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The applicability of relativistic magnetohydrodynamics (RMHD) and its generalization to two-fluid models (includ-
ing the Hall and inertial effects) is systematically investigated by using the method of dominant balance in the two-fluid
equations. Although proper charge neutrality or quasi-neutrality is the key assumption for all MHD models, this con-
dition is difficult to be met when both relativistic and inertial effects are taken into account. The range of application
for each MHD model is illustrated in the space of dimensionless scale parameters. Moreover, the number of field vari-
ables of relativistic Hall MHD (RHMHD) is shown to be greater than that of RMHD and Hall MHD. Nevertheless, the
RHMHD equations may be solved at a lower computational cost than RMHD, since root-finding algorithm, which is
the most time-consuming part of the RMHD code, is no longer required to compute the primitive variables.

I. INTRODUCTION

Magnetized plasmas subject to relativistic effects are com-
mon in various high-energy celestial bodies, such as pulsar,
black hole magnetosphere, corona of accretion disk, jet from
active galactic nucleus and gamma-ray burst. Relativistic
magnetohydrodynamics (RMHD) has been used in theoretical
and numerical studies as a model to analyze the macroscopic
motion of relativistic magnetized plasmas. Since RMHD ig-
nores the microscopic scales of such as inertial length and
gyro-radius, it is well known that the magnetic field is frozen
in the plasma motion in the collisionless limit. Therefore,
RMHD is inappropriate for dealing with magnetic reconnec-
tion1,2 at least in the microscopic region where magnetic field
lines reconnect. In many cases, magnetic reconnection is a
key process in which magnetic energy is efficiently converted
into kinetic and thermal energy. In addition, RMHD becomes
invalid in the limit of low plasma density or weak magnetic
field. The Vlasov-Maxwell equations, on the other hand, are
based on first principles and have been solved by Particle-In-
Cell (PIC) simulations in recent years. However, this direct
approach is the most computationally expensive and these ki-
netic models are difficult to solve analytically. Thus, there is
a demand for intermediate models which bridge the gap be-
tween RMHD and kinetic ones. In this study, we focus on
extended RMHD models that include the two-fluid effects,
which are expected to be more widely applicable than RMHD
while maintaining a moderate computational cost.

In non-relativistic electron-ion plasmas, a model3,4 includ-
ing the two-fluid effects (i.e., the Hall effect and the electron
inertia effect) is called extended MHD (XMHD) in the recent
literature5. The XMHD equations are derived from the two-
fluid equations by imposing the quasi-neutrality (QN) con-
dition, which approximately eliminates microscopic motions
such as plasma oscillation and cyclotron oscillation. XMHD
is also shown to have a Hamiltonian structure which conserves
canonical vorticities (instead of magnetic flux)6–9. Due to
the electron-inertia effect, magnetic reconnection can occur
even in the collisionless limit10–12. Furthermore, the Hall ef-

fect is well-known for significantly enhancing the reconnec-
tion speed, according to the Global Environment Modeling
(GEM) Reconnection Challenge13. Since the electron-inertia
effect manifests itself on an even smaller scale than the Hall
effect, Hall MHD14 is often used as well, neglecting only the
electron-inertia effect. In the case of electron-positron plas-
mas, the Hall effect vanishes and only the inertial effect re-
mains, so this model is called inertial MHD (IMHD)5.

It is natural to assume that there are also some MHD mod-
els that include the relativistic effects alongside the two-fluid
effects. Such an extension of RMHD in electron-positron
plasma was explored early on the literature15,16. Additionally,
the extension of generalized Ohm’s law was attempted and ap-
plied to pulsar magnetosphere17Note1. Koide19 derived a gen-
eralized RMHD model from the relativistic two-fluid equa-
tions by imposing the proper charge neutrality (PCN) condi-
tion, which will be referred to as relativistic extended MHD
(RXMHD) in this paper. A variational principle of RXMHD
was later proposed by Kawazura et al.20. The general rela-
tivistic version of RXMHD was presented by Koide21 and by
Comisso and Asenjo22 using a covariant form. RXMHD was
applied to relativistic collisionless magnetic reconnection23.
Relativistic Hall MHD (RHMHD) is similarly obtained by ne-
glecting electron-inertia, and its properties have been studied
by Kawazura24,25. However, for the QN condition to hold in
non-relativistic MHD, the flow velocity must be sufficiently
slower than the speed of light. Moreover, as will be clarified
in this paper, the PCN condition in RMHD actually holds in
the limit of neglecting the two-fluid effects. Therefore, hy-
brid models which include both the relativistic and two-fluid
effects may violate the charge neutrality condition, requiring
careful consideration of the applicability of RXMHD (and
RHMHD). In fact, all models bearing the name "MHD" as-
sume either QN or PCN a priori. Once these neutrality con-
ditions (i.e., single-fluid approximation) fail, we should solve
the two-fluid equations or kinetic models directly.

Note1 Generalized relativistic Ohm’s law is also proposed by18 in a different way.
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A Two-fluid equations 2

In this study, starting from the relativistic two-fluid equa-
tions, we systematically reproduce various MHD models (in-
cluding RXMHD) using the method of dominant balance26

and theoretically illustrate their scopes of application. Since
there are too many dimensionless parameters in the original
two-fluid equations, we will not explore all cases but focus
only on the realm of MHD where the MHD balances hold;
the MHD terms are not negligible but dominant. Specifically,
we consider a situation in which the Lorentz force (J ×B
term) is dominant in the equation of motion for the center-of-
mass velocity of the two fluids. If the pressure term or the
electric force is far more dominant than the Lorentz force, the
MHD model is unlikely to be applicable27. Therefore, in or-
der to make nonessential parameters invisible and highlight
only the dominant terms, the plasma pressure and the external
electric field will be ignored from the beginning. The MHD
models are finally classified in terms of three dimensionless
parameters corresponding to the scales of the plasma density,
the flow velocity, and the external magnetic field. Further-
more, the dimensionless parameters can be reduced to two if
the flow velocity is assumed to be on the same order of the
Alfvén velocity. The applicability of the various MHD mod-
els will be visualized in this parameter space, supposing that a
dimensionless coefficient before each term is considered neg-
ligible if it is less than, say, 10−4. For these relativistic and
two-fluidic MHD models, we will write them in the form of a
dynamical system ∂tu = F(u) and identify the number of the
time-evolving field variables u. We will show that RHMHD
has more variables than HMHD and RMHD. In the case of
RMHD, the right-hand side F(u) is notorious for being an im-
plicit function of u, which requires extra computational cost28.
RHMHD will be shown to resolve this problem of RMHD, al-
though the number of variables increases.

II. BASIC EQUATIONS

A. Two-fluid equations

We denote the Minkowski spacetime of the reference frame
by

xµ := (ct,x,y,z) = (x0,xi), xµ := (−ct,x,y,z) = (x0,xi),
(1)

where c is the speed of light and the Minkowski metric ten-
sor is diag(−1,1,1,1). The partial derivatives will be shortly
denoted by ∂µ = ∂/∂xµ and ∂ µ = ∂/∂xµ . The proper four-
velocity is defined as

U µ := (γ,γv/c), Uµ := (−γ,γv/c), (2)

where v is the reference-frame three-velocity (called simply
"velocity"), and γ := 1/

√
1−|v|2/c2 is the Lorentz factor. In

this paper, Greek indices (µ = 0,1,2,3) denote the time-space
(4D) components, while Roman indices (vi = vi, i = 1,2,3)
or bold faces (v) denote the spatial (3D) components. The
Einstein summation convention will be used in what follows.

Momentarily Co-moving Reference Frame (MCRF) refers
to the inertial frame co-moving with particles. Physical quan-
tities of relativistic fluid are said to be "proper" when they are
observed in the frame co-moving with the velocity v. There-
fore, the proper number density is given by N = n/γ , when n
is the number density in the reference-frame.

In this study, we start with the special-relativistic fluid
equations for both positively and negatively charged gases,
where dissipation due to collision is neglected for simplic-
ity. The equations of motion, the continuity equations and
Maxwell’s equations are written as

∂ν(h±N±U µ

±Uν
±) =−∂

µ p±± ecN±Uν
±Fµ

ν , (3)
∂ν(N±Uν

±) = 0, (4)
∂ν

∗Fµν = 0, (5)
∂ν Fµν = µ0Jµ , (6)

where the subscripts plus (+) and minus (−) indicate that
they are the quantities for positively and negatively charged
particles, respectively. Moreover, h± is the entropy per unit
particle, p± is the pressure, Fµν is the electromagnetic field
tensor, ∗Fµν is the Hodge dual tensor of Fµν , and Jµ :=
ec(N+U+

µ − N−U−
µ) is the four-current. The governing

equations, (3) to (6), are called the two-fluid equations. We
use the SI unit system; µ0 is the vacuum magnetic permeabil-
ity, and e is the elementary charge.

Maxwell’s equations are also expressed in 3+1 form as

∂ jE j/c = µ0ecñ, (7)

∂ jB j/c = 0, (8)

ε
i
jk∂

jEk/c = −∂0Bi, (9)

ε
i
jk∂

jBk = µ0Ji −∂0E i/c, (10)

where E i is the electric field, Bi is the magnetic field, eñ =
e(n+ − n−) is the charge density, and εi jk is the Levi-Civita
symbol.

In this paper, the four potential Aµ = (φ/c,Ai) is also in-
troduced to express the electromagnetic field and we employ
the Coulomb gauge ∂ jA j = 0. Maxwell’s equations are then
transformed into

−∂ j∂ jφ =µ0ec2ñ, (11)
1
c2 ∂t∂tAi +∂i∂ jA j −∂ j∂ jAi =− 1

c2 ∂i(∂tφ)+µ0Ji. (12)

B. Transformation into MHD variables

Let us rewrite Eq. (3) and Eq. (4) in terms of MHD vari-
ables without any approximation. It is insightful to introduce
four-dimensional center-of-mass flux (divided by c) by

Qµ =

(
n, n

vi

c

)
:=

m+N+U µ

+ +m−N−U µ

−
m++m−

, (13)

where m± is the mass of particle, and four-dimensional cur-
rent (with the same dimension as Qµ ) by

Kµ =
Jµ

ec
=

(
ñ, n

ui

c

)
:= N+U µ

+ −N−U µ

− . (14)
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The MHD equations are sometimes called the single-fluid
model, assuming that the two species of charged fluid move
together approximately; ñ ≪ n and |u| ≪ |v|.

By denoting (3) for the positive and negative species by
(3)+ and (3)− respectively, the equation of center-of-mass mo-
tion is obtained from the sum (3)++(3)− as follows

mc2
∂ν

[
f Qµ Qν +µ

2 f̃ (Qµ Kν +Kµ Qν
)
+µ

2 f ′ Kµ Kν
]

=−∂
µ p+ ecKν Fµ

ν . (15)

On the other hand, generalized Ohm’s law is obtained from
[m−(3)+−m+(3)]/(m++m−),

mc2
∂ν

[
µ

2 f̃ Qµ Qν +µ
2 f ′ (Qµ Kν +Kµ Qν

)
+µ

2(−µ̃ f ′+µ
2 f̃
)

Kµ Kν
]

=
µ

2
∂

µ p+
1
2

∂
µ p̃+ ec

(
Qν − µ̃Kν

)
Fµ

ν , (16)

where the following abbreviations are used

m := m++m−, µ
2 :=

m+m−
m2 , µ̃ :=

m+−m−
m

, (17)

p := p++ p−, p̃ := p+− p−, (18)

f± :=
h±

N±m±c2 , (19)

f̃ := f+− f−, (20)

f :=
1
m
(m+ f++m− f−), (21)

f ′ :=
1
m
(m− f++m+ f−) = f − µ̃ f̃ . (22)

Both the classical and relativistic MHD equations are derived
by neglecting f̃ owing to f̃ ≪ f (which then leads to f ′ = f ).
Therefore, the orders of f and f̃ are important for the validity
of the MHD approximation.

Similarly, we obtain the conservation law of mass density

∂ν Qν = 0 (23)

from [m+(4)+ + m−(4)−]/m, and the conservation law of
charge density

∂ν Kν = 0 (24)

from (4)+−(4)−.

C. Assumption of cold plasma

The validity of the MHD approximation primarily relies on
ñ ≪ n, |u| ≪ |v| and f̃ ≪ f being sufficiently fulfilled. To
focus on this topic, we neglect the pressure terms (i.e., the cold
plasma approximation) in what follows because they simply
appear as additional terms and make the governing equations
lengthy. Therefore, p = p̃ = 0 and h± = m±c2 are assumed.
Then, (20) and (21) are reduced to

f =
1
m

(
m+

N+
+

m−
N−

)
, f̃ =

1
N+

− 1
N−

. (25)

Using the relations,

N± =
√

−N±N±Uα
±U±α

=

√
−
(

Qα Qα +
m2
∓

m2 Kα Kα

)
∓ m∓

m
(Qα Kα +Kα Qα),

(26)

we can express f and f̃ in terms of Qµ and Kµ (in a very
complicated way). In Maxwell’s equations, the electromag-
netic field Fµν is generated by Jµ , which is ecKµ . Therefore,
the two-fluid equations are fully expressed by the MHD vari-
ables, Qµ , Kµ and Fµν .

Let us clarify the number of field variables in the two-fluid
equations. From the definitions given above, the equations
(15), (16), (23) and (24) clearly describe the time evolution of
the 8 variables Qµ and Kµ (which correspond to n, vi, ñ and
ui). Maxwell’s equations provide the time evolution of the 6
variables E i and Bi (which is Fµν ), but they must be solved
under the two constraints (7) and (8) (which include no time
derivative). In fact, we can eliminate the variable ñ because
ñ is uniquely determined by E i via (7), and the charge con-
servation law (24) is automatically satisfied by (7) and (10).
Therefore, in the cold plasma approximation, the two-fluid
equations constitute a dynamical system of 13 field variables
under 1 constraint in total. In a sense, the degree of freedom is
13−1 = 12. Even when Ai is used instead of Bi, the Coulomb
gauge ∂iAi = 0 is imposed instead of ∂iBi = 0 and the degree
of freedom is the same. Reducing the number of field variables
is one of the major purposes of the following MHD approxi-
mation.

III. DOMINANT BALANCE

To derive reduced models from the two-fluid equations sys-
tematically, we first normalize all terms in the equations and
consider the dominant balances that are suitable for magne-
tized plasma.

A. Normalization

We normalize all the equations by introducing 8 represen-
tative scales (with subscript ⋆) as follows

n̂ =
n
n⋆

, v̂i =
vi

v⋆
, ˆ̃n =

ñ
ñ⋆

, ûi =
ui

u⋆
,

B̂i =
Bi

B⋆
, φ̂

i =
φ

φ⋆
, x̂i =

xi

L⋆
, t̂ =

t
T⋆

, (27)

where we have introduced the common scale for all three-
dimensional components of vector fields (i.e., v1 ∼ v2 ∼ v3)
for simplicity. Note that L⋆ and T⋆ are the representative spa-
tial and temporal scales, respectively, of plasma dynamics that
we are interested in.
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The conservation law of mass (23) is written in terms of the
normalized quantities (with the hat symbol) as

L⋆

v⋆T⋆
∂̂0Q̂0 + ∂̂iQ̂i = 0. (28)

Except when we consider the special cases (such as steady so-
lution or incompressible limit), the two terms on the left hand
side balance each other. First of all, we assume this balance
as usual,

Balance 1: L⋆ = v⋆T⋆. (29)

Because this balance is merely a relation among scale pa-
rameters, it should be actually interpreted as L⋆ ∼ v⋆T⋆ or
O(L⋆) = O(v⋆T⋆). But, the equality “=” will be used in this
paper to reduce the number of the scale parameters by impos-
ing this balance.

Next, consider the Poisson equation (11) which is normal-
ized to

−φ⋆

L2
⋆

∂̂ j∂̂ jφ̂ = µ0ec2ñ⋆ ˆ̃n. (30)

We assume that there is no externally-applied electrostatic po-
tential (e.g., φ → 0 at infinity). Then, φ̂ is generated only by
the charge density of plasma itself via this equation, and it is
natural to assume the balance between the left and right hand
sides,

Balance 2: φ⋆ = µ0ec2ñ⋆L2
⋆. (31)

Since the two balances (29) and (31) are assumed among the
eight representative scales, let us define 5 dimensionless pa-
rameters for later use as follows

ε :=
1
L⋆

√
m

µ0n⋆e2 , (32)

σ :=B2
⋆/(µ0mn⋆c2), (33)

β⋆ :=v⋆/c, (34)
α :=ñ⋆/n⋆, (35)

εm :=u⋆/v⋆, (36)

where ε denotes the normalized inertial length and σ is called
the magnetization parameter. As we have mentioned earlier,
the smallness of α and εm will be essential for the MHD ap-
proximation.

Using Âi = Ai/(B⋆L⋆), Ampere-Maxwell’s law (12) is nor-
malized as

β
2
⋆ ∂̂0∂̂0Âi + ∂̂i∂̂ jÂ j − ∂̂ j∂̂ jÂi =

β⋆

ε
√

σ

(
−α∂̂i∂̂0φ̂ + εmn̂ûi

)
.

(37)

The right hand side is regarded as the source terms which gen-
erate magnetic field and, hence, can not be much larger than
the left hand side. In contrast to the Poisson equation (11), we
allow for externally-applied magnetic field, which can exist
(Ai ̸= 0) even when the right hand side is small or zero (that

is vacuum magnetic field). Thus, we should consider only the
following regime;

Balance 3:
β⋆

ε
√

σ
max(α,εm)≤ 1. (38)

Again, this inequality “≤” actually means “≲” because this is
a relation among the scale parameters.

Next, to estimate the orders of f and f̃ , let us normalize N+

and N− as follows

N̂2
± =

N2
±

n2
⋆

=n̂2(1−β
2
⋆ |v̂|2)±2

m∓
m

n̂
(
α ˆ̃n−β

2
⋆ εmv̂ · n̂û

)
+

m2
∓

m2

(
α

2 ˆ̃n2 −β
2
⋆ ε

2
m|n̂û|2

)
. (39)

The first term on the right hand side is O(1). Since we
are interested in the case of α,εm ≪ 1 and the inequalities
m∓/m ≤ 1 and β⋆ < 1 always hold, the second and third terms
on the right hand side are of small order; max(α,β 2

⋆ εm)≪ 1.
As a loose assumption, we consider the situation where

Balance 4: η := max(α,β 2
⋆ εm)≤ 1, (40)

holds. Namely, we give up applying the MHD approximation
when η ≫ 1. Assuming (40), we obtain the estimates, n⋆ f =
O(1) and n⋆ f̃ = O(η), and hence normalize them by f̂ = n⋆ f
and ˆ̃f = n⋆ f̃/η . More explicitly, when η ≪ 1, the leading-
order terms are calculated by series expansion as follows

f̂ =
γ

n̂
+

γ3

2n̂
µ

2(3γ
2
Λ

2
a −Λb)+O(α3,β 2

⋆ ε
3
m), (41)

η
ˆ̃f =− γ2

n̂
Λa +O(α2,β 2

⋆ ε
2
m), (42)

where

γ =
1√

1−β 2
⋆ |v̂|2

, (43)

Λa :=α
ˆ̃n
n̂
−β

2
⋆ εmv̂ · û= O(α,β 2

⋆ εm), (44)

Λb :=α
2 ˆ̃n2

n̂2 −β
2
⋆ ε

2
m|û|2 = O(α2,β 2

⋆ ε
2
m). (45)

Here, we emphasize that the first order terms in α and εm are
vacant in the series expansion of f̂ , which turns out to be im-
portant later.

It should be also remarked that we exclude the strongly-
relativistic situation such as β⋆|v̂|= |v|/c = 0.9999, in which
the Lorenz factor γ becomes much greater than 1 and our es-
timate f̂ = O(1) is no longer valid. This means a breakdown
of the assumed balance Note1 and strongly relativistic flow re-
gions must be treated separately using a different normaliza-
tion. For example, we suggest that all the equations should be

Note1 If x = O(1), the function f (x) = 1/
√

1− x2 is estimated as O(1) in scale
analysis. But, only the neighborhood of x = 1 should be treated sepa-
rately as an exceptional case due to singularity. For example, the method
of matched asymptotic expansion is necessary for this kind of problems.
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Lorenz-transformed to the inertia frame moving with the flow
speed 0.9999c so that the Lorenz factor becomes γ = O(1).

Now, the equations (15), (16), (23) and (24) are normalized
as follows

∂̂0

[
f̂ Q̂iQ̂0 +µ

2
η

ˆ̃f
(

αQ̂iK̂0 + εmK̂iQ̂0
)
+µ

2
αεm f̂ ′K̂iK̂0

]
+ ∂̂ j

[
f̂ Q̂iQ̂ j +µ

2
ηεm

ˆ̃f (Q̂iK̂ j + Q̂ jK̂i)+µ
2
εm

2 f̂ ′K̂iK̂ j
]

− α2

β 2
⋆ ε2 K̂0F̂ i

0 −
εm

β⋆ε

√
σ K̂ jF̂ i

j = 0, (46)

∂̂0

[
µ

2
ηεm

ˆ̃f Q̂iQ̂0 +µ
2
εm f̂ ′

(
αQ̂iK̂0 + εmK̂iQ̂0

)
−µ

2
εm

2
α(µ̃ f̂ ′−µ

2
η

ˆ̃f )K̂iK̂0
]

+ ∂̂ j

[
µ

2
ηεm

ˆ̃f Q̂iQ̂ j +µ
2
εm

2 f̂ ′(Q̂iK̂ j + Q̂ jK̂i)

−µ
2
εm

3(µ̃ f̂ ′−µ
2
η

ˆ̃f )K̂iK̂ j
]

− αεm

β 2
⋆ ε2 (Q̂

0 − µ̃αK̂0)F̂ i
0 −

εm

β⋆ε

√
σ

(
Q̂ j − µ̃εmK̂ j

)
F̂ i

j = 0,

(47)

∂̂0Q̂0 + ∂̂iQ̂i = 0, (48)
α

εm
∂̂0K̂0 + ∂̂iK̂i = 0, (49)

where the normalized electric field Ê i is give by

Ê i = F̂ i
0 =

cL⋆

φ⋆
F i

0 =−∂̂iφ̂ − β⋆ε
√

σ

α
∂̂0Âi. (50)

B. Imposition of MHD balance

The MHD approximation is understood as the reduction to
a single-fluid model, satisfying

α ≪ 1 and εm ≪ 1. (51)

If they were not satisfied, we would have to solve the two-fluid
equations as they are. However, in the limit of α,εm → 0 (then
η → 0), many terms in (46) are negligible and ultimately (46)
becomes the equation of motion for neutral fluid. Since this
simple limit is not interesting, we assume that the electromag-
netic (J ×B) force, which is K̂ jF̂ i

j in (46), is not negligible
but dominant. Namely, the flow v is dominantly accelerated
by this term due to

Balance 5:
εm

β⋆ε

√
σ = 1. (52)

The another meaning of this balance can be understood by
defining a representative cyclotron frequency as

ωc⋆ =
eB⋆

m
=

c
L⋆

√
σ

ε
. (53)

Since we are considering magnetized plasmas, this frequency
is supposed to be much faster than the time scale of flow dy-
namics,

1/ωc⋆

T⋆
=

β⋆ε√
σ

≪ 1. (54)

The balance (52) indicates that εm is indeed small and of the
same order as ω−1

c⋆ /T⋆. It is well-known that the two-fluid
equations generally encompass ion’s and electron’s cyclotron
motions. By taking the limit of εm → 0 while keeping the
balance (52), we can eliminate these fast motions from the
flow dynamics. We also remark that the v×B term (which is
Q̂ jF̂ i

j) in Ohm’s law (47) becomes of order 1 due to (52).
On the other hand, the terms involving the electric field F̂ i

0
in (46) and (47) are, respectively, written as

α2

β 2
⋆ ε2 K̂0F̂ i

0 =
1
σ

α2

ε2
m

K̂0
[
−∂̂iφ̂ −σ

εm

α
∂̂0Âi

]
, (55)

and

αεm

β 2
⋆ ε2

(
Q̂0 − µ̃αK̂0

)
F̂ i

0

=
1
σ

α

εm

(
Q̂0 − µ̃αK̂0

)[
−∂̂iφ̂ −σ

εm

α
∂̂0Âi

]
, (56)

using the balance (52). In the limit of εm → 0 or σ → 0, only
the electrostatic force term (∂̂iφ̂ ) gets too large 1/(σεm)→ ∞

to balance with other terms. This implies that the existence of
very fast plasma oscillation breaks down the assumed balance
totally. To maintain the balance consistently, the charge sepa-
ration α must be small enough that all terms in (55) and (56)
are equal or less than the order 1, which requires α ≤

√
σεm,

α ≤ σεm and α ≤ εm. To consider the most general situation
satisfying all of them, we assume

Balance 6: α = εmεσ , (57)

where εσ is the abbreviation of

εσ := min(σ ,1) . (58)

This is the last balance that we impose to derive MHD mod-
els. The magnitude of α is now determined by other scale
parameters. The meaning of this balance is again understood
by introducing a representative plasma frequency as

ωp⋆ := c

√
e2µ0n⋆

m
=

1
L⋆

c
ε
. (59)

Since εσ ≤
√

σ holds mathematically (see Fig. 1), the balance
(57) leads to

α ≤
1/ωp⋆

T⋆
= β⋆ε = εm

√
σ . (60)

Therefore, when the plasma frequency is much faster than the
time scale of the flow dynamics (ω−1

p⋆ /T⋆ → 0), the balance
6 requires α to be small (α → 0), which diminishes the fast
plasma oscillation. Note that ω−1

p⋆ /T⋆ is not always a small
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FIG. 1: Plots of εσ ,
√

σ and σ/(1+σ)

number when σ is much greater than 1. The balance 6 requires
smallness of α more strictly than the condition α ≤ ω−1

p⋆ /T⋆
when σ ≥ 1.

At this point, we summarize the situation where all the bal-
ances 1,2, . . . ,6 are imposed together. Given the balances 5
and 6, the balance 3 can be reduced to

Balance 3’:
β 2
⋆

σ
≤ 1, (61)

Therefore, the situation can be divided into the two cases,
β 2
⋆ ≤ σ ≤ 1 or 1 ≤ σ . In either case, the balance 4 is sim-

ply rewritten as

Balance 4’: η = εmεσ ≤ 1. (62)

By omitting the hat symbol ˆ in what follows, the normal-
ized equations are summarized as follows

∂0

[
f QiQ0 + ε

2
I εσ f̃

(
εσ QiK0 +KiQ0)+ εσ ε

2
I f ′KiK0

]
+∂ j

[
f QiQ j + ε

2
I εσ f̃

(
QiK j +Q jKi)+ ε

2
I f ′KiK j

]
− εσ K0

[
−εσ

σ
∂iφ −∂0Ai

]
−K jF i

j = 0, (63)

ε
2
I ∂0

[
εσ f̃ QiQ0 + f ′

(
εσ QiK0 +KiQ0)

− εσ

(
εH f ′− εσ ε

2
I f̃

)
KiK0

]
+ ε

2
I ∂ j

[
εσ f̃ QiQ j + f ′

(
QiK j +Q jKi)

−
(
εH f ′− εσ ε

2
I f̃

)
KiK j

]
−
(
Q0 − εHεσ K0)[−εσ

σ
∂iφ −∂0Ai

]
−
(
Q j − εHK j)F i

j = 0, (64)

∂0Q0 +∂iQi = 0, (65)

εσ ∂0K0 +∂iKi = 0, (66)

−∂ j∂ jφ = ñ, (67)

β
2
⋆ ∂0∂0Ai +∂i∂ jA j −∂ j∂ jAi =

β 2
⋆

σ

(
−εσ ∂i∂0φ +nui) , (68)

where

f ′ = f − εHεσ f̃ . (69)

We have introduced

εH := µ̃εm, (70)
εI := µεm, (71)

because εm appears only in these forms. By noting Λa =
O(εmεσ ) and Λb = O(ε2

mεσ ), the estimate (41) becomes

f =
1

n
√

1−β 2
⋆ |v|2

+O(εσ ε
2
I ). (72)

Due to the balances 5 and 6, the number of non-dimensional
parameters (namely, the dimension of the parameter space)
has been reduced to three; εm,σ ,β⋆. However, the governing
equations are still equivalent to the two-fluid equations. In the
following sections, we derive reduced models by taking the
specific limit of εm,σ ,β⋆.

IV. REDUCTION TO VARIOUS MHD MODELS

A. Vacuum limit β 2
⋆ /σ → 0

The limit β 2
⋆ /σ → 0 corresponds to vacuum state since the

right hand side of the Ampere-Maxwell equation (68) van-
ishes. This limit may be uninteresting because the plasma
current is too small to disturb the vacuum magnetic field. For
example, the limit of large magnetization parameter σ → ∞

inevitably results in this vacuum state (due to β⋆ ≤ 1). Ac-
cording to the dispersion relation of RMHD, the relativistic
Alfvén velocity vA⋆ is well-known as

vA∗ =
B⋆c√

µ0mn⋆c2 +B2
⋆

=

√
σ

1+σ
c. (73)

When σ → ∞ (i.e., strong magnetic field or low density limit),
the displacement current becomes dominant and the Alfvén
wave turns into the electromagnetic wave in vacuum.

The interaction between plasma motion and electromag-
netic field is most active in the situation β 2

⋆ /σ ≃ 1. Therefore,
the Alfvén ordering β 2

⋆ /σ = 1 is conventionally employed in
(non-relativistic) MHD focusing on only this situation, which
is admissible as far as σ ≤ 1. It is also interesting to note that
the scale of εσ is similar to v2

A⋆/c2 = σ/(1+σ).
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B. Single-fluid limit εm → 0

In the limit of εm → 0 (then εH ,εI → 0), a lot of terms can
be neglected in (63) and (64) as follows

∂0(γnvi)+∂ j(γnviv j)

− εσ ñ
(
−εσ

σ
∂iφ −∂0Ai

)
−nu jF i

j = 0, (74)

−n
(
−εσ

σ
∂iφ −∂0Ai

)
−nv jF i

j = 0. (75)

These are the well-known RMHD equations, where the ex-
pression of f has been simplified into

f =
γ

n
=

1

n
√

1−β 2
⋆ |v|2

. (76)

and f̃ is completely neglected as if the “proper charge neutral-
ity” N+ = N− holds. In fact, there exists small-order charge
separation ñ ̸= 0 (with ∇ ·J ̸= 0) and the associated electro-
static force takes part in the dominant balance. We will discuss
more about the RMHD equations in Sec. VI.

C. Non-relativistic limit σ → 0

Here, we consider the limit of small σ . Because of the
balance 3’, the limit of σ → 0 forces β 2

⋆ → 0 as well (and
εσ → 0). Therefore, let us take these non-relativistic limits
while keeping

β 2
⋆

σ
→ v2

⋆

v2
A⋆

= const.(≤ 1). (77)

Then, the equations (63), (64) and (68) are reduced to the ex-
tended MHD (XMHD) equations,

∂0
(
nvi)+∂ j

(
nviv j + ε

2
I nuiu j)−nu jF i

j = 0, (78)

ε
2
I ∂0(nui)+ ε

2
I ∂ j

[
n(viu j + v jui)− εHnuiu j]

−n
(
−∂iφ −∂0Ai)−n(v j − εHu j)F i

j = 0, (79)

∂i∂ jA j −∂ j∂ jAi =
v2
⋆

v2
A⋆

nui. (80)

where f = 1/n has been substituted. Since v2
⋆/v2

A⋆ → 0 is
again the uninteresting vacuum limit, it is conventional to use
the Alfvén ordering v⋆ = vA⋆.

Note that the displacement current in (68) has been ne-
glected and hence ∇ ×B = (v2

⋆/v2
A⋆)J is a constraint; we

can eliminate nui (or J ) using this relation. The generalized
Ohm’s law (79) is regarded as the evolution equation for Ai,
where φ is determined such that the Coulomb gauge ∂iAi = 0
holds. Therefore, the XMHD equations constitute a dynami-
cal system of 7 fields (n,vi,Ai) with one constraint ∂iAi = 0.
Since ∇ ·J = ∂i(nui) = 0, the so-called “quasi-neutrality con-
dition” holds as if ñ = 0. In fact, small charge separation
ñ = −∂ j∂ jφ ̸= 0 exists although it no longer appears explic-
itly in the XMHD equations. For small σ ≪ 1, the balance

6 (α = εmσ ) requests α to be further smaller than εm. The
charge conservation law is indeed reduced to ∇ ·J = 0 in the
limit σ → 0.

The electron-inertia effect is manifested by the terms with
ε2

I , which is the second-order of εm. If we neglect only ε2
I , the

Hall MHD (HMHD) equations are reproduced. If we neglect
εH too or simply take the limit of εm → 0, the MHD equations
are finally obtained.

D. Relativistic Hall MHD model

Now, we are positioned to search for the other MHD mod-
els which include both the relativistic and two-fluid effects.
To derive a reduced model, we still need to assume the small-
ness of εm but should not neglect it completely. An approxi-
mation that comes to mind immediately is to neglect O(ε2

m),
namely, the electron-inertia effect ε2

I only. The resultant equa-
tions deserve to be called relativistic Hall MHD (RHMHD). It
is remarkable that f in (72) includes no additional term due to
the Hall effect, O(εH) or O(εm). By neglecting ε2

I , the proper
charge neutrality f = γ/n still holds approximately and f̃ va-
nieshes.

Therefore, in RHMHD, (63) and (64) are reduced to

∂0
(
γnvi)+∂ j

(
γnviv j)

− εσ ñ
(
−εσ

σ
∂iφ −∂0Ai

)
−nu jF i

j = 0, (81)

− (n− εHεσ ñ)
(
−εσ

σ
∂iφ −∂0Ai

)
−n(v j − εHu j)F i

j = 0. (82)

The terms including εH are the difference from RMHD.
If we further assume the smallness of σ ≪ 1 addition-

ally, we can also neglect the term of O(εHεσ ) in Ohm’s law.
Although it is just a minor reduction, let us call it weakly-
relativistic Hall MHD (W-RHMHD).

E. Weakly-relativistic XMHD model

If one wants to allow for both the electron-inertia and rela-
tivistic effects, it is difficult to derive a reduced model from the
two-fluid equations. One option is to neglect O(ε2

I σ) by as-
suming the sufficient smallness of both εm and σ(≪ 1). Then,
the proper charge neutrality holds again and we can derive
similar equations to XMHD.

∂0
(
γnvi)+∂ j

(
γnviv j + ε

2
I γnuiu j)

−σ ñ
(
−∂iφ −∂0Ai)−nu jF i

j = 0, (83)

ε
2
I ∂0

(
γnui)+ ε

2
I ∂ j

[
γn

(
viu j + v jui)− εHγnuiu j]

− (n− εHσ ñ)
(
−∂iφ −∂0Ai)−n

(
v j − εHu j)F i

j = 0.
(84)

We call this model weakly-relativistic XMHD because it is
valid only when σ and β 2

⋆ are sufficiently smaller than 1.
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V. RANGE OF APPLICATION

Under the balances 1 to 6, there remain three non-
dimensional parameters (εm,σ ,β⋆), which are related to the
three physical scales (n⋆,v⋆,B⋆) of plasma (for fixed length
scale L⋆). More rigorously speaking, µ̃ and µ are two addi-
tional parameters which appear only in the forms, εH = µ̃εm
and εI = µεm. Because of the inequalities µ̃ ≤ 1 and µ ≤ 1,
they do not alter the balances 1 to 6 but possibly make εH and
εI further smaller than εm. As the two typical examples, we
will consider electron-ion (Hydrogen) plasma m−/m+ ≃ 10−3

(for which µ ≃ 10−3/2 = 0.0316 and µ̃ ≃ 1) and electron-
positron plasma m−/m+ = 1 (for which µ = 0.5 and µ̃ = 0).

Now, we carefully consider the magnitude of εm, which ob-
viously measures the impact of the two-fluid effect as we have
seen in the previous section. According to the balance 5 and
3’, it depends on the other parameters as follows

εm =
β⋆√

σ
ε =

v⋆
L⋆ωc⋆

with
β⋆√

σ
≤ 1.. (85)

Here, we obtain ε = d⋆/L⋆ by newly introducing a representa-
tive inertial length (or skin depth) d⋆ = c/ωp⋆. More specifi-
cally, the inertial lengths for positively (+) and negatively (−)
charged gases are given by

d± =

√
m±

m++m−
d⋆. (86)

Indeed, d+ and d− respectively correspond to ion’s and elec-
tron’s inertial lengths for electron-ion plasma.

In the case of non-relativistic limit (σ → 0 and β⋆ → 0) with
application of the Alfvén ordering β 2

⋆ /σ → 1 (v⋆ = vA⋆), we
simply obtain εm = ε . Therefore,

εH ≃ d+/L⋆ and εI ≃ d−/L⋆(≃
√

m−/m+εH), (87)

for electron-ion plasma, and

εH = 0 and εI =
√

2d+/L⋆ =
√

2d−/L⋆, (88)

for electron-positron plasma. In this way, the Hall and
electron-inertia effects are associated with the small-scales
d+ and d−, where the density n⋆ is important because d⋆ is
proportional to 1/

√
n⋆ only. For sufficiently dense plasma

n⋆ → ∞, the two-fluid effect becomes negligible ε → 0. How-
ever, this is a consequence of applying the Alfvén ordering.
Namely, v⋆ and B⋆ are not fixed independently but varied
along with n⋆.

In general, it is interesting to note that εm does not originally
depend on the density n⋆ but on the ratio v⋆/B⋆ in (85). When
σ gets larger than 1, the two-fluid effect εm gets smaller than ε

by the factor β⋆/
√

σ . This tendency agrees with Kawazura24

in which the ion skin depth is modified to shrink as the mag-
netic field strength increases relativistically. In the limit of
B⋆ → ∞ with fixed n⋆ and v⋆, we find that the two-fluid ef-
fect becomes negligible and the use of RMHD is justified (al-
though it tends to be almost vacuum plasma, β 2

⋆ /σ → 0).

In the case of electron-positron plasma, the Hall effect
vanishes identically, εH = 0. Then, the XMHD model in-
cludes only the electron-inertia effect, which is especially
called Inertial MHD (IMHD). Similarly, we can obtain
weakly-relativistic IMHD from weakly-relativistic XMHD
when εH = 0.

Model Included order Neglected order

MHD O(σ), O(εH), O(ε2
I )

HMHD O(εH) O(σ), O(ε2
I )

IMHD O(ε2
I ) O(σ), O(εH)

XMHD O(εH), O(ε2
I ), O(σ)

RMHD O(σ) O(εH), O(ε2
I )

RHMHD O(σ), O(εH) O(ε2
I )

W-RHMHD O(σ), O(εH) O(ε2
I ), O(εHσ)

W-RIMHD O(σ), O(ε2
I ) O(εH), O(ε2

I σ)

W-RXMHD O(σ), O(εH), O(ε2
I ) O(ε2

I σ)

TABLE I: Classification of models (H = Hall, I = Inertial, X
= eXtended, R = Relativistic, W-R = Weakly-Relativistic)

All the models which we have presented so far are summa-
rized in Table I. All these reduced models need to neglect the
order of

εσ ε
2
I =

m+m−
m2 β

2
⋆

εσ

σ
ε

2, (89)

in common, which is necessary for f = γ/n to hold approxi-
mately and to get rid of f̃ . Then, either proper charge neutral-
ity or quasi-neutrality holds. In other words, we have to solve
the two-fluid equations directly if this εσ ε2

I is not sufficiently
smaller than 1.

Since it is still difficult to imagine the applicable scope
of each model, let us assume 10−4 as a clear threshold for
example. Namely, the non-dimensional parameters (such as
σ and εH ) can be considered negligible if they are below
10−4. Otherwise, they are not neglected. Then, the lines
such as σ = 10−4 and εH = 10−4 divide the parameter space
(εm,σ ,β⋆) into subspaces, in which a certain group of MHD
models is applicable. Recall that β⋆ should satisfy β 2

⋆ ≤ σ

and it appears only in Ampere-Maxwell’s equation (68). As
in Table I, the models are classified in terms of σ and εm (re-
gardless of β⋆), which are illustrated in Fig. 2 for electron-ion
plasma and in Fig. 3 for electron-positron plasmas. Due to the
smallness of mass ratio m−/m+ ≃ 10−3, the electron-inertia
effect is readily neglected (ε2

I < 10−4) in the majority of cases
for electron-ion plasma. But, we have to keep in mind that
electron inertia may be important locally at singular point or
layer, where the small-scale structure L⋆ ∼ d− emerges (as in
the location where magnetic reconnection occurs).

Although Figs. 2 and 3 look simple enough, let us further
illustrate the application ranges in terms of (n⋆,v⋆,B⋆). Since
the vacuum state β 2

⋆ /σ ≪ 1 is uninteresting, it is reasonable to
fix β⋆ to the maximal value β⋆ =

√
εσ . As shown in the plots

of Fig. 1, there is in fact no order difference between
√

εσ

and vA⋆/c =
√

σ/(1+σ) in the scale analysis;
√

εσ ≃ vA⋆/c.
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Weakly RXMHDXMHD

HMHD

MHD RMHD

2-fluid

RHMHD

(Weakly RHMHD)

FIG. 2: Electron-Ion Plasma (σ vs. εm)

2-fluid
Weakly RIMHDIMHD

RMHDMHD

FIG. 3: Electron-Positron Plasma (σ vs. εm)

Therefore, we refer to

β⋆ =
√

εσ ≃ vA⋆/c (90)

as relativistic Alfvén ordering. By imposing this relativistic
Alfvén ordering on β⋆, we obtain εm = ε

√
εσ/σ and the two

remaining parameters are chosen as

ε
−2 =

µ0n⋆e2L2
⋆

m
∝ n⋆, (91)

√
σ/ε =

eB⋆L⋆

mc
∝ B⋆, (92)

representing the scales of (n⋆,B⋆) directly. Therefore, we can
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RMHD

RHMHD
(W-RHMHD)

HMHD
MHD

XMHD

W-RXMHD

2-fluid

Vacuum

FIG. 4: Electron-Ion Plasma (n⋆ vs. B⋆ vs. L⋆)

Vacuum
RMHD

MHD

2-fluid

W-RIMHD

IMHD

FIG. 5: Electron-Positron Plasma (n⋆ vs. B⋆ vs. L⋆)

remap Fig. 2 into Fig. 4 and Fig. 3 into Fig. 5 on the 2d plane
(ε−2,

√
σ/ε). The region of σ > 104 is filled in gray be-

cause it is considered vacuum (β 2
⋆ /σ < 10−4). In the strong

magnetic field limit B⋆ → ∞, we inevitably enter this vacuum
regime but RMHD is still valid and no problem to keep using
it. In the dense plasma limit n⋆ → ∞, we enter the conven-
tional MHD regime. In this figure, the limit of large scale
L⋆ → ∞ corresponds to the movement in the direction indi-

cated by the fat arrow, which is parallel to the σ =const. line.
In the triangle region indicated by "2-fluid", the charge neu-
trality approximation εσ ε2

I < 10−4 is not satisfied. This region
exists on the low density side ε−2 < 104µ2 and for interme-
diate strength of magnetic field. In the weak magnetic field
limit B⋆ → 0, we can apply the non-relativistic MHD models
(such as XMHD, HMHD, IMHD, MHD). But, when magnetic
field is weak such that

√
σ/ε <

√
104µ2 holds and in the low
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density limit n⋆ → 0, we have to solve the two-fluid equations
without assuming charge neutrality. The limit of small scale
L⋆ → 0 also enters the "2-fluid" region eventually.

VI. REMARKS ON RHMHD

In comparison to RMHD, the RHMHD equations just have
a few additional terms in Ohm’s law due to the Hall effect.
But, this difference is quite influential when solving these
equations theoretically and numerically.

In general, when a dynamical system ∂tu = F(u) for u is
solved numerically, the recurrence formula such as un+1 =
un +F(un)∆t is iterated for time marching t → t +∆t. To exe-
cute this iteration, the right hand side F(u) must be calculated
uniquely using the dynamical variable u. This is a fundamen-
tal requirement for the well-posedness of time-evolving sys-
tem.

In 3d vector format, the RHMHD equations are composed
of the evolution equations (that include time derivative ∂t of
some quantity),

∂tn =−∇ · (nv), (93)
∂t(nγv) =−∇ · (nγvv)+ εσ ñE+J ×B, (94)

β
2
⋆ ∂tE =∇×B− β 2

⋆

σ
J , (95)

∂tB =−∇×E, (96)

and the constraints,

n(E+v×B)− εH(εσ ñE+J ×B) = 0, (97)

∇ ·E =
εσ

σ
ñ, (98)

∇ ·B = 0. (99)

A drastic change from the two-fluid equations is that the time
derivative of the current J no longer exists in (97) due to ne-
glect of electron-inertia ε2

I → 0. Therefore, to calculate the
right hand sides of the evolution equations, we have to deter-
mine (or eliminate) J using the other variables.

From Ohm’s law (97), the electric field of the component
parallel to the magnetic field must be zero (E ·B = 0). By
combining (95) and (96), we obtain

∂t(E×B) =∇ ·
(
BB

β 2
⋆

+EE

)
−∇

(
|B|2

2β 2
⋆

+
|E|2

2

)
− 1

σ
(εσ ñE+J ×B). (100)

This evolution equation for E×B can be solved instead of
(95) because the electric field has only the perpendicular com-
ponent and can be reproduced by E = B× (E×B)/|B|2.
Moreover, we can easily eliminate εσ ñE+J×B in (94) and
(100) by using Ohm’s law (97). Then, the right hand sides no
longer include J . Therefore, the RHMHD equations are re-
garded as a dynamical system of 10 fields (n,MP,MEM,B),
where MP = nγv and MEM = E ×B, satisfying two con-
straints MEM ·B = 0 and ∇ ·B = 0. The right hand sides

of (93), (94), (96) and (100) are explicitly written in terms of
(n,MP,MEM,B), using

v =
MP/n√

1+β 2
⋆ (MP/n)2

, (101)

E =B×MEM/|B|2. (102)

In this way, the RHMHD equations are numerically solvable.
On the other hand, in the case of RMHD which neglects the

Hall effect εH = 0, Ohm’s law (97) becomes E+v×B = 0
that does not include J . Therefore, we are forced to eliminate
J by combining (94) and (100) as follows

∂t(nγv+σE×B) =−∇ · (nγvv)+σ∇ ·
(
BB

β 2
⋆

+EE

)
−σ∇

(
|B|2

2β 2
⋆

+
|E|2

2

)
, (103)

where Mtot := nγv + σE ×B is the total momentum of
plasma and electromagnetic field. According to Ohm’s law,
E is always replaced by −v×B. Thus, the RMHD equa-
tions are a dynamical system of 7 fields (n,Mtot,B) with a
constraint ∇ ·B = 0. However, to calculate the right hand
sides of (93), (96) and (103), we need to write v in terms of
(n,Mtot,B). It is well known that this is not analytically fea-
sible and requires the use of a root-finding algorithm (such as
the Newton-Raphson method). For hot plasma, the evolution
equation for the total energy Etot is also solved simultaneously,
and the reconstruction of the primitive variables (n,v, p,B)
from the time-evolving ones (n,Mtot,Etot,B) is one of the
most computationally expensive part of RMHD simulation.

In the presence of the Hall effect, we can avoid using root-
finding algorithm and the time-marching algorithm becomes
straightforward while the number of field variables increases
from 7 to 10. The RHMHD equations are possibly solved at a
lower cost than the RMHD equations.

Finally, in the presence of the electron-inertia effect ε2
I ̸=

0, Ohm’s law is regarded as the evolution equation for γJ .
The number of field variables is 13 under one constraint ∇ ·
B = 0, which is essentially the same as the original two-fluid
equations. The numbers of field variables and constraints are
summarized in Talbe. II. As we have remarked before, it is
more natural in XMHD (and IMHD) to solve A instead of B
under the constraint ∇ ·A= 0. Since cold plasma is assumed
in this work for simplicity, one more field variable (such as
pressure or temperature) would be added when temperature is
not negligible.

VII. CONCLUSION

In this paper, we have investigated the applicability of var-
ious MHD models to special relativistic plasmas, using the
method of dominant balance in the two-fluid equations. To
simplify the formulation and consideration, we have assumed
cold plasma (the limit of zero temperature and pressure) be-
cause electromagnetic force, not pressure, is a dominant force
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Model Field variables Constraints

MHD 7 (n,v,B) 1 (∇ ·B = 0)
HMHD 7 (n,v,B) 1 (∇ ·B = 0)
IMHD 7 (n,v,B) 1 (∇ ·B = 0)
XMHD 7 (n,v,B) 1 (∇ ·B = 0)
RMHD 7 (n,v,B) 1 (∇ ·B = 0)

RHMHD 10 (n,v,B,E) 2 (∇ ·B = 0, E ·B = 0)
W-RHMHD 10 (n,v,B,E) 2 (∇ ·B = 0, E ·B = 0)
W-RIMHD 13 (n,v,J ,B,E) 1 (∇ ·B = 0)
W-RXMHD 13 (n,v,J ,B,E) 1 (∇ ·B = 0)

TABLE II: Number of field variables for cold plasma (H =
Hall, I = Inertial, X = eXtended, R = Relativistic, W-R =

Weakly-Relativistic)

in the MHD balance. Although there is no problem in in-
cluding nondominant pressure effect, the case of relativistic
pressure should be investigated as a future topic which might
also breaks down the MHD balance (or the charge neutrality
approximation). Similarly, externally-applied electric field is
assumed to be absent because it is rarely dominant.

Under these assumptions, the relativistic two-fluid equa-
tions are nondimensionalized by eight representative scales,
resulting in seven nondimensional parameters. For the elec-
tromagnetic force to be a dominant term, the six balances (1 to
6) are imposed as constraints among these parameters. Since
the balances 3 and 4 are inequalities, the number of the nondi-
mensional parameters is reduced to three (εm,σ ,β⋆) satisfy-
ing an inequality β 2

⋆ /σ ≤ 1. The parameter εm = v⋆/(L⋆ωc⋆)
is smaller than 1 if we focus on the flow dynamics slower
than the cyclotron frequency ωc⋆. The RMHD equations
are obtained in the limit εm → 0. By taking the mass ratio
as an additional parameter, this parameter εm appears only
through either εH = µ̃εm or ε2

I = µ2ε2
m in the two-fluid equa-

tions. We have shown that the approximation of proper charge
neutrality can be justified by neglecting the order of εσ ε2

I
where εσ = min(σ ,1). When σ ≪ 1, this approximation nat-
urally corresponds to the quasi-neutrality condition of non-
relativistic MHD. All the reduced models, or the generalized
MHD models, are derived by neglecting O(εσ ε2

I ) while al-
lowing for the Hall effect O(εH), electron-inertia effect O(ε2

I )
and relativistic effects O(β 2

⋆ ) and O(σ). A special care is
therefore needed when both the electron-inertia and relativis-
tic effects are taken into account simultaneously, because their
multiplication O(εσ ε2

I ) is not negligible unless both σ and ε2
I

are much smaller than 1. Only for the weakly relativistic case
σ ≪ 1, we can use the W-RXMHD and W-RIMHD models,
where proper charge neutrality is still valid. If εσ ε2

I ≪ 1 is
not fulfilled, the two-fluid equations should be solved without
any approximation.

The case of β 2
⋆ /σ ≪ 1 is often uninteresting because it is

almost vacuum (i.e., the kinetic energy is much smaller than
the energy of externally-applied magnetic field). On the other
hand, the inequality β 2

⋆ /σ ≤ 1 indicates that the maximum
velocity scale should be β⋆ =

√
εσ which is understood as

relativistic Alfvén ordering (v⋆ ≃ vA⋆). Interesting MHD phe-
nomena are expected in this velocity scale. By focusing on
this velocity scale, the number of the nondimensional param-
eters is further reduced to two (ε,σ) which are related to the
scales of number density n⋆, magnetic field B⋆ and length L⋆.
We have illustrated the applicable ranges of the various MHD
models in terms of these scales. For a low density case or in a
small scale, it is shown that the charge neutrality condition is
violated at an intermediate strength of magnetic field around
σ ∼ 1.

We have also summarized the number of field variables for
each generalized MHD model. The RHMHD model is shown
to be a dynamical system of 10 fields (n,v,B,E) satisfying
two constraints (∇ ·B = 0 and E ·B = 0). This number 10
is different from 7 of the other non-relativistic MHD mod-
els and 13 of the original two-fluid model. Moreover, the
RHMHD equations describe the time marching of variables
(n,nγv,E ×B,B) and the primitive variables (n,v,B,E)
can be written explicitly by them. Since the RMHD equations
requires the root-finding algorithm to calculate (n,v,B) from
(n,nγv+σE×B,B), the RHMHD model has an advantage
in that the time-marching algorithm is simpler and less expen-
sive than RMHD at the expense of increasing the field vari-
ables from 7 to 10. Naturally, RHMHD is a higher fidelity
model than RMHD since it includes the Hall effect, which is
known to be important for magnetic reconnection process in
electron-ion plasma. The application of RHMHD is therefore
expected to be beneficial both theoretically and numerically
for analysing relativistic plasma phenomena.
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