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IRASNet: Improved Feature-Level Clutter
Reduction for Domain Generalized SAR-ATR

Oh-Tae Jang, Min-Jun Kim, Sung-Ho Kim, Hee-Sub Shin, and Kyung-Tae Kim, Member, IEEE

Abstract—Recently, computer-aided design models and elec-
tromagnetic simulations have been used to augment synthetic
aperture radar (SAR) data for deep learning. However, an
automatic target recognition (ATR) model struggles with domain
shift when using synthetic data because the model learns specific
clutter patterns present in such data, which disturbs performance
when applied to measured data with different clutter distribu-
tions. This study proposes a framework particularly designed for
domain-generalized SAR-ATR called IRASNet, enabling effec-
tive feature-level clutter reduction and domain-invariant feature
learning. First, we propose a clutter reduction module (CRM)
that maximizes the signal-to-clutter ratio on feature maps. The
module reduces the impact of clutter at the feature level while
preserving target and shadow information, thereby improving
ATR performance. Second, we integrate adversarial learning
with CRM to extract clutter-reduced domain-invariant features.
The integration bridges the gap between synthetic and measured
datasets without requiring measured data during training. Third,
we improve feature extraction from target and shadow regions by
implementing a positional supervision task using mask ground
truth encoding. The improvement enhances the ability of the
model to discriminate between classes. Our proposed IRASNet
presents new state-of-the-art public SAR datasets utilizing target
and shadow information to achieve superior performance across
various test conditions. IRASNet not only enhances generalization
performance but also significantly improves feature-level clutter
reduction, making it a valuable advancement in the field of radar
image pattern recognition.

Index Terms—SAR-ATR, Deep Learning, Domain Generaliza-
tion, Adversarial Learning, and Feature-Level Clutter Reduction

I. INTRODUCTION

IN REMOTE sensing, synthetic aperture radar (SAR) is
primarily used as a radar imaging system utilizing a

wide range of frequencies to generate high-resolution images.
Compared to optical images, SAR plays an important role
in surveillance and reconnaissance because of its ability to
produce images under all-day, all-weather, and long-range con-
ditions [1]. Conversely, SAR images of objects under interest
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show complicated electromagnetic scattering phenomena, in-
cluding various scattering mechanisms owing to substructures
on targets, clutter or interfering signals, and speckle noise.
Unlike optical images, SAR images hold intensity and phase
information, while lacking color information. Therefore, a
visual understanding of SAR images is quite challenging [2]–
[4]. Accordingly, manual analysis of large SAR image streams
requires a significant amount of human resources, which has
led to the development of SAR automatic target recognition
(ATR). Traditional SAR-ATR algorithms are focused on build-
ing handcrafted features and an appropriate classifier for SAR
images [5]–[8].

Owing to advances in deep learning (DL), several SAR-ATR
approaches based on convolutional neural networks (CNNs)
have been proposed to automatically extract optimal features
from input data [9]–[13]. DL-based SAR-ATR algorithms
significantly outperform traditional approaches based on hand-
crafted features, owing to their abilities based on optimal
feature extraction. However, huge amounts of datasets are
required to guarantee reliable ATR performance [14]. Unfor-
tunately, the process of collecting and labeling measured SAR
images to train an ATR model is highly time-consuming and
expensive; therefore, obtaining a sufficient number of datasets
for DL-based SAR-ATR is challenging [15].

One effective solution to address the limited availability of
SAR data utilizes synthesized datasets generated by numerical
electromagnetic solvers with realistic computer-aided design
(CAD) models for targets of interest [16]–[19]. For instance,
the synthetic and measured paired labeled experiment (SAM-
PLE) dataset [20] can be employed. The approach generates
numerous synthetic SAR images within a reasonable period,
containing physically meaningful and reliable backscattered
echoes from targets of interest [15]. Data augmentation us-
ing CAD models and electromagnetic simulations mitigates
overfitting in DL models, making the approach particularly
effective in SAR-ATR, where data are often limited.

However, even when care is taken to exactly match actual
physical situations, errors may still arise owing to geometric
inaccuracies in CAD models [20]–[22] and approximations
during numerical calculations [18], [19], leading to an im-
perfect representation of real-world phenomena. Such dis-
crepancies cause a domain shift, manifested as a difference
in the distribution between synthetic and measured SAR
datasets. Consequently, classifiers trained on only synthetic
datasets tend to exhibit reduced accuracy when applied to
measured datasets [20]. Therefore, bridging the domain gap
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and accurately classifying measured data using synthetic data
has become a popular research focus.

Most researchers have attempted to address the main issue
of domain shift through domain adaptation (DA) research
[23]–[28]. DA mitigates domain shift in feature spaces by
extracting domain-invariant features through learning on a
dataset that simultaneously includes both synthetic and mea-
sured data, thereby improving ATR performance [29], [30].
Nonetheless, DA relies on a strong assumption that the mea-
sured data are accessible for model adaptation, which is not
always feasible in real-world operating conditions [31]. For
example, obtaining measured SAR images of specific targets
may not always be possible in every training scenario due to
the cost and limited availability of real targets required for data
collection. Additionally, since intelligence, surveillance, and
reconnaissance SAR are closely related to military purposes,
access to measured data is often restricted due to security
concerns. Such constraints make it unrealistic to always use
measured data for adaptation. Therefore, the applicability of
DA is limited in numerous scenarios.

Conversely, DL-based SAR-ATR research currently fo-
cuses on domain generalization (DG), also known as out-of-
distribution generalization [32] to overcome the domain shift
problem and the absence of measured data [16], [17], [33],
[34]. Unlike DA, DG relies solely on synthetic datasets for
training, excluding measured datasets [31], [35], [36]. The
definition of DG addresses a more realistic “open world”
assumption, where not all targets of interest encountered in
a field can be assumed to be learned [33]. The strategy is
particularly suitable for SAR-ATR problems where access to
measured data is challenging.

Current approaches to address domain-generalized SAR-
ATR (DG-ATR) problems aim to overcome domain gap
through data augmentation methods [33], [34] and hierarchical
recognition methods based on multi-similarity fusion (MSF)
[17]. Data augmentation methods attempt to solve DG-ATR
problems by diversifying the distribution of synthetic datasets,
particularly by adding noise to increase distributional variety
[33], [34]. Nevertheless, such approaches raise concerns about
the extent of noise required to achieve sufficient distributional
diversity owing to their excessive reliance on augmented data
[27]. Moreover, from a DG perspective, data augmentation
aims to reduce the domain gap at a pixel level and does not
necessarily ensure its reduction at a feature level. However,
MSF and hierarchical recognition techniques [17] also exhibit
limitations. The methods encounter consistency issues when
images with different distributions are introduced at the tar-
get/shadow segmentation phase in preprocessing. Conversely,
segmentation algorithms experience domain variance, and
pixel-level discrepancies between domains can lead to larger
errors at the feature level.

To address existing challenges, a novel DG framework for
SAR-ATR named integrating clutter reduction module (CRM)
and adversarial learning (IRASNet) is proposed in this study.
As shown in Fig. 1, extracting domain-invariant features solely
through adversarial learning can lead to overfitting in clutter
regions owing to the inherent challenge of learning clutter.
Additionally, separating the target and shadow regions during
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Fig. 1. Visualization of input image contributions in DL models using Shapley
additive explanations (SHAP) [37] for ResNet [38] and DANN [30].

preprocessing can cause underfitting, stemming from the high
domain variation associated with segmentation techniques.
Unlike existing algorithms, IRASNet addresses both of the
challenges simultaneously by combining clutter reduction at
the feature level through a CRM and extracting domain-
invariant features through adversarial learning to achieve
DG. Additionally, incorporating shadow features into clutter-
reduced features can improve ATR performance [2]. Moreover,
higher performance can be anticipated by increasing SCR at
the feature level to focus on the target region.

The main contributions in this paper are summarized as
follows:

1) A novel DG framework for SAR-ATR named IRASNet
is proposed. To the best of our knowledge, this is the first
study to report integrating feature-level clutter reduction
and domain-invariant feature learning within a network
to improve DG SAR-ATR. Furthermore, our method
achieves state-of-the-art results on a public SAMPLE
dataset in terms of DG.

2) This paper proposes CRM instead of target and shadow
segmentation during preprocessing, which reduces pro-
cessing time and enables target and shadow-based pro-
cessing in the feature space. Specifically, the module is
capable of accurately classifying images even when the
SCR of the test image is low and the background clutter
image is changed.

3) This paper proposes a simple yet effective positional
supervision task. The introduction of mask ground truth
(Mask GT) encoding of targets and shadows helps to
reliably reflect the position information of targets and
shadows for feature-level clutter reduction.

II. RELATED WORKS

In this section, the vulnerability of current domain-invariant
representation learning (DIRL)-based SAR-ATR approaches
[27], [30] in handling clutter areas is experimentally demon-
strated. Subsequently, we explore solutions for successful DG-
ATR.

General DL frameworks are prone to learning clutter re-
gions. Belloni et al. [39], Li et al. [40], and Heiligers et al.
[41] demonstrated that data and model biases caused models
to exhibit non-causality to background clutter, leading to



3

TABLE I
PERFORMANCE OF DANN AND RESNET TRAINED ON SYNTHETIC DATA AND TESTED ACROSS DIFFERENT DOMAINS

WITH DIFFERENT DATA PREPROCESSING TECHNIQUES (FOR EXAMPLE, PIXEL-LEVEL CLUTTER REDUCTION).

Synthetic Measured Unknown Clutter

Original

Img

Target + Shadow

(Segmentation)

Original

Img

Target + Shadow

(Segmentation)

Original

Img

Target + Shadow

(Segmentation)

DANN [30] 99.89% 99.91% 91.30% 70.56% 89.22% 62.45%

ResNet [38] 99.92% 99.84% 93.76% 70.11% 87.73% 58.81%
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Fig. 2. Visualization of algorithms for reducing the impact of clutter
according to domain. (a) Pixel-level clutter reduction algorithm. (b) Clutter-
robust learning algorithm. (c) Feature-level clutter reduction algorithm. The
red bounding box shows pixel-level errors, and the yellow bounding box shows
feature-level errors.

overfitting and undesirable ATR behavior. To analyze their
finding in the context of DG, explainable artificial intelligence
(XAI), specifically Shapley additive explanations (SHAP) [37],
is employed to directly visualize the rationale behind decisions
of the network, as illustrated in Fig. 1. SHAP allows for the
visual inspection of how each pixel in an input image impacts
the prediction of a DL model. The DL model involves a
network for DG based on adversarial learning [30], trained on
synthetic and noisy data from the SAMPLE dataset [20], and
tested on five classes of measured data. Despite overcoming
domain shifts and extracting domain-invariant features through
DIRL, the results show that the network makes decisions by
referencing clutter regions. Therefore, clutter is a significant
obstacle to DG-ATR problems in general DL frameworks.
Thus, models require training to better learn true causal fea-
tures, specifically the intrinsic characteristics of their targets,
while relying less on background clutter.

Several algorithms have been proposed to help networks
learn the intrinsic characteristics of their targets more effec-
tively by removing clutter [2], [17], [42], [43]. Pixel-level
clutter reduction methods ensure high performance in ATR
problems with the same distribution of train and test data,
as the segmentation mask remains consistent. Conversely,
applying DG-ATR encounters limitations in ensuring domain
invariance during the preprocessing of targets and shadow
segmentations due to different hyper-parameters for differ-
ent domains. Segmentation algorithms for pixel-level clutter
reduction require hyper-parameters for specifying candidate
regions of the target and shadow areas, and the SCR between

the target and clutter [42], [44]. Therefore, such methods do
not work accurately when the candidate regions for the target
and shadow are inconsistent or when a sufficient SCR is not
maintained.

As illustrated in Fig. 2 (a), when the SCR is low in the
measured image, the information in the target and shadow
region can be entirely lost, despite applying the same segmen-
tation method. The loss cannot be compensated within the DL
network [45], leading to degraded performance. As indicated
in Table I, performance significantly declines when training
and testing with only target and shadow regions compared to
using images that include clutter regions. Even in the DIRL
performed by DANN [30], the domain gap was not bridged,
likely due to information loss during segmentation. Therefore,
performing feature-level clutter reduction to avoid information
loss is imperative, even if it results in less effective reduction
of clutter regions.

On the other hand, several methodologies have focused on
reducing the impact of clutter at the feature level. Peng et
al. [46] proposed contrastive feature alignment (CFA) that
combined a mixed clutter variant generation strategy with
channel-weighted mean square error (CWMSE) loss to ex-
tract robust features against clutter. The approach effectively
enhanced target recognition robustness in various background
clutter scenarios. However, the method posed issues of still
retaining clutter values at the feature level, which could lead to
reliance on clutter for decision-making and poor generalization
performance. Therefore, methods that learn to suppress clutter
and reduce its influence at the feature level are essential.

Furthermore, Li et al. [47] proposed a hierarchical
disentanglement-alignment network (HDANet) that reduced
clutter and extracted target features through multi-task-assisted
mask disentanglement and domain alignment. However, the
approach did not utilize shadow information at the feature
level, resulting in a decrease in ATR performance compared to
when both target and shadow information were used together
[2]. Herein, Fig. 2 (b) and (c) present the features of synthetic
and measured data for CFA [46] and HDANet [47] trained on
synthetic and augmented datasets, respectively. On examining
the yellow bounding boxes, high values remained in the clutter
region of the measured data, indicating that clutter reduction
was not perfectly achieved. Currently, researchers have not
extensively studied clutter reduction in the context of DG. To
enhance DG performance, ensuring both domain invariance
and clutter reduction simultaneously is essential.
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CRM

5x5

1x1

5x5

𝐹𝐹𝑇𝑇
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𝐹𝐹𝑆𝑆
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𝑀𝑀𝑠𝑠𝐹𝐹𝐼𝐼𝐼𝐼
𝐻𝐻

𝑊𝑊

𝐶𝐶
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𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑻𝑻𝑷𝑷𝑷𝑷𝑻𝑻 (𝑷𝑷𝑺𝑺𝑻𝑻) 𝑨𝑨𝑷𝑷𝑷𝑷𝑺𝑺𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑻𝑻𝑷𝑷𝑷𝑷𝑻𝑻 (𝑨𝑨𝑻𝑻)

Fig. 3. Overall pipeline of the proposed IRASNet framework. The CRM operates differently during the training and testing phases. The augmented and
synthetic datasets are combined using a novel CRM and adversarial learning to derive domain-invariant, clutter-reduced features.

III. METHODOLOGY

IRASNet is a framework designed to address the DG
problem, achieving high performance on measured data when
trained solely on a 100% synthetic dataset. The overall concept
of the proposed IRASNet is presented in Fig. 3. This section
details the stepwise procedures of the proposed framework.

A. Problem Formulation
We introduce the definition of the DG problem. We denote

the input and label spaces by X and Y , respectively. The
dataset X comprises data points extracted from the input space
X , and the corresponding label set Y is drawn from the label
space Y . Therefore, X ⊂ X and Y ⊂ Y represent the subsets
of their respective spaces. The datasets X and Y are structured
as: X = {x1, x2, . . . , xi} and Y = {y1, y2, . . . , yi}, where
each xi and yi represent an image (or input data) and the
corresponding label, respectively.

In the context of DG, we assume to have two domains:
K similar but distinct source domains DS = {DS

k =
{X(k), Y (k)}}Kk=1, where each source domain is defined ac-
cording to the previously defined domain with joint distribu-
tion P

(k)
XY and the target domain DT . Notably, P (k′)

XY ̸= P
(k)
XY

and k ̸= k′ with k, k′ ∈ {1, . . . ,K}. DG aims to learn a
predictive model f : X → Y using only source domain data
such that the prediction error on an unseen target domain
DT = {XT }. The target domain is not used at all during
training; therefore, the label space is not defined. Naturally,
the joint distribution of the target domain DT is denoted as
PT
XY , and PT

XY ̸= P
(k)
XY ∀ k ∈ {1, . . . ,K}.

B. Building Multiple Source Domain
The proposed framework utilizes data augmentation from

synthetic datasets based on existing studies [33], [34] for
robust clutter reduction and constructing multiple source
domains. We obtain an augmented domain DS

Aug through
augmentation applied to the synthetic domain DS

Syn. Thus,
the constructed source domain is defined as two similar but
distinct source domains DS = {DS

Syn, D
S
Aug}, where PSyn

XY ̸=
PAug
XY . Herein, DS

Syn = {(XSyn, Y Syn,MSyn
T ,MSyn

S )} rep-
resents the synthetic domain, where the mask set MT/S ,
defined as target/shadow mask set for training in IRASNet,
is included in the source domain. Conversely, the mask set
MT/S corresponding to X is drawn from the mask space
M (MT/S ⊂ M). Additionally, the datasets MT/S are
structured as: MT/S = {mt/s,1, . . . ,mt/s,i}, where each
mt/s,i represent a target/shadow mask. Furthermore, DS

Aug =

{XAug, Y Aug,MAug
T ,MAug

S } represents the augmented do-
main derived from the synthetic dataset. The measured dataset
is defined as the target domain, specifically represented as
DT = {DT

Mea}, where DT
Mea = {XMea} is the measured

domain. Notably, the measured dataset does not include labels
or a mask set. The detailed methods and hyperparameters used
for augmentation and mask generation are provided in the
supplementary material.

C. Clutter Reduction Module (CRM)
The core of the proposed IRASNet lies in the novel feature-

level clutter reduction mechanism (Fig. 3, CRM), which simul-
taneously reflects the features of the target and shadow regions.
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Conventional clutter reduction methods reduce the intensity of
clutter while preserving that of the target using the positional
information of both the target and clutter regions [2], [42],
[43], [47]. The methods aim to maximize SCR defined by:

SCR = 20 log10

 max
p′,q′∈IT

IT (p
′, q′)

1
NC

∑
p′′

∑
q′′ IC(p

′′, q′′)

 , (1)

where IT (p
′, q′) ∈ RPT×QT represents the target region. PT

and QT denote the width and height of the target region,
respectively. Similarly, IC(p′′, q′′) ∈ RPC×QC represents the
clutter region. PC and QC represent the width and height of
the clutter region, respectively. Additionally, NC denotes the
total number of pixels in the clutter region. The maximization
of Eq. (1) is implemented in [2] using expressions:

IT = I ⊗mt, (2)

where ⊗ denotes element-wise multiplication and mt ∈
{0, 1}P×Q represent the masks for the target regions. Accord-
ingly, the SCR is defined as ∞.

In the ATR study, information in the shadow region is
determined and obtained as:

IS = I ⊗ms (3)

to enhance class discrimination [2]. Herein, IS ∈ RP×Q

represents the shadow region, and ms ∈ {0, 1}P×Q de-
notes the mask of the shadow region. Therefore, to achieve
higher ATR performance, maximizing SCR while preserving
the information in the shadow region of the feature map is
essential. Thus, to achieve the required results, the following
optimization problem is solved.

max
θF

20 log10

 max
c,w,h∈FT

FT (c, w, h; θF )

1
NFC

∑∑∑
FC(c, w, h; θF )


subject to ∥FS(·; θF )−HS∥2 ≤ ϵ,

(4)

where f(·; θF ) denotes a CNN-based extractor with internal
parameters θF and NFC

represents total number of pix-
els in the clutter feature. Additionally, FT ∈ RC×W×H ,
FC ∈ RC×W×H , and FS ∈ RC×W×H represent the feature
maps of the target, clutter, and shadow regions, respectively.
Herein, Eq. (4) represents the objectives that CRM aims to
achieve. While maximizing SCR on the feature map, the
shadow feature map must also minimize its difference from the
encoded segmentation mask HS ∈ RC×W×H , which includes
the positional information of the shadows. The method for
obtaining HS is introduced in the positional supervision task
(PST). The CRM for solving Eq. (4) comprises two sub-parts:
1) positional supervision task (PST) and 2) attention task (AT).

Given an intermediate feature map FIN ∈ RC×W×H as
input, CRM infers a 2D target and shadow attention map ZS ∈
R1×W×H . The overall feature-level clutter reduction process
can be summarized as:

FOUT = ZS ⊗ FIN , (5)

where ⊗ denotes the element-wise product. The attention
map, which has high activation values for target and shadow,

is multiplied by the input feature map. FOUT ∈ RC×W×H

represents the final refined output. Details of computing the
attention map are discussed further.

1) Positional supervision task (PST)
To enhance the SCR on the feature map, understanding the
positional information of the target and shadow is crucial.
In this section, we introduce a new approach called PST to
focus on improving SCR by accurately reflecting the positional
information of targets and shadows within feature maps,
thereby enhancing spatial consistency. By introducing PST,
we enable the dynamic integration of positional information
of objects and shadows across domains.

PST is inspired by the key mechanism proposed in the
pixel-level clutter reduction method introduced in Eq. (3). The
technique obtains target and shadow features by multiplying
the mask features of the target and shadow with the input
features.

One method to obtain mask features involves inputting
target and shadow masks into the DL model. However, as
shown in Fig. 2, a loss can occur at the pixel level. Therefore,
we adopt an approach where convolutional layers learn the
masks by using target and shadow masks as GT. The masks
are obtained using the method proposed in an existing study
[2], where mt ∈ {0, 1}P×Q and ms ∈ {0, 1}P×Q are the
target and shadow masks, respectively.

Initially, the input features are divided into three branches
to incorporate positional information.

fe(F ) = ReLU(BN(f5×5(F )))

FTM = fe(fe(fe(FIN )))

FSM = fe(fe(fe(FIN )))

F ′
IN = ReLU(BN(f1×1(FIN ))),

(6)

where FTM , F ′
IN , and FSM ∈ RC×W×H are the feature

maps of the target mask, input, and shadow mask, respectively.
Herein, fe denotes the encoder function used to divide the
input features into branches, BN denotes batch normalization,
and f5×5 represents a convolution operation with a filter size
of 5× 5.

SAR images are significantly affected by speckle noise,
which comprises high-frequency components. To reduce the
impact of speckle noise and better capture positional informa-
tion, we use 5 × 5 convolution with a wide receptive field
to obtain FTM and FSM , which represent the target and
shadow mask feature. Additionally, to minimize information
loss from the input features and reduce complexity, we use
1× 1 convolution to obtain F ′

IN .
However, simply dividing the features into three branches

is not sufficient to capture the information of the target and
shadow. Therefore, we redefine the Mask GT encoding process
to reflect the positional information of object and shadow
regions.

Previous studies [48]–[50] have integrated the positional
information of objects into feature maps using Mask GT,
primarily employing probability-based heatmaps and focal
loss. In scenes containing multiple objects, probability-based
heatmaps are used to roughly indicate object positions for
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tasks such as object detection and instance segmentation.
Conversely, for classification tasks, which deal with images of
a single object, the contour information of each element, such
as objects, shadows, and noise, is crucial for accurate differ-
entiation. However, using general probability-based heatmaps
makes it difficult to accurately reflect the contour information.

Additionally, the CRM model integrates positional informa-
tion into the feature maps FTM and FSM . The Mask GT mt/s

exist in the space {0, 1}P×Q, while the feature maps FTM/SM

exist in the space RC×W×H , leading to modality mismatch.
To resolve the discrepancy, we encode the Mask GT as:

HT = g(mt; θM )

HS = g(ms; θM ),
(7)

where g(·; θM ) represents the Mask GT encoder that shares
the same structure as f(·; θF ) to ensure the same modality
with FTM and FSM . However, it has different learnable
parameters. The encoded Mask GTs HT ∈ RC×W×H and
HS ∈ RC×W×H preserve the contour information of objects
and shadows, matching the modality and scale of FTM and
FSM .

Subsequently, the loss function between the encoded GT
and FTM and FSM is defined as:

LT = − 1

NS

NS∑
i=1

HT,i log(FTM,i)

LS = − 1

NS

NS∑
i=1

HS,i log(FSM,i).

(8)

Accordingly, FTM and FSM in the CRM effectively integrate
the positional information of targets and shadows.

Finally, FTM and FSM can be used to derive the target
and shadow features through element-wise multiplication with
F ′
IN :

FT = ReLU(FTM ⊗ F ′
IN )

FS = ReLU(FSM ⊗ F ′
IN ),

(9)

where FT ∈ RC×W×H and FS ∈ RC×W×H represent the
target and shadow region-dominant features, respectively.
Additionally, the operation reflects the correlation with
clutter regions in the input features, thereby maximizing the
feature map SCR. Through the introduction of PST, effective
handling of changes in key point positions that vary across
domains is possible. Since the key point positions differ by
domain [15], using masks is more effective than directly
utilizing the segmented regions in the DG-ATR problem, as
the approach helps to reduce domain-specific errors.

2) Attention task (AT)
In an AT, an attention map is generated by utilizing key
features from both the target and shadow regions, based on
an attention mechanism [51]. The attention map is designed
to focus on areas within the target and shadow regions that
contribute to the learning process while excluding clutter
regions.

ZS = Avgpool(ReLU(f3×3([FT ;FS ]))), (10)

where ZS ∈ R1×W×H represents the attention map, and
Avgpool denotes global average pooling.

Finally, the clutter regions within the feature map are
maximally reduced through PST, while preserving the shadow
regions via Mask GT encoding. Through AT, the model is
directed to focus on relevant areas within the target and
shadow regions.

D. Adversarial learning

Adversarial learning, initially developed in generative ad-
versarial networks (GAN) [52], has been utilized in DA [30],
[53] and DG [36]. IRASNet can be divided into a feature
extractor fF (·; θF ) and a classifier fY (·; θY ). The model can
be trained according to the classification loss as:

Lcls = −
1

N

N∑
i=1

C∑
c=1

1[c=yi] log(P (ŷi|xi)), (11)

where yi is the class label and ŷi is the predicted value
from the classifier. In addition to such components, adversarial
learning introduces a domain discriminator fD(·; θD), which
is trained to discriminate the domains when the outputs of the
feature extractor are inputted. Conversely, the feature extractor
is trained to extract features that make it difficult for the
domain discriminator to discriminate their domains. Thus, the
extraction of domain-invariant features from multiple source
domains is enabled, thereby generalizing the model for the
unseen target domain. This is the core idea of DIRL using
adversarial learning. The adversarial loss is defined as:

Ladv = − 1

N

N∑
i=1

K∑
k=1

1[k=di] log(P (d̂i|xi)), (12)

where K is defined as 2 (in this paper), di is the domain label,
and d̂i ⊂ D is the predicted value from the domain classifier.
Both Lcls and Ladv are defined as negative log-likelihood loss
functions.

During training, weight updates for the feature extractor,
domain discriminator, and label classifier are performed dif-
ferently, expressed as:

θF ← θF − µ

(
∂Lcls

∂θF
− λ

∂Ladv

∂θF

)
θY ← θY − µ

∂Lcls

∂θY

θD ← θD − µ
∂Ladv

∂θD
.

(13)

To introduce negative weights into the learning process, we
use the gradient reversal layer (GRL) [53]. The GRL does not
have any parameters except for a hyper-parameter λ (which is
not updated via backpropagation). During the forward pass, the
GRL acts as an identity transformation. However, during the
backward pass, the GRL multiplies the gradient received from
the subsequent layer by −λ and passes it to the previous layer.
IRASNet achieves enhanced generalization performance by
simultaneously learning domain-invariant and clutter-reduced
features through the combination of CRM and adversarial
learning.
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TABLE II
TRAINING AND TEST SAR SAMPLES UNDER FOUR SCENARIOS OF EXPERIMENTAL SETUP

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Train Test Train Test Train Test Train Test

Synthetic Measured Synthetic Measured Synthetic
SCR Fluct.
(-3 − +3)

Synthetic
Unknown

Clutter

Dep. Angle 14−16 17 14−17 14−17 14−17 14−17 14−17 14−17

2S1 116 58 174 174 174 174 174 174
BMP2 55 52 107 107 107 107 107 107
BTR70 43 49 92 92 92 92 92 92

M1 78 51 129 129 129 129 129 129
M2 75 53 128 128 128 128 128 128
M35 76 53 129 129 129 129 129 129

M548 75 53 128 128 128 128 128 128
M60 116 60 176 176 176 176 176 176
T72 56 52 108 108 108 108 108 108

ZSU23 116 58 174 174 174 174 174 174

Total 806 539 1345 1345 1345 1345 1345 1345

2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23

Sy
nt

he
tic

M
ea

su
re

d

Fig. 4. Paired synthetic and measured images in the SAMPLE dataset.

IV. EXPERIMENTS

A. Dataset Description

1) SAMPLE dataset: To verify the DG performance of
the proposed IRASNet, we adopted the SAMPLE dataset
[20] that included both synthetic and measured data. In the
dataset, synthetic data were generated using sophisticated
CAD models and asymmetric ray tracing techniques [20],
while the measured data were directly obtained from the
MSTAR dataset [15]. The SAMPLE dataset comprised
10 ground targets captured under various SOC conditions,
which were categorized into 10 different ground vehicle
target classes: 2S1, BMP2, BTR70, M1, M2, M35, M548,
M60, T72, and ZSU23. The paired images of synthetic and
measured data for each class are shown in Fig. 4. The SAR
target images were obtained using an X-band HH-polarized
SAR with a resolution of 0.3×0.3 m, and image size of
128×128 pixels. The depression angle ranged from 14° to
17°, and the azimuth angle ranged from 10° to 80°. The entire
SAMPLE dataset contained 1,345 paired SAR synthetic and
measured image pairs with the same imaging parameters,
including depression and azimuth angles.

2) SCR fluctuation: In SAR-ATR, performance degraded
when clutter overwhelmed the target signal, making perfor-
mance evaluation under varying SCR conditions crucial. Ad-
ditionally, the core concept of the proposed IRASNet involves
clutter reduction at the feature level. Therefore, to assess
the clutter reduction performance of IRASNet and compare
it with various feature-level clutter reduction methods, we
created a new test set by adjusting the SCR of the measured
data in the SAMPLE dataset. First, we obtained IT and IC

from the measured SAR image xmea using the target/shadow
segmentation algorithm proposed in a previous study [2].

Further, we calculated SCR using Eq. 1 and adjusted the
intensity of the clutter region according to the variation value
to generate a new xscr. The dataset comprised 13 test sets,
with SCR increasing from −3 dB to 3 dB in increments
of 0.5 dB. The newly generated SAR images with varying
SCR are presented in Supplementary Material. Notably, SCR
variations were only applied to the measured data to evaluate
models trained on synthetic data.

3) Different background clutter: The MSTAR chip and
SAMPLE datasets, currently used as benchmark datasets,
included only clean ground clutter among various types
of clutter. However, the target data required for ATR in
real-world applications included clean ground clutter along
with complex ground clutter caused by trees, grass, and
the shadows they form [11]. To more accurately evaluate
ATR performance in actual operational environments,
providing datasets that include complex types of clutter is
essential. Therefore, we utilized the MSTAR public clutter
data including both rural and urban clutter. Similarly, by
segmenting the target/shadow in the measured data, we
synthesized and cropped the images with the MSTAR public
clutter data to obtain 128×128 images. The data generated
through this method is referred to as unknown clutter. The
newly generated SAR images with unknown clutter are
presented in Supplementary Material. Along with SCR
fluctuation, an unknown background clutter was applied only
to the measured data to evaluate models trained on synthetic
data. The dataset allowed us to assess clutter reduction
performance in relatively complex backgrounds and evaluate
it from the perspective of DG.

4) Experimental scenario: Four main experimental scenarios
were considered. In scenario 1, training data comprised syn-
thetic data with a depression angle ranging from 14° to 16°,
while test data comprised measured data with a depression an-
gle of 17°. The scenario was closer to real-world conditions as
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TABLE III
EXPERIMENTAL RESULTS UNDER SCENARIO 1 AND 2

ACCORDING TO GENERALIZATION METHODS

Speciality Model
Accuracy [%]

Under
Scenario 1

Under
Scenario 2

Pixel

level

Gen.

Vision

algorithm

EfficientNet [54] 94.99% 92.04%

MobileNet V2 [55] 90.35% 90.63%

MobileNet V3 [56] 91.09% 91.38%

ResNet18 [38] 96.29% 91.30%

ResNet50 [38] 92.57% 93.76%

ResNext [57] 93.69% 93.75%

SAR-ATR

algorithm

AconvNet [11] 89.42% 87.14%

AM-CNN [12] 94.62% 93.53%

ASIR-Net [10] 92.21% 93.75%

TAI-SARNet [13] 85.52% 83.49%

DG-ATR Ensemble [33] 95.06% -

Feature

level

Gen.

Vision

algorithm

for DG

DANN [30] 91.65% 91.45%

MMLD [58] 91.09% 91.67%

DANN+DFF [59] 92.39% 93.01%

MMD-AAE [35] 90.35% 91.97%

CAADA [60] 89.42% 90.63%

Deep CORAL1 [61] 94.99% 92.93%

Deep CORAL2 [61] 93.69% 92.19%

DG-ATR IRASNet (Proposed) 97.40% 96.72%

there was no one-to-one correspondence between the synthetic
and measured data. In scenario 2, the training data included
synthetic data with depression angles ranging from 14° to 17°,
and the test data used measured data with the same range of
depression angles. The two scenarios allowed us to evaluate
the performance of various models from the perspective of
DG.

The remaining two scenarios were designed to evaluate the
potential of feature-level clutter reduction. In scenario 3, the
synthetic data used in scenario 2 was utilized as training data,
and the test data comprised 13 measured datasets with SCR
fluctuation increasing from −3 dB to 3 dB in increments of 0.5
dB. Since the training data were fixed at an SCR fluctuation of
0 dB, the varied SCR in the test data made the recognition task
more challenging. Lastly, scenario 4 was designed to evaluate
clutter reduction performance in complex backgrounds. The
same synthetic data from scenario 2 was used as training data,
and the test data comprised measured datasets with complex
backgrounds. As the DL model was trained only on ground
clutter, the scenario assessed its ability to reduce clutter in
more complex backgrounds. Detailed information on these
four scenarios is provided in Table II. The augmented dataset
was consistently applied to all comparison models across the
experiments.

B. Comparison experiments

First, using scenarios 1 and 2, we conducted comparative
experiments from a DG perspective. We comprehensively
investigated DG-ATR performance based on various network
architectures, including backbone models specialized for SAR

TABLE IV
EXPERIMENTAL RESULTS UNDER SCENARIO 1 AND 2

ACCORDING TO CLUTTER MITIGATION METHODS

Speciality Model Accuracy [%]

Under
Scenario 1

Under
Scenario 2

Pixel Level
CR

SAR-IFTS [2] 80.33% 80.07%
ESENet [43] 74.58% 75.76%

LM-BN-CNN [42] 71.80% 75.39%

Clutter Robust CFA [46] 86.64% 86.17%

Feature Level
CR

HDANet [47] 92.21% 90.92%
IRASNet (Proposed) 97.40% 96.72%

images [10]–[13] and basic SAR-related models developed in
the field of image classification [38], [54]–[57]. The experi-
ment was performed to verify whether the domain gap reduced
at the pixel level through data augmentation was overcome at
the feature level.

To thoroughly validate the effectiveness of our method, we
compared IRASNet not only with specialized DG frameworks
for SAR images [33] but also with state-of-the-art DG algo-
rithms designed for optical images [35], [58]–[61]. Our study
was conducted by training exclusively on 100% synthetic
data and testing on measured data. Therefore, algorithms that
included measured data for training were excluded from our
experiments as they were beyond the scope of this study. Due
to the unavailability of source code for the algorithm proposed
in a previous study [33], the results for scenario 1 were
directly quoted from the original paper, while the results for
scenario 2 were excluded as the experiment was not conducted
in that study. The performances of the remaining algorithms
were implemented and evaluated based on the available source
codes, and the results for the two experimental scenarios are
presented in Tables III and IV, respectively. The results were
reported as the average of five independent experiments to
ensure statistical reliability, with the best performance high-
lighted in bold and the second-best performance underlined
in the tables.

As shown in Table III, despite reducing the domain gap at
both the pixel and feature levels, a comparison of ATR results
from existing methods indicated that only algorithms using
skip connections, such as [38] and [57], and those applying at-
tention mechanisms, such as [12], achieved satisfactory perfor-
mance. Skip connections and attention mechanisms enhanced
the activation of targets and enabled focused computations by
adding operations to existing features. However, such methods
did not completely overcome the domain gap.

As shown in Fig. 5, we visualized the feature space using
t-SNE [62] for ResNet [38], which recorded the highest
performance, and DANN [30], the baseline for IRASNet. We
observed that in the latent spaces of ResNet [38] and DANN
[30], the alignment of four classes was not well-matched,
and the distinction between classes was visually lacking.
Thus, the domain gap had not been fully overcome in the
feature space. Contrarily, the proposed IRASNet successfully
reduced the domain gap through feature-level clutter reduction,
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ResNet50 [38]
(a)

IRASNet (Proposed)
(c)

2S1
BMP2
BTR70

M1
M2
M35
M60

M548
T72

ZSU23

DANN [30]
(b)

Fig. 5. Visualization of feature distribution using t-SNE embeddings. (a) ResNet50 [38]. (b) DANN [30]. (c) IRASNet. Features extracted from samples of
the same category are shown in the same color, with synthetic (represented by o) and measured (represented by x) images.

allowing for both domain alignment and discrimination in
the t-SNE visualization. Moreover, IRASNet achieved state-
of-the-art performance, being 2.34% higher than the existing
technique [33] under scenario 1 and 2.97% higher than the
existing models under scenario 2. The results support our
motivation to reduce clutter at the feature level for DG-ATR.

Notably, this study focuses on analyzing the impact of
clutter in the pattern analysis of radar images. Compared to the
baseline DANN [30], the results demonstrated that differences
in distribution at the feature level still negatively affected
discrimination due to the influence of clutter. Furthermore,
the influence of feature-level clutter reduction significantly
enhanced discrimination in the latent space and suggested the
possibility of overcoming the domain alignment problem.

Additionally, using scenarios 1 and 2, we conducted com-
parative experiments from the perspective of clutter reduction.
We compared IRASNet with algorithms such as those pre-
sented by previous studies [2], [43], [42], which processed by
segmenting target and shadow areas in the preprocessing stage.
Further, algorithm comparison was performed with that of
previous studies [47] and [46], which employed feature-level
clutter reduction methods and clutter-robust learning meth-
ods, respectively. As shown in Table IV, feature-level clutter
reduction methods generally achieved higher performance
compared to pixel-level clutter reduction methods. Despite the
mitigated distribution differences at the pixel level through
data augmentation, the result demonstrated, through various
algorithms, that the performance was significantly affected by
the information lost at the input stage, as shown in Fig. 2.

Furthermore, the proposed IRASNet showed an approx-
imate improvement of 6% under both scenarios 1 and 2
compared to existing feature-level clutter reduction methods
and clutter-robust learning methods. The result supported our
motivation for the need for domain-invariant feature learning
in addition to clutter reduction. The significantly improved
ATR performance in the two experimental scenarios fully
demonstrated the effectiveness of our algorithm.

C. Feature-level clutter reduction performance comparison

This section describes experiments conducted using sce-
narios 3 and 4 to evaluate the performance of feature-level

clutter reduction in various background clutter situations. First,
by introducing SCR fluctuations into the SAMPLE measured
dataset, we assessed the robustness of the algorithm under
extreme SCR conditions by evaluating ATR performance and
clutter reduction performance in various SCR scenarios. Addi-
tionally, we analyzed ATR performance and clutter reduction
in situations with background clutter patterns not included in
the training, such as grass, trees, and shadows, to evaluate
the generalization ability of atoms to unexpected background
clutter.

Finally, we applied explainable AI techniques, specifically
SHAP [37], to determine which parts of the input image
contributed to the DL model under SCR fluctuations and
various background clutter conditions. The analysis assisted
us in understanding the performance results from the
previous two experiments. To evaluate the performance of
the proposed CRM, we comprehensively investigated its
performance alongside existing feature level clutter reduction
methods, such as [47], and methods for clutter-robust SAR-
ATR at the feature level [46]. As described in Table II,
all algorithms used in the experiments were trained on the
SAMPLE synthetic dataset and augmented data without SCR
fluctuations.

1) SCR fluctuation dataset: As shown in Fig. 6, performance
decreased when the SCR was low and improved as the SCR
increased. The proposed IRASNet minimized performance
degradation even in low SCR conditions and enhanced perfor-
mance in high SCR conditions, achieving the best performance
in most test sets with SCR fluctuations. Notably, even with
the same training dataset, IRASNet improved performance
by 7.88% compared to an existing method [47] in a −3 dB
dataset, where the brightness difference between the target and
clutter was minimal. Thus, a further improvement in feature-
level clutter reduction performance over existing methods is
required. Additionally, compared to an existing study [46],
which used clutter-robust learning methods, IRASNet showed
a 25.28% improvement in performance. Thus, the approach of
removing clutter was more effective in reducing the influence
of clutter and achieving high performance than learning clutter.
Additionally, the proposed IRASNet achieved over 5% better
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(a) (b) (c)

Fig. 6. (a) Accuracy on the SCR fluctuation test set under scenario 3. (b) Feature map SCR in layer 1 on the SCR fluctuation test set under scenario 3. (c)
Feature map SCR in layer 2 on the SCR fluctuation test set under scenario 3.

performance than all other methods, even in scenarios where
SCR was higher than in the training dataset.

As presented in Table V, a slight difference between SCR
fluctuations at 0 and 3 dB was observed. A previous study
[46] recorded 0.22% higher performance at 3 dB than at 0
dB. Thus, in high SCR situations, the clutter-robust learning
approach can reduce the impact of clutter, thereby improving
performance. However, [46] showed significant performance
variations in low SCR conditions and low performance in high
SCR conditions, as it failed to effectively extract the intrinsic
features of the target.

Conversely, another study [47] used feature-level clutter
reduction and recorded 3.2% lower performance at 3 dB
compared to that at 0 dB. The result suggested that the pre-
vious study [47] failed to perform proper clutter reduction in
high SCR situations and relied on clutter for decision-making.
Contrarily, the proposed IRASNet reduced the difference to
0.15%, improving clutter reduction performance compared to
existing methods and largely resolving the clutter learning
problem. Additionally, IRASNet better extracted the intrinsic
features of the target, enhancing discrimination and achieving
high performance.

Furthermore, the SCR-fluctuated test set caused another
domain gap. DANN [30] only used the DG technique by
employing DIRL and achieved high performance above 85%
at −1.5 dB and above, except in very low SCR conditions.
Contrarily, the proposed IRASNet suggested that the additional
incorporation of clutter reduction further enhanced the gener-
alization performance of ATR.

The proposed IRASNet was designed to maximize SCR
in the feature map, as expressed in Eq. 4. For numerical
validation, we examined the SCR of the feature maps under
SCR fluctuation. HDANet [47] extracted features with omitted
details due to the deep encoder layers, making it impossible
to identify the exact locations of targets, shadows, and clutter.
Thus, the SCR of the feature map could not be calculated
and was excluded from the analysis. As shown in Fig. 6, the
proposed IRASNet improved the feature map SCR by approxi-
mately 10 dB in layer 1 and over 19 dB in layer 2 compared to
the conventional DANN [30]. Thus, the optimization problem
in Eq. 4 has been successfully achieved.

CFA [46] employed robust learning rather than reducing
clutter at the feature level through contrastive learning.

TABLE V
AVERAGE ACCURACY AND ACCURACY DIFFERENCE BETWEEN 0 AND −3

DB AND BETWEEN 0 AND 3 DB DATASETS OBTAINED ON THE SCR
FLUCTUATION TEST SET UNDER SCENARIO 3.

Testset DANN [30] CFA [46] HDANet [47] IRASNet

SCR

Fluct.

-3dB 64.51% 45.13% 62.53% 70.41%

0dB 91.45% 86.17% 88.92% 95.99%

3dB 90.11% 86.39% 85.72% 95.84%

Average 86.75% 78.51% 84.54% 90.52%

Diff.
∆ Acc(0dB,−3dB)(↓) 26.94% 41.04% 26.39% 25.58%

∆ Acc(0dB,3dB)(↓) 1.34% -0.22% 3.20% 0.15%

Therefore, even with a low feature map SCR, the influence of
clutter was reduced and consistent results were obtained even
when the SCR fluctuation was +3dB, as shown in Fig. 6.
However, in cases not present in the training data (such
as −3dB), the performance dropped significantly, failing to
guarantee consistent results. Therefore, a strong dependency
on the training data was observed.

2) Unknown clutter dataset: We analyzed ATR and clutter
reduction performances in situations with various patterns of
background clutter, such as grass, trees, and shadows, that
were not included in the training data to evaluate the gener-
alization ability of the algorithm to unexpected background
clutter. As presented in Table VI, the feature-level clutter
reduction methods, IRASNet and HDANet [47], demonstrated
the best performance. While DANN [30] showed the second-
highest performance when the background clutter matched the
training conditions, HDANet [47] outperformed DANN [30]
in other scenarios. Thus, conventional ATR algorithms were
vulnerable in real-world operating environments where clutter
not included in the training data was present. Additionally,
IRASNet improved the performance of HDANet [47] by over
6%, proving its significantly enhanced adaptability to various
background clutter in actual operating environments.

Both clutter-invariant learning and feature-level clutter re-
duction methods showed performance degradation when new
clutter information, not used in training, was introduced
because the introduction of new clutter information caused
another distribution shift. Since CNNs extracted features by
considering the correlation between targets and clutter, even
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Fig. 7. Visualization of input image contributions in DL models using SHAP. (a) Test set of SCR Fluctuation -3dB. (b) Test set of SCR Fluctuation 0dB
(SAMPLE Measured dataset). (c) Test set of SCR Fluctuation 3dB. (d) Test set of Unknown Clutter

TABLE VI
EXPERIMENTAL RESULTS UNDER SCENARIO 2 AND 4

DANN [30] CFA [46] HDANet [47] IRASNet

SMPL Measured 91.45% 86.17% 88.92% 95.99%

Unknown Clutter 86.47% 84.68% 87.73% 93.38%

when clutter reduction or invariant learning was performed,
it affected the decision boundary, leading to performance
degradation. However, the proposed IRASNet maintained high
discriminability even when clutter changed, by better extract-
ing the intrinsic features of the target through mask encoding,
resulting in over a 6% performance improvement compared to
existing methods.

D. XAI analysis

To analyze the impact of clutter on the decisions made
by DL models, we introduced the explainable AI technique
known as SHAP [37]. SHAP is a method based on Shapley
values from game theory to calculate the contribution of each
feature to a prediction of the model, helping to interpret the
model output [37]. In SHAP, a larger absolute SHAP value
indicated that a particular feature had a greater influence on
the decision of the model. Therefore, we used the absolute
values of SHAP to identify the features that played important
roles in decision-making for the target, shadow, and clutter
areas. Additionally, to capture areas with very small SHAP
values, we applied a dB scale and visualized the range from
0 to −40 dB. Values smaller than −40dB were considered to
have negligible influence on the prediction of the model and
were excluded from the analysis.

To evaluate clutter reduction performance, we analyzed the
SAMPLE measured data using SHAP values. Table VII shows
the results of calculating the sum of SHAP values for each
area across all sample measured data and then computing

their ratios. Higher SHAP values for the target and shadow
areas indicate better performance, while lower SHAP values
in the clutter areas suggest better clutter reduction. Across all
datasets, it was observed that the proposed IRASNet reduced
the influence of clutter and focused more on target and shadow
areas compared to all existing methods.

To visually confirm the results, Fig. 7 shows the SHAP
value visualizations for each pixel in images corresponding to
the m60 and m1 classes, under the same target conditions
for SAMPLE measured, SCR fluctuation −3 dB, +3 dB,
and different background clutter. According to Table VII and
Fig. 7, DANN [30] did not perform clutter reduction, resulting
in contributions across all areas of the image, not just the
target region. Additionally, CFA [46], through clutter-robust
learning, focused more on target and shadow areas compared
to DANN [30]. However, since the values of the clutter area
remained in the feature space, it still relied on the clutter
area for decision-making. While HDANet [47] significantly
reduced the influence through feature-level clutter reduction,
it still made decisions using clutter areas.

Contrarily, the proposed IRASNet successfully performed
feature-level clutter reduction across four different clutter
scenarios, significantly reducing the contribution of clutter
compared to other methods. Thus, the proposed method relied
minimally on clutter for decision-making and instead based its
decisions on target and shadow computations. IRASNet was
trained using mask information containing shape details for
each class during mask encoding, which allowed it to effec-
tively reduce new clutter not included in the class. Therefore,
mask encoding successfully reflected the shape and positional
information of the target and shadow. According to Table. VII,
in situations where various background clutter patterns such
as grass, trees, and shadows were not included in the training,
pixel-level clutter reduction caused a loss of information on
targets and shadows, resulting in performance degradation.
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TABLE VII
PROPORTION OF THE SUM OF SHAP VALUES

FOR EACH AREA IN THE SAMPLE MEASURED DATASET.

DANN [30] CFA [46] HDANet [47] IRASNet

Target (↑) 0.37 0.41 0.48 0.57

Shadow (↑) 0.27 0.31 0.33 0.38

Clutter (↓) 0.36 0.28 0.2 0.06

However, we addressed the issue by incorporating CRM.
Moreover, as seen in Fig. 7, the models primarily focused

on the left part of the shadow when making decisions because,
in the SAMPLE dataset, the difference in brightness between
the shadow and clutter made the shadow more prominent.
The characteristic acted as an important feature in CNNs,
leading most networks to make decisions based on the left part
of the shadow. The proposed CRM was trained considering
the shadow mask through FSM , enhancing discriminability
and positively affecting performance. While changes in the
brightness of clutter and shadow affected the decisions of all
networks, the emphasis on shadows positively influenced the
results even when some clutter was considered. SHAP analysis
revealed a tendency to closely examine the ends of shadow ar-
eas, visually demonstrating that shadows contained important
information, as mentioned in [2]. The information played a
crucial role in enhancing class-specific discriminability.

V. CONCLUSION

In this study, we introduce a novel DG framework for SAR-
ATR, named IRASNet, which integrates CRM and adversarial
learning to address the domain gap in radar image recognition.
Unlike previous approaches that often suffer from reliance on
clutter regions due to inadequate feature-level clutter reduc-
tion, IRASNet effectively minimizes the influence of clutter
by utilizing positional information of both target and shadow
regions. The dual focus allows for more robust feature extrac-
tion and enhances model performance across diverse scenarios.
Through comprehensive experiments on public SAR bench-
mark datasets, IRASNet demonstrates superior adaptability to
varying background clutter conditions, outperforming existing
methods by a significant margin. The proposed framework not
only maintains high recognition accuracy under challenging
SCR fluctuations but also shows enhanced generalization ca-
pabilities when exposed to unseen clutter types, such as grass,
trees, and shadows, that were not included in the training data.
Crucially, the clutter reduction mechanisms incorporated in
IRASNet are shown to significantly improve DG performance
and increase class discrimination. By reducing the interfer-
ence from clutter regions in the feature extraction process,
the model better differentiates between classes, leading to
higher overall accuracy. Additionally, the introduction of mask
encoding effectively integrates positional information into the
latent space, which proves vital for accurate target and shadow
representation in SAR-ATR. The capability of accurately
reflecting spatial details in the latent space is particularly
important in SAR-ATR, where precise localization of the target
is critical for performance. Furthermore, the results underscore
the importance of feature-level clutter reduction and accurate

spatial encoding in achieving domain-invariant learning for
SAR-ATR tasks. By integrating clutter reduction directly into
the feature extraction process, IRASNet achieves state-of-the-
art performance.
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SUPPLEMENTARY MATERIAL

S1. BUILDING MULTIPLE SOURCE DOMAIN

Feature-level clutter reduction in SAR-ATR problems, hav-
ing identical distribution between training and testing sets,
utilizes data augmentation to enhance clutter reduction per-
formance. Since the characteristics of the target region do not
differ between the training and testing phases, data augmen-
tation is not applied to the target region. However, as clutter
areas are elements that have to be removed, data augmentation
is performed by probabilistically generating clutter variants
[46].

DG-ATR problems focus on domain-invariant feature ex-
traction by aligning the distributions of multiple source do-
mains. Therefore, the proposed framework utilizes data aug-
mentation from synthetic datasets based on existing studies
[34], [33] for robust clutter reduction and constructing multiple
source domains. As shown in Fig. S1, the key points of the
target region differ across domains. Thus, to realize robust
feature-level clutter reduction, additionally reflecting changes
in the target signature of the clutter variants is necessary.

Synthetic Measured

Fig. S1. Variation in target scattering topology across domains.

We obtain an augmented domain DS
Aug through augmenta-

tion methods applied to the synthetic domain DS
Syn. The aug-

mentation approach from DS
Syn to DS

Aug focuses on two types:
adding Gaussian noise and altering the signatures of the target,
and clutter. To introduce signature changes, xSyn is processed
through a Gaussian mixture model to statistically capture
the target and clutter regions. In most SAR images, clutter
occupies a significant portion. Therefore, the distribution of the
clutter region is probabilistically altered through µ̃ = µSyn·nm

and σ̃ = σSyn · nσ , where µSyn and σSyn represent the
mean and standard deviation of xSyn, respectively. We set
nm ∼ U(1, 1.4) and nσ ∼ U(0.7, 1.3) to induce variations in
SCR. Additionally, since the target region occupies a relatively
small portion, we perform sampling on the histogram distribu-
tion to induce fine perturbations in amplitude corresponding
to the target region, considering the scattering points and pixel
level. The process enhances robustness against RCS variations
that occur in real-world scenarios. Further, we construct a
cumulative distribution function from the newly generated
probability distributions µ̃ and σ̃. Then, the augmented version
x̃ is generated through histogram matching [34].

Subsequently, to apply Gaussian noise to synthetic data x̃,
we first set the standard deviation σg (as a hyper-parameter
of Gaussian noise) and then create an augmented version as
xAug = x̃ + N [33]. Inkawhich et al. [33] reported that

Algorithm 1: Main learning algorithm of the proposed
IRASNet framework
Input:

• Batch size B, network structure f .
• Source Domain:

– Training SAR samples XS = {XSyn, XAug}.
▷ Data Augmentation

– Corresponding label Y S = {Y Syn, Y Aug}.
– Target/shadow mask MS

T/S = {MSyn
T/S ,M

Aug
T/S }.

– Assign d = 1 for XSyn and d = 2 for XAug .
Output: Trained network f(·; θF , θD, θY )
Network Training:

1 Construct f , composed of fF (·; θF ) with CRMs,
fD(·; θD), and fY (·; θY ).

2 Initialize θF , θD, θY
3 while minibatch B ⊂ {1, · · · , NB}, {XS

(b)} ⊂
XS , {Y S

(b)} ⊂ Y S , {MS
T/S,(b)} ⊂MS

T/S , d(b) ⊂ D do
4 while b ∈ B do
5 P (ŷ, d̂ | XS

(b)), FTM , FSM = f(XS
(b); θF , θD, θY )

6 HT = g(MS
T,(b); θM )

7 HS = g(MS
S,(b); θM ) ▷ Mask GT encoding

8 (θ∗F , θY ∗) = argminθF ,θY
Lcls(ŷ, Y

S
(b))− Ladv(d̂, d(b))

9 (θ∗D) = argminθD
Ladv(d̂, d(b))

10 (θ∗F , θ
∗
M ) = argminθF ,θM

LT/S(FTM/SM , HT/S)

11 return trained network f(·; θF , θD, θY )

synthetic data lacked background noise compared to measured
data. Therefore, adding Gaussian noise is particularly impor-
tant for effectively estimating the noise. Finally, the values of
xAug are clipped within the range [0, 1].

The two approaches, utilizing augmentation methods from
previous studies [34], [33], primarily address the discovered
distribution gaps at the pixel level. However, since the methods
alone are insufficient to completely achieve domain invariance
at the feature level, this study aims to further reduce the
domain gap more precisely by aligning the augmented data
features at the feature level.

S2. DETAILS OF THE PROPOSED FRAMEWORK

A. Domain-invariant representation learning (DIRL)

DIRL is a popular DG strategy that aims to learn domain-
invariant representations across different domains [35], [36],
[58]. Data augmentation methods mitigate the domain gap at
a pixel level, whereas adversarial learning for DIRL addresses
the domain gap at a feature level using multi-domain datasets
with diverse distributions. In SAR-ATR, as acquiring multi-
domain datasets is challenging, domain shifts are intention-
ally induced through data augmentation [33]. Combined with
datasets, adversarial learning prevents the feature extractor
from distinguishing between different domains, thereby ad-
dressing domain shifts at the feature level. The approach
enhances generalization performance on both measured and
synthetic data by ensuring that domain-invariant features allow
the classifier to implement consistent decisions regardless of
the domain [58]. Introducing DG with a domain-invariant
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Algorithm 2: Inference algorithm of the proposed
IRASNet framework

Input:
measured SAR sample xMea

i ∈ XMea,
trained network f(·; θ∗F , θ∗D, θ∗Y )

1 Network Test
2 P (ỹ | xMea

i ) = f(xMea
i ; θ∗F , θ

∗
D, θ∗Y )

3 Ỹ = argmaxY P (xMea
i | θ∗F , θ∗D, θ∗Y )

4 return recognized output Ỹ

feature extraction method based on adversarial learning to
SAR-ATR can overcome the limitations posed by the scarcity
of measured data and the constraints of data augmentation.

B. Model train and test

By combining CRM and adversarial learning, the total
training objective is described as:

min
θF ,θY

=Lcls(θF , θY )− λLadv(θF , θD)

+ λ

NL∑
l=1

(LT,l(θF ) + LS,l(θF ))

min
θD

=Ladv(θF , θD)

(S1)

, where each loss function is defined as a weighted sum,
with weights specified by λ, and NL represents the number
of layers. The total training objective is optimized using an
adaptive moment estimation (Adam) optimizer [63].

Detailed learning and inference algorithms of the proposed
IRASNet are presented as Algorithms 1 and 2, respectively.
Notably, mask GT encoding is utilized during the training
phase to incorporate FTM and FSM , but it is not used during
the inference phase. Thus, the preprocessing step to obtain
target and shadow masks is not required, resulting in faster
inference speed.

S3. DATASET AND EXPERIMENTAL SETTINGS

The statistical histograms of the synthetic and measured data
included in the SAMPLE Dataset are shown in Fig. S2, illus-
trating the distribution differences between the two datasets.
Additionally, the SAR images corresponding to Scenario 3
with varying SCR are presented in Fig. S3 (a). At −3dB, the
average brightness of the clutter region was similar to that of
the target, while at +3dB, the average brightness of the clutter
region resembled that of the shadow area. Lastly, the data
referred to as ”unknown clutter,” corresponding to Scenario 4,
is shown in Fig. S3 (b).

In Section S1, the augmented dataset involved a ten-fold
augmentation of the synthetic dataset for use in the experi-
ments. The augmented dataset was consistently applied to all
comparison models across the experiments to evaluate how
well the DL models structurally reduced the domain gap at
the feature level.

Additionally, the Mask GT used for training was obtained
using the target and shadow segmentation algorithm proposed

Fig. S2. Histogram of synthetic and measured data from the SAMPLE dataset.
Blue histogram represents synthetic data, while red histogram represents
measured data.

SCR Fluct.
-3dB

SCR Fluct.
0dB

SCR Fluct.
3dB

Unknown 
Clutter

(a) (b)

Fig. S3. (a) Test SAR samples with SCR fluctuations of −3, 0, and 3 dB in
scenario 3. (b) Test SAR samples for unknown clutter in scenario 4.

in a previous study [2]. Since the average brightness and stan-
dard deviation differed between the synthetic and measured
datasets, hyper-parameter adjustments were necessary for the
segmentation algorithm [33]. Therefore, during the training
phase of IRASNet, hyper-parameters suitable for the synthetic
data were used: minimum target intensity, standard deviation,
and shadow threshold of 30, 50, and 0.33, respectively, based
on the minimum intensity of the image. During the evaluation
phase, hyper-parameters appropriate for the measured dataset
were applied: minimum target intensity, standard deviation,
and shadow threshold of 35, 50, and 0.45, respectively, based
on the minimum intensity of the image. The process was
aimed at evaluating clutter reduction performance, and image
segmentation was not required to obtain actual ATR outputs.
Contrarily, IRASNet did not have hyper-parameters that varied
according to the domain, allowing the model to handle changes
between different data domains more robustly. Owing to
this characteristic, IRASNet delivered consistent performance
across various experiments without additional domain-specific
adjustments.

IRASNet was trained for 100 epochs, using the Adam
optimizer [63] with a learning rate of 0.001 and a batch
size of 64. All experiments were conducted on hardware
comprising an Intel Xeon Gold 6240 CPU with 128GB of
memory and an RTX4090 GPU with 24GB of memory. The
software environment included a deep learning workstation
running Ubuntu 20.04 and PyTorch 1.11 DL framework.

S4. ABLATION STUDY

In this section, we describe an ablation study conducted
based on scenario 2 to analyze the impact of various com-
ponents of our method on performance. IRASNet comprised
five main components: FTM ⊗F ′

IN , FSM ⊗F ′
IN , target mask

loss, shadow mask loss, which together formed the CRM, and
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TABLE S1
ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS IN IRASNET.

Model FT FS LT LS Ladv Accuracy

CNN 88.62% -
✓ 92.34% +3.72%

✓ ✓ ✓ 95.31% +6.69%
✓ ✓ ✓ 94.82% +6.20%

✓ ✓ ✓ 94.72% +6.10%
✓ ✓ ✓ 95.17% +6.55%
✓ ✓ ✓ ✓ 95.16% +6.54%
✓ ✓ ✓ ✓ 95.24% +6.62%
✓ ✓ ✓ ✓ 92.79% +4.17%

IRASNet ✓ ✓ ✓ ✓ ✓ 96.72% +8.10%

adversarial loss. Herein, FTM⊗F ′
IN and FSM⊗F ′

IN represent
FT and FS , respectively. Not using meant concatenating FTM

and FSM during the AT phase to refine the features. We evalu-
ated the contribution of each component to performance using
two approaches. First, we analyzed the impact of adversarial
loss by examining the presence or absence of adversarial loss
in the base model and IRASNet. Second, we analyzed the
effect of the proposed CRM by evaluating the presence or
absence of each component in the CRM. Table S1 shows
the overall experimental results obtained through the ablation
study.

1) To analyze the impact of adversarial loss, we used a
CNN as the baseline model. The results of applying Ladv to
the baseline model and removing Ladv from IRASNet indi-
cated that adversarial loss was effective for DG. Meanwhile,
we observed from another perspective that using all CRM
components in the baseline model significantly improved per-
formance. Without adversarial loss, the recognition accuracy
improved to 92.79%, reaching a level comparable to using
DG techniques. Although the results were lower than the
recognition rate achieved by combining adversarial loss with at
least one CRM component, they demonstrated some potential
for feature-level clutter reduction.

2) To analyze the impact of CRM components, we used a
CNN with adversarial loss as the baseline model. According
to Table S1, introducing Lt and Ls increased performance
by approximately 3% compared to the baseline model, indi-
cating that utilizing the positional information of the target
and shadow areas contributed to performance improvement.
However, when FT and FS were additionally introduced,
accuracy increased by approximately 1.4%. When using only
Lt and Ls, the mask feature was passed to the next layer.
The mask feature learned from Mask GT, composed of only 0
and 1, did not secure inter-class discrimination in the feature
space even after passing through AT. Herein, Fig. S4 shows
the visualization of Ftm and Fsm. Evidently, Ftm and Fsm

omitted the topology that contained scattering points in the
target. Therefore, IRASNet, which utilized both FT and FS ,
showed improved inter-class discrimination, resulting in higher
performance. Meanwhile, the algorithm that introduced only
FT and FS also improved performance by about 3% compared
to the baseline model. The configuration achieved a certain

(a)

(b)
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Fig. S4. Target mask feature (FTM ) and shadow mask feature (FSM )
(a) M1. (b) T72.

level of discrimination, but no limitation in clutter reduction
was posed as the positional information of the target and
shadow was not accurately reflected. Moreover, among the
algorithms where positional information was reflected in only
one of FT and FS , using shadow information resulted in higher
performance, but no significant difference compared to cases
without positional information were observed.

Ultimately, accurately reflecting the positional information
of the target and shadow served as a crucial factor for
performance improvement, which explained why IRASNet
performed better. Finally, using both target and shadow areas
simultaneously, with their positional information accurately
reflected, increased performance by approximately 2% com-
pared to using only one area. Thus, the successful utilization
of shadow information was demonstrated. Combining any
component of CRM with adversarial learning improved perfor-
mance, proving that integrating clutter reduction and domain-
invariant feature learning in the feature space positively im-
pacted DG research in radar image pattern recognition.
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