
Immersion and Invariance-basedCoding

forPrivacy-PreservingFederatedLearning ⋆

Haleh Hayati aCarlos Murguia a,bNathan van deWouw a

aDynamics & Control Group, Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands.

bEngineering Systems and Design, Singapore University of Technology and Design, Singapore.

Abstract

Federated learning (FL) has emerged to preserve privacy in collaborative distributed learning. In FL, clients conduct AI model
training directly on their devices rather than sharing their data with a centralized server, which could potentially pose privacy
risks. However, it has been shown that despite FL’s partial preservation of local data privacy, information about clients’
data can still be inferred from shared model updates during the training process. In recent years, several privacy-preserving
approaches have been developed to mitigate this privacy leakage in FL. However, they often provide privacy at the cost of
model performance or system efficiency. Balancing these trade-offs poses a significant challenge in implementing FL schemes.
In this manuscript, we introduce a privacy-preserving FL framework built on the synergy of differential privacy and system
immersion and invariance tools from control theory. The core idea is to treat optimization algorithms used in the standard
FL schemes (gradient-based algorithms) as a dynamical system that we seek to immerse into a higher-dimensional system
(referred here to as the target optimization algorithm). The dynamics of the target optimization algorithm is designed such
that, firstly, the model parameters of the original algorithm are immersed/embedded in its parameters, secondly, it works on
distorted parameters, and, thirdly, converges to an encoded version of the true model parameters of the original algorithm.
The encoded model parameters can be decoded at the server to extract the original model parameters. We demonstrate that
the proposed privacy-preserving scheme can be tailored to offer any desired level of differential privacy for local and global
model parameters while maintaining the same accuracy and convergence rate as standard FL algorithms.

Key words: Privacy-preservation, Federated Learning, Immersion and Invariance, Differential Privacy.

1 Introduction

Machine learning (ML) has been successfully applied in
various applications for multiple fields and industries.
In traditional machine learning, the server conducting
the learning algorithm typically holds the training data
centrally. However, when multiple participants are in-
volved, sharing local data with the server poses a signif-
icant privacy risk, given the potential disclosure of pri-
vate information. To address this issue, Federated learn-
ing (FL) [1, 2] has been introduced as a decentralized
learning framework, enabling collaboration among nu-
merous participants while preserving data privacy. Its
fundamental concept involves training ML models on
separate databases distributed across several devices or
entities. FL schemes train local models on local clients’

⋆ This work is supported by European Union’s Horizon Eu-
rope programme under grant agreement No 101069748 –
SELFY project.

Email addresses: h.hayati@tue.nl (Haleh Hayati),
c.g.murguia@tue.nl (Carlos Murguia),
n.v.d.wouw@tue.nl (Nathan van de Wouw).

databases, with clients subsequently sharing their pa-
rameters (e.g., model weights or gradients) with a cen-
tral server to aggregate a global model. FL is suitable
for sensitive data sharing, e.g., in the scope of healthcare
and the Internet of Things (IoT), because clients do not
need to directly share their training data [3]. However,
despite FL’s efforts to preserve clients’ raw data privacy
by avoiding direct data exchange, research has proven
that private information can still be inferred from model
parameters throughout the training process. It has been
shown that local models can be traced back to their
sources [4]. Additionally, private information can be ex-
tracted from multiple aggregated global models at the
central server [5, 6]. Common attacks to FL are model
inversion attacks and gradient inference attacks [7, 8].
In recent years, various approaches have been developed
to achieve Privacy-Preserving FL (PPFL) [9]. Most of
them rely on perturbation-based techniques such as Dif-
ferential Privacy [10–14], and cryptography-based tech-
niques such as Secure Multi-Party Computation [15–
18], and Homomorphic Encryption [19–22]. Differential
Privacy (DP) offers strong probabilistic privacy guar-
antees with minimal system overhead and algorithmic

Preprint submitted to Automatica 26 November 2024

ar
X

iv
:2

40
9.

17
20

1v
2

 [
cs

.C
R

]
 2

5
N

ov
 2

02
4

simplicity. However, it introduces a trade-off between
privacy and FL performance, as the added noise can
significantly degrade model accuracy and slow conver-
gence. Secure Multi-Party Computation (MPC) allows
distributed clients to jointly compute a function with-
out revealing their individual inputs, making it suitable
for privacy-preserving model aggregation in FL. While
MPC avoids the accuracy loss in DP, it demands ad-
ditional communication between the server and clients,
leading to increased communication costs and overhead.
Homomorphic Encryption (HE), another cryptographic
method, enables computations on encrypted data. With
this approach, clients send their encrypted models to
the server to aggregate them without decryption. While
HE-based FL preserves model accuracy and eliminates
complex client interactions, it is computationally inten-
sive, leading to significant computational overhead. Both
cryptographic approaches face challenges related to high
communication costs and computational demands. Ad-
ditionally, while these methods ensure the private aggre-
gation of local models, they are vulnerable to inference
attacks over the aggregated models. To address the lim-
itations of cryptographic techniques and DP, recent ef-
forts have focused on hybrid methods combining crypto-
graphic tools with DP schemes to hold acceptable trade-
offs between data privacy and FL performance [23–26].
Although existing techniques improve privacy of FL,
they often do it at the cost of model performance and
system efficiency. Balancing these trade-offs is challeng-
ing when implementing private FL systems. Therefore,
novel PPFL schemes must be designed to provide strict
privacy guarantees with a fair computational cost with-
out compromising the model performance excessively.
The aim of this work is to design coding mechanisms
that protect the private information of local and global
models while implementing FL algorithms. We propose
a PPFL framework built on the synergy of random cod-
ing and system immersion tools [27] from control the-
ory. The core idea involves treating the Gradient descent
optimization algorithms, e.g., SGD, Adam, Momentum,
etc., commonly used in standard FL, as a dynamical sys-
tem that we seek to immerse into a higher-dimensional
algorithm (the so-called target optimization algorithm).
Essentially, this means that model parameters in the tar-
get optimizer must embed all model parameters of the
original optimizer (up to a random invertible transfor-
mation). The target optimization algorithm must be de-
signed so that: 1) model parameters of the original algo-
rithm are immersed/embedded in its parameters, and 2)
it operates on randomly encoded higher-dimensional pa-
rameters to produce randomly encoded optimal model
parameters. We formulate a coding mechanism at the
server side as a random change of coordinates that maps
original model parameters to a higher-dimensional pa-
rameter space. Such coding enforces that the target op-
timization algorithm at the clients’ side converges to
an encoded higher-dimensional version of the optimal
model parameters of the standard algorithm. The en-
coded local model parameters are aggregated by a third

party (the so-called aggregator). Another coding is for-
mulated for the aggregator to encode the aggregated
model to avoid the server’s access to intermediate global
models (since the server has access to the first encoding
and decoding maps). The aggregator transmits the ag-
gregated encoded global model to the server. The aggre-
gated model is decoded at the server side using the left
inverse of the server encodingmap (the decodedmodel at
the server side is still encoded by the aggregator coding).
Since the aggregator only has access to the encoded local
models it does not need to be trusted. In addition, the
server only has access to the encoded aggregated model
by the aggregator and does not need to be trusted.
The general idea of system immersion-based coding is
introduced in [28] as a homomorphic encryption scheme
that operates over the reals aiming to preserve privacy
of centralized dynamical algorithms. Compared to stan-
dard HE, this approach offers much more freedom to
redesign algorithms to work on the encoded/encrypted
data. The immersion-based coding scheme provides the
same utility as the original algorithm (i.e., when no
coding is employed), is computationally efficient, can
be applied to large-scale algorithms, and gives arbitrar-
ily strong privacy probabilistic guarantees (in terms of
differential privacy) without degrading the algorithm
performance. We have started exploring these ideas in
[29,30] to protect privacy of local models in the aggrega-
tion steps of FL algorithms. However, it has been shown
that the server can recover local models by accessing
multiple intermediate global models [6]. Therefore, it is
necessary to provide privacy against inference attacks
over both local and intermediate global models. To ad-
dress this, we propose employing the immersion-based
coding idea for privacy of intermediate local and global
models in FL by encoding model parameters at both the
server and the aggregator at every iteration. This pre-
vents all internal parties involved, server, clients, aggre-
gator, and external parties such as model consumers and
eavesdroppers, from accessing actual models. We gen-
eralize this coding approach for various machine learn-
ing and deep learning models to cover gradient descent
optimizers for different applications. Simulation exper-
iments and rigorous mathematical proofs indicate that
our framework maintains the same accuracy and conver-
gence rate as standard FL, reveals no information about
the clients’ data, and is computationally efficient.
The main contributions of the paper are as follows:

• Using random coding and system immersion tools, we
develop a prescriptive synthesis framework for the de-
sign of a privacy-preserving FL algorithm that guar-
antees data privacy against the inversion of local and
global models in the aggregation and broadcasting
steps of FL. This extends beyond our previous work
in [29] and other cryptographic tools, which only con-
sider privacy in the aggregation of local models.

• We demonstrate that the proposed scheme provides
any desired level of differential privacy guarantee for
local and global models without compromising the ac-

2

Table 1
Theoretical comparison of existing privacy-preserving FL frameworks.

Approach No accuracy loss No communication costs No computation overhead Aggregated model privacy

DP [10–13] ✗ ✓ ✓ ✓
MPC [15–18] ✓ ✗ ✗ ✗
HE [19–21] ✓ ✓ ✗ ✗
Ours ✓ ✓ ✓ ✓

Table 2
Description of Main Notation.

Symbol Description

K Number of local iterations for clients
T Number of global iterations of FL
Nc Number of clients
D, D′ Adjacent databases
Ci ith client
Di The database held by Ci
wi,k Ci ’s local parameters at kth local iteration
wi,K Local uploading parameters of client Ci
wt Global aggregated parameters from all local

parameters at the tth global iteration
w̃t Global aggregated parameters encoded by

the server at tth global iteration
w̄t Global aggregated parameters encoded by

the aggregator at tth global iteration
w′t Global aggregated parameters encoded by the

aggregator and server at tth global iteration
π1(·) Server encoding map
πL
1 (·) Server decoding map (left inverse of π1(·))

π2(·) Aggregator encoding map
πR
2 (·) Clients decoding map (right inverse of π2(·))

n Number of model parameters
ñ Number of parameters encoded by server
n̄ Number of parameters encoded by aggregator
n′ Number of parameters after encoding

by aggregator and server

curacy and convergence rate of the federated learning
algorithm with a fair computation cost, in contrast to
other related approaches that often impact model per-
formance or system efficiency. This guarantee is not
provided in our preliminary work in [29].
• We validate the effectiveness of the scheme through
extensive computer simulations and illustrate that it
is possible to employ the proposed scheme to train
a variety of ML models without affecting their accu-
racy and convergence rate through experimental eval-
uation. Therefore, our analytical results are helpful
for the design of privacy-preserving FL architectures
with a variety of ML networks and settings.

Based on the previous discussion, summarized in Ta-
ble 1, our proposed PPFL approach is advantageous in
terms of model performance, system efficiency, and pri-
vacy of intermediate aggregated models.
The notation of the paper is introduced in Table 2.

2 Problem Formulation

2.1 Standard Federated Learning

Our scheme’s architecture is developed by expanding
upon the standard FL algorithm. Within the standard

FL framework, the objective is to train a global AI
model collaboratively across multiple dispersed devices,
referred to as clients, and a central server while avoiding
the direct exchange of local data held by the clients.
Instead, clients transmit their local model parameters
to the server, obtained through training on their de-
vices with local data. The server then aggregates these
local models’ parameters to construct a comprehensive
global model, which is subsequently sent back to the
clients. These updated global parameters serve as the
initial conditions for clients to refine their local models.
This iterative process continues until convergence [31].
We consider a standard FL system consisting of one
server and Nc clients. The local database owned by the
ith client, Ci, i ∈ {1, 2, . . . , Nc}, is denoted by Di. At
each iteration t ∈ N, the server broadcasts the latest
global model, wt ∈ Rn (a vector of parameters), to all
clients (beginning from a random initial model w0).
These iteration times t are termed as global iterations.
Next, clients use the latest update on wt and local data
Di to minimize a specified loss function l(wt

i ,Di) at
their devices to identify local AI models, wt

i ∈ Rn. This
can be written as follows:

wt+1
i = argmin

wt
i

l
(
wt

i ,Di

)
. (1)

The clients transmit their local optimal wt+1
i back to the

server, which then proceeds to update the global model
as follows:

wt+1 =

Nc∑
i=1

|Di|
|D|

wt+1
i , (2)

where |Di| is the size of the ith database, |D| :=
∑

i |Di|,
and wt is the global aggregated model. The procedure
iterates until reaching convergence towards the global
optimum (see [1]):

w∗ = argmin
w

Nc∑
i=1

|Di|
|D|

l (w,Di) . (3)

In general, standard FL clients use gradient descent op-
timization algorithms [32], e.g., Stochastic Gradient De-
scent (SGD), Adam, etc., as the optimization tool to
minimize their local loss function (1). Each client cal-
culates the stochastic gradient of the local model using
their local data Di and updates its local model follow-
ing K iterations of the optimizers that can generally be

3

modeled as follows:

Optimizer

wi,0 = wt,

wi,k+1 = f(wi,k,Di) := wi,k − g(wi,k,Di),

k = 0, 1, · · · ,K − 1,

wt+1
i = wi,K ,

(4)
where wi,k ∈ Rn denotes the local model parameters in
the kth local iteration of the optimization algorithm at
the ith client, and g(wi,k,Di) is a gradient-based func-
tion, reflecting the step in parameters, that can be de-
fined for each gradient descent optimizer.
Stochastic Gradient Descent (SGD) is a common gra-
dient descent optimization technique in FL [32]. For
SGD, function g(·, ·) can be written as g(wi,k,Di) :=
η∇l(wi,k,Xi,k), where η > 0 is the learning rate, ∇l(·, ·)
is the gradient of the loss function l(·, ·), and Xi,k is a
minibatch of the database (a subset of the local database
Di) in the kth iteration.
At every round, each client initializes a gradient descent
optimization algorithm using the latest received wt and
updates wt+1

i via K iterations of the optimizer (4), i.e.,

wt+1
i = wi,K . Optimal local parameters, wt+1

i , are sent
to the server for aggregation. After a sufficient number
of global iterations between clients and the server (in the
global counter t) and local updates (in the local counter
k), the standard FL scheme converges to the optimal
global model (3) (see [1]).

2.2 Privacy Requirements

Information about clients’ private data can be inferred
from the model updates throughout the training pro-
cess [4,5,7,8]. In addition, information leakages can also
occur in the broadcasting step by analyzing the global
model parameters [5]. In FL, two types of actors can
infer private information: internal actors (participating
clients, the central server, and third parties) and ex-
ternal actors (model consumers and eavesdroppers) [9].
We assume all the internal actors are untrusted (honest-
but-curious), which means they will faithfully follow
the designed FL protocol but attempt to infer private
information. External actors are also untrusted; they
aim to eavesdrop the communication between internal
actors to infer information.
To address the problem of deducing private information
of clients from their uploaded local models, numerous
cryptographic privacy-preserving methods such as MPC
and HE and perturbation-based techniques such as DP
are usually employed to ensure that clients’ local models
are not accessed by the server or any malicious actors.
Generally, these methods are designed to ensure that
local models are not directly exposed to other parties to
prevent inferring sensitive data.
Unfortunately, approaches exclusively using crypto-
graphic methods remain vulnerable to inference over
the aggregated models. As the aggregated models in
every iteration remain unchanged from function execu-

tion without privacy, it has been shown that the server
can recover local models through multiple intermediate
global models [6]. Therefore, we must also consider po-
tential inference over the aggregated models. Solutions
addressing the aggregated models’ privacy mostly use
a DP framework. However, there is a trade-off between
DP and the performance of FL, both in terms of model
accuracy and convergence rate due to the added noises.
In this study, we concentrate on protecting privacy
against inference over intermediate local and global
models, in the aggregation and broadcasting steps of FL
without degrading the accuracy and convergence rate.

2.3 Privacy-preserving FL Problem

To prevent inference of the clients’ databases from
their local updates, we propose a privacy-preserving
FL scheme to distort local updates wt

i before trans-
mission. Starting from the initial local model of clients
wi,0, which is the latest broadcasted global model by
the server, wi,0 = wt, we let the server distort the orig-
inal aggregated update before disclosure through some
encoding map π1 : Rn → Rñ, w̃t = π1(w

t), and send
the distorted w̃t to the clients to run the optimization
algorithm and update their local models. In general,
running the standard optimization algorithm (4) on the
distorted initial model w̃i,0 = w̃t will not yield the same
model update wi,K that would be obtained if it was run
usingwt. That is privacy-preserving FLmethods that do
not account for (remove) the distortion induced by the
encoding map π1(·) lead to performance degradation.
This is precisely the problem with perturbation-based
techniques for privacy preservation (like with standard,
non-homomorphic DP tools).
To address these challenges, the scheme proposed here
seeks to design a new gradient descent optimization al-
gorithm (referred hereafter to as the target optimizer)
that runs on encoded model from the server w̃t and
returns an encoded local model update, w̃t+1

i , that can
be later decoded after aggregating local updates at the
server side. Note that, we are not looking for one par-
ticular target algorithm but a methodology that can
construct such target algorithm for any (or a broad class
of) original optimization algorithm.
We seek to design π1(·) such that w̃t = π1(w

t) ∈ Rñ is of
higher dimension than wt ∈ Rn, i.e., ñ > n. We impose
this condition to create redundancy in both the encod-
ing map and target optimizer. Redundancy will allow
us to inject randomness that can be traced through
the algorithm, removed after model aggregation, and
used to enforce an arbitrary level of differential privacy.
Consider the higher-dimensional target optimizer:

Target optimizer

w̃i,0 = w̃t,

w̃i,k+1 = f̃ (w̃i,k,Di) ,

k = 0, 1, · · · ,K − 1,

w̃t+1
i = w̃i,K ,

(5)

4

with function f̃ : Rñ → Rñ, ñy > ny, to be designed, dis-
torted initial model parameters w̃t (the latest encoded
global update from the server), and distorted local up-
date w̃t+1

i generated by the target optimizer.
Our goal is to design the encoding map π1(·) and the

functions f̃(·) such that the target optimizer can work on
the encoded data w̃i,0 = w̃t to produce encoded model

update w̃t+1
i that can be used to extract wt+1 after ag-

gregation. Note that the choice of f̃(·) in (5) provides
a prescriptive design in terms of the standard optimiza-
tion function f(·) in (4).
In our setting, we consider a third party other than the
clients and the server for model aggregation. We refer
to this party simply as the aggregator. We consider that
once a complete cycle has been finished at every client by
the target optimizer, all clients send their last iteration,
w̃t+1

i = w̃i,K , to the aggregator for model aggregation.
The role of the aggregator is to interface between clients
and the server and thus prevent the server from access-
ing exact encoded local models since it has access to the
encoding map π1(·). The aggregator takes the updated
encoded local models from all clients, w̃t+1

i , aggregates
them, and sends (only) the aggregated encoded model
to the server. Hence, the server cannot access any lo-
cal model and only has access to the aggregated results.
Since the aggregator only accesses the encoded local up-
dates w̃t+1

i and does not have access to π1(·), it is not
required to be trusted.
At a system-theoretic level, what we seek to accomplish
is to embed model parameters wi,k of the standard opti-
mizer (initialized with the latest model from the server
wt) into model parameters w̃i,k of the target optimizer
(initialized with the latest encodedmodel from the server
w̃t)). That is, we aim to design π1(·) and the target op-
timizer so that there exists a bijection between model
parameters of both optimizers (referred here to as the
immersion map), and thus, having model parameters
of the target optimizer uniquely determining the model
parameters of the standard one through the immersion
map. This leads to the possibility of running the target
optimizer (instead of the standard optimizer) by clients
on encoded parameters w̃t, and then, aggregating their
local updates w̃t+1

i by the aggregator to achieve aggre-
gated encoded model w̃t+1, which can be used to extract
the exact aggregated global model wt+1 from w̃t+1 by
the server. Hence, a fundamental question is how do we
design π1(·) and the target optimizer f̃(·) in (5) to ac-
complish this bijection?
In system and control theory, this type of embedding
between systems trajectories is referred to as system im-
mersion and has been used for nonlinear adaptive con-
trol [27,33] and output regulation [34,35]. Using system
immersion tools in the context of privacy in cloud com-
puting has been studied in [28]. In what follows, we ex-
plore the idea of using system immersion tools to design
a privacy-preserving federated learning algorithm. We
develop the necessary mathematical machinery and pro-
vide sufficient conditions to simultaneously design the

encoding map π1(·) and the target optimizer f̃(·) to ac-
complish immersion and aggregated model extraction
using ideas from system immersion. This will culminate
in a problem description on immersion-based coding for
privacy-preserving FL at the end of this section.

2.4 Immersion-based Privacy-preserving FL: Secure
Aggregation

Consider the standard and target optimization algo-
rithms in (4) and (5), respectively. We say that stan-
dard optimizer is immersed in target optimizer if ñ > n
and there exists a function π1 : Rn → Rñ that satis-
fies w̃i,k = π1(wi,k) for all wi,k and w̃i,k generated by
the optimizer and target optimizer, respectively. That
is, any model parameters of the target optimizer are
model parameters of the original optimizer through the
mapping π1(·), and π1(·) is an immersion because the
dimension of its image is ñ > n. We refer to this map
π1(·) as the immersion map.
To guarantee that the standard optimizer (4) is im-
mersed in the target optimizer (5) (in the sense intro-
duced above), we need to impose conditions on the func-
tions shaping the optimizers, their initial conditions,
and the immersion map, i.e., on (f, wi,0, π1, f̃ , w̃i,0).

In particular, we require to design (π1, f̃ , w̃i,0) such
that w̃i,k = π1(wi,k) for all k, i.e., the manifold
w̃i,k = π1(wi,k) must be forward invariant under the
optimization algorithms in (4) and (5) [36]. Let us de-
fine the off-the-manifold error ek := w̃i,k − π1(wi,k).
The manifold w̃i,k = π1(wi,k) is forward invariant if and
only if the origin of the error dynamics:

ek+1 = w̃i,k+1 − π1(wi,k+1)

= f̃(ek + π1(wi,k),Di)− π1(f(wi,k,Di)),
(6)

is a fixed point, i.e., ek = 0 implies ek+1 = 0 for all
k ∈ N0 [37]. Substituting ek = 0 and ek+1 = 0 in (6)
leads to

f̃(π1(wi,k),Di)− π1(f((wi,k),Di)) = 0. (7)

Therefore, w̃i,k = π1(wi,k) is satisfied for all k if: (1) the
initial condition of (5), w̃i,0, satisfies w̃i,0 = π1(wi,0),
which leads to e0 = 0 (start on the manifold); and (2)
the dynamics of both algorithms match under the im-
mersion map, i.e., (7) is satisfied (invariance condition
on the manifold) for all k ≥ 0. We refer to these two
conditions as the immersion conditions.

Immersion Conditions:{
f̃(π1(wi,k),Di) = π1(f((wi,k),Di)), (invariance)

w̃i,0 = π1(wi,0). (start on the manifold)
(8)

The start on the manifold condition is satisfied by encod-

5

ing the aggregated global model by the server through
the mapping π1(·) at every global iteration as w̃t =
π1(w

t). The server broadcasts the encoded aggregated
model w̃t to all clients. Then, each client initializes their
target optimizer using the latest received encoded global
model as w̃i,0 = π1(wi,0) = w̃t and updates w̃t+1

i via K

iterations of the target optimizer (5), i.e., w̃t+1
i = w̃i,K .

So far, we have derived sufficient conditions (8) for lo-
cal model parameters of the standard optimizer to be
immersed into the model parameters of the target op-
timizer in terms of (f, f̃ , wi,0, w̃i,0, π1). Next, we derive
conditions on the immersion map π1(·) so that the en-
coded aggregated model by the aggregator, w̃t+1

a , can be
decoded to extract the original aggregated model wt+1

by the server. The aggregated model by the aggregator
at iteration t is given by

w̃t+1
a =

Nc∑
i=1

|Di|
|D|

w̃t+1
i =

Nc∑
i=1

|Di|
|D|

π1

(
wt+1

i

)
, (9)

where the right-hand side part of (9) follows from the
immersion condition w̃i,K = π1(wi,K).
The server receives w̃t+1

a in (9) and aims to retrieve

wt+1 =
∑Nc

i=1(|Di|/|D|)wk
i – the aggregated result of the

standard optimization algorithm in (4). The latter im-
poses an extra condition on the immersion map, π1(·),
since to retrieve wt+1 from w̃t+1, there must exist a left-
inverse function πL

1 : Rñ → Rn of π1(·), i.e., satisfy-
ing the following left-invertibility condition πL

1

(
w̃t+1

)
=

wt+1:

πL
1

(
w̃t+1

)
= πL

1

(
Nc∑
i=1

|Di|
|D|

π1

(
wt+1

i

))
=

Nc∑
i=1

|Di|
|D|

wt+1
i .

(10)
If such πL

1 (·) and π1(·) exist, the server can re-
trieve the original aggregated parameters wt+1 =∑Nc

i=1(|Di|/|D|)wt+1
i by passing the encoded results

through the function πL(·). We now have all the ma-
chinery to state the problem we seek to solve.
Problem 1 (Immersion-basedPrivacy-Preserving
FL) For given (f, wi,0) of the standard optimizer (4),

design an immersion map π1(·), and (f̃ , w̃i,0) of the tar-
get optimizer (5) so that: (a) the immersion conditions
(8) hold; and (b) there exists a function πL(·) satisfying
(10).
Remark 1 Solutions to Problem 1 characterize a class
of encoding maps and target optimizers for which we can
design homomorphic encryption schemes (a prescrip-
tive design for given (f, wi,0)). However, this class is
infinite-dimensional (over a function space). It leads to
an underdetermined algebraic problem with an infinite-
dimensional solution space. To address this aspect, we
impose structure on the maps we seek to design. We re-
strict to random affine maps composed of linear coordi-
nate transformations and additive random processes. In

what follows, we prove that this class of maps is sufficient
to guarantee an arbitrary level of differential privacy.

3 Immersion-based Coding for Privacy- Pre-
serving FL

In this section, we construct a prescriptive solution to
Problem 1 using a random affine immersion map π1(·).
As the problem formulation and solution are based on
the system immersion theory, we refer to our algorithm
as System Immersion based Federated Learning (SIFL).
Let the immersion map π1(·) be an affine function of the
form:

π1 (wi,k) := Π1wi,k + bt1, (11)

for matrix Π1 ∈ Rñ×n, ñ > n, to be designed, and some
i.i.d. multivariate random process bt1 ∈ Rñ. For this map,
the immersion condition (8) amounts to w̃i,0 = π1(wi,0)
(encoded by the server before broadcasting) and

f̃(Π1wi,k + bt1,Di) = Π1f((wi,k),Di) + bt1. (12)

Let the function f̃(·) be designed in the following form
(using the form of the original optimizer in (4)):

f̃(w̃i,k,Di) := w̃i,k −M2g(M1w̃i,k,Di), (13)

for some matrices M1 ∈ Rn×ñ and M2 ∈ Rñ×n to be
designed. Hence, the immersion condition (12) takes the
form:

Π1wi,k + bt1−M2g(M1(Π1wi,k + bt1),Di)

= Π1(wi,k − g(wi,k,Di)) + bt1.
(14)

Note that the choice of f̃(·) in (13) provides a prescrip-
tive design in terms of the standard optimization func-
tion f(·) in (4). That is, we exploit the knowledge of the
original optimizer and build the target optimizer on top
of it in an algebraic manner.
To satisfy (14), we must enforce M1(Π1wi,k+ bt1) = wi,k

and M2 = Π1, which implies that M1Π1 = I, M1b
t
1 = 0

(i.e., bt1 ∈ ker[M1]). From this brief analysis, we can draw
the following conclusions: 1) Π1 must be of full column
rank (i.e., rank[Π1] = n); 2) M1 is the left inverse of
Π1, i.e., M1 = ΠL

1 (which always exists given the rank
of Π1); 3) b

t
1 ∈ ker[ΠL

1] (this kernel is always nontrivial
because Π1 is full column rank by construction); and 4)
M2 = Π1. Combining all these facts, the final form of
f̃(·) in (5) is given by

f̃(w̃i,k,Di) := w̃i,k −Π1g(Π
L
1 w̃i,k,Di). (15)

At every global iteration t, vector bt1 is designed by the
server to satisfy ΠL

1 b
t
1 = 0 and used to distort the cod-

ing map π1(·) in (11). The role of bt1 is to randomize
the model parameters so that we can guarantee dif-
ferential privacy. The idea is that because the server

6

(that applies mapping π1(·) to the global model be-
fore sending it to clients) knows that bt1 draws realiza-
tions from the kernel of ΠL

1 , the distortion induced by
it can be removed at the server side after aggregation
by the aggregator. To enforce that bt1 ∈ ker[ΠL

1], with-
out loss of generality, we let it be of the form bt1 = N1r

t
1

for some matrix N1 ∈ Rñ×(ñ−n) expanding the ker-
nel of ΠL

1 (i.e., ΠL
1N1 = 0) and an arbitrary i.i.d. pro-

cess rt1 ∈ R(ñ−n). This structure for bt1 always satisfies
ΠL

1 b
t
1 = ΠL

1N1r
t
1 = 0, for rt1 with arbitrary probability

distribution.
So far, we have designed (f̃(·), π1(·)) to satisfy the im-
mersion conditions (8) for the affine maps in (11). Next,
we design the extracting function πL

1 (·) satisfying the
left invertibility condition (10), that extracts the true
global model wt+1 from the encoded w̃t+1. Substituting
the designed immersion map (11) in the aggregated en-
coded model (9) yields

w̃t+1
a =

Nc∑
i=1

|Di|
|D|

(
Π1wi,K + bt1

)
= Π1

(
Nc∑
i=1

|Di|
|D|

wi,K

)
+ bt1 = Π1w

t+1 + bt1, (16)

where w̃t+1
a and wt+1 denote the encoded and original

aggregated models, respectively. Given (16), condition
(10) can be written as

πL
1

(
w̃t+1

a

)
= πL

1

(
Π1w

t+1 + bt1
)
= wt+1, (17)

which trivially leads to

πL
1 (w̃

t+1
a) := ΠL

1 w̃
t+1
a , (18)

since ΠL
1Π1 = I and bt1 ∈ ker[ΠL

1].
We can now state the proposed solution to Problem 1.
Proposition 1 (Solution to Problem 1) For given
full rank matrix Π1 ∈ Rñ×n, matrix N1 ∈ Rñ×(ñ−n)

expanding the kernel ofΠL
1 (i.e.,ΠL

1N1 = 0), and random
process rt1 ∈ R(ñ−n), the encoding map:

w̃t := Π1w
t +N1r

t
1, (19)

target optimizer:
w̃i,0 = w̃t,

w̃i,k+1 = f̃(w̃i,k,Di) := w̃i,k −Π1g(Π
L
1 w̃i,k,Di),

k = 0, 1, · · · ,K − 1,

w̃t+1
i = w̃i,K ,

(20)
and inverse function:

πL(w̃t+1) := ΠL
1 w̃

t+1, (21)

provide a solution to Problem 1.

Proof : Proposition 1 follows from the discussion pro-
vided in this section above. ■

3.1 Summary SIFL Algorithm solving Problem 1:
Privacy-Preserving Aggregation

The summary of the algorithm is as follows:

• FL initialization and encoding by the server.
The server initializes the global model w0 and encodes
it as w̃0 = Π1w

0+ b01. Then, it immerses the standard
optimizer into the target optimization algorithm as in
(20) and broadcasts w̃0, the target optimizer f̃(·), and
other hyperparameters to clients.

• Local model training and update by clients. The
clients receive the current encoded global model w̃t

sent by the server and update their local model pa-
rameters using their local databases Di and the target
optimizer (20). Then, clients send their encoded local
updates w̃t+1

i to the aggregator for aggregation.
• Global model aggregation. The aggregator takes

the average of local encoded models and sends the
aggregated model w̃t+1

a in (16) to the server.
• Global model decoding and encoding and

broadcasting by the server. The server decodes
the aggregated global model using the inverse func-
tion πL

1 (·) in (21). Then, it encodes the new global
model using the immersion map π1(·) (19) and broad-
casts it to all clients for the next round.

The pseudo-code of SIFL for privacy-preserving model
aggregation is shown in Algorithm 1.

4 Global model privacy in FL

In the previous section, we present the immersion-based
coding scheme to provide privacy for local and global
models of FL. Using this scheme, none of the internal
and external actors can access the original local and
global models; only the server can access the exact ag-
gregated models in each iteration. It has been shown
that the server can recover local models by accessing
multiple intermediate global models [6]. Therefore, we
next consider potential inference over the aggregated
models at the server side.
In this section, we provide a similar privacy-preserving
mechanism based on an additional encoding of the ag-
gregated model by the aggregator, using a mapping
π2(·), and decoding it by clients on the next iteration,
to avoid server access to intermediate global models
during the training process. Let w̃t, w̄t, and w′t denote
the global models encoded using π1(·) by the server,
global models encoded using π2(·) by the aggregator,
and global models encoded using both π1(·) and π2(·),
respectively. In this scheme, the aggregator encodes

7

Client 𝑁𝑁𝑐𝑐

Aggregator ServerClients

Client 1
Decoding by clients

Local Training Process by Clients
Initialize
for do:

end

Encoding by aggregator

Aggregation Process by Aggregator
for do:

end

Decoding and Encoding by Server

for do:

end

Encoded local models Encoded aggregated model

Encoded global model

Fig. 1. Flowchart of the extended SIFL method.

Algorithm 1 SIFL algorithm solving Problem 1:
Privacy-Preserving Aggregation

Input: Clients Ci and their databases Di, i ∈
{1, 2, ..., Nc}, FL iterations T , hyperparameters of the
specific gradient-descent optimizer, local iterationsK,
immersion mapping matrix Π1 ∈ Rñ×n, its left inverse
ΠL

1 , and matrix N1 ∈ ker[ΠL
1].

Output: Trained global model wT .
Handshaking phase:
The server sends target optimizer f̃ as in (20), the en-
coded initialized global model w̃0, and other hyperpa-
rameters to clients for model update.
for each global iteration t = 0, 1, ..., T − 1 do

Local Training Process by Clients:
for each Ci do

Initialize: w̃i,0 ← w̃t.
for each local iteration k = 1, 2, ..., (K − 1) do

w̃i,k+1 ← f̃(w̃i,k,Di).

Clients send w̃t+1
i = w̃i,K to aggregator.

end for
end for
Aggregation Process by Aggregator:

w̃t+1
a =

Nc∑
i=1

|Di|
|D|

w̃t+1
i .

The aggregator sends w̃t+1
a to the server.

Decoding and Encoding Process by Server :
wt+1 = πL

1 (w̃
t+1
a).

for t < T − 1 do
w̃t+1 = π1(w

t+1).
end for
Server sends encoded w̃t+1 to clients.

end for

the aggregated model using a right invertible encoding
map π2(·) and sends the encoded aggregated model

w′t+1
a = π2(w̃

t+1
a) to the server. Then, in the following

iteration, clients decode the encoded aggregated model
using the right inverse of the mapping π2(·), denoted as
πR
2 (·), i.e., π2 ◦ πR

2 (s) = s, and use the encoded model
(which is still encoded by the immersion map π1(·)
of the server) for the model update. Then, the server
needs to be able to apply its decoding and encoding
maps, πL

1 (·) and π1(·), to the encoded model by the

aggregator w′
a
t+1

= π2(w̃
t+1
a) without decoding π2(·).

Furthermore, clients need to be able to decode π2(·)
using πR

2 (·) after encoding by the server to employ it as
the initial condition for the target optimizer. Therefore,
coding π2(·) is also a homomorphic encryption scheme,
meaning that the server needs to be able to apply its

coding on the encoded w′
a
t+1

without decoding π2(·)
and then, the clients need to be able to extract w̃t+1

from the encoded w′t+1
using the right inverse function

πR
2 (·). These conditions can be formulated as follows.

The server receives the encoded aggregated model

w′
a
t+1

= π2(w̃
t+1
a) and decode mapping π1(·) as follows:

w̄t+1 = πL
1 (w

′
a
t+1

). (22)

Then, server encodes w̄t+1 using mapping π1(·) before

broadcasting it to clients as w′t+1
= π1(w̄

t+1). Clients

receive w′t+1
and aim to retrieve w̃t+1, which is still

encoded using the immersion map of the server π1(·), to
employ it as the initial condition for the target optimizer.
Hence, there must exist a right inverse function πR

2 (·)
satisfying the following right invertibility condition:

w̃t+1 = πR
2 (w

′t+1
). (23)

Note that the aggregator needs to share the decoding
map πR

2 (·) with clients in the handshaking phase. With
this approach, the server does not have access to any

8

local or intermediate global models. The problem of de-
signing the aggregator mapping can be defined as fol-
lows.
Problem 2 (Coding for Global Model Privacy)
For given immersion map of the server π1(·) (19) and
its inverse πL

1 (·) (21), design an immersion map π2(·)
so that: (a) mapping π1(·) can be decoded after applying
mapping π2(·) to the aggregated model using πL

1 (·), i.e.,
(22); and (b) there exists a function πR

2 (·) satisfying
(23).

4.1 Affine Solution to Problem 2

As we proposed in the solution to Problem 1, let the
encoding map π2(·) be an affine function of the form:

w′t+1
a = π2

(
w̃t+1

a

)
:= w̃t+1

a Π2 +Bt+1
2 , (24)

for vector Π2 ∈ R1×p, p > 1, and matrix Bt
2 ∈ Rñ×p.

We design π2(·) such that w′t
a = π2 (w̃

t
a) ∈ Rñ×p is of

higher dimension than w̃t
a ∈ Rñ. We impose this design

to create redundancy in the encoding map, which allows
us to inject randomness that can be 1) traced through
the coding algorithm at the server side, 2) be removed
after at the clients’ side, and 3) enforce an arbitrary level
of DP for the aggregated models. The reason why the
increase in the dimension of the aggregated model w̃t

a is
from the right side (rather than similar to the previous
mapping π1(·) where we increase the dimension from the
left side as shown in (11)) is to be able to decode map-
ping π1(·), with the left inverse map πL

1 (·) at the server
(22), and to decode mapping π2(·) with the right inverse
map πR

2 (·) at clients (23).
By substituting (24) in the invertibility condition of
mapping π1(·) (22), we have:

w̄t+1 = πL
1 (w̃

t+1
a Π2+Bt+1

2) = wt+1Π2+ΠL
1B

t+1
2 . (25)

Hence, using the proposed structure of mapping π2(·),
mapping π1(·) can be still decoded using πL

1 (·). Note
that, to be able to apply the encoding map π1(·) to w̄t,
according to its dimension w̄t ∈ Rn×p, the dimension of
mapping π1(·) must be set to π1 : Rn×p → Rñ×p (rather
than the previous design in equation (11), π1 : Rn →
Rñ). Hence, π1(·) with this dimension is as follows:

π1(w̄
t) = Π1w̄

t +Bt
1, (26)

where the additive random term Bt
1 should be designed

with dimension Bt
1 = N1R

t
1 ∈ Rñ×p, which can be

achieved by setting the dimension of the random term
as Rt

1 ∈ R(ñ−n)×p. Hence, the encoded model parame-
ters after applying mapping π1(·) by the server is of the
following form:

w′t+1
= π1(w̄

t+1) = Π1w
t+1Π2 +Π1Π

L
1B

t+1
2 +Bt+1

1 .
(27)

Clients receive encoded w′t and aim to decode the ag-
gregator coding π2(·) using the decoding map πR

2 (·), be-
fore updating the local models by the target optimizer
(20). Substituting (27) in the right invertibility condi-
tion (23), the design condition for πR

2 (·) amounts to:

πR
2 (w

′t) = πR
2 (Π1w

tΠ2 +Π1Π
L
1B

t
2 +Bt

1) = Π1w
t + bt1.

(28)

Let the decoding map be of the form πR
2 (w

′t) = w′tM3

with M3 ∈ Rp×1. Hence, condition (28) takes the form

(Π1w
tΠ2 +Π1Π

L
1B

t
2 +Bt

1)M3 = Π1w
t + bt1. (29)

Hence, to satisfy (29), we must have Π2M3 = I and
Bt

2M3 = 0. Moreover, the vector bt1 = Bt
1M3 ∈ Rñ×1

should work as the additive random term in π1(·) satisfy-
ing the necessary condition of bt1 ∈ ker[ΠL

1] (Π
L
1 b

t
1 = 0).

It follows that: 1) vector M3 is a right inverse of Π2,
i.e., M3 = ΠR

2 ; 2) Bt
2 is in the right null space of ΠR

2
(Bt

2 ∈ ker[ΠR
2]); this null space is always nontrivial be-

cause Π2 is a row vector. Then, bt1 := Bt
1Π

R
2 always sat-

isfy the condition ΠL
1 b

t
1 = 0 provided that ΠL

1B
t
1 = 0.

The final form for πR
2 (·) is given by

πR
2 (w

′t) := w′tΠR
2 . (30)

At every global iteration t, the aggregator designs a ma-
trix Bt

2 satisfying Bt
2Π

R
2 = 0 and uses it to construct

the encoding map π2(w̃
t) = w̃tΠ2 + Bt

2 (the encoding
scheme). The role of Bt

2 is to randomize the aggregated
model parameters so that we can guarantee DP for in-
termediate global models. Using the same reasoning as
for the design of bt1, to enforce that Bt

2 ∈ ker[ΠR
2], with-

out loss of generality, we let it be of the form Bt
2 = Rt

2N2

for some matrix N2 ∈ R(p−1)×p expanding the kernel
of ΠR

2 (i.e., N2Π
R
2 = 0) and an arbitrary i.i.d. process

Rt
2 ∈ Rñ×(p−1). This structure for Bt

2 always satisfies
Bt

2Π
R
2 = Rt

2N2Π
R
2 = 0, for Rt

2 with arbitrary probabil-
ity distribution.
We can now state the proposed solution to Problem 2.
Proposition 2 (Solution to Problem 2) For given
vector Π2 ∈ R1×p, matrix N2 ∈ Rp−1×p expanding the
kernel ofΠR

2 (i.e.,N2Π
R
2 = 0), and random processRt

2 ∈
Rñ×(p−1), the encoding map:

w′t = π2(w̃
t
a) := w̃tΠ2 +Rt

2N2, (31)

and inverse function:

πR
2 (w

′t) := w′tΠR
2 , (32)

provide a solution to Problem 2.

Proof : Proposition 2 follows from the discussion pro-
vided above. ■
Remark 2 In Algorithm 1 of the method, we present
a cryptography system to provide privacy for local and

9

global models of FL in Proposition 1. Using this scheme,
none of the internal and external actors have access to
the original local and global models, except that the server
only has access to the exact aggregated model in each it-
eration. In the extension of the SIFL method proposed in
this section, we design a similar coding to encode the ag-
gregated model by the aggregator to avoid server access
to the intermediate global models. Hence, this extension
can prevent all internal actors (the server, clients, and
aggregator) and external actors from accessing the inter-
mediate local and global models of FL.

4.2 Extended SIFLAlgorithm solving Problems 1 and 2:
Privacy-Preserving Aggregation and Broadcasting

The summary of the extended algorithm is as follows:

• FL initialization. The server initializes the global
model w0 and encodes it as w̃0 = Π1w

0 + b01. Then,
it immerses the standard optimizer into the target
optimization algorithm as in (20) and broadcasts w̃0,

the target optimizer f̃(·), and other hyperparameters
to clients. The aggregator sends the decoding map
πR
2 (·) in (32) to clients.

• Local model training and update by clients. At
the first round (t = 0), clients use the initial model
w̃0 and the target optimizer (20) to train their local
models. After the first round, the clients receive the
encoded global model w′t, encoded both by the server
and the aggregator. They first decode the aggregator
mapping using the inverse function πR

2 (·) in (32) to
extract w̃t. Then, they update their local model pa-
rameters using their local databases Di and the target
optimizer (20) and send their encoded local updates
w̃t+1

i to the aggregator for aggregation.
• Global model aggregation. The aggregator takes
the average of local encoded models, encodes the ag-
gregated model w̃t+1

a with π2(·) in (31), and sends the

aggregated encoded model w′t+1
to the server.

• Global model decoding, encoding, and broad-
casting by the server. The server decodes the ag-
gregated global model using the inverse function πL

1 (·)
in (18). Then, it encodes the new global model using
the immersion map π1(·) (19) and broadcasts it to all
clients for the next round.

The pseudo-code of our extended SIFL scheme is shown
in Algorithm 2, and its flowchart is depicted in Figure 1.

5 Privacy Guarantees

The private element we consider in the proposed scheme
is privacy of the clients’ local databases Di. In what fol-
lows, we focus on how to enforce differential privacy of
the encoding mechanisms π1(·) and π2(·) by properly
selecting the random processes Rt

1 and Rt
2 and the en-

coding matrices in the affine maps of the server w̃t =
Π1w

t +N1R
t
1 and the aggregator w′

t = w̃tΠ2 +Rt
2N2.

Algorithm 2 Extended SIFL Method: Privacy-
Preserving Local and Global Models

Input: Set of clients Ci and their databases Di, num-
ber of FL iterations T , hyperparameters of the specific
gradient descent optimizer, number of local optimizer
iterations K, immersion mapping matrix Π1 ∈ Rñ×n,
its left inverse ΠL

1 , matrix N1 ∈ ker[ΠL
1], vector Π2 ∈

R1×p, its right inverse ΠR
2 , matrix N2 ∈ ker[ΠR

2].
Output: Trained global model wT .
Handshaking phase:
The server sends target optimizer f̃(·) as in (20), the
encoded initialized global model w̃0, and other hyper-
parameters to clients for model update. The aggrega-
tor sends the decoding key ΠR

2 to clients.
for each global iteration t = 0, 1, ..., T − 1 do

for each Ci do
Decoding π2(·) by Clients:

for t > 0 do

w̃t = πR
2 (w

′t) = (w′t)ΠR
2 . (33)

end for
Local Training Process by Clients:
Initialize: w̃i,0 ← w̃t

for each local iteration k = 1, 2, ..., (K − 1) do

w̃i,k+1 ← f̃(w̃i,k,Di).

end for
Ci sends w̃t

i to the aggregator.
end for
Aggregation Process by Aggregator:

w̃t+1
a =

Nc∑
i=1

|Di|
|D|

w̃t+1
i .

Encoding π2(·) by Aggregator:

w′t+1
a = w̃t+1

a Π2 +Bt+1
2 ,

Bt
2 = Rt

2N2.

The aggregator sends w′t+1
a to the server.

Decoding and encoding π1(·) by Server:

w̄t+1 = πL
1 (w

′t+1
a) = ΠL

1w
′t+1
a .

for t < T − 1 do

w′t+1
= π1(w̄

t+1) = Π1w̄
t+1 +Bt+1

1 .

end for
Server sends encoded w′t+1

to clients.
end for

We provide a tailored solution to guarantee DP for the
class of mechanisms that we consider in (19) and (31).
In particular, we prove that the proposed scheme, with
full-column rank encoding Π1 and vector Π2, can provide
any desired level of differential privacy without reducing
the accuracy and performance of the original algorithm.

10

5.1 Differential Privacy

In the context of databases, (ϵ, δ)-Differential Privacy
(DP) [38] was introduced as a probabilistic framework
to quantify privacy of probabilistic maps. The constant
ϵ ≥ 0 quantifies how similar (different) are outputs of a
mechanism on adjacent datasets, say D and D′, and δ is
a constant shift used when the ratio of the probabilities
ofD andD′ under the mechanism cannot be bounded by
eϵ (see Definition 2 below). With an arbitrarily given δ,
a mechanism with a smaller ϵmakes adjacent databases,
(D and D′), less distinguishable and hence more private.
Definition 1 (Adjacency [38]) : Let X denote the
space of all possible datasets. We say that D ∈ X and
D′ ∈ X are adjacent if they differ on a single element.
Definition 2 ((ϵ, δ)-Differential Privacy [38]) :
The random mechanism M : X → R with domain X
and range R is said to provide (ϵ, δ)-differential privacy,
if for any two adjacent datasets D,D′ ∈ X and for all
measurable sets S ⊆ R:

Pr(M(D) ∈ S) ≤ eϵ Pr (M (D′) ∈ S) + δ. (34)

If δ = 0,M is said to satisfy ϵ-differential privacy. From
Definition 2, we have that a mechanism provides DP if
its probability distribution satisfies (34) for some ϵ and
δ. Then, if we seek to design the mechanism to guarantee
DP, we need to shape its probability distribution. This is
usually done by injecting noise into the data we seek to
encode. The noise statistics must be designed in terms
of the sensitivity of the data to be encoded. Sensitivity
refers to the maximum change of the data due to the
difference in a single element of the dataset [38].
Definition 3 (Sensitivity) : Given adjacent datasets
D,D′ ∈ X , and a query function q : X → R (a deter-
ministic function of datasets) where the output space R
is equipped with a norm denoted ∥·∥R, the sensitivity of
q(·) is formulated as ∆q

R = supD,D′ ∥q(D)−q (D′)∥R.

The differential privacy mechanismMmust be designed
to ensure that the DP condition (34) holds. According
to Definition 3, the sensitivity of the query to which
this mechanism is applied determines the design of its
variables.

5.2 Immersion-based Coding Differential Privacy
Guarantee

We concretely formulate the problem of designing the
variables of privacy codingmechanisms π1(·) and π2(·) in
(26) and (31) that, at each global iteration, guarantee the
privacy of local databases. We wish to design matrices
Π1, Π2, and random variables Rt

1 and Rt
2 such that the

privacy mechanisms π1(·) and π2(·) for distorting w̃t
i and

w′t are (ϵ̃, δ̃) and (ϵ′, δ′)-Differentially private.
Problem 3 (Element-Wise Differential Privacy)

Given a sequence of desired privacy levels (ϵ̃, δ̃) and
(ϵ′, δ′), design the variables of privacy mechanisms in

(26) and (31) such that at global iteration t, each el-
ement of vector w̃t

i , w̃t
i,j, and each element of matrix

w′t, w′ t
j,m, j ∈ {1, ..., ñ} and m ∈ {1, ..., p}, are (ϵ̃, δ̃)

and (ϵ′, δ′)-Differentially private, respectively, for any
measurable S ⊂ R, i.e.,

P
(
w̃t

i,j(Di) ∈ S
)
≤ eϵ̃P

(
w̃t

i,j(D′
i) ∈ S

)
+ δ̃,

P
(
w′ t

j,m(Di) ∈ S
)
≤ eϵ

′
P
(
w′ t

j,m(D′
i) ∈ S

)
+ δ′,

for adjacent (Di,D′
i) .

(35)

5.3 Solution to Problem 3

As standard in DP, we consider two cases for stochastic
processes Rt

1 and Rt
2, Laplace and Gaussian distribu-

tions, and prove DP guarantees for both scenarios.
Starting with the Laplace additive noise scenario, let
the independent stochastic process Rt

1 and Rt
2 follow

multivariate i.i.d. Laplace distributions with means
E[Rt

1] =: µ1 ∈ R(ñ−n)×p and E[Rt
2] =: µ2 ∈ Rñ×(p−1),

and covariance matrices E[(Rt
1 − µ1)(R

t
1 − µ1)

⊤] =:
σ1I(ñ−n) and E[(Rt

2 − µ2)(R
t
2 − µ2)

⊤] =: σ2Iñ, for
some σ1, σ2 > 0, i.e., Rt

1 ∼ Laplace(µ1, σ1I(ñ−n)) and
Rt

2 ∼ Laplace(µ2, σ2Iñ).
We start with the privacy guarantee forwt

i . According to
Definition 3, given adjacent local databases Di,D′

i ∈ Xi,
where Xi denotes the space of all user data sets, the
sensitivity of wt

i defined is as follows:

∆wi
1 = sup

Di,D′
i

∥∥wt
i

(
Di

)
−wt

i (D′
i)
∥∥
1
. (36)

For simplicity, in what follows, we write wt
i(Di) and

wt
i(D′

i) as w
t
i and wt

i
′
. Because Rt

1 ∼ Laplace(µ1, σ1I),
and given the privacy encoding mechanisms w̃t

i =
Π1w

t
i + bt1, with bt1 = N1R

t
1Π

R
2 in the extended SIFL,

each element of w̃t
i also follows a Laplace distribution:

w̃t
i,j ∼ Laplace

(
Πj

1w
t
i +N j

1µ1Π
R
2 , ||N

j
1 ||2σ1||ΠR

2 ||2
)
,

(37)

where w̃t
i,j is the jth element of w̃t

i , and Πj
1 and N j

1 are

the jth rows of Π1 and N1, respectively. It follows that:

P
(
w̃t

i,j(Di) ∈ S
)

=

(
1

2||N j
1 ||2σ1||ΠR

2 ||2

)∫
S
e

−∥p−(Π
j
1
wt

i
+N

j
1
µ1ΠR

2
)∥

1

||Nj
1
||2σ1||ΠR

2
||2 dp

(a)

≤ e

∥Πj
1(w

t
i
−wt

i
′)∥

1

||Nj
1
||2σ1||ΠR

2
||2

2||N j
1 ||2σ1||ΠR

2 ||2

∫
S
e

−∥p−(Π
j
1
wt

i
′
+Ni

1
µ1ΠR

2
)∥

1

||Nj
1
||2σ1||ΠR

2
||2 dp

= e

∥Πj
1(w

t
i
−wt

i
′)∥

1

||Nj
1
||2σ1||ΠR

2
||2 P

(
w̃t

i,j(D′
i) ∈ S

)
,

(38)

11

where inequality (a) follows from the triangle inequal-

ity −
∥∥∥p− (Πj

1w
t
i +N j

1µ1Π
R
2)
∥∥∥
1
≤
∥∥∥Πj

1

(
wt

i − wt
i
′
)∥∥∥

1
−∥∥∥p− (Πj

1w
t
i
′
+N j

1µ1Π
R
2)
∥∥∥
1
.

Due to the sensitivity relation (36), we have∥∥∥Πj
1

(
wt

i − wt
i
′
)∥∥∥

1
≤
∥∥∥Πj

1

∥∥∥
1
∆wi

1 . (39)

Hence, substituting (39) in (38) implies

P
(
w̃t

i,j(Di) ∈ S
)
≤ e

∥Πj
1∥1∆

wi
1

||Nj
1
||2σ1||ΠR

2
||2 P

(
w̃t

i,j(D′
i) ∈ S

)
.

(40)
Therefore, ϵw̃-differential privacy (with δw̃ = 0) of each
local model parameter w̃t

i,j for all j ∈ {1, 2, . . . , ñ}, is
guaranteed for Π1, N1, Π

R
2 , and σ1 satisfying:∥∥∥Πj

1

∥∥∥
1
∆wi

1

||N j
1 ||2σ1||ΠR

2 ||2
≤ ϵw̃. (41)

Following the same steps, it can be shown that each
element of the encoded global model w′t = Π1w

tΠ2 +
Bt

1 +Π1Π
L
1B

t
2, w

′t
j,m, with Bt

1 = N1R
t
1 and Bt

2 = Rt
2N2

is ϵ′-Differentially private in the sense of(35)) for Π1, Π2,
N1, N2, σ1, and σ2 satisfying:∥∥∥Πj

1

∥∥∥
1
∆w

1 ∥Πm
2 ∥1

||N j
1 ||2σ1 + ||Πj

1||2||ΠL
1 ||2||N2||2σ2

≤ ϵ′, (42)

for all j ∈ {1, 2, . . . , ñ} and m ∈ {1, 2, . . . , p}, where Πj
1

and N j
1 are the jth rows of matrices Π1 and N1, respec-

tively, Πm
2 is the mth element of vector Π2, N

m
2 is mth

column of N2, and ∆w
1 is the sensitivity of the global

model given by ∆w
1 = supDi,D′

i
∥wt(Di)−wt (D′

i)∥1.
Hence, according to the differential privacy conditions,
(41) and (42), to improve privacy guarantees by de-

creasing ϵw̃ and ϵw
′
, we need to design Π1 and Π2 as

small as possible, while designing σ1 and σ2, the stan-
dard deviations of Rt

1 and Rt
2, and ||N i

1||2 and ||N j
2 ||2

as large as possible. From (26) and (31), it is obvious
that by choosing small Π1 and Π2, and large σ1 and σ2,
w̃t

i and w′t are close to additive random terms bt1 and
Bt

1+Π1Π
L
1B

t
2, and practically independent from wt

i and
wt, respectively.
Note that ||N i

1||2, i ∈ {1, . . . , ñy} and ||N j
2 ||2, j ∈

{1, . . . , p}, must be nonzero, i.e., we need to design N1

without zero rows and N2 without zero columns. The
latter is not a technical constraint as, for a given N1

and N2 with nonzero rows and columns, respectively,
Π1 and Π2 can be obtained by solving the equations
ΠL

1N1 = 0 and N2Π
R
2 = 0 and computing the right

inverse of ΠL
1 and left inverse of ΠR

2 , respectively.

The conditions on Π1, N1, and σ1 to guarantee a desired
level of privacy are provided in the following theorem.
Theorem 1 (Differential Privacy throughLaplace
additive noises) Consider given Laplace processes
Rt

1 ∼ Laplace(µ1, σ1I(ñ−n)) andR
t
2 ∼ Laplace(µ2, σ2Iñ)

with standard deviation σ1 and σ2, respectively, full-rank
matrixΠ1 ∈ Rñ×n,Π2 ∈ R1×p, matricesN1 ∈ Rñ×(ñ−n)

and N2 ∈ R(p−1)×p expanding the kernels of ΠL
1 and ΠR

2 ,
respectively, that satisfy the following conditions:

∥∥∥Πj
1

∥∥∥
1
∆wi

1

||N j
1 ||2σ1||ΠR

2 ||2
≤ ϵw̃,∥∥∥Πj

1

∥∥∥
1
∆w

1 ∥Πm
2 ∥1

||N j
1 ||2σ1 + ||Πj

1||2||ΠL
1 ||2||N2||2σ2

≤ ϵ′,

(43)

ϵ̃ and ϵ′-differential privacy guarantee are warranted for
each element of vector w̃t

i , w̃t
i,j, and each element of

matrix w′t, w′ t
j,m, respectively, for j ∈ {1, ..., ñ} and

m ∈ {1, ..., p}.

Proof : The proof follows from the discussion provided
in this section above. ■
The differential privacy guarantees are also provided
when the additive noises in the privacy mechanisms (26)
and (31) are Gaussian. Let the independent stochas-
tic processes Rt

1 and Rt
2 following multivariate i.i.d.

Gaussian distributions with E[Rt
1] = 0 and E[Rt

2] = 0,
and covariance matrices E[(Rt

1)(R
t
1)

⊤] =: σ1I(ñ−n)

and E[(Rt
2)(R

t
2)

⊤] =: σ2Iñ, for some σ1, σ2 > 0, i.e.,
Rt

1 ∼ N (0, σ1I(ñ−n)) and Rt
2 ∼ N (0, σ2Iñ). In this case,

the conditions on Π1, N1, Π
R
2 , σ1, and σ2 to guarantee

a desired level of privacy are provided in the following
theorem.
Theorem 2 (Differential Privacy through Gaus-
sian additive noises) Consider Gaussian processes
Rt

1 ∼ N (0, σ1I(ñ−n)) and Rt
2 ∼ N (0, σ2Iñ) with stan-

dard deviation of Gaussian noises σ1 and σ2, full rank
matrixΠ1 ∈ Rñ×n,Π2 ∈ R1×p, matricesN1 ∈ Rñ×(ñ−n)

and N2 ∈ R(p−1)×p expanding the kernels of ΠL
1 and ΠR

2 ,
respectively, satisfying the following conditions:

(||N j
1 ||2σ1||ΠR

2 ||2)2 −
||Πj

1||22(∆
wi
2)2

2ϵ̃

− ||Π
j
1||2∆

wi
2

ϵ̃
Q−1(δ̃)(||N j

1 ||2σ1||ΠR
2 ||2) ≥ 0,

(||N j
1 ||2σ1 + ||Nm

2 ||2σ2)
2 − ||Π

j
1||22(∆w

2)
2||Πm

2 ||22
2ϵ̃

− ||Π
j
1||2∆w

2 ||Πm
2 ||2

ϵ̃
Q−1(δ̃)(||N j

1 ||2σ1

+ ||Πj
1||2||ΠL

1 ||2||N2||2σ2) ≥ 0,
(44)

with the Q-function Q(x) := 1√
2π

∫∞
x

e−u2/2du, i.e.,

the tail distribution of the standard normal distribution.

12

Then, (ϵ̃, δ̃) and (ϵ′, δ′)- Differential Privacy guarantees
are warranted for each element of w̃t

i , w̃t
i,j, and each

element of w′t, w′ t
j,m, respectively, for j ∈ {1, ..., ñ} and

m ∈ {1, ..., p}, at global iteration t of the FL algorithm.

Proof: See Appendix 8.1. ■
The inequality condition in (44) shows the relation be-

tween privacy levels, (ϵ̃, δ̃) and (ϵ′, δ′), and privacy mech-
anism design variables (σ1, σ2,Π1,Π2, N1). To obtain a
higher level of privacy, which can be achieved by reduc-
ing the amount of (ϵ̃, δ̃) and (ϵ′, δ′), we need to choose
smaller Π1 and Π2, larger N1, and larger noise standard
deviations σ1 and σ2.
Remark 3 The sizes of the additive noises required to
guarantee a desired level of DP for local and global FL
models are multiples of the sensitivities of local databases
for local and global models, ∆wi

l and ∆w
l for l = 1, 2.

These sensitivities can be calculated by ∆wi

l = 2C
|Di| and

∆w
l = 2C

|D| where C is a clipping threshold for bounding

wi [12]. Since in the SIFL method the distortion induced
by these noises can be removed by the server and clients,
the noises do not need to be small. Therefore, we can
choose a large clipping threshold to avoid distorting the
FL performance.
Remark 4 In (41), (42), and Theorem 2, we propose the
design conditions for the variables of the privacy mecha-
nisms,Π1,Π2, σ1, and σ2, to guarantee (ϵ̃, δ̃) and (ϵ

′, δ′)-
DP for local and global models. It has been shown that a
differentially private algorithm is perfectly secret if the set
of differential privacy levels is reached zero [28]. Hence,
to have perfect secrecy for coding mechanisms in SIFL
methods, we need (ϵ̃, δ̃, ϵ′, δ′) → 0. Although this cannot

be achieved due to the numerical limits, (ϵ̃, δ̃, ϵ′, δ′) can be
arbitrarily small by selecting small Π1 and Π2 and large
σ1 and σ2, respectively.

6 Simulation Experiments

6.1 Experimental Setup

We examine the experimental results for both SIFL
methods, on three neural network models, namely the
Multi-Layer Perceptron (MLP) and two different Con-
volutional Neural Networks (CNN). Our investigation
involves utilizing different optimization tools [32], e.g.,
Adam, SGD, and Momentum, on the MNIST [39] and
Fashion-MNIST [40] databases. The experimental de-
tails are described as follows:

• Datasets: We test our algorithm on the MNIST
database for handwritten digit recognition and
Fashion-MNIST database for Zalando’s article im-
ages classification, both containing 60000 training
and 10000 testing instances of 28× 28 size gray-level
images and 10 classes.

• Models: The MLP model is a feed-forward deep neu-
ral network with ReLU units and a softmax layer of

10 classes (corresponding to the ten digits) with two
hidden layers containing 200 hidden units containing
199,210 parameters. The first CNN model consists of
two 3 × 3 convolutional layers followed by the 2 × 2
max pooling layer and ReLu activation function. The
first layer has 32 channels, while the second has 64
channels. The fully connected layer has 128 units and
takes the flatted output of the second convolutional
layer as the input. The CNNmodel contains 1, 199, 882
parameters. The second CNN model (CNN2) has two
5 × 5 convolution layers (the first with 32 channels,
the second with 64, each followed with 2×2 max pool-
ing), a fully connected layer with 512 units and ReLu
activation, and a final softmax output layer, contain-
ing 582, 026 weight parameters. Cross-entropy is em-
ployed as the loss function in all three networks.

• Optimization tools: As optimization algorithms, the
SGD,Momentum, andAdam optimizers with learning
rates 0.01, 0.01, and 0.001, and local epoch K = 2,
K = 2, and K = 1, respectively, are employed. To
be able to compare the effect of the immersion-based
coding algorithm, the immersed optimizers based on
the immersion coding given in Proposition 1, target
SGD, target Momentum, and target Adam optimizers
are employed for training SIFL models.

We set the number of clients toNc = 10. Our implemen-
tation uses Keras with a Tensorflow backend on an HP
laptop with A100 GPU and 16 GB RAM.
We implement various FL algorithms through standard
FL (FL), the SIFL Method (SIFL M1) given in Algo-
rithm 1, and the extended SIFL Method (SIFL M2) in
Algorithm 2. To be able to implement SIFL M1 and
SIFL M2, the variables of the encoding mechanisms and
the target optimizer are designed by selecting small full-
rank matrices Π1 and Π2 with appropriate dimensions.
We compute the baseN1 of the kernel of Π

L
1 and the base

N2 of the kernel of ΠR
2 . The random processes Rt

1 and
Rt

2 are defined at every round as multivariate Gaussian
variables with large covariances. The immersed dimen-
sions of model parameters are shown in Table 3.
To calculate DP guarantees for local and global models
according to Theorem 1, first we determine the sensitiv-
ities of local and global models ∆wi

1 and ∆w
1 , which ac-

cording to Remark 3 and considering the clipping thresh-
old C = 1000, number of clients Nc = 10, and the size
of dataset |D| = 60000 and local datasets |D|i = 6000,
can be calculated as ∆wi

1 = 2C
|Di| = 0.33 and ∆w

1 = 2C
|D| =

0.033. Then, based on Theorem 1, considering encoding
matrices Π1 and Π2, with ||Πj

1||1 = 10−3, ||ΠR
2 ||2 = 103,

||N j
1 ||2 = 103, ||Πm

2 ||2 = 10−3and Laplace processes
Rt

1 ∼ Laplace(0, σ1I) and Rt
2 ∼ Laplace(0, σ2I) with

standard deviations σ1 = σ2 = 103, the ϵ̃ and ϵ′-DP
guarantees with ϵ̃ = 1e − 12 and ϵ′ = 1e − 13 are war-
ranted for each elements of local and global models,
which are very high-levels of DP-guarantee. Note that
since in this method, the privacy noises are removed by
the server and clients, they do not need to be small.

13

Fig. 2. The comparison of the accuracy of FL network in each iteration with and without the proposed privacy mechanism.

Table 3
Dimensions of model parameters.

Model n ñ n′

MLP 199,210 199,411 398,822
CNN 1,199,882 1,200,011 2,400,022
CNN2 582,026 582,539 1,165,078

Therefore, high levels of DP guarantees are achieved
without distorting the performance of the FL model.

6.2 Performance Evaluation

The comparison of training accuracy of the standard FL
algorithm and the proposed SIFL M1 and SIFL M2 are
shown in Figure 2. The test accuracies are shown for
different models (MLP and CNN), using different opti-
mizers (SGD, Adam, and momentum) and their equiv-
alent target optimizers for SIFL M1 and SIFL M2. The
comparison of the accuracy of the FL algorithm for the
Fashion-MNIST database and CNN2 model is shown in
Figure 3. As can be seen, the SIFL M1 and SIFL M2
accuracy is almost the same as the accuracy with no
privacy setting in all scenarios, which shows that SIFL
can integrate a cryptographic method in the FL sys-
tem without sacrificing model accuracy and convergence
rate. Therefore, there is no need to make a trade-off be-
tween privacy and FL performance.
In Figures 4, we investigate the effect of the encoding
and decoding operations in SIFL M1 and SIFL M2 on
FL training time. As can be seen, for the MLP model,
where the number of model parameters is smaller, the
additional training time compared to the training time
of the original FL is negligible. However, by increasing
the number of model parameters in CNN models, the
training time increases. The reason is that by increas-
ing the number of model parameters, the size of multi-
plicative matrices in privacy mechanisms Π1 and Π2 in-
creases. In addition, the model parameters are flattened
at every iteration to become a vector to be able to apply
privacy mechanisms, which takes more time.
We compare the accuracy of our proposed scheme with

a differential privacy-based FL algorithm in Figure 5,
in which the distortion induced by the DP noises is not
removed from the model. The federated learning algo-
rithm with differential privacy proposed in [12], namely,

noising before model aggregation FL (NbAFL) is em-
ployed to compare the accuracy. It should be noted that
to be able to calculate the sensitivity of model parame-
ters in federated learning with differential privacy algo-
rithms, a clipping technique is employed to ensure that
||wt

i || ≤ C with clipping threshold C. In standard FL
with DP algorithms, if the clipping threshold C is too
small, clipping destroys the intended gradient direction
of parameters, and if it is too large, it forces to add
more noise to the parameters because of its effect on
the sensitivity. However, in SIFL, since the server and
the clients can remove the distortion induced by the pri-
vacy noises, they do not need to be small. Therefore, we
can choose a large clipping threshold to avoid distorting
the FL performance. Hence, in this implementation, the
clipping threshold for NbAFL is C = 10, and for SIFL
is C = 1000. Other parameters in this implementation
are NC = 50 and batch size is 1024, CNN2 model with
SGD optimizer and learning rate 0.1 are employed. We
measure the model accuracy of NbAFL in a given DP
levels (ϵ, δ) for δ = 1e − 5 and ϵ = {1, 5, 10, 20}. To
implement SIFL algorithm, we used Gaussian additive
noises Rt

1 ∼ N (0, σ1I) and Rt
2 ∼ N (0, σ2I) with stan-

dard deviations σ1 = σ2 = 103. According to Theorem
2 for calculating the DP guarantees for Gaussian noises,
considering ||Πj

1||2 = 10−3, ||ΠR
2 ||2 = 103, ||N j

1 ||2 = 103,
σ1 = σ2 = 103, sensitivities of local and global models
∆wi

1 = 0.33 and ∆w
1 = 0.033, the (ϵ̃, δ̃) and (ϵ′, δ′)-DP

guarantees for each element of local and global models
can be achieved with ϵ̃ = 1e−11, δ̃ = 1e−5, ϵ′ = 1e−13,
and δ′ = 1e−5 which are very high levels of DP guaran-

Fig. 3. The comparison of the accuracy and loss of FL with
and without privacy for the Fashion-MNIST database.

14

(a) MLP-ADAM (b) CNN2-Momentum (c) CNN-SGD

Fig. 4. The comparison of the training time of FL with and without the proposed privacy mechanism.

Fig. 5. The comparison of the accuracy of FL, SIFL M2, and
NbAFL for various privacy levels ϵ = 1, 5, 10, 20.

tee. As can be seen in Figure 5, a higher level of DP guar-
antee in a standard DP-based FL algorithm like NbAFL
would affect the accuracy and convergence rate signifi-
cantly due to the distorting noises, while the proposed
SIFL algorithm can provide a very high level of DP guar-
antee without losing the model accuracy.

7 Conclusions

In this paper, we have developed a System Immersion
Federated Learning, SIFL, as a privacy-preserving FL
framework built on the synergy of random coding and
system immersion tools from control theory to protect
privacy of the clients’ data in federated learning. The
core idea is to treat the Gradient descent optimization
algorithm employed in the standard FL process as a dy-
namical system that we seek to immerse into a higher-
dimensional system. We have devised a synthesis pro-
cedure to design the dynamics of a coding scheme for
privacy and an immersed higher-dimensional optimiza-
tion algorithm called target optimizer such that model
parameters of the standard optimization algorithm are
immersed/embedded in its parameters, and it operates
on randomly encoded higher-dimensional model param-
eters. Random coding was formulated at the server as a
random change of coordinates that maps the original pri-
vate parameters of the FLmodel to a higher-dimensional
space. Such coding enforces that the target optimization
algorithm converges to an encoded higher-dimensional

version of the model parameters of the original optimiza-
tion algorithm that can be decoded at the server after
model aggregation.
SIFL provides the same accuracy and convergence rate
as the standard FL (i.e., when no coding is employed to
protect against data inference), reveals no information
about clients’ data, can be applied to large-scale models,
is computationally efficient, and offers any desired level
of differential privacy without degrading the FL accu-
racy and performance. The simulation results of SIFL
are presented to illustrate the performance of our tool.
These results demonstrate that SIFL provides the same
accuracy and convergence rate as the standard FL with
a negligible computation cost.

References

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A.
y Arcas, Communication-efficient learning of deep networks
from decentralized data, in: Artificial intelligence and
statistics, PMLR, 2017, pp. 1273–1282.

[2] T. Li, A. K. Sahu, A. Talwalkar, V. Smith, Federated
learning: Challenges, methods, and future directions, IEEE
Signal Processing Magazine 37 (3) (2020) 50–60.

[3] P. P. Shinde, S. Shah, A review of machine learning and
deep learning applications, in: 2018 Fourth international
conference on computing communication control and
automation (ICCUBEA), IEEE, 2018, pp. 1–6.

[4] M. Nasr, R. Shokri, A. Houmansadr, Comprehensive privacy
analysis of deep learning, in: Proceedings of the 2019 IEEE
Symposium on Security and Privacy (SP), 2018, pp. 1–15.

[5] R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership
inference attacks against machine learning models, in: 2017
IEEE symposium on security and privacy (SP), IEEE, 2017,
pp. 3–18.

[6] J. So, R. E. Ali, B. Güler, J. Jiao, A. S. Avestimehr, Securing
secure aggregation: Mitigating multi-round privacy leakage in
federated learning, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 37, 2023, pp. 9864–9873.

[7] M. Fredrikson, S. Jha, T. Ristenpart, Model inversion
attacks that exploit confidence information and basic
countermeasures, in: Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, 2015,
pp. 1322–1333.

15

[8] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al.,
Privacy-preserving deep learning via additively homomorphic
encryption, IEEE Transactions on Information Forensics and
Security 13 (5) (2017) 1333–1345.

[9] X. Yin, Y. Zhu, J. Hu, A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and
future directions, ACM Computing Surveys (CSUR) 54 (6)
(2021) 1–36.

[10] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, L. Zhang, Deep learning with
differential privacy, in: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016,
pp. 308–318.

[11] R. Shokri, V. Shmatikov, Privacy-preserving deep learning,
in: Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, 2015, pp. 1310–1321.

[12] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi,
S. Jin, T. Q. Quek, H. V. Poor, Federated learning with
differential privacy: Algorithms and performance analysis,
IEEE Transactions on Information Forensics and Security 15
(2020) 3454–3469.

[13] C. Liu, K. H. Johansson, Y. Shi, Distributed empirical
risk minimization with differential privacy, Automatica 162
(2024) 111514.

[14] Y. Wang, T. Başar, Decentralized nonconvex optimization
with guaranteed privacy and accuracy, Automatica 150
(2023) 110858.

[15] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical
secure aggregation for privacy-preserving machine learning,
in: proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1175–
1191.

[16] G. Xu, H. Li, S. Liu, K. Yang, X. Lin, Verifynet: Secure
and verifiable federated learning, IEEE Transactions on
Information Forensics and Security 15 (2019) 911–926.

[17] P. Mohassel, Y. Zhang, Secureml: A system for scalable
privacy-preserving machine learning, in: 2017 IEEE
symposium on security and privacy (SP), IEEE, 2017, pp.
19–38.

[18] V. Mugunthan, A. Polychroniadou, D. Byrd, T. H.
Balch, Smpai: Secure multi-party computation for federated
learning, in: Proceedings of the NeurIPS 2019 Workshop
on Robust AI in Financial Services, Vol. 21, MIT Press
Cambridge, MA, USA, 2019.

[19] J. Ma, S.-A. Naas, S. Sigg, X. Lyu, Privacy-preserving
federated learning based on multi-key homomorphic
encryption, International Journal of Intelligent Systems
(2022).

[20] J. Li, X. Kuang, S. Lin, X. Ma, Y. Tang, Privacy preservation
for machine learning training and classification based on
homomorphic encryption schemes, Information Sciences 526
(2020) 166–179.

[21] M. Asad, A. Moustafa, T. Ito, Fedopt: Towards
communication efficiency and privacy preservation in
federated learning, Applied Sciences 10 (8) (2020) 2864.

[22] Y. Lu, M. Zhu, Privacy preserving distributed optimization
using homomorphic encryption, Automatica 96 (2018) 314–
325.

[23] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, Y. Zhou, A hybrid approach to privacy-preserving
federated learning, in: Proceedings of the 12th ACM
workshop on artificial intelligence and security, 2019, pp. 1–
11.

[24] Y. Wang, H. V. Poor, Decentralized stochastic optimization
with inherent privacy protection, IEEE Transactions on
Automatic Control 68 (4) (2022) 2293–2308.

[25] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, H. Ludwig,
Hybridalpha: An efficient approach for privacy-preserving
federated learning, in: Proceedings of the 12th ACM
Workshop on Artificial Intelligence and Security, 2019, pp.
13–23.

[26] C. A. Choquette-Choo, N. Dullerud, A. Dziedzic,
Y. Zhang, S. Jha, N. Papernot, X. Wang, Capc learning:
Confidential and private collaborative learning, arXiv
preprint arXiv:2102.05188 (2021).

[27] A. Astolfi, R. Ortega, Immersion and invariance: A new tool
for stabilization and adaptive control of nonlinear systems,
IEEE Transactions on Automatic control 48 (4) (2003) 590–
606.

[28] H. Hayati, N. van de Wouw, C. Murguia, Privacy in cloud
computing through immersion-based coding, arXiv preprint
arXiv:2403.04485 (2024).

[29] H. Hayati, C. Murguia, N. van de Wouw, Privacy-preserving
federated learning via system immersion and random matrix
encryption, in: 2022 IEEE 61st Conference on Decision and
Control (CDC), IEEE, 2022, pp. 6776–6781.

[30] H. Hayati, S. Heijmans, L. Persoon, C. Murguia, N. van de
Wouw, Mo-0304 privacy-preserving federated learning for
radiotherapy applications, Radiotherapy and Oncology 182
(2023) S238–S240.

[31] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik,
A. T. Suresh, D. Bacon, Federated learning: Strategies
for improving communication efficiency, arXiv preprint
arXiv:1610.05492 (2016).

[32] S. Ruder, An overview of gradient descent optimization
algorithms, arXiv preprint arXiv:1609.04747 (2016).

[33] A. Astolfi, D. Karagiannis, R. Ortega, Nonlinear and adaptive
control with applications, Vol. 187, Springer, 2008.

[34] A. Isidori, C. Byrnes, Output regulation of nonlinear systems,
IEEE Transactions on Automatic control 35 (2) (1990) 131–
140.

[35] F. Delli Priscoli, C. Byrnes, A. Isidori, Output regulation of
uncertain nonlinear systems (1997).

[36] A. Haro, M. Canadell, J.-L. Figueras, A. Luque, J.-
M. Mondelo, The parameterization method for invariant
manifolds, Applied mathematical sciences 195 (2016).

[37] M.W. Hirsch, S. Smale, R. L. Devaney, Differential equations,
dynamical systems, and an introduction to chaos, Academic
press, 2012.

[38] C. Dwork, Differential privacy: A survey of results, in: Theory
and Applications of Models of Computation, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 1–19.

[39] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the
IEEE 86 (11) (1998) 2278–2324.

[40] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms, arXiv
preprint arXiv:1708.07747 (2017).

8 Appendix

8.1 Proof of Theorem 2

We start with the privacy guarantee forwt
i . According to

Definition 3, given the adjacent local databases Di,D′
i ∈

16

Xi, the sensitivity of wt
i can be defined as follows:

∆wi
2 = sup

Di,D′
i

∥∥wt
i

(
Di

)
−wt

i (D′
i)
∥∥
2
. (45)

For simplicity, we show wt
i(Di) and wt

i(D′
i) by wt

i

and wt
i
′
. Because Rt

1 ∼ N (0, σ1I), and given the pri-
vacy encoding mechanisms w̃t

i = Π1w
t
i + bt1, with

bt1 = N1R
t
1Π

R
2 in the extended SIFL method, each

element of w̃t
i follows a Gaussian distribution as

w̃t
i,j ∼ N (Πj

1w
t
i , ||N

j
1 ||2σ1||ΠR

2 ||2), where Π
j
1 and N j

1 are
the j-th rows of Π1 and N1, respectively. We have

P
(
w̃t

i,j(Di)
)
=

1

(2πσ̄2)
1
2

∫
S
e
−

||p−Π
j
1
wt

i
||2
2

2(||Nj
1
||2σ1||ΠR

2
||2)2 dp

=
1

(2πσ̄2)
1
2

∫
S
e

−||p−Π
j
1
wt

i
′−Π

j
1
v||2

2

(2(||Nj
1
||2σ1||ΠR

2
||2)2) dp

=
1

(2πσ̄2)
1
2

∫
S
e
−

||p−Π
j
1
wt

i
′||2

2

2(||Nj
1
||2σ1||ΠR

2
||2)2 e

2(p−Π
j
1
wt

i
′
)Π

j
1
v−||Πj

1
v||2

2

2(||Nj
1
||2σ1||ΠR

2
||2)2 dp

=
1

(2πσ̄2)
1
2

∫
S∩Aϵ

e
−

||p−Π
j
1
wt

i
′||2

2

2(||Nj
1
||2σ1||ΠR

2
||2)2 e

2(p−Π
j
1
wt

i
′
)Π

j
1
v−||Πj

1
v||2

2

2(||Nj
1
||2σ1||ΠR

2
||2)2 dp

+
1

(2πσ̄2)
1
2

∫
S∩Ac

ϵ

e
−

||p−Π
j
1
wt

i
||2
2

2(||Nj
1
||2σ1||ΠR

2
||2)2 dp,

(46)

where v := wt
i − wt

i
′
, σ̄ = (||N j

1 ||2σ1||ΠR
2 ||2),

Aϵ =
{
p ∈ R :

2(p−wt
i
′
)Πj

1v−||Πj
1v||

2
2

2(||Nj
1 ||2σ1||ΠR

2 ||2)2
≤ ϵ̃
}
and Ac

ϵ denotes

its complement. By the definition of Aϵ, the first term
of the last expression is bounded by

eϵ̃

(2πσ̄2)
1
2

∫
S
e
−

||p−wt
i
′||2

2

2(||Nj
1
||2σ1||ΠR

2
||2)2 dp = eϵ̃P

(
w̃t

i,j(D′
i) ∈ S

)
.

(47)
The second integral term is bounded by

1

(2πσ̄2)
1
2

∫
R e

−
||p−Π

j
1
wt

i
||2
2

2(||Nj
1
||2σ1||ΠR

2
||2)2 1{2(p−Πj

1w
t
i
′)Πj

1v≥||Πj
1v||

2
2+2ϵ̃σ̄2}dp,

(48)

which, after the change of variable y = (p − Πj
1w

t
i)/σ̄,

can be rewritten

1

(2π)
1
2

∫
R
e−

||y||2
2

2 1{2(σ̄y+Πj
1v)Π

j
1v≥||Πj

1v||
2
2+2ϵ̃σ̄2}dy

=
1

(2π)
1
2

∫
R
e−

||y||2
2

2 1{
y≥ ϵ̃σ̄

||Πj
1
v||2

−
||Πj

1
v||2

2σ̄

}dy.
(49)

This last expression is P
(
Y ≥ ϵ̃σ̄

||Πj
1v||2

− ||Πj
1v||2
2σ̄

)
≤ δ̃,

for Y ∼ N (0, 1). We are then led to set σ̄ sufficiently

large so that P
(
Y ≥ ϵ̃σ̄/||Πj

1v||2 − ||Π
j
1v||2/2σ̄

)
≤ δ̃,

that is, Q
(
ϵ̃σ̄/||Πj

1v||2 − ||Π
j
1v||2/2σ̄

)
≤ δ̃. Because

Q−1 is monotonically decreasing, we have the condition
ϵ̃σ̄

||Πj
1v||2

− ||Πj
1v||2
2σ̄ ≥ Q−1(δ̃), which is equivalent to

σ̄2 − σ̄
||Πj

1v||2
ϵ̃

Q−1(δ̃)− ||Π
j
1v||22
2ϵ̃

≥ 0. (50)

From Definition 3, (50) can be converted to:

σ̄2 − σ̄
||Πj

1||2∆w
2

ϵ̃
Q−1(δ̃)− ||Π

j
1||22(∆w

2)
2

2ϵ̃
≥ 0. (51)

Substituting σ̄ = (||N j
1 ||2σ1||ΠR

2 ||2) into (51), to have

(ϵ̃, δ̃)-DP guarantee for local models, Π1, Π2, N1, and σ1

should be designed to satisfy the following inequality:

(||N j
1 ||2σ1||ΠR

2 ||2)2 −
|Πj

1|2∆w
2

ϵ̃
Q−1(δ̃)(||N j

1 ||2σ1||ΠR
2 ||2)

− ||Π
j
1||22(∆w

2)
2

2ϵ̃
≥ 0.

(52)
Following the same reasoning, we define the sensitivity of
the global model as ∆w

2 = supDi,D′
i
∥wt(Di)−wt (D′

i)∥2.
For the extended SIFLmethod, it can be shown that each
element of the encoded global model w′t = Π1w

tΠ2 +
Bt

1 +Π1Π
L
1B

t
2, w

′t
j,m, with Bt

1 = N1R
t
1 and Bt

2 = Rt
2N2

is (ϵ′, δ′)-Differentially private in (35)) for:

(||N j
1 ||2σ1 + ||Nm

2 ||2σ2)
2 − ||Π

j
1||22(∆w

2)
2||Πm

2 ||22
2ϵ′

− ||Π
j
1||2∆w

2 ||Πm
2 ||2

ϵ′
Q−1(δ′)(||N j

1 ||2σ1

+ ||Πj
1||2||ΠL

1 ||2||N2||2σ2) ≥ 0,

(53)

for all j ∈ {1, 2, . . . , ñ} andm ∈ {1, 2, . . . , p}, whereNm
2

and Πm
2 are the mth column of N2 and mth element of

vector Π2, respectively. ■

17

	Introduction
	Problem Formulation
	Standard Federated Learning
	Privacy Requirements
	Privacy-preserving FL Problem
	Immersion-based Privacy-preserving FL: Secure Aggregation

	Immersion-based Coding for Privacy- Preserving FL
	Summary SIFL Algorithm solving Problem 1: Privacy-Preserving Aggregation

	Global model privacy in FL
	Affine Solution to Problem 2
	Extended SIFL Algorithm solving Problems 1 and 2: Privacy-Preserving Aggregation and Broadcasting

	Privacy Guarantees
	Differential Privacy
	Immersion-based Coding Differential Privacy Guarantee
	Solution to Problem 3

	Simulation Experiments
	Experimental Setup
	Performance Evaluation

	Conclusions
	References
	Appendix
	Proof of Theorem 2

