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Abstract

We explore the feasibility of measuring the CP properties of the Higgs boson
coupling to τ leptons at the High Luminosity Large Hadron Collider (HL-LHC).
Employing detailed Monte Carlo simulations, we analyze the reconstruction of
the angle between τ lepton planes at the detector level, accounting for vari-
ous hadronic τ decay modes. Considering standard model backgrounds and
detector resolution effects, we employ three Deep Learning (DL) networks,
Multi-Layer Perceptron (MLP), Graph Convolution Network (GCN), and Graph
Transformer Network (GTN) to enhance signal-to-background separation. To
incorporate CP-sensitive observables into Graph networks, we construct Hetero-
geneous graphs capable of integrating nodes and edges with different structures
within the same framework. Our analysis demonstrates that GTN exhibits
superior efficiency compared to GCN and MLP. Under a simplified detector
simulation analysis, MLP can exclude CP mixing angle larger than 20◦ at 68%
confidence level (CL), while GCN and GTN can achieve exclusions at 90% CL
and 95% CL, respectively with

√
s = 14 TeV and L = 100fb−1. Furthermore,

the DL networks can achieve a significance of approximately 3σ in excluding
the pure CP-odd state.
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1 Introduction

Following the discovery of a scalar resonance with a mass near 125 GeV [1, 2], researchers
are now focused on measuring the properties and characteristics to assess whether it aligns
with the Higgs boson predicted by the Standard Model (SM) [3, 4]. A key aspect of this
investigation is examining its spin and CP transformation properties [5–7]. For example,
top-associated production is a promising channel to extract such properties [8–10]. Testing
its CP properties is especially significant in light of the observed baryon asymmetry of
the universe. The SM CP violation has been observed initially in Kaon decays [11], and
established by the measurements of the direct CP violation in K system [12], and CP
violation in neutral B meson decays [13, 14]. However, it is insufficient to account for
the Bayron asymmetry of the Universe [15]. Therefore, additional sources of CP violation
are essential ingredients of BSM to address the origin of the matter in our Universe. So
far, measurements of the Higgs boson properties, for instance, the interactions with gauge
bosons [16–21], performed by the ATLAS and CMS experiments show no deviations from
the SM predictions. Still, the possibility of an extended scalar sector that includes CP
violation, and thus, the observed scalar resonance being a CP mixing state, has not been
ruled out.

Besides the top-associated Higgs production, studying the τ spin correlation of the hττ
coupling yields valuable information about the CP state of the Higgs boson and has been
proposed for both the LHC and lepton colliders [22–34]. Here, the primary focus is on
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reconstructing acoplanarity angle of the decays of the τ lepton pairs from the angular cor-
relation of the decay products. A significant challenge in this kind of study at LHC arises
from the presence of neutrinos in τ lepton decays, which complicates the accurate deter-
mination of the τ momentum vector and, consequently, the angular distribution between
the τ lepton pairs at the LHC. However, the one-prong decays of the τ lepton, τ± → π±ν,
τ± → ρ±(ρ± → π±π0)ντ , τ± → a±

1 (a±
1 → π±π0π0)ντ , are promising. For the π+ final

state, the CP information can be reconstructed from charged pion momentum and inter-
action point (IP) information [26]. For the case of ρ and a1 final states, the angle between
the decay planes of (π+, nπ0), (π−, nπ0) retains the spin correlation information of the τ
lepton pair for ρ and a1 mode. It is essential to combine as many final states as possible;
the branching ratio of τ+ → π+ν final state is only 10.8% of the total decay width but in-
creases up to 45.6% if one includes up to π+2π0 final state. Analyses of Higgs boson decays
into τ lepton pairs have been conducted by both ATLAS [16, 35, 36] and CMS [37–40].
They show agreement with the SM prediction of the Higgs boson but do not rule out CP
admixture. ATLAS and CMS will accumulate more than 200 fb−1 for each experiment in
Run 3 (2024-2025), in the future, the High Luminosity Large Hadron Collider (HL-LHC)
aims to collect 3000 fb−1, to reveal the nature of the Higgs boson.

The hadronic final states of τ τ̄ suffers serious background from various SM processes.
Cuts to reduce the background have been developed, such as the isolation of the jet, jet
mass, change multiplicities, and momentum distribution of pions. Deep Learning Neural
Networks (DNNs) can efficiently increase the signal-to-background yield. Recently, DNNs
have been widely used in collider analysis for various tasks, see [41] and references therein.
In this paper, we utilize different sets of DNNs to suppress background events and study
the CP properties of the Higgs boson at the HL-LHC. The first DNN we consider is the
Multi-Layer Perceptron (MLP), which analyzes high-level kinematic and CP distribution.
Although MLP can achieve high classification performance between signal and background
events, it does not provide optimal performance for an analysis of the CP properties of
the Higgs boson. This is because CP information is fully mixed with event kinematics;
the learned information about Higgs boson CP properties will be diluted and network
performance will be degraded. The issue of degraded performance in MLPs due to inputs
containing mixed information has been highlighted, for example, in [42].

Alternatively, one can utilize a heterogeneous graph to analyse the h → τ τ̄ . A hetero-
geneous graph consists of nodes and edges with different types of information, which allows
the separate encoding of CP and kinematical information. We construct a graph of the
nodes of the final state pions and the reconstructed τ pair with selective connections. Pion
nodes are fully connected to recover the kinematic information, while tau nodes are con-
nected with edges weighted by the value of the reconstructed angular distribution between
them. This approach allows CP and kinematic information to be separately encoded within
a single graph.

To analyze these constructed graphs, we utilize two Graph Neural Networks (GNNs):
Graph Convolutional Network (GCN) and Graph Transformer Network (GTN). One key
advantage of the GTN is its ability to dynamically capture the complex information within
the graph, as GTNs leverage the attention mechanism to weigh the importance of different
nodes irrespective of their position, while GCNs rely on localized neighborhood aggregation.
Thanks to the attention mechanism, GTNs can dynamically focus on the most relevant parts
of the heterogeneous graph. This flexibility, together with the enhanced capability to model
intricate patterns, make GTNs particularly powerful for heterogeneous graph classification
tasks. We find that GTN can enhance the current sensitivity on CP nature of ATLAS and
CMS analysis.

This paper is organized as follows: In Section 2, we describe the parameterization of
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the effective Lagrangian relevant to this study and the construction of the CP observable
in different hadronically decaying channels of the τ lepton. Section 3 details the analysis
methodology and the Monte Carlo tools used for event simulation. In Section 4, we discuss
the three deep learning methods, MLP, GCN and GTN. The results of this study are
presented in Section 5 and our conclusion is drawn in Section 6.

2 Effective Lagrangian and CP observable
The general form of the effective Yukawa interaction between the Higgs boson h and τ
leptons can be written as

LHττ = −mτ

υ
κτ τ̄ (cos θτ + iγ5 sin θτ ) τh . (1)

Here, κτ is the reduced Yukawa coupling strength, v = 246 the vacuum expectation value
(vev) of h and θτ is the CP mixing angle, with θτ ranging from −90◦ to 90◦. This angle
parameterized the relative contributions of the CP-even and CP-odd components to the hττ
coupling. Specifically, θτ = 0◦ represents a purely CP-even state, while θτ = 90◦ represents
a purely CP-odd state. Values of θτ between these extremes indicate an admixture of both
components, suggesting a CP-violation in the Higgs sector. The CP-mixing angle θτ affects
the correlations between the transverse spin components of τ -leptons in h → ττ decays.
These correlations, in turn, influence the directions of the τ -lepton decay products. The
acoplanarity angle Φ∗, defined between the τ decay planes, is sensitive to these transverse
spin correlations and is influenced by the CP-mixing angle of the Yukawa coupling. The Φ∗

angle is directly connected to θτ in the h → ττ differential decay rate, with the relationship
taking the form of a first-order trigonometric polynomial in θτ . The differential decay rate
can be obtained as [43, 44]

dΓh→τ−τ+→a−a′+ ∝
(

1 − π2

16 b(E+)b(E−) cos (Φ∗ − 2θτ )
)

, (2)

where a and a′ are the tau decay products and b(E±) is the spectral functions defined in
[27].

The reconstruction of Φ∗ requires the reconstruction of the τ decay planes, which is
challenging at the detector level due to the missing energy associated with τ neutrinos.
Various methods have been developed to approximate the acoplanarity angle based on
differential techniques [23, 25, 27, 28, 31, 45, 46]. These methods are tailored to analyze
specific τ lepton decay modes and are adjusted according to the number of visible particles
within the τjet. Among them, we consider two methods for reconstructing Φ∗[36]. For the
τ± → π±ντ decay, only one visible charged particle is present. In this case, the τ plane can
be reconstructed using the IP method based on the impact parameter of the charged pions
from the two τ . On the other hand, if τ decays to ρ±ντ and a±

1 ντ , both charged and neutral
pions are present. In this case we use the transverse momenta of the visible particles to
estimate Φ∗.

There is a significant advantage in having two visible particles from each τ decay. Al-
though the momentum and plane of the τ lepton decays cannot be fully reconstructed due
to the missing energy from the associated neutrino, the momenta of the charged and neutral
pions can still be utilized. This allows for retaining information about the τ polarization
and reconstructing Φ∗. The acoplanarity angle can be derived from the charged and neutral
pions at the LHC as [31, 47]

Φ∗ = arccos
(
p̂0+

⊥ · p̂0−
⊥

)
× sgn

(
p̂− ·

(
p̂0+

⊥ × p̂0−
⊥

))
, (3)
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where p̂± is the unit vector of the charged pion three momentum in the zero momentum
frame of the ρ-meson pair, and p̂0+

⊥ , p̂0−
⊥ are normalised three momentum vectors of neutral

pions transverse to the charged pion momentum. Another requirement is the discrimination
of phase space with different τ polarization. The sign of the product of the τ lepton spin
analyzing function, Y = yρ

− × yρ
+ , where yρ

± = Eπ± −Eπ0
Eπ± +Eπ0

, and Eπ is the pion energy in the
laboratory frame, appears in the CP-mixing sensitive terms of the squared matrix element.
As Y is not positive definite, integration over pion momenta for both Y > 0 and Y < 0
would average out the CP mixing sensitive terms in the matrix element. Accordingly, the
events from different classes are separated by shifting the events with Y < 0 by π. This
way the acoplanarity angle is modified for the case of Y < 0 only and defined as

Φ∗ =
{

Φ∗ − π if 0 < Φ∗ < π ,

Φ∗ + π if − π < Φ∗ < 0 .
(4)

With this definition Φ∗ has the range of −π < Φ∗ < π.
Analogously to the ρ decay mode, the acoplanarity angle of the τ decay mode τ± →

a±
1 ντ → π±2π0ντ can be constructed by considering the four momenta sum of the neutral

pions as taken in the neutral component of the ρ method.
For the decay mode τ± → π±ντ , the IP method is employed to reconstruct Φ∗. The

impact parameter is defined as the shortest distance between the primary vertex and the
pion momentum vector extended in the direction of the τ decay point. Since it is practically
impossible to reconstruct the τ lepton momentum due to the presence of τ neutrinos among
the decay products, the τ lepton decay plane is reconstructed from the track momentum
and the impact parameter of the charged pion. First, the normalized impact parameters of
the charged pions, n̂∗ = (0, n⃗∗±), are measured in the lab frame and then boosted to the
zero momentum frame of the visible π± pair. The transverse components of the boosted
impact parameters to the direction of the associated charged pion momentum, n̂∗±

⊥ , are
used to define the acoplanarity angle as follows:

Φ∗ = arccos
(
n̂∗+

⊥ · n̂∗−
⊥

)
× sgn

(
p̂∗−

(
n̂∗+

⊥ × n̂∗−
⊥

))
. (5)

Considering this setup, we can analyze the CP properties of Higgs boson decays to τ
lepton pairs from three hadronic decay modes of the τ lepton. In general, the IP method,
which requires only one charged pion to reconstruct Φ∗, is suitable for analyzing other decay
modes such as τ± → ρ±ντ and τ± → a±

1 ντ . However, this method has low efficiency due to
the significant uncertainty associated with IP reconstruction. The IP of the τjet is relatively
small compared to the tracking resolution, limiting the precision of its measurement despite
the excellent resolution of the detector tracker. An advantage of the neutral pion method
is that it does not rely on the reconstruction of the IP. Instead, it requires determining the
direction of the neutral pion. The relatively large distance between the primary interaction
point and the electro-magnetic calorimeter (ECAL) (O(1) m), coupled with the fine ECAL
granularity, allows the direction of neutral pions to be reconstructed with smaller relative
uncertainties compared to the IP.

3 Analysis methodology
With the theoretical framework established, we now proceed with a phenomenological inves-
tigation into the CP properties of the Higgs boson through its decay into a pair of τ leptons.
Our analysis centers on the Higgs boson, with a branching ratio BR(h → ττ) ∼ 6.23%,
produced via gluon-gluon fusion with a production cross section of 51 pb at

√
s = 14 TeV
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and 46 pb at
√

s = 13.5 TeV. We consider the hadronic decays of the τ lepton through
three distinct modes: 1) both τ ’s decay τ± → π±ντ , 2) both τ ’s decay to τ± → ρ±ντ , and
3) both τ ’s decay to τ±(→ a±

1 ντ ) → π+2π0ντ , with corresponding branching fractions of
a single τ lepton is to approximately Br(τ− → π−ν) = 10.8%, Br(τ− → ρ−ν) = 25.49%,
and Br(τ− → π−2π0ν) = 9.26% according to Ref. [48]. Our networks analyse these three
modes as a single input without changing network structures, and extending the analysis
into mixed final states, such as πρ, πa1, ρa1, is straightforward.

In this section, we discuss the construction of the combined signal and background
events across different τ decay modes. Furthermore, we describe simulation tools we used
for the simulation preserving τ spin correlation in the final states for this analysis.

3.1 Signal reconstruction and background estimation

ATLAS [36] and CMS [39] have established the kinematic selection criteria for the CP
mixing Higgs decay search in h → ττ channel. We follow the selection criteria of the
ATLAS analysis in this paper. In our simulation, tau jets are reconstructed at the detector
simulation level of Delphes [49] with flat identification efficiency of 60% and 1% faking
efficiency from light jets. Two reconstructed τ tagged jets are required to fulfil the basic
selection cuts of PT > 20 GeV, each containing at least one charged track with PT > 1
GeV inside the jet cone. Moreover, we require the reconstructed missing energy to be /ET ≥
20 GeV. Depending on the construction method of the decay mode, different additional
selection criteria are applied to enhance the sensitivity.

The IP method is used to reconstruct Φ∗ for τ → πντ decays. For these events only
one charged track is required for a tau decay. The impact parameter method is applicable
when IP is larger than detector resolution, therefore reconstructed Φ∗ and CP mixing values
are diluted. The transverse and longitudinal impact parameters d0 and z0 of a charged-
particle track are defined as the closest distance from the primary vertex to the track in
the transverse plane. To improve the efficiency of the IP method, selected events have to
satisfy d0 ≥ 100 µm and z0 ≥ 2 mm.

For events with ρ meson decays a charged pion track and reconstructed π0 are required.
Similarly, for events with a±

1 decays a charged pion track and two π0 are required.
The condition of reconstruction of π0 in τ decays in ATLAS and CMS experiments are

detailed in [50–52]. We imitate this condition by requiring two (four) reconstructed photons
in the Delphes simulation with PT > 1 GeV and ∆R > 0.05 following the suggestion in
[47] for the ρ± (a± ) final state, respectively. To apply this condition, we use the truth
information of τ jet matching to the ρ (a1) momentum direction. Note that the purpose of
our paper is to show the improvement using our network from DNN and not to estimate
the improvement from the actual experimental situation.

For background estimation, we follow an ATLAS search for Higgs boson decaying to τ
lepton pairs [53]. The dominant irreducible background emerges from the Drell–Yan process
pp → γ∗/Z → ττ which contributes 90% of the total background events. Other backgrounds
stem from t̄t and misidentified τ . They are reducible and can be easily separated from two
τ jet productions. Misidentifying τ rates range between 0.15 − 0.25 for the one prong τjet
and between 0.01 − 0.04 for the three prong τjet [53].

Figure 1, shows the normalized distribution of the reconstructed Φ∗ for signal events
with different values of the CP mixing parameter θτ , as well as background events. Signal
distributions follow the analytical distribution of the Φ∗ as described in [23, 31]

α − β cos (Φ∗ + 2θτ ) , (6)

where α corresponds to the total cross section and β determines the relative magnitude of

6



3 2 1 0 1 2 30.00

0.05

0.10

0.15

0.20
Ev

en
ts

 (N
or

m
al

ize
d)

= 0 = 45 = 90 bkg

Figure 1: Normalized distributions of the reconstructed Φ∗ at the detector level are shown
for background events in red and for signal with three different CP mixing angles. The pure
CP-even distribution is represented by a dashed blue line, the pure CP-odd distribution by
a dashed green line, and the maximally CP-mixed state by a dashed orange line.

the asymmetry. As clearly seen, the maximal mixing distribution with θτ = 45◦ is shifted
by a phase of 2θτ from the pure CP-even distribution. This shift allows for effective dis-
crimination of the CP mixing states at the reconstruction level. Such a clear reconstruction
of Φ∗ after accounting for detector effects is expected, as the impact of the detector on the
neutral pion energy resolution and the charged pion transverse momentum resolution does
not significantly affect the reconstructed Φ∗ distribution.

An important effect arises from the granularity of the ECAL in the η − ϕ plane, which
impacts the angular momentum resolution in the direction of the neutral pion. This res-
olution is crucial for distinguishing between single photon showers and two photons from
π0 decays. This effect can obscure the differences between the reconstructed Φ∗ distribu-
tions for various CP mixing angles. However, as shown in [47], different granularity values
do not significantly alter the reconstructed Φ∗ distribution. Additionally, the positions of
the minima and maxima in distributions with different CP mixing angle values remain
unchanged.

3.2 Events generation

For event simulation, we implement the effective Lagrangian for Higgs boson production
from gluon-gluon fusion using FeynRules [54]. The NLO corrections to Higgs production
are implemented as detailed in [55] giving a production cross section of 51 pb at the energy
of the HL-LHC

√
s = 14 TeV. To incorporate CP-mixing parameters the effective coupling

of the Higgs to a τ lepton pair described by Equation 1 is implemented into the same model
files with κτ = 1.

We employ MadGraph5 [56, 57] for cross section estimation and generating parton-
level events. Pythia8.3 [58] is utilized to include parton showering and hadronization
effects. To maintain spin correlations in τ lepton decays within the matrix element, we use
the TauDecay module [59], which is a part of MadGraph package. This module, integrated
into the taudecayUFO model files, ensures spin correlation preservation by extending the
matrix element to 2 → N , where N represents the number of final-state pions. The factor-
ization and renormalization scales have been kept at the default MadGraph event by event
dynamic choice. Jets are formed using FastJet package [60] utilizing anti-KT algorithm
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[61] with R = 0.4. Detector effects are taken into account with the Delphes package [49]
using the default ATLAS card. Three datasets for different decay modes of τ lepton are
generated separately and combined with ratios according to the branching fraction of each
decay mode.

For the deep learning analysis, we use PyTorch Geometric [62] for building the GNN
networks, while standard PyTorch [63] is used for the MLP. Finally, the Scikit-Learn
package [64] is used to facilitate network training and evaluation.

4 Deep Learning analysis

In this section, we explore the application of various deep learning techniques, including
MLP, GCN, and GTN, to investigate the CP properties of the Higgs boson. Each network
is designed to handle specific types of input data according to its structure. The MLP is
adept at analyzing high-level kinematic distributions, while the GCN and GTN are suited
for analyzing heterogeneous graphs constructed from final state particles.

For the MLP study, the kinematical variables of the final state τjet pairs are recon-
structed, and Φ∗ is calculated for the final state τjet pair. The kinematical variables and Φ∗

are fed into the MLP. Of course, the kinematical data is normalized between the standard 0
and 1 range to ensure effective processing by the neural network. The network is trained to
distinguish the background and signal processes. Another method for training a network to
distinguish between different CP states is to use a conditional DNN network, as described
in [10].

GNNs, on the other hand, analyze graph-like structures. The standard way is that the
nodes of the graph represent the final state particles, and all nodes are fully connected.
The graph nodes are weighted with the four-momenta of the final state particles and edges
are weighted with the angular distance between each node pair. With this approach it is
not easy to incorporate the CP properties of the Higgs boson into a fully connected graph.
Instead, we utilize a heterogeneous graph in this paper. A heterogeneous graph comprises
multiple types of nodes and edges, each representing different entities and interactions
within the experimental setup. Nodes in these graphs can still represent final state particles,
but also the reconstructed τjet and Higgs boson. Each node type has distinct attributes
and properties that define its role within the graph. Edges represent the interactions or
relationships between these entities. This method has enhanced flexibility representing the
physics we focus on.

To efficiently incorporate CP information into a graph-like structure, we consider a fully
connected graph of the final state pions with additional heterogeneous nodes representing
the reconstructed τjet and the Higgs boson. The edges of the fully connected pion graph
are weighted with the angular distance between each node pair, while the edge between the
two τjet nodes is weighted with the value of the reconstructed Φ∗. By selectively connecting
τjet nodes to their decaying pions, we construct a graph that integrates both the kinematic
information of the signal and the CP properties of different Higgs boson states.

4.1 Multi-Layers perceptron

An MLP is a type of feed-forward neural network consisting of an input layer, one or more
hidden layers, and an output layer. The input layer size corresponds to the number of
kinematic variables being considered. Hidden layers, which contain a certain number of
neurons, are where the model learns to capture the complex relationships in the data. The
number of hidden layers and neurons in each layer are hyper-parameters that need to be
optimized.
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Figure 2: Kinematic distributions before applying selection cuts, used to train the MLP
network for a benchmark point with θτ = 90◦.

The input of MLP consists of 17 inputs that encompass the kinematic and CP properties
of the Higgs boson. Their distributions are shown in Figure 2 for a benchmark point with
θτ = 90◦. In addition to the transverse momentum pT , pseudorapidity η, azimuthal angle ϕ
and invariant mass of the leading and second-leading τ jets, the input distributions include
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the following:

• /ET : Missing Transverse Energy, defined as /ET = | −
∑

vi
p⃗T (vi)|, which is the sum of

the transverse momenta of the visible particles.

• m(τjet,τjet): The invariant mass of the τ jet pair shows a peak around the mass of the
SM-like Higgs boson for signal events, while background events peak around the mass
of the Z boson. This occurs because the background events are primarily dominated
by the pp → Zγ∗ → ττ process.

• pT(τjet,τjet) : The transverse momentum of the τ jet pair exemplifies the slight boost of
the τ jet pair in signal events compared to background events.

• E(τjet,τjet): The energy of the τ jet pair.

• η(τjet,τjet): The pseudorapidity of the τ jet pair.

• ϕ(τjet,τjet): The azimuthal angle of the τ jet pair.

• Φ∗: The acoplanarity angle between the two τ planes.

After reconstructing the kinematic distributions we stack all background events and
signal events separately, resulting in data sets with dimensions ddistribution = (17, N), where
N is the total number of training events. We use equal size training datasets of 80000 events
for signal and background, 20000 events are kept to evaluate the network performance
during the training. For the supervised classification problem, we assign a numeric label of
Y = 1 to the signal events and Y = 0 to the background events.

Having a suitable MLP structure that can effectively analyze the input data we scan over
the MLP hyper-parameters such as the number of the hidden layers, number of neurons in
each layer and the initial value of the learning rate. The MLP we use consists of one input
layer with a dimension equal to the input dataset dimension, followed by three hidden layers
with rectified linear activation Unit(ReLU), where the number of neurons is 256, 128, 64 for
each layer, respectively. A drop out layer is inserted after each hidden layer with a dropout
rate of 10% of the total number of neurons of each hidden layer. A final output layer is
inserted with two neurons and softmax activation that sum up the output probability to
one. Once the training process is complete, the MLP is evaluated on the independent testing
set with 50000 events of signal and background each, providing an unbiased evaluation of
the model’s performance.

4.2 Graph Neural Networks

Although MLP offers a straightforward way to analyze the CP states of the Higgs boson, it
suffers from low identification performance. This is because each node in the MLP is fully
connected to all other nodes in the hidden layer, which dilutes the learned CP state patterns
by fully connecting the Φ∗ distribution to the kinematic distributions. GNNs overcome this
issue by analyzing heterogeneous graphs which incorporate nodes containing different types
of information and selectively connected edges. This approach is well-suited for encoding
kinematic and CP information.

4.2.1 Heterogeneous Graph construction

As mentioned previously, we utilize a heterogeneous graph, rather than a traditional ho-
mogeneous fully connected graph, to capture the comprehensive event characteristics from
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the final state particles. The primary difference between heterogeneous and homogeneous
graphs is that heterogeneous graphs can represent multiple types of nodes and edges, each
with different properties and relationships, whereas homogeneous graphs consist of a single
type of nodes and edges. The heterogeneous graphs can accurately model complex systems
with diverse entities and interactions, such as the decay topology of Higgs boson events.

Figure 3: The constructed heterogeneous graph. Four node types are considered with dif-
ferent colours. Pion nodes are fully connected while other nodes are connected selectively.
Edge connection between the τ jets (blue edge) are weighted with the value of the recon-
structed Φ∗.

In this study, we construct a heterogeneous graph from the final state particles and the
reconstructed decayed particles τjet and h. We define four node types, each representing
a different type of particle and weighted with different information to encode the physical
properties of the event. The first node type comprises the charged and neutral pions. We
include six pion nodes for each event, representing the decay products of the τ leptons, up to
the 3-prong decay of the τ . For events with a lower number of pions, we pad the remaining
nodes with zeros. The features of the pion nodes include pseudorapidity η, azimuthal angle
ϕ, angular distance from the τ jet axis θj , transverse momentum kT , the logarithm of the
transverse momentum ratio of each τ constituent to the τ jet z ≡ log(PT /PJ), and the pion
energy E. The second node type represents the τ jets, with each event including two nodes.
Their features are transverse momentum, pseudorapidity, azimuthal angle, the invariant
mass and energy of the reconstructed leading τ jet. To encode the full event information,
we introduce a third node type representing the missing transverse energy, with one node
per event. This node has a single feature: the value of the missing energy in the event.
The fourth and final node type represents the Higgs boson, with one node per event. The
features of the Higgs node include pseudorapidity, azimuthal angle, transverse momentum,
the invariant mass of the system of two τ jet, and their energy. Table 1 summarizes the
nodes and edge features used for the heterogeneous graph construction.

The graph is constructed to reflect the decay topology of the Higgs boson events, as
shown in Figure 3, ensuring that relevant kinematic and CP information is integrated into
the graph design. Accordingly, each of the three pion nodes is connected to the correspond-
ing tau node, representing the decay products of the τ lepton. Both tau nodes are connected
to the Higgs node, representing the Higgs boson decaying into two τ leptons. Additionally,
the two tau nodes are connected by an edge weighted by the value of the reconstructed Φ∗,
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Node name Features
π±,0 ηπ, ϕπ PTπ , θ(π,τjet), Eπ, log(PTπ /PTτjet

)
τ± ητjet , ϕτjet PTτjet

, mτjet , Eτjet

/ET /ET

h ηh, ϕh PTh
, mh, where Ph ≡ Pτj1

+ Pτj2

Edge name Features
πi - πj ∆Rij

πi - τj log(PTi/PTτj
), θj

/ET - τ I
h - τ log(PTτ /PTh

)
τ - τ Φ∗

Table 1: Nodes and edge features of the used heterogeneous graphs.

capturing the relative orientation and interaction between the two τ leptons.
This graph structure ensures that the connections between nodes represent the physical

interactions occurring in the event, embedding essential physics information directly into
the graph. This design enhances the model’s ability to learn and infer the decay kinematics
and the CP properties of the Higgs boson by leveraging the intrinsic event topology. Node
types can be summarized as follows:

• Pion node: Six pion nodes are fully connected to each other and their edges are
weighted with the angular distance between each pair, ∆R. Although charged pion
has the same charge as parent τ lepton and the role in the Φ∗ reconstruction is
different, we require the same type of information for both charged and neutral pions
in this framework. This is because the information from both charged and neutral
pions is used to reconstruct the Φ∗ before constructing the graph.

• Tau node: The τ jet pair is connected with an edge, weighted by the value of the
reconstructed Φ∗. Moreover, the τ jet is connected to the constituent pions nodes
weighted by the ratio of the transverse momenta and the angular distance between
the corresponding piton and the τ jets.

• Missing energy node: The missing energy node is weighted with the transverse
momentum of the visible particles as /ET = −

∣∣∣∑υi
p⃗Tυi

∣∣∣ and connected to each tau
node weighted by a unit vector. Connecting the missing energy node to the tau nodes
allows the network to fully recover all information needed to reconstruct τ leptons.

• Higgs node: The Higgs node is weighted by the kinematic proprietaries of the
reconstructed four momenta of the τ jet pair and connected only to the τ jet nodes
with the ratio of the transverse momentum of the Higgs boson and the corresponding
reconstructed τ jet. We do not connect the Higgs node to the missing energy node
because τ jet nodes are already connected to the missing energy node and there will
be no information gained by adding this edge.

Once the heterogeneous graphs are constructed, we stack all backgrounds and sig-
nal events separately and adjust labels with Y = 0 and Y = 1 for the backgrounds
and signal events, respectively. During the training process, the model tries to minimize
the difference between its predictions and the assigned labels using cross-entropy loss as
−
∑

Y (x) log(Ŷ (x)), with Y and Ŷ are the true and predicted labels for each class.
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4.2.2 GNN training on heterogeneous graphs

Heterogeneous graphs contain various types of information linked to their nodes and edges,
making it impossible for a single feature tensor to represent all node or edge features across
the entire graph, due to variations in type and dimensionality. Instead, distinct types must
be defined for both nodes and edges, each associated with its data tensors, as we have
done in Sec 4.2.2. The message-passing framework is modified so that the computation
message and update functions are node and edge-specific. Accordingly, training of GNNs
on a heterogeneous graph is different from homogenous GNN training. For the training
process we follow the methodology introduced in [65] which is detailed as follows:

Softmax

Output

GTN/GCN

Heterogeneous 
 node-

Heterogeneous 
 node-

GTN/GCNGTN/GCN

Batch normalization 
ReLU activation 

Dropout 

GTN/GCN GTN/GCN GTN/GCN

FCFC

Batch normalization 
ReLU activation 

Dropout 

Batch normalization 
ReLU activation 

Dropout 

Batch normalization 
ReLU activation 

Dropout 

Figure 4: A schematic representation of message passing between τ±
jet and h. This diagram

illustrates message passing between two heterogeneous nodes for illustrative purposes only;
the actual network includes all the nodes shown in Figure 3.

• Message Passing and Node Update: Message passing is performed separately
for each edge and node type using edge-specific convolution operations. This sepa-
ration is necessary because nodes and edges containing different information cannot
be processed by the same function. Consequently, each edge connection requires an
additional GNN layer to adjust the output dimensions before passing information to
other nodes in the graph. For example, messages passed from a τ±

jet node to an h

node involve three edge connections: one from τ±
jet to h, one from h to τ±

jet, and one
from τ±

jet to itself (as the two τ±
jet nodes are interconnected). Each of these three edges

necessitates its own GNN layer plus an additional layer, as illustrated in figure 4. The
additional layers are incorporated to have the same output dimensions for different
inputs across all nodes. In this case, the outputs of the GNN layers are a vector of a
fixed size of 32.

• Aggregation and Pooling: Once the node embeddings for all types are updated,
a global graph-level representation is needed for graph classification tasks. Because
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all outputs have the same size, the outputs from the GNN layers are summed to a
single vector for pooling, and the ReLU activation function is applied. One hidden
layer comprises GNN layers, activation functions, batch normalization, and dropouts.
These can be repeated multiple times to capture the complex structure of the input
data.

• Graph-Level Classification: For graph classification, this typically involves fully
connected layers followed by a softmax activation function that outputs two probabil-
ity values indicating the class, either a signal or background-like. It is important to
note that Figure 4 serves solely as an illustration of how the τ±

jet and h nodes are up-
dated, whereas the actual training involves message passing for all node connections,
as depicted in Figure 3.

This training structure allows for capturing the graph’s heterogeneous nature, ensuring
that information from different node and edge types is effectively utilized in the classification
task.

4.2.3 Graph Convolution network

GCNs have gathered significant attention in recent years for their ability to learn represen-
tations of graph-structured data[66–68]. The primary goal of a GCN is to learn a function
that maps input features to new representations capturing the relationships among the
graph nodes [66–68]. The core concept behind GCN is the generalization of the convolution
operation from regular grids to irregular graphs. A graph convolution operation can be seen
as a local averaging of features from neighboring vertices capturing both the local structure
of the graph and the features associated with each node. Given an input graph G = (V, E),
the graph convolution operation is defined as

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2 H(l)W (l)

)
,

where H(l) ∈ RN×Fl is the feature matrix at layer l, with N being the number of vertices
in the graph and Fl the dimension of the feature space at layer l. W (l) ∈ RFl×Fl+1 is the
learnable weight matrix at layer l. Furthermore, σ denotes the activation function. The
matrix Â ∈ RN×N is the adjacency matrix of the input graph with added self-connections,
defined as Â = A + IN , where A is the adjacency matrix of G and IN is the identity matrix
of size N . The matrix D̂ ∈ RN×N is a diagonal matrix with D̂i = ∑

j Âij representing
the degree of vertex i in the graph with added self-connections. The graph convolution
operation can be interpreted as a message-passing mechanism, where each vertex aggregates
information from its neighbours and updates its features according to the learned weights.
This process is repeated over several layers, allowing the model to capture higher-order
relationships between vertices in the graph. We found the optimal architecture consists
of three hidden layers. Each hidden layer is followed by a rectified linear unit (ReLU)
activation function. The model employs sum aggregation to consolidate information from
all nodes in the graph, followed by a final classification layer. The model training process
was managed by a learning rate scheduler with an initial learning rate of 0.001, a step size
of 5 epochs and a decay factor of 0.8. This configuration was empirically determined to
yield the best performance in our evaluations.

Although GCN has demonstrated considerable success, it also has several key limi-
tations. One major drawback of the traditional GCN model is its inability to perform
inductive learning tasks due to its dependence on the graph’s specific adjacency matrix.
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The GCN model is also constrained by its rigid neighbourhood aggregation method. More-
over, GCN uniformly weights all neighbouring nodes during feature aggregation, which can
be ineffective if some neighbours carry more significant information than others, which is
often the case for our heterogeneous graph structure. These challenges have inspired the
creation of numerous GCN variants, such as GTN [69].

4.2.4 Graph Transformer Network

GTN is an advanced approach to handling graph-structured data, leveraging the power of
transformer architectures to process information. Transformers were originally developed
for natural language processing and introduced in LHC analyses in [70–76]. GTN combines
the strengths of traditional GNN with transformers to provide a more powerful and flexible
framework for analyzing graphs. The attention mechanism of the transformer enables the
network to selectively focus on different nodes of the input graph, allowing for the mod-
elling of complex relationships and dependencies. Therefore, GTN is suitable for extracting
diverse information from nodes with different structures, e.g. pion and τ jet nodes enabling
the effective extraction of kinematic and CP information about the signal events.

GTN works by firstly embedding the graph by passing the node features αi, for node i,
and edge features βij , for each edge between the nodes i and j, by a linear projection layer
as

hi = A αi + a0 , eij = B βij + b0 , (7)

where A, B and a0, b0 are the trainable matrices and biases of the linear projection layer
for the edge and node features, respectively.

After the graph embedding, the self-attention mechanism is applied. This mechanism
allows each node to attend to all other nodes in the graph. The attention mechanism calcu-
lates attention scores based on the similarities between the feature vectors of nodes. These
scores determine the influence of neighbouring nodes on the target node. The attention
mechanism works by defining key K, query Q, and calculates an attention matrix α as
follows:

αij = Q · KT

√
dk

, (8)

where Q = WQ · hi, K = WK · hj with WQ and WK learned weight matrices, and dk is the
dimension of the key vectors. For edge-wise attention, the mechanism works as

Aij = exp(αij · Ek
e )∑

k∈N (i) exp(αij · Ek
e ) , (9)

where N (i) denotes the neighbours of node i, Ek
e = eij · WE is a learnable weight vector for

edge type embeddings, and j stands for the other vertex where edge k is attached.
The attention scores are used to aggregate information from neighbouring nodes. Each

node updates its feature vector by taking a weighted sum of its neighbours’ features based on
the weights derived from the attention scores. This process is analogous to how traditional
GNNs aggregate information from neighboring nodes, but with the added flexibility of
attention weights. The node update has the form

h
(l+1)
i = σ

 ∑
j∈N (i)

mij + h
(l)
i

 , (10)
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Figure 5: Schematic representation of a GTN layer. See the text for a detailed description
of the GTN.

where σ is an activation function and l denotes the layer number. The message passing,
mij , is extended to include the attention effect as

mij = Aij(WV hj + eij) , (11)

where WV is a learnable weight matrix. The edge update has the same form as the node
update. Note that WV hj + eij works as the value of the attention mechanism. To cap-
ture different types of relationships and interactions GTNs employ multi-head attention.
Multiple attention mechanisms run in parallel, each focusing on different aspects of the
node features and interactions. The results are then concatenated and linearly transformed
to produce the final node embeddings. The final node embeddings are processed through
additional layers, a feed-forward neural network, with residual connections to produce the
desired output in the form,

h
(l+1)
i = F

(
h

(l)
i ∥h

(l)
j ∥e

(l)
ij

)
(12)

where F is a feed forward neural network and ∥ denotes concatenation over all parallel
attention heads. A schematic representation of a GTN layer is depicted in figure 5.

The optimized structure of the used GTN is determined through empirical evaluation
and is comprised of four GTN layers for each type of graph node, with an additional three
layers to adjust the dimensions of the different nodes and edges in the graph. All GTN layers
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comprise eight attention heads. The output of these layers is fixed to a vector of length
32 and passed by the ReLU activation function to incorporate non-linearity. To enhance
training stability batch normalization is applied after each ReLU activation. Dropout is
incorporated to mitigate over-fitting by randomly deactivating 10% of neurons during the
training process. This hidden layer, GTN layers, ReLU activation, batch normalization
and dropout are repeated three times. We use the sum aggregation function to integrate
information from all graph nodes, leading to a final fully connected classification layer with
two output neurons. Similar to the GCN case the training was conducted with a learning
rate of 0.001, managed by a scheduler with a step size of 5 epochs and a decay factor of 0.8.

5 Results

The discrimination power of each network is measured by the background rejection for
a given signal efficiency. The discrimination power is intertwined with various kinematic
distributions, including CP information. We utilize three different neural networks: MLP,
GCN, and GTN, each trained on eleven benchmark points with θτ ranging from −90◦ to 90◦.
Each network was trained and tested on each benchmark point individually. We use the
area under curve (AUC) of the receiver operating characteristic curve (ROC) to assess the
networks’ performance. ROC is a curve of the True Positive Rate (TPR) as the function of
the False Positive rate (FPR), and AUC is the area surrounded by FPR = 1 and TPR > 0.
Figure 6 shows the AUC values for all eleven signal points for MLP (green), GCN (orange),
and GTN (blue). GTN demonstrates superior performance with an AUC of approximately
88% for all points, while GCN and MLP achieved AUCs of approximately 86% and 84%,
respectively. Note that the AUC does not depend on θτ so that the use of DL does not
introduce additional bias to the analysis.
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Figure 6: Area Under the ROC Curve (AUC) values for the three networks represented by
the filled bullets for eleven CP mixing angles θτ ranging from −90◦ to 90◦. Each network
was trained and tested using the signal samples of eleven individual θτ values.

We also list the number of misclassified events for y > ycut where signal efficiency is
80% in table 2 for a benchmark point with θτ = 90◦ for integrated luminosity of 100 fb−1 at√

s = 14 TeV1. The acceptance of the background events is 1.7% for MLP, 1.0% for GCN
1We take the integrated luminosity close to the current LHC analysis for comparison.
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and 0.7% for GTN. We also compute the signal significance, following [77, 78]

σsys =

√√√√2 ·
[
(S + B) · ln

(
(S + B)(B + δ2

B)
B2 + (S + B)δ2

B

)
− B2

δ2
B

· ln
(

1 + δ2
BS

B(B + δ2
B)

)]
, (13)

where S, B is the number of the signal and background events, and δB represents the
systematic uncertainty of the SM background events and is set to 20% [36]. These results
demonstrate that the h → ττ process can be effectively identified at the HL-LHC by using
the proposed networks.

Selection cuts MLP(TPR> 0.8) GCN(TPR> 0.8) GTN(TPR> 0.8)
Background events 872554 14982 8901 6169
Signal events 1102 703 705 708
Signal significance 2.9σ 5.6σ 7.2σ 8.6σ

Table 2: Number of signal and background events at HL-LHC with energy
√

s = 14 TeV
and integrated luminosity L = 100fb−1 for a benchmark point with θτ = 90◦. The first
column displays the number of signal and background events after the selection cuts. The
subsequent columns present the number of signal and background for the used DNNs with
a True Positive Rate exceeding 0.8. The last row presents the signal significance, calculated
using equation 13.

To better understand the outputs of different networks, particularly the feature regions
each network focuses on to achieve its classification performance, we use Shapley Additive
Explanations (SHAP) [79]. SHAP is a method to estimate an importance value for each
feature using the output of deep learning models. For a given prediction f(x), the SHAP
value for a feature i is calculated as:

ϕi =
∑
S

|S|!(|N | − |S| − 1)!
|N |! [f(S ∪ {i}) − f(S)] (14)

where N is the set of all features, S is a subset of N excluding feature i, f(S) is the
prediction based on the features in subset S, and f(S ∪ {i}) is the prediction with feature
i added to S. The SHAP value ϕi, thus, represents the average contribution of feature
i to the prediction over all possible subsets S. This method ensures a fair and consistent
allocation of feature importance considering the correlation between the input distributions.
Since the networks used have a static structure with a fixed input dataset size, feature i is
randomly sampled to eliminate its impact on the network output.

Figure 7 shows the SHAP values for 10000 test events for a signal point with θτ =
90◦ for the MLP (left) and GTN (right). SHAP values are computed for the inputs of
both networks, including the reconstructed distributions shown in Figure 2 and the graph
nodes plus the Φ∗ edge shown in Figure 3. The results indicate that in both networks,
Φ∗ significantly affects the network output. Interestingly, the MLP focuses primarily on
the information from /ET , Φ∗, pT(τhτh) and the transverse momentum of the leading τ jet,
while it is less sensitive to all other input distributions. Conversely, the GTN distributes
its attention almost equally across all nodes in the input graph, which may explain the
improved performance of the GTN over the MLP.

5.1 Shape analysis

In this subsection, we explore the measurement of the CP state of the Higgs boson at the
LHC by analyzing the Φ∗ distribution for all considered θτ values. We focus on the Φ∗
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Figure 7: Average SHAP values for 10000 test events for a signal with θτ = 90◦ for MLP
(left) and GTN (right). GTN plot shows the SHAP values for all the graph nodes and the
Φ∗ edge.

distribution after maximizing the performance of the DNNs with a TPR ≥ 0.8. Figure
8 shows normalized Φ∗ distributions after applying a TPR cut for the three networks,
considering two benchmark points with CP-mixing angles θτ = 0◦ (left) and 90◦ (right).
These distributions are obtained from a test sample of 50000 signal and background events,
but still peaks at the correct location. Note that because of the high rejection efficiency of
the background, the distribution is mostly of the signal. For example, the contribution of
the background is less than 1/80 of the signal for GTN. At θτ = 0, the ratios of the minimum
and maximum of the distributions are 0.13/0.19=0.68 for MLP while it is 0.10/0.22 =0.45
for the GTN, showing the signal distribution is reconstructed correctly by using GTN.

We then use these distributions for a binned log-likelihood analysis to test the probability
of measuring a non-zero CP mixing angle against the CP-even SM case [47]. To do so, we
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Figure 8: Acoplanarity angle distributions of the signal for CP mixing θτ = 0◦ (left) and
θτ = 90◦ (right). Dashed histograms represent Φ∗ for events with True Positive Rate (TPR
> 0.8) for the three networks when tested on 50000 events for signal and background each.
The theoretical prediction is represented by the red solid line.

start by constructing a likelihood function, L(D|θτ ), which represents the probability of
observing data D for a given parameter θτ . For hypothesis testing the negative log-likelihood
ratio compares the likelihoods of two hypotheses: the null hypothesis L(D|0) and the
alternative hypothesis L(D|θτ ). The null hypothesis represents the probability of observing
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data consistent with a purely CP-even Higgs combined with background events, while the
alternative hypothesis represents the probability of observing data with θτ ̸= 0 combined
with background events. The limit on observing a non-CP-even state is determined by
rejecting the null hypothesis at a certain confidence level. The binned negative log-likelihood
ratio is defined as [47]

−∆ ln L = −
∑

i

[
ni log

(
ni

νi

)
+ νi − ni

]
, (15)

where the sum runs over the bins of the two hypothesis histograms, ni, νi. Under the null
hypothesis, and for large sample size, the test statistics −∆ ln L approximately follows a
Chi-squared distribution with degrees of freedom equal to the difference in the number of
parameters between the two hypotheses 2. Using the χ2 distribution, the P-value can be
computed as P (χ2 ≥ Λ), where Λ is the test statistic value of −∆ ln L. The confidence
level of rejecting the null hypothesis and obtaining a limit on the non-zero CP-mixing is
1 − P -value.
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Figure 9: The binned log-likelihood result as a function of θτ for the three networks, MLP
(orange), GCN (green), GTN (red) and expected ATLAS results (blue). Expected ATLAS
results are extracted from [36] for an analysis with

√
s = 13 TeV and integrated luminosity

of 139fb−1. Horizontal dashed lines represent the corresponding confidence levels.

Distributions for the null and alternative hypothesis are weighted according to the ex-
pected number of events at the HL-LHC with L = 100fb−1 after imposing the cut on the
network output probability to maximize the signal to background ratio. Figure 9 shows
the binned log-likelihood for MLP (orange), GCN (green), GTN (red) and ATLAS results
(blue) versus CP mixing angle. We extracted the ATLAS results from a recent analysis
with

√
s = 13 TeV for an integrated luminosity of 139fb−1 [36]. It excludes the CP mixing

angle θτ ≥ |28◦| at 68% C.L. A similar analysis performed by CMS found an expected
value of θτ ≥ |21◦| [40] at 68.3 % C.L with integrated luminosity of 138fb−1. As seen in
figure 9, MLP excludes θτ ≥ |43◦| at 95% C.L. GTN shows a superior performance ex-
cluding θτ ≥ |22◦| at 95% C.L, while GCN excludes θτ ≥ |31◦| at 95% C.L. MLP excludes
the pure CP-odd states nearly 3σ while GCN and GTN improve this further. The plots

2In our case we consider a χ2 distribution with degree of freedom equal to one, which represents the
CP-mixing angle.
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indicate that an improved DNN analysis can enhance both the current LHC and future
HL-LHC search. Note that our results are obtained under significant simplification on the
event reconstruction for the number of π± and π0; therefore, they cannot be used for a
direct comparison with the experimental results. The recent studies by ATLAS [36] and
CMS [40] constraint the pure CP odd Higgs at 2σ level as can be seen in the figure. Our
MLP results using high-level variables are comparable to the ATLAS ones, indicating the
simplified analysis does not affect the core message of this paper.

6 Conclusion

In this paper, we investigate the CP structure of the hτ±τ∓ vertex at the HL-LHC with√
s = 14 TeV. We consider three different channels of hadronic τ lepton decays for the case

where both of the τ lepton decays into the same final state: τ± → ρ±(ρ± → π±π0)ντ ,
τ± → a±

1 (a±
1 → π±π0π0)ντ , and τ± → π±ντ . The CP structure of the hτ±τ∓ vertex

can be determined from the angular correlation of the τ spins. This correlation can be
reconstructed from the angular distribution between the charged and neutral pions of the
τ lepton pair decays, even though there are tau neutrinos in the final state.

To improve the projected reach of measuring the CP mixing angle at the HL-LHC,
we consider utilizing advanced deep-learning networks to enhance the signal-to-background
yield. For this purpose, we employ three different networks to analyze different data struc-
tures. The MLP is used to analyze the kinematic distribution and reconstruct the CP mixing
angle. However, due to the fully connected nature of the MLP, it fully mixes the kinematic
and CP information, diluting the learned CP information and hindering the overall classifi-
cation performance. To overcome this, we consider heterogeneous graphs constructed from
the information stored in the final and decayed particles. With a selective connection of
the nodes we fix the processing of the kinematic and CP information. For heterogeneous
graph analysis, we adopt two networks, GCN and GTN. We find that GTN shows superior
performance in background rejection, achieving a signal significance of 8.6σ at the HL-LHC
with L = 100 fb−1 for a benchmark point with θτ = 90◦. GCN and MLP have lower signal
significance for the same benchmark point with 7.19σ and 5.6σ, respectively.

After improving the background rejection, we perform a shape analysis for the remaining
events. We use a binned negative log-likelihood analysis to estimate the probability of
seeing θτ ̸= 0 at the HL-LHC. Keeping the limitation of simplified analysis for τ jet tagging
using truth information of τ → ρ and a1 decays and π0 reconstruction, our results show
that the pure CP-odd state is excluded at nearly 3σ using the MLP, while GCN and
GTN exclude the pure CP-odd state at above the 3σ level showing stronger significance
than current LHC measurements [36, 40]. Moreover, GTN shows superior performance
excluding θτ ≥ |22◦| at 95% C.L., while GCN excludes θτ ≥ |31◦| at 95% C.L. and MLP
excludes θτ ≥ |43◦| at 95% C.L. GTN’s improved performance over GCN is due to the
fact that GTN applies an attention mechanism during training. The main advantage of
the attention mechanism is that it assigns weights to different elements in the input graph,
emphasizing the more relevant parts while downplaying the less relevant ones. Conversely,
GCN treats all neighbouring vertices equally during the feature aggregation process, which
can lead to suboptimal performance if certain neighbours provide more valuable information
than others, as is the case encoded in the considered heterogeneous graphs. To ensure
the reproducibility of our results, we have made our codes and files publicly available on
https://github.com/wesmail/HiggsCP
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