states of intermediate EW bosons, modelling prop-

erly their production and decay mechanisms. This task has been achieved in recent

years with a focus on inclusive di-boson production, including radiative corrections

up to (N)NLO QCD [80–83] and NLO EW [84–89] accuracy, and the (N)LO match-

ing to PS [90–92]. The predictions for polarised bosons in VBS are so far limited to

LO accuracy [90, 93–96] in the publicly available event generators PHANTOM [97],

MG5 aMC@NLO [98] and Sherpa [99]. Reaching NLO accuracy for polarised VBS

signals is urgently needed in view of the increased statistics of the upcoming LHC
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data, which will soon enable refined VBS analyses and more accurate extraction of

polarisation fractions.

Motivated by this urgency, in this work we have achieved for the first time

NLO QCD + EW accuracy for (doubly) polarised W+W+ production in association

with two jets, specifically in the decay channel with two same-sign, opposite-flavour

charged leptons. The calculation, based on an extension of methods introduced

for inclusive di-boson production [80, 84, 85, 88], represents a milestone for the

investigation of di-boson systems produced at the LHC, paving the way for a deeper

understanding of the spin structure and the consequent implications for the EWSB

mechanism.

The article is structured as follows. In Section 2 we describe the strategy em-

ployed to compute polarised signals, tailored but not limited to VBS processes. In

Section 3 we show the numerical results obtained for doubly polarised W+W+ scat-

tering at the LHC, including fiducial cross-sections, polarisation fractions, and dif-

ferential distributions. The presented results are relevant for the comparison with

LHC Run-3 data. In Section 4 we draw the conclusions of our work.

2 Details of the calculation

In this section we describe the details of a general pole-expansion approach to obtain

a theoretically sound definition of polarised-vector-boson signals at NLO accuracy in

the EW and QCD couplings. While all techniques are fully general and applicable to

any multi-boson collider process, we take as an example a VBS process at the LHC,

i.e. the production of two same-sign W bosons in association with two jets,

pp → e+νeµ
+νµ + jj. (2.1)

As it is clear from Eq. (2.1), the fully leptonic decay channel with different final-state

lepton flavours is considered in the phenomenological analysis presented in this work,

but the formalism applies also to hadronic decays [83].

In this work, we consider all LO contributions of O(α6), O(αsα
5), and O(α2

sα
4)

to the process in Eq. (2.1). At NLO we only calculate the NLO EW and QCD cor-

rections to the EW LO, i.e. the O(α7) and O(αsα
6). The O(α7) contributions are

pure EW corrections to the LO purely EW cross-section of O(α6). The O(αsα
6)

contributions, on the other hand, consist of QCD corrections to O(α6) and EW cor-

rections to the LO interference O(αsα
5), which cannot be separated unambiguously.

We nevertheless call these corrections QCD corrections for simplicity, as this is the

dominant contribution [32].

Following the general procedure used in inclusive di-boson processes [80, 82, 84,

86, 88], our polarised-vector-boson calculation in VBS boils down to two main stages:

(1) the selection of doubly-resonant topologies contributing to the SM amplitude at
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tree level and at one-loop level, and (2) the selection of individual polarisation states

in such doubly-resonant contributions. We start the discussion from stage (1), i.e.

the selection of resonant diagrams and the use of a pole approximation (PA) to

render the resonant amplitude gauge invariant. In this regard, owing to the NLO

accuracy of the calculation, we separately consider the treatment of Born-like and

real-radiation contributions in Sections 2.1 and 2.2, respectively. The application of

the pole approximation to the Catani–Seymour (CS) subtraction terms is discussed

in Sections 2.3 and 2.4. The selection of polarisation states, i.e. stage (2), is described

in Section 2.5.

While the discussion is tailored to the VBS process in Eq. (2.1), the calculation

strategy is general and applies to any multi-boson process, provided a suitable choice

for an on-shell approximation is made, depending on the number of resonances and

decay products. This can become especially involved when more than one resonant

structure contributes to the same final state, as recently shown in tri-boson produc-

tion [100] and semi-leptonic VBS [101]. A general algorithm for an on-shell projection

has been formulated in Ref. [101].

2.1 Born-like contributions in the pole approximation

The pole approximation (PA) [102–105], tailored to fully leptonic W+W+ scatter-

ing at the LHC, relies on the selection of diagram topologies that are characterised

by two intermediate s-channel W+ bosons which are produced in association with

two jets and then undergo leptonic decays. Owing to the resonance topology with

two W+ bosons, we refer interchangeably to the PA or to the double-pole approx-

imation (DPA). At NLO, both contributions with Born and real kinematics are

present. Those with Born kinematics come from Born matrix elements, one-loop

corrections of EW or QCD type, and integrated subtraction counterterms needed

to treat the infrared (IR) singularities. In the DPA such contributions are charac-

terised by both W+ bosons undergoing two-body decays. In Figure 1 we show sample

doubly-resonant diagrams contributing in the PA to VBS at Born-level and at one

loop. A tree-level contribution to the QCD background is also depicted. The treat-

ment of Born-like contributions in the PA follows straightforwardly from previous

literature results obtained for VBS [93, 95, 96] and inclusive di-boson production

[80, 81, 83, 84, 88]. Sticking to the notation of Ref. [84], we dub the PA applied

to Born-like contributions DPA(2,2). In short, the DPA(2,2) procedure amounts to

applying an on-shell mapping to the Born kinematics in the numerator of doubly-

resonant matrix elements, preserving the off-shellness of intermediate EW bosons in
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Figure 1. Sample doubly-resonant contributions to W+W+ scattering at LO EW (top

left), NLO EW (bottom left) and NLO QCD (bottom right) accuracy, and to the QCD

background at LO (top right). Both tree-level and one-loop diagrams are characterised by

a Born-like kinematics.

the denominator. In formulas, this reads

Mres = Mµν
P (q1, q2)

−igµα
q21 −M2

W + iΓWMW

−igνβ
q22 −M2

W + iΓWMW

Mα
D1
(q1)Mβ

D2
(q2)

= − Mµν
P (q1, q2)MD1,µ(q1)MD2,ν(q2)

[q21 −M2
W + iΓWMW] [q22 −M2

W + iΓWMW]

−→− Mµν
P (q̃1, q̃2)MD1,µ(q̃1)MD2,ν(q̃2)

[q21 −M2
W + iΓWMW] [q22 −M2

W + iΓWMW]
= MDPA , (2.2)

where MP represents the production amplitude for two W+ bosons in association

with two jets, while MD is the two-body decay amplitude for W+ → ℓ+νℓ. We

have explicitly written the momenta of the intermediate bosons before (q1, q2) and

after the on-shell mapping (q̃1, q̃2). While the on-shell mapping is not unique, the

size of possible differences among various choices is expected to be of the order of

magnitude of the intrinsic DPA uncertainty, i.e. O(ΓW/MW) [105], for observables

that are inclusive in the decay products of the unstable particles. In the present

work, we choose the same mapping as in Ref. [84] (see Section 2.1 therein), which

has been generalised in Ref. [101].

2.2 Real corrections in the pole approximation

The most involved part of PA calculations concerns the real-radiation contributions

and, in particular, real-photon corrections to production and decay of EW bosons.

These corrections, in the specific case at hand, are part of the NLO EW corrections

to both the O(α6) and O(αsα
5) contributions.
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Figure 2. Sample photon-radiation diagrams contributing to W+W+ scattering at NLO

EW accuracy.

We stress that in our PA calculation we only consider factorisable EW cor-

rections, both in virtual and in real-photon corrections. The impact of universal,

non-factorisable corrections of soft-photon origin [106–109] is known to be small if

both real and virtual corrections are treated in the PA. In fact, the sum of virtual and

real non-factorisable corrections cancels in observables that are inclusive with respect

to the decay products of the resonance [110–112]. We postpone their treatment to

future investigations.

For simplicity, without loss of generality, we consider the real-photon contri-

butions at O(α7). Sample diagrams are shown in Figure 2. The diagrams in the

upper row of Figure 2 involve photons radiated off initial-state (IS) or final-state

(FS) quarks, and can therefore uniquely be associated to photon radiation off the

production process of two W bosons. The bottom–left diagram is obviously associ-

ated to emission from the decay process of a W+ boson. The bottom–right diagram

cannot be associated to either the production or the decay sub-process of VBS but

embeds contributions to both. On the other hand, the genuine QCD corrections to

the LO EW process are uniquely associated to the production sub-process, owing to

the leptonic decay of the bosons. Their treatment in the PA is identical to the one

of EW corrections to the production sub-process.

In order to allow for a separate treatment of real corrections to production and

decay and of the corresponding IR-subtraction counterterms in the PA, the first

step to take is the split of contributions with a photon radiated off a W-boson

propagator via partial fractioning. This step, while essential for charged resonances,
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ℓ+ (k1)

νℓ (k2)W+

γ (k3)

MP

Figure 3. Photon-radiation off a W-boson propagator.

i.e. W bosons at NLO EW and top quarks at both NLO QCD and NLO EW, is

obviously not needed for neutral resonances like Z and Higgs bosons. In Figure 3 we

depict the generic production (sub-amplitude MP) of a W boson with momentum

q = k1 + k2 + k3 that radiates a photon with momentum k3 and then decays into a

pair of leptons (with momenta k1 and k2). The corresponding amplitude (which we

label Mprop) can be written as

Mprop = Nprop(k1, k2, k3)
1

s123 −M2
W + iMWΓW

· 1

s12 −M2
W + iMWΓW

= −Nprop(k1, k2, k3)

s13 + s23

(
1

s123 −M2
W + iMWΓW

− 1

s12 −M2
W + iMWΓW

)
,

(2.3)

where the invariants are defined as sab = 2ka ·kb and sabc = sab + sac + sbc. If the

PA is applied to the two-body decay of the W boson (labelled PA(2)), the resulting

amplitude reads

M̃(2)
prop =

1

s12 −M2
W + iMWΓW

×
[Nprop(k1, k2, k3)

s13 + s23

(
1− s12 −M2

W + iMWΓW

s123 −M2
W + iMWΓW

)]
s12=M2

W,ΓW=0

=
1

s12 −M2
W + iMWΓW

[
Nprop(k̃

(12)
1 , k̃

(12)
2 , k̃

(12)
3 )

s̃
(12)
13 + s̃

(12)
23

]
, (2.4)

where the tilde indicates on-shell-projected momenta within the approximation PA(2).

If the PA is applied to the three-body decay of the W boson (labelled PA(3)), the

amplitude reads

M̃(3)
prop =

1

s123 −M2
W + iMWΓW

×
[
−Nprop(k1, k2, k3)

s13 + s23

(
1− s123 −M2

W + iMWΓW

s12 −M2
W + iMWΓW

)]
s123=M2

W,ΓW=0

=
1

s123 −M2
W + iMWΓW

[
−Nprop(k̃

(123)
1 , k̃

(123)
2 , k̃

(123)
3 )

s̃
(123)
13 + s̃

(123)
23

]
, (2.5)
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where the tilded momenta correspond to the on-shell-projected momenta within the

approximation PA(3). Note that the partial fractioning performed in Eq. (2.3) gives

exactly the sum of the two contributions that must be treated with PA(2) and PA(3),

respectively, and which correspond to the results of Eqs. (2.4) and (2.5). We recall

that the combination of one PA(2) mapping (two-body decay of one W boson) with

one PA(3) mapping (three-body decay of the other W boson) gives rise to the DPA(2,3)

and DPA(3,2) procedures in the notation introduced in Ref. [84], while two PA(2)

mappings correspond the DPA(2,2) mapping in the same reference.

2.3 Subtraction dipoles for production sub-processes

Since in VBS the QCD real corrections to the LO EW signal can only affect the

quark lines, the subtraction counterterms needed to regulate QCD IR singularities

are of the same kind as those appearing in the full off-shell calculation (no emission

from particles affected by the on-shell projection). This holds for gluon radiation

and gluon-induced real processes. A similar reasoning applies to the photon–quark-

initiated processes. In our calculation, the initial-state collinear singularity associated

to the γ → qq̄ splitting is regulated by a unique dipole where the other incoming

parton plays the role of the spectator, as also done in inclusive W+W− production

[88]. When the real photon appears in the final state and is emitted off the production

sub-process, the subtraction counterterms for the on-shell process

qq −→ W+W+qq + γ (2.6)

are needed to properly subtract soft and collinear singularities. In the dipole formal-

ism [113], the list of subtraction counterterms associated to the process in Eq. (2.6)

include massless dipoles with a quark as an emitter and another quark as a spectator,

but also dipoles with W bosons acting as emitters and/or spectators. Such dipoles are

depicted in Figure 4. At LHC energies, the photon radiation off a W boson leads only

to soft divergences which are independent of the spin of the emitting particle, while

the collinear singularities are absent owing to the finite W-boson mass. Therefore, we

can safely use dipoles devised for massive fermions [113] upon replacing the massive

fermion with a W boson. Note that massive dipoles of the type of Figures 4(a), 4(d),

and 4(e) are also present in inclusive W+W− production in the DPA [88, 89] and are

used here following the same implementation as in Ref. [88]. Dipole types shown in

Figures 4(b) and 4(c) appear for the first time in DPA calculations of boson-pair pro-

duction in association with jets and have been newly introduced for this calculation

in the context of polarised predictions.

For the proper subtraction of the IR singularities, the local counterterms must

embed the same singular behaviour as the real-emission matrix element. Addition-

ally, an exact correspondence between the integrated and local counterterms must be

ensured to avoid unphysical dependences on the subtraction scheme. These unavoid-

able requirements entail important consequences for the application of the on-shell
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Figure 4. QED subtraction dipoles involving one or two massive external particles (high-

lighted as bold lines). In WW scattering at the LHC the massive particles are on-shell

W bosons, but in general they can be any massive charged particles. Analogous QCD

dipoles appear in the presence of massive coloured particles, like top quarks. The indices

indicate the masses of emitters (first indices) and spectators (second indices) and the labels

F and I stand for final and initial state.

projections in the PA and the subtraction mappings. The soft-photon emission off

a W boson leads to a single IR pole in dimensional regularisation only if the bosons

are on shell, complicating the interplay between the subtraction counterterms for the

production sub-process and the DPA(2,2) procedure, as we are going to show in the

following.

In order to further detail this delicate aspect, let us consider the partonic process

of Eq. (2.6) with the momentum assignment

q q → µ+(k1) νµ(k2)︸ ︷︷ ︸
W+(k12)

e+(k3) νe(k4)︸ ︷︷ ︸
W+(k34)

q(k5) q(k6) γ(k7) , (2.7)

and focus on the dipole with a massive W boson as an emitter (with momentum

k12, decaying into two leptons with momenta k1, k2), a massless final-state quark as

spectator (with momentum k5), and an emitted photon with momentum k7. This

corresponds to the dipole type FFm,0 in Figure 4. Although tailored to a specific

dipole, the following discussion can be straight-forwardly extended to other processes

and dipoles with a charged resonance as emitter and/or spectator. Since we consider

the DPA contribution from the sub-process for the production of an off-shell W boson,

the singularity associated to this dipole becomes only manifest after setting the

W boson on its mass shell. Momenta resulting from a DPA projection are indicated

with a tilde, while those originating from CS mappings get a bar. For simplicity we

abbreviate the denominators of the off-shell propagators of the two W bosons as

BW(kij) =
(
k2
ij −M2

W

)2
+
(
ΓWMW

)2
. (2.8)
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We write the real-photon contribution R to the differential cross-section with the off-

shell phase-space measure factorised in a production phase-space measure, off-shell

virtualities of the W bosons, and two phase-space measures for the two-body decays

as (suppressing flux factor and symmetry factors)

R ∝

∣∣∣M(7)
(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2
BW(k12) BW(k34)

dΦ7 (Q; k1, .. , k5, k6, k7)

=

∣∣∣M(7)
(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2
BW(k12) BW(k34)

dΦ5 (Q; k12, k34, k5, k6, k7)

× dk2
12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) . (2.9)

The numerator of the real matrix element is then factorised as∣∣∣M(7)
(
Q; k̃1, .. , k̃4, k5, k6, k7

)∣∣∣2 = ∑
λ12,λ34

∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
×
∣∣∣ε̃µ12M(2)

D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2 ,
(2.10)

where the sum runs over the polarisations λ12, λ34 of the W bosons with momenta

k̃12, k̃34, respectively, [see also Section 2.5, in particular Eq. (2.28)] leading to the

following contribution to the cross-section:

R ∝
∑

λ12,λ34

∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

×
∣∣∣ε̃µ12M(2)

D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

dk2
12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) .

(2.11)

The two-body phase-space measure for the W-boson decay reads in d = 4 − 2ϵ

dimensions

dΦ2 (k12; k1, k2) =
(k2

12)
−ϵ

2 (4π)2−2ϵ
dΩ

(2−2ϵ)
2 , (2.12)

and after applying the DPA(2,2)

dΦ2

(
k̃12; k̃1, k̃2

)
=

(
k̃2
12

)−ϵ

2 (4π)2−2ϵ
dΩ

(2−2ϵ)
2 , (2.13)

as the DPA(2,2) conserves the angles (Ω
(2−2ϵ)
2 ) of final state leptons in the W-boson

rest frame [84]. This means that the off-shell and on-shell-projected decay phase-

space measures only differ by a term (k2
12/k̃

2
12)

ϵ. Since the decay parts (matrix element
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and phase-space measures) of the DPA-projected real contribution are treated at LO,

they are always evaluated in d = 4, where the difference disappears.

Turning to the discussion of the local dipole, we choose to first apply (generalised)

CS mappings to the real off-shell kinematics, and thereafter apply the DPA on-shell

projection to the reduced Born kinematics. This choice is especially important as

the reverse order (DPA projection first, CS mapping second) leads to a mismatch

between local and integrated dipoles within the accuracy of the DPA, as discussed

in detail in Appendix A.

The real-subtracted contribution R−D, where R is the real contribution to the

cross-section and D the one of the considered dipole, before application of the DPA

reads:

R−D ∝
∑

λ12,λ34

[∣∣∣M(5)
P,µν (Q; k12, k34, k5, k6, k7) ε

µ,∗
12 ε

ν,∗
34

∣∣∣2
× 1

BW(k12)

∣∣∣εµ12M(2)
D,µ (k12; k1, k2)

∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

dk2
12

2π
dΦ2 (k12; k1, k2)

−D[12]7,5(k̄12, k̄5; y, z, ϕ)
∣∣∣M(4)

P,µν

(
Q; k̄12, k34, k̄5, k6

)
ε̄µ,∗12 ε

ν,∗
34

∣∣∣2
× 1

BW(k̄12)

∣∣∣ε̄µ12M(2)
D,µ

(
k̄12; k̄1, k̄2

)∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

) dk̄2
12

2π
dΦ2

(
k̄12; k̄1, k̄2

) ]
× 1

BW(k34)

∣∣∣εµ34M(2)
D,µ (k34; k3, k4)

∣∣∣2 dk2
34

2π
dΦ2 (k34; k3, k4) , (2.14)

where the generalised CS mapping has been applied to off-shell momenta, projecting

the momenta of the decay leptons {k1, k2} in such a way that the lepton angles in

the rest frame of the decaying boson are preserved [86, 101]. The dipole functions

D[12]7,5(k̄12, k̄5; y, z, ϕ) refer to the emitter [12] the spectator 5 and the emitted par-

ticle 7 and depend on the three corresponding momenta, where the variables y, z, ϕ

parametrise the momentum of the radiated particle. In order to have a proper cor-

respondence between subtraction and integrated dipoles, we need to add back the

integrated contribution that reads (before the DPA projection),

I =
∑

λ12,λ34

I[12]7,5(k̄12, k̄5)
1

BW(k̄12) BW(k34)

∣∣∣M(4)
P,µν

(
Q; k̄12, k34, k̄5, k6

)
ε̄µ,∗12 ε

ν,∗
34

∣∣∣2
×
∣∣∣ε̄µ12M(2)

D,µ

(
k̄12; k̄1, k̄2

)∣∣∣2 ∣∣∣εµ34M(2)
D,µ (k34; k3, k4)

∣∣∣2
× dΦ4

(
Q; k̄12, k34, k̄5, k6

) dk̄2
12

2π

dk2
34

2π
dΦ2

(
k̄12; k̄1, k̄2

)
dΦ2 (k34; k3, k4) , (2.15)
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where

I[12]7,5(k̄12, k̄5) =

∫
d=4−2ϵ

D[12]7,5(k̄12, k̄5; y, z, ϕ) dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
(2.16)

contains explicit ϵ poles only in the on-shell limit of the W-boson virtuality.

After applying the DPA to both Eqs. (2.14) and (2.15), and upon re-writing

the phase-space measures without the factorisation into production × decay, the

real-subtracted and integrated-dipole contributions read

R−D ∝
∑

λ12,λ34

[∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k12)

∣∣∣ε̃µ12M(2)
D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 dΦ7 (Q; k1, . . . , k7)

−D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k̄12)

∣∣∣˜̄εµ12M(2)
D,µ

(
˜̄k12;

˜̄k1,
˜̄k2

)∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ6

(
Q; k̄1, k̄2, k3, k4, k̄5, k6

)]
× 1

BW(k34)

∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2 , (2.17)

I ∝
∑

λ12,λ34

[
I[12]7,5(

˜̄k12, k̄5)
∣∣∣M(4)

P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
× 1

BW(k̄12) BW(k34)

∣∣∣˜̄εµ12M(2)
D,µ

(
˜̄k12;

˜̄k1,
˜̄k2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dΦ6

(
Q; k̄1, k̄2, k3, k4, k̄5, k6

)]
, (2.18)

respectively, where

I[12]7,5(
˜̄k12, k̄5) =

∫
d=4−2ϵ

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
˜̄k12 + k̄5; z̃, ỹ, ϕ̃

)
(2.19)

has the same functional structure as Eq. (2.16) but depends on the on-shell-projected

momenta. The change from off-shell to on-shell radiation variables ỹ, z̃, ϕ̃ in the d-

dimensional integration only amounts to a relabelling of the variables and does not

give a Jacobian.

Disregarding the phase-space measure and matrix elements for decays (which are

not modified by CS mappings and by the DPA up to terms that equal 1 for d = 4),

in the limit of a soft/collinear photon we have {k̄12, k34, k̄5, k6} → {k12, k34, k5, k6},
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and therefore,∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

−
D[12]7,5(

˜̄k12, k̄5; ỹ, z̃, ϕ̃)
∣∣∣M(4)

P,µν

(
Q; ˜̄k12, k̃34, k̄5, k6

)
˜̄εµ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k̄12) BW(k34)

→ ∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

−
D[12]7,5(k̃12, k5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; k̃12, k̃34, k5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
BW(k12) BW(k34)

, (2.20)

giving the correct local subtraction of the production-level phase-space singularity

in the real-photon contribution.

Next, we analyse the correspondence between the subtraction counterterms and

integrated counterterms. The difference between the two equations,

Eq. (2.17) :

∫
(d=4)

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
,

Eq. (2.18) :

∫
(d=4−2ϵ)

D[12]7,5(
˜̄k12, k̄5; ỹ, z̃, ϕ̃) dΦrad

(
˜̄k12 + k̄5; z̃, ỹ, ϕ̃

)
(2.21)

= I[12]7,5(
˜̄k12, k̄5) ,

only resides in the phase-space measures, which are related by the application of

the DPA on-shell projection. In fact, the radiation variables z̃, ỹ, ϕ̃ are obtained

applying the DPA to the original off-shell real kinematics and the momentum ˜̄k12+ k̄5
is obtained applying the DPA to the off-shell mapped momentum k̄12 + k̄5. The

discrepancy in the phase-space measure results in a Jacobian factor of the on-shell

projection. When the integration over the off-shell masses k2
12 and k2

34 is carried out

this only gives a contribution that is beyond the DPA intrinsic accuracy. Practically,

in most of the considered differential distributions this effect is negligible, and small

effects are only visible in parts of distributions that are not dominated by resonant

W-boson pairs.

Although applying the CS mappings before the DPA on-shell projection enables

a more straightforward subtraction of IR singularities, it results in having to deal

with some phase-space configurations where the real off-shell momenta cannot be

on-shell projected (owing to the 2MW threshold of the DPA procedure), while the

CS-mapped Born-level momenta can be projected on shell. Such configurations can

only appear when the photon is hard, as the DPA on-shell projection and the CS
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mappings commute in the soft-photon limit. Thus, the treatment of these events does

not hamper the local cancellation of IR singularities. While for standard phase-space

configurations the dipole kernels are evaluated with the on-shell-projected momenta,

we choose to evaluate the dipole kernels with off-shell kinematics in these peculiar

cases. Although this choice introduces a discrepancy between local and integrated

dipoles, this is beyond the accuracy of the PA and its numerical impact is negligible.

In the above discussion, the CS subtraction mapping has only been applied to the

momenta of the resonant W bosons. In order to evaluate the decay amplitudes, CS-

mapped momenta for the decay products are required, and we need a prescription

to map the decay-product momenta accordingly. The most natural choice is to

boost the decay-particle momenta into the rest frame of the corresponding W-boson

momentum using the original real kinematics and boost them back using instead the

CS-mapped momentum of the boson. For the example dipole (massive final-state

emitter, massless final-state spectator) discussed so far, this gives the mapped decay

momenta

k̄i = Λ(k̄12)
−1 · Λ(k12) · ki for i = 1, 2 , (2.22)

where Λ(p) is the boost into the rest frame of the momentum p.

As a last comment of this section, we stress that in the above discussion, only the

dipoles with a massive final-state emitter and a massless final-state spectator have

been considered. The argument for using the CS subtraction mapping before apply-

ing the DPA on-shell projection holds also for the other dipole types. In addition,

while our reasoning is tailored to W+W+ scattering in the PA, the whole analysis of

this section applies to the general case of any charged resonances. In Appendix B

we list the results for all local and integrated dipoles involving generic electrically

charged massive particles as emitters and/or spectators. They represent the abelian

version of the analogous results for QCD-charged massive partons [113].

2.4 Subtraction dipoles for decay sub-processes

In this section, we focus on the subtraction of QED IR divergences originating from

corrections to the decays of the vector bosons, i.e. arising from the lower left diagram

in Figure 2 and from the lower right one after partial fractioning the photon radiation

off the W-boson propagator (see Section 2.2). Note that both soft and collinear

singularities are associated to the radiation off the decay products (leading to a

double pole in dimensional regularisation), while the photon radiated off the charged

resonance only leads to additional soft singularities (single pole).

The general treatment of IR divergences in top-quark decays is known in the

literature [114] and such an approach can be applied to W bosons as well [85, 88],

since the soft-photon singular structure is independent of the spin of the emitting

resonance. Note that quasi-collinear configurations can be safely neglected, owing to

the typical energy scale of the hard process at the LHC, which is not much larger
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than the resonance mass [115]. As in Ref. [88], instead of using the dipole structure

of Ref. [114], we employ a subtraction counterterm reproducing the exact structure

of the radiative decay W+ → ℓ+νℓγ, relying on a final–final dipole mapping with a

massless spectator (the neutrino) and a massless emitter (the charged lepton). Let

k1, q, and k3 be the momenta of the charged lepton, the decaying W boson, and the

radiated photon, respectively. The momentum k2 of the neutrino plays the role of

the spectator. The subtraction mapping takes the usual form of final–final massless

dipoles [116],

k̄µ
1 = kµ

1 + kµ
3 − s13

q2 − s13
kµ
2 , k̄µ

2 = kµ
2

q2

q2 − s13
. (2.23)

Defining the usual radiation variables,

y =
s13
q2

, z =
s12

s12 + s23
=

s12
q2 − s13

, (2.24)

we write the local counterterm as

D(dec)(q2, y, z) =
8πα

q2 y

(1− y) (1− z) [1 + (1− y)(z2 − y(2− 2z + z2))]

[1− z(1− y)]2
. (2.25)

This kernel reproduces the soft and collinear singularities originating from photon

emission from both the final-state charged lepton and the on-shell W boson. Af-

ter integration in 4 − 2ϵ dimensions over the radiative phase space, the integrated

counterterm reads∫
dΦradD(dec)(q2, y, z) =

α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

q2

)ϵ [
1

ϵ2
+

5

2ϵ
+

(
95

12
− π2

2

)
+O(ϵ)

]
,

(2.26)

reproducing the pole structure consistent with Ref. [114]. Since there is a single

charged particle in the final state, no additional final–final dipoles contribute, and all

divergences are cancelled by a single counterterm. This would not be the case for the

hadronic decay of a W boson, where two dipoles of the type described in Eq. (2.25)

(one per each decay quark) and two final–final massless dipoles are needed to prop-

erly subtract all soft and collinear singularities. Additionally, when investigating

processes with charged resonances decaying into more than three particles (like the

top quark), the spectator momentum (sum of momenta of more than one massless

particle) is massive, giving rise to a more complicated subtraction mapping [114].

In Eqs. (2.23)–(2.26) we have retained q2 as the squared mass of the W boson.

In more detail, we choose to apply the subtraction mapping to the off-shell real

kinematics, and then to apply to the reduced kinematics the DPA(2,2) mapping in

order to set the W boson on its mass shell. The real matrix element is instead

treated with the DPA(3,2) or DPA(2,3) mapping. Since these mappings do not change
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the ratio of invariants of the final-state particles, the integration measure and the

radiation variables in Eqs. (2.25) and (2.26) are untouched by the DPA mappings,

and the pole structure in Eq. (2.26) remains the same whether q2 = M2
W or not.

Since in the DPA the numerical integration of the real matrix element and of the

associated local counterterm are carried out using the off-shell phase space, there is

a mismatch between the local counterterm and its integrated counterpart, consisting

of the Jacobian determinant of the DPA on-shell projection. However, upon phase-

space integration, this mismatch boils down to a contribution beyond the accuracy

of the DPA and can therefore safely be neglected. We stress that applying the

DPA mapping first and the subtraction mapping second would also lead only to a

mismatch that is beyond the DPA accuracy for the decay-dipole contribution. This

was indeed the approach used for inclusive ZZ production [84]. We have proven

for the decay-dipole contributions that the two mapping sequences lead to results

(integrated and differential) that are fully compatible within numerical uncertainties.

This represents a substantial difference compared to production-level dipoles, where

instead the application of the mappings in different sequences may lead to numerically

sizeable discrepancies.

2.5 Polarised-signal definition

At this point of the discussion, we can introduce the concept of polarised signal, once

all matrix elements entering the NLO calculation have been projected on shell using

the pole approximation and therefore are gauge invariant. In VBS, this results in

the production of two intermediate on-shell W bosons in s channel, which undergo

leptonic decays. Focusing on one W boson with momentum q, in the ‘t Hooft–

Feynman gauge an amplitude in the PA reads

MPA = Mµ
P(q̃)

−igµν
q2 −M2

W + iΓWMW

Mν
D(q̃) , (2.27)

where MP and MD are the production and decay sub-amplitudes with polarisation

vectors stripped off. These amplitudes depend on the on-shell-projected momentum

q̃ for the boson, while the off-shell momentum q is retained in the denominator of

the propagator. The tensorial part of the propagator in Eq. (2.27) can be written in

terms of polarisation vectors associated to the on-shell boson,

−gµν =
∑

λ′=L,±,A

ε(λ
′)

µ (q̃) ε∗ (λ
′)

ν (q̃) , (2.28)

where the sum runs over three physical states, longitudinal (L), left (−) and right

handed (+), and an auxiliary state (A). The latter is unphysical and cancels against

Goldstone-boson contributions for any gauge choice for on-shell matrix elements.

From the unpolarised amplitude of Eq. (2.27), it is then natural to retrieve a polarised
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Figure 5. Real-photon correction to the W+-boson decay (left) and its Goldstone-boson

counterpart (right), with MP denoting a generic production amplitude.

amplitude by replacing the complete sum on the right side of Eq. (2.28) with one

single term for a definite physical polarisation state λ [80, 93],∑
λ′

ε(λ
′)

µ (q̃) ε∗ (λ
′)

ν (q̃) −→ ε(λ)µ (q̃) ε∗ (λ)ν (q̃) , (2.29)

leading to the equality,

MPA =
∑
λ′

M(λ′)
PA , (2.30)

where the sum only runs over the three physical polarisation states. Cross-sections

depend on squared matrix elements. Squaring the sum of polarised amplitudes we

obtain

|MPA|2 =
∑
λ′

∣∣∣M(λ′)
PA

∣∣∣2 + ∑
λ′ ̸=λ′′

M(λ′)
PA M(λ′′)

PA

∗
, (2.31)

where the first term represents the incoherent sum of polarised squared matrix ele-

ments, while the second one includes all contributions resulting form the interference

between two different polarisation states. The interference term only vanishes if a

complete integration over the decay-product phase-space measure is performed. This

is usually prevented by the selection cuts on decay products, leading to non-vanishing

interferences.

In the sum of Eq. (2.30) we have excluded the contribution of the unphysical

polarisation state, as it cancels against Goldstone-boson contributions. This cancel-

lation turns out to be trivial when the EW bosons undergo tree-level decays into

massless fermions, since the Goldstone-boson contributions are proportional to the

fermion masses. It is slightly more involved when considering NLO EW real and

virtual corrections to the EW-boson decay, owing to non-vanishing Goldstone-boson

contributions, like the ones depicted in Figure 5.

While this cancellation is expected to happen at any perturbative order in the

EW coupling, we verified this numerically using Recola version 1.4.4 by comparing

different contributions in the employed amplitudes.

It is essential to recall that, while the complete sum in Eq. (2.28) is Lorentz

invariant, the individual terms depend on the specific frame in which the boson

momentum q̃ is evaluated. In other words, the polarised amplitudes are Lorentz-

frame dependent. It is then crucial to evaluate all matrix elements entering the NLO
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Figure 6. Total cross-sections for on-shell W+W+ → W+
λW

+
λ′ scattering at tree level, as

functions of the di-boson centre-of-mass energy. The two initial bosons are unpolarised,

while the two final ones can be in a longitudinal (L) or transverse (T) polarisation state.

Numerical results have been obtained with Recola 1 [121, 122] for the complete SM (solid

curves) and in the absence of Higgs-mediated diagrams (dashed curves).

calculations in the same Lorentz frame, in order to have a consistent definition of

the polarised signal [81, 84]. For VBS processes, different choices are possible [96],

but the di-boson centre-of-mass frame is best motivated from a theoretical point of

view. In this frame, the unitarity cancellations between Higgs and pure-gauge-boson

contributions at tree level are maximal for on-shell longitudinal-boson scattering and

there is only one reference axis for the definition of polarisation vectors of the two

bosons (which are in a back-to-back kinematic configuration).

It is well known [117–120] that in the scattering of longitudinal bosons the

unitarity-violating behaviour in the high-energy limit of pure-gauge-boson diagrams

is regularised by the inclusion of Higgs-mediated diagrams, recovering perturbative

unitarity in the tree-level amplitude. In Figure 6 we consider the energy growth

of the total cross-section for W+W+ → W+W+ with possibly polarised final-state

bosons, both in the complete SM and excluding Higgs-mediated contributions. The

cross-sections are shown as functions of the di-boson centre-of-mass energy (
√
s) and

have been integrated over the range 10◦ < θ < 170◦ of the scattering angle to avoid

the physical singularity associated with t-channel photon exchange. While for trans-

verse and mixed polarisations the energy growth is almost absent when excluding

Higgs diagrams, for two longitudinally polarised final-state bosons tree-level unitarity

is fulfilled through delicate cancellations of large contributions from pure gauge and

Higgs diagrams. It is also known [117–120] that in the SM the cross-section decreases

with energy as 1/s for all polarisation combinations, apart from those with an odd

number of external longitudinal bosons, which are suppressed by one further power

of s. The NLO EW corrections to the on-shell scattering are large and negative [120]
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Figure 7. Sample real-radiation diagrams of order O(α7) (left) and O(αsα
6) (middle,

right), embedding triple-W-boson production and contributing to the same final state as

W+W+ scattering at the LHC.

and become quickly unreliable for scattering energies in the 10TeV range, where

resummation of large logarithms is clearly mandatory. Beyond LO, the calculation

becomes tricky if a real-mass scheme is used, requiring the consistent inclusion of

finite-width effects [120]. These problems are overcome by embedding W scattering

in a physical process as is done in the present paper.

2.6 Overlap with tri-boson production

While the application of typical VBS selections enhances VBS topologies in our case,

a non-trivial overlap with tri-boson production and Higgs-strahlung shows up in real

corrections. In particular, the application of a DPA strategy targeting two leptoni-

cally decaying W+ bosons requires to set the EW-boson widths to zero everywhere

apart from the two target propagators, in order to preserve gauge invariance. This

leads to a divergence if an additional EW-boson s-channel propagator gets close to

the EW-boson pole mass, namely in the case of pp → W+W+W− contributions with

W− → jj. At LO [O(α6)], the VBS invariant-mass cut Mjj > Mcut ≫ MW com-

pletely suppresses contributions of this type and avoids the singularity. At NLO the

possible presence of three jets after clustering leads to an ambiguity in the identi-

fication of the two VBS tagging jets. A common choice is to use the two hardest

jets, sorted in transverse momentum [30, 31]. This is the choice made in our work as

well. If one of the two tagging jets does not originate from a W− decay, the tri-boson

topologies can lead to a W− propagator with an invariant equal to MW, rendering

the DPA amplitude divergent. This situation appears in photon- and gluon-induced

real-emission processes as well as gluon-emission processes, as shown in Figure 7.

To properly take into account the third resonance for these processes the standard

DPA cannot be used. While in general it would be possible to subtract the tri-boson

contribution through a triple-pole approximation [101], we choose to regularise pos-

sibly unprotected W−-boson s-channel propagators restoring for those a finite width,

thereby introducing a gauge dependence. This gauge dependence is not enhanced
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by any large factor in our case. The comparison with the full off-shell calculation

shows that the size of the gauge-dependent contributions is numerically small, i.e.

within the uncertainty of the DPA. Since integrated subtraction counterterms are

based on a Born kinematics, they do not suffer from a potentially unprotected W-

boson propagator, and are therefore computed in the standard DPA. Although this

introduces a slight mismatch between local and integrated counterterms for tri-boson

configurations, its numerical impact is completely negligible owing to the application

of VBS-like invariant-mass cuts (see remarks on checks in Section 3.1).

We also note that tri-boson diagrams include contributions from Higgs-associated

production with the Higgs boson undergoing a semi-leptonic decay H → W+W− →
ℓ+νℓjj (middle diagram in Figure 7). While such contributions are completely cut

away by VBS cuts at LO and at NLO EW, real-QCD-radiation events can pass

these cuts if one of the tagging jets does not result from the Higgs boson, leading

to enhancements in the cross-section owing to the s-channel Higgs boson. Although

these configurations are suppressed (and regulated by the finite Higgs-boson width)

as they appear only in partonic processes with small contributions, their interplay

with the DPA procedure targeting two on-shell W+ bosons is delicate. The impact

of this is numerically negligible for our purposes, however, a dedicated PA approach

is in general needed [101].

3 Numerical results

3.1 Setup and tools

We consider an LHC centre-of-mass energy of
√
s = 13.6TeV. The on-shell masses

and widths of weak bosons take the values [123],

MOS
Z = 91.1876GeV, ΓOS

Z = 2.4952GeV,

MOS
W = 80.377GeV, ΓOS

W = 2.085GeV , (3.1)

which are converted to pole values according to Ref. [124]:

MV =
MOS

V√
1 + (ΓOS

V /MOS
V )

2
, ΓV =

ΓOS
V√

1 + (ΓOS
V /MOS

V )
2
, V = W, Z . (3.2)

The masses and widths of the top quark and of the Higgs boson are set to [123]

mt = 172.69GeV, Γt = 1.42GeV,

MH = 125.25GeV, ΓH = 0.0041GeV . (3.3)

Note that in the DPA calculations Γt is set to zero, while ΓH is kept finite. We

employ the Gµ scheme [105, 125] to identify the EW coupling. In particular, the
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off-shell calculation is performed in the complex-mass scheme [126–128],

α =

√
2

π
Gµ

∣∣∣∣µ2
W

(
1− µ2

W

µ2
Z

)∣∣∣∣ , µ2
V = M2

V − iMV ΓV (V = W, Z) , (3.4)

where the Fermi constant reads Gµ = 1.16638 × 10−5GeV−2 and the parameters

MZ,MW and ΓW,ΓZ are the pole values of weak-boson masses and widths. In con-

trast, the calculations within the DPA are performed with real couplings and

α =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
. (3.5)

The calculation is carried out with five active flavours, although bottom-induced

channels do not contribute to the considered process. We do include photon-induced

partonic channels that arise at NLO EW. The MS factorisation scheme is used for

the treatment of initial-state collinear singularities of both QED and QCD type.

We employ NNPDF40 nnlo as 01180 qed [129] parton-distribution functions, linked

to our Monte Carlo codes via the Lhapdf interface [130]. The factorisation and

renormalisation scales are set to the same dynamical value,

µR = µF =
√
pT,j1 pT,j2 , (3.6)

where j1 and j2 are the leading and sub-leading jet (sorted in transverse momen-

tum), respectively. Scale uncertainties are obtained from conventional 7-point scale

variations by a factor two. The scales defined in Eq. (3.6) are scaled by factors

(ξF, ξR) ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1), (1, 2), (2, 1), (2, 2)} (3.7)

and the resulting maximal and minimal values of the cross-section are used to cal-

culate the scale variation.

The selections follow closely those used for a recent polarisation measurement by

the CMS collaboration [26]. The events are required to have one positron and one

anti-muon fulfilling [ℓ1(2) is the (sub)leading lepton],

pT,ℓ1 > 25GeV , pT,ℓ2 > 20GeV , |yℓ1,2| < 2.5 , Me+µ+ > 20GeV . (3.8)

Furthermore, we demand at least two jets, clustered with the anti-kt algorithm [131]

and recombination radius R = 0.4, satisfying,

pT,j > 50GeV , |yj| < 4.7 , ∆Re+j > 0.4 , ∆Rµ+j > 0.4 , (3.9)

the leading and subleading jet being in a VBS kinematic regime,

Mj1j2 > 500GeV , |∆yj1j2| > 2.5 . (3.10)
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The selected events need to have a minimum missing transverse momentum

pT,miss > 30GeV (3.11)

and to satisfy the rapidity requirement,

max
ℓ

∣∣∣∣yℓ − yj1 + yj2
2

∣∣∣∣ < 0.75 |∆yj1j2| , ℓ = e+, µ+ . (3.12)

Photons are recombined with jets and leptons according to the anti-kt algorithm

[131] and recombination radius R = 0.1. The jet clustering and lepton dressing is

applied to particles with pseudorapidity |η| < 5.

The calculations in this work have been performed with BBMC and checked

withMoCaNLO. Both Monte Carlo codes have already been used for the simulation

of intermediate polarised bosons at NLO accuracy for several di-boson production

processes [80, 81, 83, 84, 88]. The two codes use the Recola library [121, 122] for

the calculation of tree-level and one-loop amplitudes with fixed polarisation states for

intermediate resonances. For the calculation of one-loop integrals Recola employs

the Collier library [132]. In the previously calculated di-boson processes many

consistency checks have been performed. The UV finiteness of the virtual amplitudes

has been tested for polarised ZW production [83]. Recola amplitudes have been

compared to MadLoop [133].

For the process studied in the present paper, i.e. same-sign W+W+ scattering,

the high-accuracy numerical results shown in Sections 3.2 and 3.3 have been obtained

with BBMC. A detailed comparison with lower-accuracy results from MoCaNLO has

been performed for the unpolarised cross-section and the purely longitudinal cross-

section in DPA. The results have been compared at the integrated level and at the

histogram level for the LO (α6) and NLO EW (α7) contributions finding the same

results within the integration uncertainty of ≈ 0.4%. For the integrated cross-section

at NLO QCD (αsα
6) the results agree within the integration uncertainty of ≈ 3%.

Moreover, the integrated cross-sections of the most important partonic processes and

those that involve a triply-resonant contribution are individually consistent within

the numerical uncertainty of ≲ 3%. For the full off-shell process and the other

polarisation states only partial results have been compared. Moreover, the follow-

ing checks have been carried out: The implemented subtraction counterterms have

been tested extensively. First, the correct application of the on-shell projection has

been verified, in particular for processes with additional radiation from the decay

of one of the W+ bosons where the DPA(2,3) and DPA(3,2) enter. To this end, the

on-shell-projected momenta of BBMC and MoCaNLO have been compared finding

no difference beyond numerical inaccuracies (at the level of 10−11). Furthermore it

has been checked that the IR poles of the virtual and integrated dipole contributions

cancel, in particular for the newly implemented dipole counterterms involving reso-

nances from Sections 2.3 and 2.4. This has been done by varying the IR scale and
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state σLOα6 [fb] σLOαsα5 [fb] δαsα5 σLOα2
sα

4 [fb] δα2
sα

4 δαsα5+α2
sα

4 σLO [fb]

full 1.4863(1) 0.044877(9) 0.03 0.14686(2) 0.10 0.13 1.6780(1)

unp. 1.46455(9) 0.044386(8) 0.03 0.14664(2) 0.10 0.13 1.65558(9)

LL 0.14879(1) 0.006120(1) 0.04 0.012298(2) 0.08 0.12 0.16721(1)

LT 0.23209(2) 0.007284(2) 0.03 0.029465(6) 0.13 0.16 0.26884(2)

TL 0.23208(2) 0.007284(2) 0.03 0.029471(6) 0.13 0.16 0.26884(2)

TT 0.87702(7) 0.026402(6) 0.03 0.07938(2) 0.09 0.12 0.98281(7)

int. −0.0254(1) −0.00270(1) 0.11 −0.00398(3) 0.16 0.26 −0.0321(1)

Table 1. LO contributions to the integrated cross-section (in fb) for the process pp →
e+νeµ

+νµ + jj at the LHC. The numbers in columns 4, 6, and 7 give the ratio of the

respective background to the LO signal O
(
α6
)
.

showing that the sum of virtual contributions and integrated dipoles evaluated at

different scales agree within the integration uncertainty of ≈ 1%. Additionally, the

local and integrated dipoles have been compared between MoCaNLO and BBMC

for individual phase-space points finding perfect agreement. The finite parts of the

massless CS local and integrated dipoles have been tested by evaluating them with

different αdipole parameters [134] and verifying the independence of the final results on

these parameters. For both the NLO QCD and NLO EW contribution from summed

real emission and integrated dipoles we find agreement within the numerical uncer-

tainty of ≈ 0.7% and ≈ 14%, respectively. Note that the NLO EW corrections are

dominated by the virtual corrections, and the sum of the real corrections and the

integrated dipoles amounts to only ≈ 0.5% of the corresponding LO cross-section.

As stated in Section 2.6 our handling of the triply-resonant contributions results

in a mismatch between the local and integrated counterterms. By evaluating the

integrated counterterms with the decay width set to zero and with keeping the pole

values of the decay widths the size of the mismatch can be explicitly calculated. In

the setup used here with both W bosons unpolarised we find that the integrated

cross-section of the individual integrated EW and QCD counterterm contributions

differ at most by 0.3%. For the fiducial NLO cross-section this relates to an absolute

difference of 2.5 · 10−4 fb and a relative difference of 0.021%. This is much smaller

then the intrinsic uncertainty of the DPA.

3.2 Results for fiducial cross-sections

In Table 1 the LO integrated cross-sections of the VBS signal of O(α6), the inter-

ference background of O(αsα
5), and the QCD background of O(α2

sα
4) are shown.

In a polarisation analysis the contributions from the two backgrounds would be

subtracted from the measured cross-section before the VBS signal is split into the

polarised contributions. The study of the background contributions is nonetheless

important to analyse how well the chosen setup, in particular the phase-space cuts,
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state fLOα6 [%] fLOαsα5 [%] fLOα2
sα

4 [%] fLO[%]

full 101.5 101.1 100.1 101.4

unp. 100.0 100.0 100.0 100.0

LL 10.2 13.8 8.4 10.1

LT 15.8 16.4 20.1 16.2

TL 15.8 16.4 20.1 16.2

TT 59.9 59.5 54.1 59.4

int. −1.7 −6.1 −2.7 −1.9

Table 2. LO polarisation fractions for the process pp → e+νeµ
+νµ + jj at the LHC.

suppresses the backgrounds. The interference background gives a relative contribu-

tion of only ≈ 3%, while the QCD background contributes ≈ 10% of the VBS signal.

The VBS signal and the QCD background prefer different kinematic regions, since

the dominant contribution to the different LO contributions comes from diagrams

with different topologies. The largest contribution to the VBS signal comes from

diagrams where the two quark lines each emit a W+ boson that then scatter off each

other (see top-left diagram in Figure 1). For the QCD background the two quarks

exchange a t-channel gluon and each emit one W+ boson (see top-right diagram in

Figure 1). The effects of these different diagram topologies can be seen more clearly

when analysing the differential cross-sections in the next section.

The LO polarisation fractions, defined as the corresponding cross sections nor-

malised to the unpolarised DPA cross section, are listed in Table 2 for the individual

orders and their sum. The chosen reference frame to define the polarisation vectors,

the W+W+ centre-of-mass frame, is the natural choice for VBS. The DPA approxi-

mates the full off-shell computation within 1.5% for the EW signal and even better

for the background contributions. This is consistent with the intrinsic DPA accuracy

of O(ΓW/MW). As already seen in many other di-boson processes [81, 83, 84, 88]

the dominant contribution comes from both W bosons being transversely polarised.

The mixed polarisation states contribute at 15.8% while the purely longitudinal po-

larisation state gives the smallest contribution at 10.2%. As the decay particles of

the both W+ bosons are treated equally by the phase-space cuts, we get the same

polarisations fractions for the TL and the LT states.

The NLO corrections to the fiducial cross-section are presented in Table 3 for

the unpolarised and polarised fiducial cross-sections, specifically the EW O(α7) and

QCD O(α6αs) corrections to the VBS signal. Both EW and QCD corrections are

negative for all polarisation states. The cross-sections for unpolarised and transverse

W+ bosons receive the well-known negative EW corrections of about −15% resulting

from Sudakov logarithms [32, 39]. The corrections for the mixed polarisations are
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state σLO [fb] ∆σNLOEW [fb] ∆σNLOQCD [fb] σNLOEW+QCD [fb]

full 1.4863(1)+9.2%
−7.8% −0.2084(6) −0.0704(7) 1.208(1)+1.6%

−3.1%

unp. 1.46455(9)+9.2%
−7.8% −0.2076(2) −0.0733(5) 1.1836(5)+1.7%

−3.3%

LL 0.14879(1)+8.3%
−7.2% −0.01505(2) −0.00660(7) 0.12715(8)+1.0%

−2.1%

LT 0.23209(2)+9.1%
−7.8% −0.03040(4) −0.0098(1) 0.1919(1)+1.4%

−2.8%

TL 0.23208(2)+9.1%
−7.8% −0.03051(4) −0.0097(1) 0.1918(1)+1.4%

−2.8%

TT 0.87702(7)+9.4%
−8.0% −0.1352(1) −0.0474(4) 0.6944(4)+1.9%

−3.7%

int. −0.0254(1)−8.9%
+10.6% 0.0035(2) 0.0002(6) −0.0217(7)−1.6%

+0.7%

state δEW δQCD δEW+QCD

full −0.140 −0.047 −0.188

unp. −0.142 −0.050 −0.192

LL −0.101 −0.044 −0.145

LT −0.131 −0.042 −0.173

TL −0.131 −0.042 −0.173

TT −0.154 −0.054 −0.208

int. −0.139 −0.007 −0.147

Table 3. NLO contributions to the integrated cross-section (in fb) for the process pp →
e+νeµ

+νµ+ jj at the LHC. The numbers in the lower part of the table give the ratio of the

given O
(
α7
)
and O

(
αsα

6
)
NLO corrections to the corresponding LO signal at O

(
α6
)
.

by 2.3% smaller and those for longitudinal W+ bosons by another 3%. This results

from the smaller EW Casimir operators for longitudinal vector bosons with respect

to transverse vector bosons that multiply the leading double logarithms in the EW

corrections [135]. The differences in size of the QCD corrections to the polarised

cross-sections are smaller than those of the EW corrections and well within 1%.

Since at LO VBS is a purely EW process, the QCD-scale uncertainty results

only from varying the factorisation scale. For a reasonable estimate of the size of the

higher-order QCD corrections the NLO QCD corrections need to be included. This

gives a scale uncertainty of 1–3% for the NLO EW+QCD prediction. The size of the

scale uncertainties depends only weakly on the polarisation.

In Table 4 the polarisation fractions including the NLO EW and QCD corrections

are shown. The NLO EW and QCD corrections slightly increase the relative size of

the non-resonant background from 1.5% to 2.0%, which is still within the expected

range of the DPA accuracy of O(ΓW/MW). The polarisation fractions only change at

the level of 1% when the NLO corrections are added preserving the general pattern

seen at LO. The polarisation modes with at least one longitudinally polarised boson

and the interferences slightly increase, while the purely transverse polarisation state is
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state fLO[%] fNLOEW[%] fNLOQCD[%] fNLOEW+QCD[%]

full 101.5 101.7 101.8 102.0

unp. 100.0 100.0 100.0 100.0

LL 10.2 10.6 10.2 10.7

LT 15.8 16.0 16.0 16.2

TL 15.8 16.0 16.0 16.2

TT 59.9 59.0 59.6 58.7

int. −1.7 −1.7 −1.8 −1.8

Table 4. NLO polarisation fractions for the process pp → e+νeµ
+νµ + jj at the LHC.

decreased. This is caused by the less negative NLO EW corrections for longitudinally

polarised bosons already seen in Table 3. The interference contribution is small

because of the cancellations from the integration over the decay phase space described

in Section 2.5. The inclusion of NLO corrections results in a slightly larger negative

interference contribution.

3.3 Results for differential distributions

To fully understand the differences between the various polarisation states it is nec-

essary to study the cross-section at the differential level. In Figures 8–18 we present

differential results for several observables, obtained in the fiducial setup defined in

Section 3.1.

For each distribution we show four plots with three panels each. The upper-

left plot contains LO results. Its top panel displays the absolute distributions at

O(α6) resulting from the full off-shell calculation (black), the DPA calculation (grey,

dubbed “unpol.”), and the contribution of the two longitudinal W bosons (red),

a longitudinal W+ boson decaying into e+νe and a transverse W+ boson decaying

into µ+νµ (yellow), a transverse and a longitudinal boson (green), and two trans-

verse W bosons (blue). The middle and bottom panels present the contributions of

orders O(αsα
5) and O(α2

sα
4), respectively, normalised to the corresponding O(α6)

results. The upper-right plot shows in its top panel the absolute distributions at

NLO, i.e. including besides the O(α6) the corrections of orders O(α7) and O(αsα
6)

combined additively. The middle panel contains the same curves but normalised to

the corresponding fiducial cross-sections. The bottom panel shows the same distri-

butions normalised to the unpolarised DPA cross-section. This allows to read off

the NLO polarisation fractions and the contributions beyond the DPA. In addition,

the interference contribution is displayed in magenta. The lower-left plot displays

the relative NLO corrections, i.e. the EW corrections of O(α7) in the top panel, the

QCD corrections of O(αsα
6) in the middle panel, and the sum of both in the bottom
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Figure 8. Distribution in the polar decay angle of the positron in the rest frame of the

decaying W+ boson. Details are described in the main text (first paragraphs of Section 3.3).

panel, all normalised to the corresponding LO (O(α6)). The panels in the lower-

right plot accomodate the same NLO corrections already shown in the lower-left one

but supplemented with the corresponding scale variations. The results are obtained

by normalising the NLO cross-sections with 7-point QCD-scale variation by the LO

cross-section at the central scale, defined in Eq. (3.6).

We begin by investigating angular distributions. In Figure 8 the differential

– 27 –



cross-section with respect to the cosine of the decay angle of the positron in the

centre-of-mass frame of the decaying boson is presented. This distribution is directly

sensitive to the polarisation of the decaying vector boson. For W+W+ scattering, it

is not measurable as it would require the reconstruction of individual momenta of the

two neutrinos. However, one can still learn much from this plot, as there are measur-

able observables with related features. The decay products of a transversely polarised

W+ boson are preferably emitted in or opposite to the boson direction. This causes

the dip in the central region for the TT and TL polarisation states. For longitudi-

nally polarised W+ bosons the decay particles are preferably emitted orthogonal to

the boson direction. Therefore, the LL and LT polarisation states feature a peak in

the central region. The region −1.0 < cos θ∗,CM
e+ ≲ −0.75 is strongly affected by the

transverse-momentum cut on the positron distorting the shape expected in a fully

inclusive setup. As a consequence of the cuts, the distributions for a longitudinal

W boson are not symmetric with respect to cos θ∗,CM
e+ = 0. The normalised shapes

of the TT and TL polarisation states at NLO exhibit small differences. The TL

polarisation state has a more prominent peak near cos θ∗,CM
e+ = −0.7, while the TT

polarisation state has a steeper increase towards cos θ∗,CM
e+ = 1. For a longitudinally

polarised W+ boson (LL, LT) the shapes are almost identical. As already seen at

the integrated level the interference contribution is small. While it is negative for

cos θ∗,CM
e+ ≤ 0.25, it becomes positive for larger cos θ∗,CM

e+ . The relative contributions

of the LO backgrounds are not flat, i.e. they have a shape different from the signal

and tend to distort the distributions towards smaller cos θ∗,CM
e+ . The relative NLO

corrections both from EW and QCD are very close to constant mirroring the effects

seen at the integrated level. Only in the region cos θ∗,CM
e+ < −0.75, where the phase-

space cuts have the largest effect, small deviations from the constant EW corrections

for transverse W bosons become visible. The QCD-scale uncertainties relative to the

central values are roughly constant over the whole decay-angle spectrum. This holds

also for other angular distributions shown below.

Figure 9 depicts the differential cross-section with respect to the angular sep-

aration of the positron and the anti-muon. As already observed at LO [96], the

normalised shapes of the distributions differ considerably between the different polar-

isation states making this observable well suited to distinguish the polarised signals.

There is a clear preference for the positron and anti-muon to be emitted in opposite

directions when both W+ bosons are transversely polarised. This is again related

to the fact that the leptons tend to be aligned with the W bosons they originate

from if the latter are transverse. While the distribution is completely flat for the LL

mode, the mixed polarisation states show only a very small preference to be emit-

ted in opposite hemispheres. As a consequence, the polarisation fraction of the TT

mode increases to 68% for large ∆ϕe+µ+ . The contribution of the QCD background

varies between 6 and 16% for the various polarised modes and the contribution of

the interference between 2.5 and 5%. While the QCD corrections are pretty flat, the
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Figure 9. Distribution in the azimuthal-angle difference between the two charged leptons.

Details are described in the main text (first paragraphs of Section 3.3).

EW corrections for the individual polarised modes each vary within 2%.

Figure 10 shows the differential cross-section with respect to the azimuthal-

angle separation between the leading and subleading jet. The two tagging jets are

preferably emitted with large angular separations. This preference is even more

pronounced when both W bosons are longitudinally polarised as seen in its distinct

normalised shape. Accordingly, the longitudinal polarisation fraction increases from
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Figure 10. Distribution in the azimuthal-angle difference between the two tagged jets.

Details are described in the main text (first paragraphs of Section 3.3).

4% to 15% with increasing ∆ϕj1j2 . The contribution of the QCD background varies

between 5 and 17% for the various polarised modes and the contribution of the EW-

QCD interference between −7 and +6%. While the relative NLO EW corrections to

the LL polarisation state are almost constant at −5% for ∆ϕj1j2 < 1.0, they increase

in size to −12% with growing ∆ϕj1j2 . For the other polarisation modes the NLO EW

corrections vary within 3% with a tendency to increase with the angular difference.

– 30 –



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

d
/d

|
y e

+
+
| [

fb
] L

O
6

p p e+ e + jj @ LO, s = 13.6 TeV
full
unpol.
W+

L W+
L

W+
L W+

T
W+

T W+
L

W+
T W+

T

0.01

0.02

0.03

0.04

0.05

0.06

1 s

0 1 2 3 4
| ye + + |

0.00

0.20

0.40

0.60

0.80

2 s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

d
/d

|
y e

+
+
| [

fb
] N

LO

p p e+ e + jj + X @ NLO, s = 13.6 TeV
full
unpol.
W+

L W+
L

W+
L W+

T
W+

T W+
L

W+
T W+

T

0.00

0.20

0.40

no
rm

al
ise

d

0 1 2 3 4
| ye + + |

0.00

0.25

0.50

0.75

1.00

ra
tio

 to
 th

e 
un

po
l.

int.

-0.30

-0.20

-0.10

0.00

0.10

NL
O

EW

p p e+ e + jj + X, relative NLO corrections

-0.30

-0.20

-0.10

0.00

0.10

NL
O

QC
D

0 1 2 3 4
| ye + + |

-0.30

-0.20

-0.10

0.00

0.10

NL
O

EW
+

QC
D

-0.30

-0.20

-0.10

0.00

0.10

NL
O

EW
+

QC
D

p p e+ e + jj + X, NLO scale uncertainties
full
unpol.

-0.30

-0.20

-0.10

0.00

0.10

NL
O

EW
+

QC
D

W+
L W+

L
W+

T W+
T

0 1 2 3 4
| ye + + |

-0.30

-0.20

-0.10

0.00

0.10

NL
O

EW
+

QC
D

W+
L W+

T
W+

T W+
L

Figure 11. Distribution in the absolute value of the rapidity difference between the two

charged leptons. Details are described in the main text (first paragraphs of Section 3.3).

The relative QCD corrections become slightly more negative with growing ∆ϕj1j2 .

In Figure 11 we consider the differential cross-section with respect to the abso-

lute value of the rapidity difference between the positron and the anti-muon. From

the normalised shapes it is obvious that this observable is well suited to discrimi-

nate between polarisation states. The fraction of the TT mode is largest for small

|∆ye+µ+|, while those of the other modes increase with the variable. The EW cor-
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Figure 12. Distribution in the rapidity of the leading jet. Details are described in the

main text (first paragraphs of Section 3.3).

rections depend only slightly on the rapidity difference, while the QCD corrections

decrease in size from −6% to ≈ 0%.

In Figure 12 the differential cross-section with respect to the rapidity of the

leading jet is displayed. The curves for all polarisation states feature two peaks at

yj1 ≈ ±2.2. The typical VBS kinematics favours jets that are emitted in directions

close to the beam axis. The LL polarisation state leads to a slightly different shape
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compared to the other polarisation states with the two peaks being shifted to more

forward/backward directions. There are noticeable shape differences between the

LO signal and the irreducible backgrounds, since the latter prefer smaller leading-

jet rapidities. The polarisation fractions are almost independent of yj1 . While the

NLO EW corrections show only a mild variation within about 4%, the NLO QCD

corrections range between −10% for small yj1 to more than +10% at large yj1 . As for

other angular distributions, the relative QCD-scale uncertainty is rather independent

of the variable.

Figure 13 shows the differential cross-section with respect to the positron rapid-

ity. The distribution is peaked in the central region as a consequence of the fact

that in VBS the two bosons are predominantly emitted in the central region. The

QCD background has a very different shape from the signal one and actually has

two peaks at ye+ ≈ ±1.6 (not directly visible in the plots). This is caused by the

structure of the QCD diagrams like the one shown in Figure 1 (top right). They

involve a t-channel gluon exchange, and the W+ bosons are emitted from the dif-

ferent quark lines, preferably in forward and backward direction. There are slight

shape differences between the various polarised signals. A positron resulting from a

transversely polarised W+ boson tends to be more central than one resulting from

a longitudinally polarised one. The EW corrections are independent of the positron

rapidity if the positron comes from the decay of a longitudinal boson, while a vari-

ation of 2% is found in the case of a transverse boson. The QCD corrections are

pretty independent on the W polarisation.

We turn to distributions in dimensionful variables starting with invariant-mass

distributions. Figure 14 shows the differential cross-section with respect to the in-

variant mass of the four-lepton system, which is not measurable at the LHC owing to

the presence of the two neutrinos. The results are anyway helpful in understanding

many features found for other correlated observables. The LO shapes of the signal

and the two background contributions show clear differences. While the signal curves

feature a sharp peak atM4l = 200GeV, the QCD background is strongly enhanced at

higher invariant masses. This is caused by the different topologies of the contributing

Feynman diagrams. The dominant contributions to the signal result from diagrams

that feature the VBS topology, like the one depicted in the top left of Figure 1. Since

the tagging jets carry most of the energy, this results in a four-lepton invariant mass

of the order of a few hundred GeV [39]. As mentioned already in the discussion of

the ye+ distribution, the diagrams that contribute to the QCD background instead

feature a t-channel gluon exchange with W bosons emitted from different quark lines

preferably in the direction of the beams (see top right of Figure 1). This favours

the production of two W bosons with a larger invariant mass. For high invariant

masses, the rate at which the distributions drop depends on the polarisation of the

W+ bosons. As can be best seen from the normalised shapes, the TT mode falls off

the slowest, while the LL polarisation state drops the fastest and the mixed polari-
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Figure 13. Distribution in the rapidity of the positron. Details are described in the main

text (first paragraphs of Section 3.3).

sation states have a drop in between. This feature has already been observed at LO

for VBS processes before [93, 95]. The different fall-off rates cause the polarisation

fractions of the TT polarisation state to increase and of the LL polarisation state to

decrease with the invariant mass. The production of pairs of longitudinally polarised

W bosons happens primarily at small invariant masses. Shifting the attention to

the relative NLO corrections, one observes that the NLO EW corrections become
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Figure 14. Distribution in the invariant mass of the system formed by the two charged

leptons and the two neutrinos. Details are described in the main text (first paragraphs of

Section 3.3).

more negative with increasing invariant mass owing to the growing significance of

the Sudakov logarithms. As already emphasised at the integrated level, the size of

the NLO EW corrections depends on the polarisation. For the production of a pair

of longitudinal W+ bosons they are smaller than for the other polarisation states

and grow at a smaller rate. The reason for this is again the smaller EW Casimir
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Figure 15. Distribution in the invariant mass of the charged-lepton pair. Details are

described in the main text (first paragraphs of Section 3.3).

operator for longitudinal vector bosons. The NLO QCD corrections remain fairly

constant across the considered range of invariant masses and polarisation states with

a variation within ≈ 5%. The relative QCD-scale uncertainties grow with increasing

invariant mass. The growth is larger for transverse vector bosons than for longitudi-

nal vector bosons. This feature is also seen in the distributions for other dimensionful

quantities shown below.
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Figure 15 shows the differential cross-section with respect to the invariant mass of

the two charged leptons. This observable is correlated with the four-lepton invariant

mass shown in Figure 14 and has very similar features. Thus, the distributions drop

with different speeds for the different polarisation modes. Also the steep increase of

the relative contribution of the QCD background is analogous to the one seen for the

four-lepton invariant mass. Moreover, the polarisation fractions of the longitudinal

modes become smaller with increasing invariant mass. Also the behaviour of the

relative EW and QCD corrections and the corresponding scale dependence is quite

similar to those in Figure 14.

In Figure 16 the differential cross-section with respect to the transverse momen-

tum of the hardest jet is presented. The irreducible LO background becomes more

important with increasing pT,j1 , in particular for the LL mode. The purely longitu-

dinal polarisation state falls off faster in the high-transverse momentum region than

the other polarisation states. The NLO EW corrections become more negative with

increasing transverse momentum. The difference between the EW corrections for the

different polarisation modes is smaller than for the four-lepton invariant mass or the

lepton-pair invariant mass. The NLO QCD corrections are pretty constant above

pT,j1 ≈ 250GeV, but rise for low transverse momenta, where the LO cross-section is

suppressed. This feature has already been observed in other VBS studies [32, 34, 37].

Figure 17 is devoted to the differential cross-section with respect to the trans-

verse momentum of the positron. The QCD background and to a lesser extent the

interference background have different shapes then the LO signal. This is particularly

significant for the LL and LT polarisation states, while for the TT and TL polari-

sation states the shape differences between the signal and background are smaller.

As can be seen from the normalised shapes, the distributions for a positron result-

ing from the decay of a transverse vector boson falls less steeply than those from a

longitudinal vector boson, which actually has a peak near pT,e+ = 40GeV. This can

be explained by the fact that the positron is preferably aligned with the direction

of a transverse mother W boson, while it tends to be orthogonal to the direction

of a longitudinal mother. Accordingly, the LL polarisation fraction drops fast with

increasing pT,e+ . The relative NLO EW corrections to the states with longitudinally

polarised vector bosons decaying into the positron are smaller than those with trans-

versely polarised bosons. The reason is again the smaller prefactor of the Sudakov

logarithms, pointed out for the integrated level and the four-lepton invariant-mass

distribution. Also the NLO QCD corrections are somewhat different for positrons

resulting from transverse or longitudinal vector bosons. As a result the differences

between transverse and longitudinal vector bosons tend to cancel in the sum of NLO

EW and QCD corrections.

We finally consider in Figure 18 the differential cross-section with respect to the

ratio of the transverse momenta of the subleading charged lepton and the leading
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Figure 16. Distribution in the transverse momentum of the leading jet. Details are

described in the main text (first paragraphs of Section 3.3).

charged lepton,

R
(ℓ)
21 =

pT,ℓ2

pT,ℓ1

. (3.13)

This observable is well suited to distinguish the purely longitudinal polarisation state

from the other polarised modes. The transverse momentum of the two charged lep-

tons is more similar when the W+ bosons are longitudinally polarised. The nor-

malised distribution for the LL polarisation state has a maximum at R
(ℓ)
21 ≈ 0.65,
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Figure 17. Distribution in the transverse momentum of the positron. Details are

described in the main text (first paragraphs of Section 3.3).

while the other polarised signals have maxima near R
(ℓ)
21 ≈ 0.40. The distribution

for the TT mode is only slightly shifted towards lower R
(ℓ)
21 compared to the mixed

modes. These results can be understood from Figure 17. Since the pT,e+ spectrum

is much softer for leptons resulting from longitudinal W bosons than for those from

transverse W bosons, the momenta of leading and subleading lepton tend to be more

equal for the LL mode as compared to modes with transverse vector bosons, where
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Figure 18. Distribution in the ratio of the transverse momenta of the subleading and

leading lepton. Details are described in the main text (first paragraphs of Section 3.3).

the leading lepton (typically resulting from a transverse vector boson) can have a

higher transverse momentum more easily. Accordingly the polarisation fraction of

the LL mode increases from very small values to more than 15% near R
(ℓ)
21 = 1. Note

that also the interference contribution reaches −5% there. Both the NLO QCD and

EW corrections are almost constant for R
(ℓ)
21 ≳ 0.4. For R

(ℓ)
21 ≲ 0.2 the EW correc-

tions grow negative and reach −40%. This is a consequence of the EW Sudakov
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logarithms that dominate at large lepton transverse momenta (see Figure 17). Since

the subleading charged lepton must have a transverse momentum of at least 20GeV

owing to the phase-space cuts, the leading lepton must have a very large transverse

momentum in the low R
(ℓ)
21 region. Also the negative QCD corrections for the LL

mode below 0.2 result from the larger negative QCD corrections for high transverse

momenta of leptons originating from longitudinal W bosons.

4 Conclusion

The importance of vector-boson scattering (VBS) in unravelling the electroweak

(EW) symmetry-breaking mechanism is witnessed by a wide experimental pro-

gramme targeting this fundamental process in hadronic collisions at the LHC, as

well as by many theoretical studies addressing both higher-order corrections in the

SM and new-physics effects that give relevant phenomenological consequences at

the LHC energies. While the full off-shell VBS processes are known up to NLO

EW+QCD accuracy in all production mechanisms, the modelling of intermediate

bosons with definite polarisation modes is still limited to LO accuracy. These pre-

dictions are currently used by experimental analyses aiming at the measurement of

longitudinal VBS. Therefore an effort is needed to achieve a better theoretical control

in view of the upcoming Run-3 and High-Luminosity data sets. In this work we have

partially filled this gap, achieving for the first time NLO EW+QCD accuracy for

doubly polarised W+W+ scattering in the fully leptonic decay channel. This results

from a non-trivial extension of methods applied in inclusive di-boson production,

relying on the pole expansion and the definition of polarised signals at the amplitude

level.

We have computed polarised and unpolarised cross-sections at LO and including

additively NLO EW and QCD corrections, both at integrated level and differentially

in several LHC observables and Monte Carlo-truth variables.

Both radiative corrections are negative with the usual dynamical choice for the

central factorisation and renormalisation scale. While relative QCD corrections,

which amount at integrated level to about −5%, are quite independent of the po-

larisation state, the NLO EW corrections give different results for longitudinal and

transverse modes, both at the normalisation level and at the shape level. The LL

state receives −10% EW corrections, while other states receive between −13% and

−15% corrections, in line with literature results for the off-shell process.

The polarisation fractions mildly change from LO to NLO, with the LL contribu-

tion being around 10%, the LT and TL ones 16% each, and the TT state giving the

dominant contribution (59%). The relative impact of the non-resonant background

(+2%) and of the polarisation interferences (−2%) remains almost unchanged when

adding NLO corrections.
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NLO EW corrections distort the shapes of differential distributions both in angu-

lar observables and in energy-dependent ones, in particular with the LL state being

affected differently than the other states. On the contrary, the QCD corrections

change the shapes of distributions in a very similar way for all doubly polarised

states. A marked discrimination power between polarisation modes is found in typi-

cal leptonic angular distributions, but also in jet observables, like the azimuthal-angle

distance between the VBS tagging jets. Also some invariant-mass and transverse-

momentum distributions can be included in experimental analyses, either as po-

larisation discriminants by themselves or as inputs to modern neural-network or

boosted-decision-tree scores. Interestingly, the ratio between the subleading- and

leading-lepton transverse momenta gives a LL shape which noticeably differs from

all other modes.

With this work, we have improved the perturbative description in the EW and

QCD couplings for polarised cross-sections and distributions in VBS, achieving the

same state-of-the-art accuracy as the one of full off-shell processes. This paves the

way for subsequent NLO calculations targeting other VBS production mechanisms

and including parton-shower effects. The presented calculation provides SM predic-

tions that could be used in ATLAS and CMS analyses of Run-3 VBS data.
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A Mismatch in the local and integrated counterterms

In Section 2.3 we have documented our approach for the local subtraction of IR

singularities associated to the production sub-process, highlighting the importance

of applying first the CS mappings and second the DPA on-shell projection. In this

appendix we show that reversing the order of the two operations (DPA first, CS

second) leads to a mismatch between local and integrated dipoles.

Choosing the same dipole as in Section 2.3, the partially subtracted real contri-

bution for the production sub-process with two on-shell W bosons with momenta
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k̃12, k̃34 reads

(R−D)prod ∝
∑

λ12λ34

[ ∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦ5

(
Q; k̃12, k̃34, k5, k6, k7

)
−D[12]7,5(

¯̃k12, k̄5; ỹ, z̃, ϕ̃)
∣∣∣M(4)

P,µν

(
Q; ¯̃k12, k̃34, k̄5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦrad

(
¯̃k12 + k̄5; z̃, ỹ, ϕ̃

)
dΦ4

(
Q; ¯̃k12, k̃34, k̄5, k6

)]
, (A.1)

where the dipole D[12]7,5 regulates the IR singularities associated to a massive final-

state emitter (the W boson with momentum k̃12) and a massless final-state spectator

with momentum k5.

The analogue of Eq. (A.1), but including W-boson decays and therefore carrying

out the local subtractions with DPA-projected momenta in the off-shell phase space,

reads

(R−D)DPA ∝
∑

λ12λ34

[∣∣∣M(5)
P,µν

(
Q; k̃12, k̃34, k5, k6, k7

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦ5 (Q; k12, k34, k5, k6, k7)

−D[12]7,5(
¯̃k12, k̄5; ỹ, z̃, ϕ̃)

∣∣∣M(4)
P,µν

(
Q; ¯̃k12, k̃34, k̄5, k6

)
ε̃µ,∗12 ε̃

ν,∗
34

∣∣∣2
× dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

) ]
× 1

BW(k12) BW(k34)

∣∣∣ε̃µ12M(2)
D,µ

(
k̃12; k̃1, k̃2

)∣∣∣2 ∣∣∣ε̃µ34M(2)
D,µ

(
k̃34; k̃3, k̃4

)∣∣∣2
× dk2

12

2π

dk2
34

2π
dΦ2 (k12; k1, k2) dΦ2 (k34; k3, k4) . (A.2)

Comparing Eqs. (A.1)–(A.2), it is easy to spot a difference between the phase-space

measures in the real and in the dipole contribution. In particular,

dΦ5

(
Q; k̃12, k̃34, k5, k6, k7

)
→ dΦ5 (Q; k12, k34, k5, k6, k7) , (A.3)

and

dΦrad

(
¯̃k12 + k̄5; z̃, ỹ, ϕ̃

)
dΦ4

(
Q; ¯̃k12, k̃34, k̄5, k6

)
→

dΦrad

(
k̄12 + k̄5; z, y, ϕ

)
dΦ4

(
Q; k̄12, k34, k̄5, k6

)
. (A.4)

Since in the DPA, the full phase space is used, the transformation in Eq. (A.3) leads

to a Jacobian associated to the on-shell projection, which is of order O(M2
W/k2

12).

Although this can have a sizeable impact on the fully differential phase-space mea-

sure, it represents an effect beyond the DPA upon integration over the W-boson
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off-shellness k2
12, since the far off-shell kinematic configurations are suppressed by

the Breit-Wigner modulation of the real matrix element. For Eq. (A.4) the situ-

ation is more complicated because for dipoles with an intermediate resonance as

emitter and/or spectator the DPA on-shell projection and the CS mapping do not

commute. In the evaluation of the local counterterm, the IR kernel and the underly-

ing Born matrix element are evaluated starting from momenta for the real-radiation

process that are first projected on shell and then undergo the CS mapping. In order

to stick to literature results [113] for both local and integrated counterterms, the

integrated ones are evaluated with a LO phase-space kinematics that is projected

on shell, intrinsically corresponding to first applying the subtraction mapping to

the real kinematics and then projecting the momenta on-shell. Since CS mappings

and DPA projections do not commute, this procedure leads to a mismatch between

local and integrated counterterms which can be numerically sizeable, spoiling the

subtraction procedure by effects that are not formally beyond the DPA accuracy.

This mismatch could be prevented upon including the Jacobian of the DPA on-shell

mapping in the analytic d-dimensional integration of the local counterterms in the

DPA, which is, however, hampered by more complicated integrands than those of

Ref. [113]. On the other hand, reversing the order of the CS-mapping and DPA on-

shell projection is more convenient, because the subtraction procedure is not spoiled

and the integrated-dipole structures known in the literature can be safely recycled

with mismatches that are beyond the intrinsic DPA accuracy.

B Production dipoles

As detailed in Section 2.3, after partial fractioning the real-photon radiation off W-

boson propagators, the subtraction of QED IR divergences associated to the pro-

duction process (qq −→ W+W+qq + γ) requires a class of dipoles where at least

one W boson plays the role of the emitter or the spectator. Owing to the finite

mass of the W boson the corresponding singularities result only from soft but not

from collinear configurations and are therefore spin independent. This allows us to

use the massive-fermion dipoles from Refs. [113, 115] for these counterterms. In the

following, we detail their structure in the general case of charged resonances (not

necessarily W bosons).

B.1 Final-state massive emitter and final-state massive spectator

We start with the dipole where both the emitter (label j) and the spectator (label

k) are a massive charged resonance. The results can be obtained as a special case

from Section 5.1 of Ref. [113] up to the translation from QCD to QED. Let us call

Q = pi + pj + pk the sum of the emitter momentum (pj), the spectator momentum

(pk) and the radiated-photon momentum (pi). The emitted photon (label i) is always

massless, i.e. p2i = m2
i = 0. Since, according to the discussion in Section 2.3, the CS
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mappings are applied to the off-shell kinematics, in the following p2j and p2k are in

general not equal to the squared pole masses of the resonant particles. Moreover, we

choose to set m2
ij equal to p2j . Then, the CS mapping takes the following form,

p̄k =

√
λ
(
Q2, p2j , p

2
k

)
λ
(
Q2, (pi + pj)

2 , p2k
) (pk − Q·pk

Q2
Q

)
+

Q2 + p2k − p2j
2Q2

Q,

p̄j = Q− p̄k ,

(B.1)

where λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz. The radiation variables are defined

as

z ≡ zi =
pi ·pk

pi ·pk + pj ·pk
, zj = 1− zi , y ≡ yij,k =

pi ·pj
pi ·pj + pi ·pk + pj ·pk

. (B.2)

We introduce rescaled squared momenta for the massive emitter and spectator,

µ2
j =

p2j
Q2

, µ2
k =

p2k
Q2

(B.3)

and the quantities

v̄ij,k =

√
λ
(
1, µ2

j , µ
2
k

)
1− µ2

j − µ2
k

=

√
1 +

(
µ2
j

)2
+ (µ2

k)
2 − 2

(
µ2
j + µ2

k + µ2
jµ

2
k

)
1− µ2

j − µ2
k

,

vij,k =

√[
2µ2

k +
(
1− µ2

j − µ2
k

)
(1− y)

]2 − 4µ2
k(

1− µ2
j − µ2

k

)
(1− y)

.

(B.4)

The local dipole reads

Dij,k =(8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−yQ2
(
1− µ2

j − µ2
k

)
×
[

2

1− (1− z) (1− y)
− v̄ij,k

vij,k

(
2− z (1− ϵ) +

2µ2
j

y
(
1− µ2

j − µ2
k

))] ,

(B.5)

where α is the EW coupling, µ is the IR-regularisation scale, θa equals +1 or −1 if

particle a is in the final or initial state, respectively, and Qa is the relative electric

charge of particle a. Note that the label [ij] is associated to the mapped emitter,

which in the case of photon emission has always the same flavour, charge, and mass

as the original emitter j. The corresponding integrated dipole, obtained through
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integration over the radiation measure in dimensional regularisation, reads∫
dΦ

(4−2ϵ)
rad Dij,k =

(
−θ[ij]θkQ[ij]Qk

) α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
1

ϵ

(
ln(ρ)

v̄ij,k
+ 1

)
+

1

v̄ij,k

(
−2 ln(ρ) ln

(
1− (µj + µk)

2
)
− ln(ρj)

2

− ln(ρk)
2 +

π2

3
+ 4Li2(−ρ)− 4Li2(1− ρ)− Li2(1− ρ2j)− Li2(1− ρ2k)

)
+

1

2
ln(µ2

j)− 2− 2 ln
(
(1− µk)

2 − µ2
j

)
+ ln (1− µk)

− 2µ2
j

1− µ2
j − µ2

k

ln

(
µj

1− µk

)
+ 5− µk

1− µk

− 2µk (1− 2µk)

1− µ2
j − µ2

k

+O(ϵ)

]
,

(B.6)

where,

ρn =

√√√√√√√√
1− v̄ij,k +

2µ2
n

1− µ2
j − µ2

k

1 + v̄ij,k +
2µ2

n

1− µ2
j − µ2

k

, n = j, k , ρ =

√
1− v̄ij,k
1 + v̄ij,k

. (B.7)

We observe that in processes with W-boson pairs the reduced-Born momenta entering

the local and the integrated dipole are treated with the DPA(2,2) (if the kinematics

is above threshold), and therefore both rescaled squared masses can be set to

µ2
j = µ2

k =
M2

W

Q2
. (B.8)

It is worth noting that in Eq. (B.6) only a single ϵ pole is present, as the two masses

lead to the absence of collinear-photon singularities.

B.2 Final-state massless emitter and final-state massive spectator

We now consider dipoles with a massive charged resonance as spectator (with mo-

mentum pk and mass mk, equal to MW in our VBS process) and a massless fermion

as emitter (with momentum pj and mj = 0). The results can again be obtained

as a special case from Section 5.1 of Ref. [113]. Using the same notation as in the

previous subsection, the mapped momenta read,

p̄k =
Q

2

(
1 + µ2

k

)
+

1

2

Q2 − p2k√
(Q·pk)2 −Q2p2k

(
pk −Q

Q·pk
Q2

)
,

p̄j = Q− p̄k . (B.9)
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Using the quantities defined in Eqs. (B.2)–(B.4) and setting µj = 0, the local and

integrated dipoles are given by

Dij,k = (8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−y Q2(1− µ2
k)

[
2

1− (1− z)(1− y)
− 1

vij,k
(2− z (1− ϵ))

]
(B.10)

and∫
dΦ

(4−2ϵ)
rad Dij,k = (−θ[ij]θkQ[ij]Qk)

α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
1

ϵ2
− 2

ϵ
log
(
1− µ2

k

)
− 5π2

6
+ 2 log2

(
1− µ2

k

)
+ 2Li2

(
1− µ2

k

)
+

3

2ϵ
+ 2 +

3

1 + µk

− 3 log(1− µk) +O(ϵ)

]
. (B.11)

Since the emitter is a final-state massless fermion, this dipole regularises soft-collinear

configurations of the radiated photon, leading to a squared ϵ pole in dimensional

regularisation. Note that in W-boson processes in the PA we have µ2
k = M2

W/Q2.

B.3 Final-state massive emitter and final-state massless spectator

We also need to consider dipoles with one massive emitter (mj = MW, in the W-

boson case) and a massless fermion as spectator (mk = 0), both in the final state.

These results follow from those of Section 5.1 of Ref. [113]. The mapped momenta

are

p̄k = pk
Q2 − p2j
2Q·pk

, p̄j = Q− pk
Q2 − p2j
2Q·pk

. (B.12)

Reversing the role of labels j and k in the previous subsection, this local dipole reads

Dij,k = (8πα)µ2ϵ θ[ij]θkQ[ij]Qk

−y Q2(1− µ2
j)

[
2

1− (1− z)(1− y)
− 2 + z (1− ϵ)− 2µ2

j

y (1− µ2
j)

]
,

(B.13)

while its integrated counterpart is given by∫
dΦ

(4−2ϵ)
rad Dij,k = (−θ[ij]θkQ[ij]Qk)

α

2π

(4π)ϵ

Γ(1− ϵ)

(
µ2

Q2

)ϵ

×
[
2

ϵ
log µj − 2 log2 µj − 4 log µj log

(
1− µ2

j

)
− 4Li2

(
1− µ2

j

)
+

1

ϵ
+ 3 +

3µ2
j − 1

µ2
j − 1

log µj − 2 log
(
1− µ2

j

)
+O(ϵ)

]
, (B.14)

where the absence of the squared pole is again due to the absence of configurations

where the photon is collinear to the massive emitter.
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B.4 Final-state massive emitter and initial-state massless spectator

So far we have focused on dipoles with both the emitter and the spectator in the

final state. In our calculation of WW scattering and in general in any production

process with charged resonances, we also need to consider the case where the charged

resonance (always in the final state) is the emitter (momentum pj) and an initial-

state parton is the spectator (momentum pa). These results are derived from those

of Section 5.2 of Ref. [113]. Using Q = pi + pj − pa = p̄j − p̄a, the mapped momenta

read

p̄j = pi + pj − (1− xij,a) pa, p̄a = xij,a pa . (B.15)

Analogously to the final–final dipoles, the CS mapping is applied to the off-shell

phase-space points. The radiation variables xij,a, zi, zj are defined in the same way

as in the massless case [113, 116],

x ≡ xij,a =
pi ·pa + pj ·pa − pi ·pj

pi ·pa + pj ·pa
, z ≡ zi =

pi ·pa
pi ·pa + pj ·pa

, zj = 1− zi . (B.16)

It is convenient to define the quantity

µ2
j =

p2j
2p̄j ·pa

=
p2j

2 (pi ·pa + pj ·pa)
= x

p2j
p2j −Q2

. (B.17)

To evaluate the local-counterterm kernel in the DPA, the on-shell-projected radiation

variables are used when the real-kinematics phase-space point can be projected on-

shell in the DPA. Otherwise the analogous variables are constructed with the original

off-shell kinematics. The local dipole reads

Dij,a = (8πα)µ2ϵ θ[ij]θaQ[ij]Qa

(1− x)
(
Q2 − p2j

) ( 2

1− x+ z
+ z (1− ϵ)− 2− 2p2j

p2j −Q2

x

1− x

)
,

(B.18)

and its integration leads to∫
dΦ

(4−2ϵ)
rad Dia,j = θ[ij]θaQ[ij]Qa

α

2π

(4π)2

Γ (1− ϵ)

(
µ2

2p̄j ·pa

)ϵ

×
{[

1− x

2
(
1− x+ µ2

j

)2 − 2

1− x

(
1 + log

(
1− x+ µ2

j

))]
+

+

(
2

1− x

)
+

log(2 + µ2
j − x)

+ δ(1− x)

[
1

ϵ

(
log

(
µ2
j

1 + µ2
j

)
+ 1

)
− 1

2
log2

(
µ2
j

)
+

1

2
log
(
µ2
j

)
+

3

2
− 2π2

3
+

1

2
log2(1 + µ2

j)− 2 log(µ2
j) log(1 + µ2

j)

− 4Li2(−µ2
j) +

1

2
log(1 + µ2

j) +
µ2
j

2
(
1 + µ2

j

)]+O(ϵ)

}
, (B.19)
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where the plus distribution is defined as∫ 1

−1

a(x)+ b(x) dx =

∫ 1

−1

a(x)
[
b(x)− b(1)

]
dx . (B.20)

In the DPA calculation of W+W+ scattering, the integrated-dipole evaluation is

carried out with on-shell-projected Born momenta, which implies

µ2
j = µ2

W = x
M2

W

M2
W −Q2

(B.21)

in Eq. (B.19).

B.5 Initial-state massless emitter and final-state massive spectator

The last case that we treat is the one where the charged massive resonance is the

spectator (momentum pj) and an initial-state parton is the emitter (momentum

pa), which follows from the results of Section 5.3 of Ref. [113]. Upon defining Q =

pi + pj − pa = p̄j − p̄a, the off-shell mapped momenta read

p̄j = pi + pj − (1− xij,a) pa , p̄a = xij,apa , (B.22)

where the radiation variables xij,a, zi, zj are defined as in Eq. (B.16), and the rescaled

squared momentum of the spectating resonance j is defined as in Eq. (B.17). The

local dipole takes the form

Dia,j = (8πα)µ2ϵ θ[ia]θjQ[ia]Qj

z
(
Q2 − p2j

) ( 2

1− x+ z
− (1 + x)− ϵ (1− x)

)
, (B.23)

while the integrated counterpart can be written as∫
dΦ

(4−2ϵ)
rad Dia,j = θ[ia]θjQ[ia]Qj

α

2π

(4π)ϵ

Γ (1− ϵ)

(
µ2

2p̄j ·pa

)ϵ

×
{
−2

ϵ

(
1

1− x

)
+

+ 4

(
log(1− x)

1− x

)
+

+ 2

(
1

1− x

)
+

log

(
2− x

2− x+ µ2
j

)
+

1

ϵ
(1 + x)− (1 + x) log(1− x) + (1− x)− (1 + x) log

(
1− x

1− x+ µ2
j

)
− 2

1− x
log(2− x) + δ(1− x)

[
1

ϵ2
+

1

ϵ
log(1 + µ2

j) +
1

2
log2(1 + µ2

j)

+ 2Li2

(
1

1 + µ2
j

)
− π2

6

]
+O(ϵ)

}
. (B.24)

The application of this dipole class to the DPA of W+W+ scattering works in the

same manner as described at the end of the previous subsection, i.e. using Eq. (B.21).
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B.6 Additional dipoles with a massive resonant spectator

In the case of an initial-state photon splitting into a fermion–anti-fermion pair, a

massive charged resonance in the final state could in principle be used as the spectator

absorbing the recoil of the mapping. It is always possible to avoid such a situation, by

choosing the other initial-state parton or a final-state massless particle as spectator.

In the considered VBS process, we simply pick as a spectator one of the external

quarks. It is worth mentioning that this argument does not apply to QCD. Owing

to colour correlation, an initial-state splitting of a gluon into a massless-quark pair

requires one dipole for each other external coloured parton (acting as spectator),

including possible top quarks in the final state. In this case, which is known in the

literature [113], it is unavoidable to pick the massive coloured resonance in the final

state as a spectator.
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[41] B. Jäger and G. Zanderighi, Electroweak W+W−jj prodution at NLO in QCD

matched with parton shower in the POWHEG-BOX, JHEP 04 (2013) 024,

[arXiv:1301.1695].
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