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ABSTRACT

The experimental discovery of neutrinoless double-beta decay (NLDBD) would
answer one of the most important questions in physics: Why is there more matter
than antimatter in our universe? To maximize the chances of detection, NLDBD
experiments must optimize their detector designs to minimize the probability of
background events contaminating the detector. Given that this probability is in-
herently low, design optimization either requires extremely costly simulations to
generate sufficient background counts or contending with significant variance. In
this work, we formalize this dilemma as a Rare Event Design (RED) problem:
identifying optimal design parameters when the design metric to be minimized is
inherently small. We then designed the Rare Event Surrogate Model (RESuM) for
physics detector design optimization under RED conditions. RESuM uses a pre-
trained Conditional Neural Process (CNP) model to incorporate additional prior
knowledges into a Multi-Fidelity Gaussian Process model. We applied RESuM to
optimize neutron moderator designs for the LEGEND NLDBD experiment, iden-
tifying an optimal design that reduces neutron background by (66.5±3.5)% while
using only 3.3% of the computational resources compared to traditional methods.
Given the prevalence of RED problems in other fields of physical sciences, the
RESuM algorithm has broad potential for simulation-intensive applications.

1 INTRODUCTION

Why is there more matter than antimatter in our universe? This question remains one of the most im-
portant yet unsolved questions in physics. Several Nobel Prizes have been awarded for groundbreak-
ing discoveries that have advanced our understanding of this questions, including the discovery of
CP violation in kaons (Cronin and Fitch, 1980), the detection of cosmic neutrinos (Koshiba, 2002),
and the development of the Kobayashi-Maskawa theory of CP violation (Kobayashi and Maskawa,
2008). Despite these monumental achievements, the reason for the dominance of matter over anti-
matter remains unsolved. One of the most promising next steps toward answering this question is
the potential discovery of Neutrinoless Double-Beta Decay (NLDBD) (Dolinski et al., 2019). Such
a discovery would represent a major milestone in this direction and would undoubtedly be consid-
ered a Nobel-Prize-level breakthrough in physics. Due to its utmost importance, the entire U.S.
nuclear physics community has gathered for a year-long discussion in 2023 and recommended the
experimental search for NLDBD as the second-highest priority (Committee, 2023) for next 10 years.

The most challenging aspect of NLDBD search is dealing with background events: physical events
that are not NLDBD, but are indistinguishable from it. Since NLDBD is hypothesized to occur less
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than once every three years (LEGEND-Collaboration et al., 2021; Dolinski et al., 2019), even a sin-
gle background event entering the detector could potentially ruin the entire detection effort. There-
fore, designing ultra-pure NLDBD detectors with optimal parameters to minimize the probability
of background events entering the detector becomes the utmost goal of all NLDBD experiments.
Traditionally, the detector design procedure is conducted with simulations: we first simulate our
detectors and N1 background events under a certain design parameter θ1, then count the number of
background events that eventually enter our detector, m1. We then repeat the simulation process
with another design parameter θ2 and count m2. If m1/N1 < m2/N2, it suggests that the design
θ1 is better than θ2. This simulation process can be repeated multiple times until an optimal design
is found. An obvious shortcoming of this traditional approach is the computational cost: due to the
ultra-pure nature of the NLDBD detector, N needs to be extremely large (O(104)) for m to even
be above zero. This is amplified by the complexity of the design space, involving numerous and
often non-linearly interdependent parameters such as detector geometry, material properties, and
environmental conditions.

An obvious solution to this problem is to build a surrogate model that can significantly accelerate
our simulations (Li et al., 2023; Ravi et al., 2024). However, due to the rare event nature, m is
either 0 or a small, discrete integer, which leads to high variance in our design metric m/N . This
variance renders training traditional continuous surrogate models extremely difficult. In this paper,
we present our work in designing a new surrogate model that leverages the rare event design metric
m/N to navigate through a complex landscape and approximate the complex relationships between
the design parameters θ and m/N . This paper is structured as following: in Section 2, we discussed
related work in physics surrogate model and CNP; in Section 3, we formalize the aforementioned
challenges as a Rare Event Design (RED) problem using Poisson statistics; In Section 4, we present
our approach using the Conditional Neural Process (CNP) to incorporate additional prior informa-
tion, leading to the development of the Rare Event Surrogate Model (RESuM). In Section 5, we
apply RESuM to a physics detector design problem in the LEGEND experiment—a world-leading
international experiment with 300 scientists in the search for NLDBD. The result shows that the
RESuM model could reduce the LEGEND neutron background by (66.5 ± 3.5)% using only 3.3%
of the computational power compared to traditional methods. Lastly, in Section 6, we discuss other
possible domains, including Astronomy and Material Science, where the RESuM model could be
applied due to the broad presence of RED problems in physical sciences.

2 RELATED WORKS

Due to the computational cost of particle physics simulations, generative models like VAE (Z. Fu
et al., 2024), GAN (Kansal et al., 2021; Vallecorsa, 2018), and diffusion models are widely used as
surrogate models for fast simulation (Kansal et al., 2023). Although these deep generative models,
usually trained on large datasets, robustly reproduce enriched high-dimensional data, their black-box
nature renders them non-interpretable and lacking clear statistical meaning. Meanwhile, the CNP
model, as a probabilistic generative model, offers the distinct advantage of few-shot learning and
provides clear statistical interpretation. It has demonstrated good performance in tackling few-shot
problems, including classification tasks (Requeima et al., 2019), statistical downscaling (Vaughan
et al., 2022), and hydrogeological modeling (Cui et al., 2022). In this study, we explore a novel
surrogate modeling approach that focuses solely on key detector design metrics, leveraging a CNP
model to extract meaningful insights from limited datasets.

3 RARE EVENT DESIGN PROBLEM

Definition Let θ ∈ Θ be the vector of design parameters, where Θ represents the space of all
possible design parameters. Consider a simulation involving N events, or data points, under design
parameter θ; each event can either trigger a signal 1 or not. Define a event-level random variable X ,
where Xi = 1 if the i-th event triggers a signal and Xi = 0 if doesn’t.

Each simulated event i is considered independent, and the outcome of Xi depends on two sets of
parameters: a set of design parameters θ which is universal across all events, and another sets of

1“trigger a signal” could represent any event of interest depending on the task setup. In the case of the
NLDBD background minimization task, it means a background event successfully leach into the detector
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event-specific parameters ϕi ∈ Φ. The probability that the i-th event will trigger a signal is thereby
defined as a function of both θ and ϕi, which could be denoted as t(θ,ϕi).

Let m represent the number of events that trigger a signal. The design metric y is then defined as:

y =
m

N
=

∑N
i=1 Xi

N
(1)

Rare Event Assumption The number of triggered events m follows a binomial distribution with
the triggering probability t(θ,ϕi). Under the rare event assumption that m ≪ N and the triggering
probability for each event t(θ,ϕi) is small, the number of triggered events m can be approximated
by a Poisson distribution as m ∼ Poisson (Nt̄(θ)). Where t̄(θ) is the expected triggering probability
over all simulated events when N goes to infinity:

t̄(θ) =

∫
t(θ,ϕ)g(ϕ)dϕ (2)

The function g(ϕ) denotes a predefined probability density function (PDF) where ϕi could be sam-
pled from during the simulation process. t̄(θ) is obtained by marginalizing t(θ, ϕ) over g(ϕ). There-
fore, the ultimate metric that we want to minimize is t̄ , which is the expectation of y:

θ∗ = argmin
θ∈Θ

t̄(θ) (3)

Since t̄ depends on θ, minimizing t̄ requires extensive sampling of different θ values within the
design space Θ to identify the optimal parameter.

Large N Scenario Assuming that t̄(θ) remains fixed. When N becomes large, according to the
central limit theorem, m will tend to follow a normal distribution:

m ∼ N (Nt̄(θ), N t̄(θ))

Since y = m/N , this means that y will also follow a normal distribution with symmetric, well-
defined statistical uncertainties t̄(θ)/N :

y ∼ N (t̄(θ), t̄(θ)/N)

As N −→ inf , y will asymptotically approximate t̄(θ) with statistical uncertainties approaching 0.

Small N Scenario When N becomes small, the total number of instances m that trigger a signal has
higher variance, as each individual instance has a significant impact on m. The accuracy measure
y = m

N can no longer be approximated with a normal distribution. This makes y more sensitive to
statistical fluctuations of a few simulated events. Furthermore, there is a non-negligible probability
that no event will trigger a signal, meaning that m = 0 and y ∼ m

N = 0. In summary, in the
small N scenario, the design metric y of interests will only takes on a discrete set of values, y ∈{

0
N , 1

N , . . . , m
N

}
.

4 RARE EVENT SURROGATE MODEL

The Rare Event Surrogate Model (RESuM) aims to solve the RED problem under the constraint of
limited access to large N simulations. Consider a scenario where we run K simulation trials with
different design parameter θ, indexed by k; each simulation trial contains N events indexed by i.
The RESuM model includes three components: a Conditional Neural Process (CNP) (Garnelo et al.,
2018) model that is trained on event level; a Multi-Fidelity Gaussian Process (MFGP) model that
trains on simulation trial level; and active learning techniques to sequentially sample the parameter
space after training. The conceptual framework and details of our model design are outlined in the
following subsections.

4.1 BAYESIAN PRIOR KNOWLEDGE WITH CONDITIONAL NEURAL PROCESS

The random variable Xki represents whether the ith event triggered a signal or not. In traditional
particle physics, the value of Xki is determined through a Monte Carlo simulation process: first, a
parameter ϕki is sampled from the distribution g(ϕ) to generate the event. This event then propagates
through the detector, characterized by the design parameter θk. The outcome of the simulation,
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which implicitly involves the joint distribution t(θk, ϕki), is only observed as Xki. As discussed
before, Xki can only be 0 or 1. At small N scenario, the root cause of the discreteness of y is this
binary nature: +1 if a signal is triggered or +0 if not. This produces significant statistical variance in
y.

Suppose we want to model this simulation process with a Bernoulli distribution:

Xki ∼ p(Xki|θk,ϕki) = Bernoulli(p = t(θk,ϕki)) (4)

The goal of incorporating prior knowledge is to turn the binary Xki into a continuous, floating-point
score β between 0 and 1. The score βki should approximate t(θk, ϕki) given design parameter θk
and event-specific parameter ϕki.

This work provides an alternative solution by adopting a similar idea to the CNP model. CNP works
by learning a representation of input-output relationships from context data to predict outputs for
new inputs (Garnelo et al., 2018). In our case, the input is θk and ϕki, and the output is the random
variable Xki. The random process that generates Xki based on the inputs is the Bernoulli process
controlled by t(θ,ϕ). We then adopt the same representation learning idea used in the CNP, which
involves approximating the random process by sampling from a Gaussian distribution conditioned
at observed data. The mean and variance are modeled with neural networks:

Bernoulli(p = t(θ,ϕ)) ≈ Bernoulli(p = β) (5)

β ∼ N (µNN (θ,ϕ,w), σ2
NN (θ,ϕ,w))|Xki,ϕki,θk

(6)
The nuisance parameters, denoted as w, are optimized during the training of the neural networks
by minimizing the likelihood of the observed data. Importantly, the neural networks are not trained
to predict the binary observable X , but rather to estimate the continuous floating-point score β.
A comprehensive description of the CNP model, along with the interpretation of the score β and
the associated loss function (likelihood), is provided in Appendix 11. The score β for each simu-
lated event serves as prior information that is incorporated into the Multi-Fidelity Gaussian Process
(MFGP) surrogate model.

4.2 MODEL DESCRIPTION

Building on the conceptual framework described in 4.1, we will provide an end-to-end overview of
RESuM as shown in Figure 1. We generate two types of simulations: low-fidelity (LF) and high-
fidelity (HF). Detailed descriptions of these simulations can be found in Section 5.0.1. The primary
distinction between them lies in the number of simulated events N , where NHF ≫ NLF . Another
key difference is the distribution g(ϕ) from which the parameter ϕi of each event is sampled, where
HF simulation contains a more complicated, physics-oriented g(ϕ). The low computational cost of
LF simulation allows us to simulate more trials thereby exploring a broader range of θ.

The first step is to train the CNP model. The CNP comprises three primary components: an encoder,
an aggregator, and a decoder. The parameters θk, ϕki, and Xki of each simulated event are first
concatenated into a context point. The encoder, implemented as a Multi-Layer Perceptron (MLP),
transforms each context point into a low-dimensional representation. These representations are then
aggregated through averaging to form a unified representation that represents t(θ). The decoder uses
t(θ) and the ϕki of new data to output parameters µki and σ2

ki for each event i. We then use µki and
σ2
ki to form a normal distribution and sample a CNP score βki from it. The scores βki are chosen

to naturally fit a normal-like distribution but bounded between 0 and 1. Since the CNP is trained at
event level, βki will be the same regardless of whether the event is generated in HF or LF simulation.

Based on the trained CNP model, the next step involves in calculating three design metrics at dif-
ferent fidelities. The first one is yRaw = m/N from HF simulations, which is the ultimate design
metric we want our surrogate model to emulate. The second metric is also derived from HF simula-
tions but is defined as the average CNP score of all simulated events:

yCNP =
1

N

N∑
i=0

βki (7)

The third metric is yCNP calculated over LF simulations. These three design metrics are then
incorporated into a Multi-Fidelity Gaussian Process (MFGP) model (Kennedy and O’Hagan, 2000;
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Figure 1: Overview of the RESuM framework for solving RED problems. The left side illustrates
the CNP used for modeling both LF and HF simulation data. The CNP aggregates event-specific
parameters ϕi and design parameters θ from LF and HF simulations to produce yLF

CNP and yHF
CNP ,

which serve as inputs to the surrogate model. The right side shows the multi-fidelity Gaussian
Process (MFGP) that combines predictions from LF and HF simulations to estimate the HF design
metric yHF

Raw.

Qian and Wu, 2008) to train the surrogate model. Co-kriging was used to account for correlations
among different design metrics. The mathematical detail of MFGP can be found in Appendix 9

After training the MFGP model, we adopt active learning to select new sampling points θnew to
generate yRaw with HF simulations. Since HF simulation is expensive, to determine which point
to collect next, we use a gradient-based optimizer to find xn+1 = argmaxx∈X a(x) (Paleyes et al.,
2023). The acquisition function determines the next data point to explore by balancing exploration
(high variance) and exploitation (high mean). We chose the integrated variance reduction method,
where the next point, xn+1, is selected to maximally reduce the total variance of the model (Sacks
et al., 1989). More detail about the active learning method can be found in Appendix 10.

5 EXPERIMENT AND RESULT

The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay (LEGEND) is a
next-generation, tonne-scale experiment using 76Ge detectors. LEGEND has been recognized by
the nuclear physics community as one of the three leading international NLDBD experiments to be
constructed in the next decade (Committee, 2023). In next 10 years, the experiment will be con-
structed by over 300 international collaborators. One of the primary background sources in LEG-
END are 77(m)Ge (LEGEND-Collaboration et al., 2021; Wiesinger et al., 2018), which is created
by neutrons entering the detector, having been produced by cosmic muons (Pandola et al., 2007).
This background is particularly challenging, because it closely mimics NLDBD events, making it
nearly impossible to distinguish and reject once produced. Currently, there are no efficient methods
to eliminate this background category once it has been produced, aside from employing complex
active tagging algorithms (Neuberger et al., 2021) that introduce additional dead time. The most
viable solution to mitigate this background is through the design of a neutron moderator—a passive
medium that reduces the incoming neutron flux before 77(m)Ge nuclei are produced. Figure 2 pro-
vides an overview of the LEGEND detector and a proposed neutron moderator design. Using the
presented model, our goal is to optimize the neutron moderator geometries, ensuring the polymer
material effectively blocks the majority of neutrons, thereby preventing them from leaching into the
detector. The optimization process consists of two key steps: generating simulations under differ-
ent design parameters, and adopting the RESuM model to identify the optimal design of neutron
moderators.

5.0.1 NEUTRON MODERATOR SIMULATIONS

As illustrated in Figure 2 (Right), two geometric designs were proposed aiming at reducing neutron-
induced backgrounds in the LEGEND detector: (1) a cylindrical layer of material surrounding the
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Figure 2: Left: Rendering of the LEGEND-1000 experiment with the hundreds of detectors arranged
in strings, operated in a bath of cryogenic ultra-pure liquid argon, showing a neutron moderator
surrounding the inner cryostat which contains the detector strings (LEGEND-Collaboration et al.).
Right: Illustration of a moderator design with the 5 design parameters (top view).

detector array, and (2) a turbine-like structure composed of panels. We define five design variables
to include both geometries under continuous transition: the radius r of the cylindrical layer or the
distance of the panels, the material thickness d, the number of panels n, the angle of the panels φ,
and the panel length L. These five parameters constitute the design parameter space Θ, where each
parameter is allowed to vary within a predefined range.

As discussed in Section 3, a specific design θ can be sampled from Θ to perform simulations and
obtain the corresponding design metric yRaw. For a given θ, we utilized a Monte Carlo (MC) sim-
ulation package based on the GEANT-4 toolkit (Agostinelli et al., 2003; Allison et al., 2006), inte-
grated with the existing LEGEND software frameworks (Neuberger; Ramachers and Morgan). The
MC simulation procedure is as follows: first, we modeled the entire LEGEND detector, including all
its components, in GEANT4, as shown in Figure 2 (Left). Next, we generated a neutron moderator
according to the sampled design parameter θ, which encapsulates the detectors, as shown in Figure 2
(Right). In the subsequent step, N neutrons are simulated, each assigned an initial position (x, y, z),
momentum (px, py, pz), and energy E. These seven parameters form the event-specific parameter ϕ
and they are generated by sampling from a distribution g(ϕ), as discussed in Section 3. Finally, the
neutrons are allowed to propagate through the detector, and the number of 77(m)Ge nuclei produced,
m, is recorded. The design metric yRaw is then computed as yRaw = m/N .

One major challenge is the high computational cost of the Monte Carlo (MC) simulations. A sin-
gle run of the HF simulation requires approximately 170 CPU hours, making it impractical to fully
explore the design space Θ using a grid search approach. To address this, we implemented two
levels of simulation fidelity: high-fidelity (HF) and low-fidelity (LF). The HF simulation provides
our most accurate model of neutron generation and 77(m)Ge production within LEGEND. In the HF
simulation, the event-specific parameters ϕi of each neutron are sampled from a carefully-designed
distribution g(ϕ), incorporating physical information. Since neutrons are primarily produced by
cosmic muons descending from the atmosphere, the HF simulation starts by generating muons out-
side the LEGEND detector using site-specific muon flux and angular distributions provided by the
MUSUN muon simulation software (Kudryavtsev, 2009). These muons, along with their secondary
particle showers, propagate through the detector geometry, leading to the production of neutrons
with their associated ϕ. The total number of simulated neutrons NHF for each design parameter θk
is typically very large, on the order of O(107).

The LF simulation, on the other hand, simplifies the complexity by skipping the muon simulation
step. In this case, the parameters ϕi of each neutron are randomly sampled from a uniform distri-
bution g(ϕ) in predefined range 2. The goal of the LF simulation is to estimate the production of
77(m)Ge by tracking neutron propagation and background event production, without incorporating
the additional complexity of muon physics in HF g(ϕ). The total number of neutrons simulated,

2To account for potential asymmetries, however, the neutron positions are adjusted based on predictions
from the HF muon simulation, ensuring that the neutron placement remains as close as possible to realistic
conditions
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NLF , for each design parameter θ in the LF simulation is on the order of O(104), significantly
smaller than in the HF simulation.

While the LF simulation is based on a simplified uniform g(ϕ), it offers significant computational
advantages, with a cost of only 0.15 CPU hours per run—about 1130 times faster than the HF sim-
ulation. This allows a broader exploration in the design parameter space Θ. Conversely, the HF
simulations are crucial for providing rigorous estimates of the 77(m)Ge background event produc-
tion rate, ensuring that the optimized designs meet the stringent background requirements for the
LEGEND experiment. In total, 4 HF and 304 LF simulations were generated to form the training
dataset for surrogate model, with the four HF samples being reused from a previous simulation
study, as suggested in Neuberger et al. (2021).

5.0.2 CONDITIONAL NEURAL PROCESS RESULT

The network structure and motivation of the CNP are discussed in Section 4.2. Training is per-
formed using supervised learning, where a signal label (1) is assigned to neutrons that successfully
produce 77(m)Ge background, and a background label (0) is assigned to neutrons that do not. A
major challenge in training the CNP is the severe imbalance between signal and background, with a
ratio of approximately 1 : 5 · 104. This is consistent with the rare event assumption, where m ≪ N .
To address this imbalance, we apply a data augmentation technique known as mixup (Zhang et al.,
2018), which helps create a more balanced and diverse dataset. Mixup generates new training sam-
ples x̂ by forming linear combinations of existing signal samples xi and background samples xj ,
along with their corresponding labels yi and yj :

x̂ = λxi + (1− λ)xj and ŷ = λyi + (1− λ)yj

where λ is randomly drawn from a beta distribution B(0.1, 0.1). This process introduces a weighted
blend of signal and background, helping to alleviate the imbalance in the data and improve the
model’s generalization and robustness. To demonstrate the effectiveness of the CNP in reducing

Figure 3: Comparison of raw data (red points) and CNP predictions (green points with error bars)
across different design parameters. a) shows the results after 3540 iterations of CNP training, uti-
lizing the described data augmentation method. b) demonstrates predicted scores for a validation
dataset. c) to g) provides scatter plots of the raw metric yRaw (red points) and yCNP (green points
with error bars), plotted against various design parameters: radius, number of panels, thickness,
angle φ, and length. The CNP model offers smoother, more refined predictions, effectively distin-
guishing signal from background across the different parameter spaces.

statistical variance in the design metric, we calculated two different metrics for each LF simulation
trial: the raw design metric yRaw (in [nuclei/(kg · yr)]) and the averaged CNP score yCNP . The
results of both metrics are plotted against five design parameters in Figure 3. As anticipated, the
raw metric yRaw exhibits significant statistical fluctuations that overshadows any correlations with
respect to each design parameter. In contrast, the CNP score yCNP reveals clear dependencies on
the radius and number of panels (see Figure 3 Bottom). This indicates that CNP effectively reveal
additional prior information into the Multi-Fidelity Gaussian Process (MFGP) model.
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5.0.3 SURROGATE MODEL RESULT

The surrogate model was trained with three design metrics at different fidelities: yRaw for HF sim-
ulations, yCNP for HF simulations, and yCNP for LF simulations. The ultimate goal is to emulate
yRaw for HF simulations which provides a more accurate representation of 77(m)Ge production rates
under design parameter θ. The Multi- Fidelity Gaussian Process model was carried out by using the
Emukit python library (Paleyes et al., 2023) which offers a high level interface for solving optimiza-
tion problems. Figure 4 (Left Bottom) illustrates the active learning process using an acquisition
function. It displays the HF model prediction (Top) and the acquisition function (Bottom) as a func-
tion of the radius after each iteration. The surrogate model provides an estimate of the design metric
of interest (yRaw from HF simulations) along with its associated uncertainty (shown as shaded area)
at each point in the input space. The acquisition function from active learning evolves as more data
points are added, progressively refining the objective function approximations by calculating the dif-
ference between the best observed value and the surrogate model’s prediction, while also accounting
for the uncertainty in its predictions. As notable in the lower panel of Figure 4 (Left), the acquisition
function initially explores regions with high uncertainty, especially at medium distances where the
optimum is likely to be found. The active learning procedure can be iterated as long as computa-
tion resources are available. In this work, six active learning iterations were performed to obtain
the final result. The HF model predictions for the 77(m)Ge production rate are shown in Figure 4,

Figure 4: Left: One-dimensional CNP-LF (cyan), CNP-HF (dark cyan) and HF (orange) model
predictions (dashed line) with uncertainty band (shaded area) as a function of the radius r. The lower
panel shows the acquisition function as a function of the radius after each iteration. It guides the
selection of future evaluation points in the input space to efficiently search for the optimal solution.
Right: One dimensional model predictions as a function of the thickness, the panel’s angle φ, the
number of panels n and the length L at a fixed point in the design space. It illustrates the sequential
model prediction update by adding new sampling points in each iteration.

which displays one-dimensional projections of yCNP from LF simulations (cyan), yCNP from HF
simulations (dark cyan), and yRaw from HF simulations (orange) model predictions (dashed line)
along with associated uncertainties (shaded area), as functions of radius r, thickness d, panel angle
φ, number of panels n, and length L, presented in reading order from left-to-right, top-to-bottom.
These figures illustrate how the model’s uncertainty decreased with each new sampling iteration,
particularly where significant improvements in model certainty were observed. After six active
learning iterations, the model predictions converged on several optimal designs, as shown in Ta-
ble 1. These designs exhibit a range of configurations, with most favoring smaller panel angles φ
and a higher number of shorter panels, while one achieve optimal performance with fewer but sig-
nificantly longer panels. Additionally, the optimal designs tend to cluster around two radii ranges,
approximately 165 cm and 200 cm, suggesting that positioning the neutron moderator near these
distances provides the best balance between effective neutron capture and material efficiency. This
positioning allows for sufficient moderator mass to trap neutrons while maintaining an appropriate
distance to minimize neutron escape. These designs outperformed those with larger gaps between
panels, primarily due to the increased mass of neutron moderator material, which enhances neutron
capture and minimizes background radiation. The optimal design reduces the 77(m)Ge production
rate from 0.238 nuclei/(kg · yr) to 0.0798 nuclei/(kg · yr), leading to a (66.5 ± 3.5)% reduction
in neutron-induced background in LEGEND. Notably, RESuM identified the optimal design param-
eters with drastically reduced computational costs. Each HF simulation required 170 CPU hours,
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Table 1: Optimal neutron moderator design parameters identified by the RESuM model for the
LEGEND experiment. The table displays the key design parameters, including radius r, panel
thickness d, number of panels n, panel angle φ, and length L. These parameters were determined
based on RESuM’s ability to optimize neutron background reduction.

r [cm] d [cm] n φ [deg] L [cm] ymin
raw [nuclei/(kg · yr)] σmin

raw [nuclei/(kg · yr)]
165.6 3.3 188 19.3 7.5 0.0798 0.0483
207.3 2.8 120 3.5 3.2 0.0786 0.0494
202.2 2.4 153 9.1 3.0 0.0787 0.0489
164.3 4.2 192 15.4 3.1 0.0784 0.0485
198.3 3.2 11 8.0 106.5 0.0779 0.0483
145.5 3.4 193 17.9 1.7 0.0809 0.0489

while each LF simulation needed just 0.15 CPU hour. If we were to explore the design space with
only HF simulations, traditional methods would have required 52,700 CPU hours to explore all 310
design parameter sets. In contrast, RESuM used 310 LF simulations and 10 HF (4 for MFGP training
and 6 for active learning) simulations, totaling 1746.5 CPU hours—only 3.3% of the computational
resources required by conventional approaches.

5.0.4 SURROGATE MODEL VALIDATION

The ultimate goal of RESuM is to emulate the yRaw values of HF simulations given the input of
design parameters θ at any location within the design space Θ. To ensure the accuracy of the learned
mapping between θ and yRaw, additional independent, out-of-sample HF simulations are required
for validation. Given the high computational demands of HF simulations and our limited resources,
we generated 100 out-of-sample HF simulations at randomly sampled θ values. The yRaw for each
validation simulation is determined as the ground truth by counting the number of 77(m)Ge nuclei
produced. Simultaneously, the θ value from each validation simulation was input into the trained
RESuM model to predict ŷRaw along with the associated uncertainty σ̂Raw generated by the Gaus-
sian Process. The validation study aims to assess whether ŷRaw±σ̂Raw accurately covers the ground
truth yRaw across 1, 2, and 3 σ̂Raw.

0 20 40 60 80 100
HF Simulation Trial Number

0.0

0.1

0.2

0.3

0.4

0.5

y r
aw

HF Validation Data RESuM ±1 ±2 ±3

Figure 5: Comparison of HF simulation validation data (black dots) with the RESuM model pre-
dictions. The shaded regions represent the uncertainty bands at different confidence levels: ±1σ̂
(green), ±2σ̂ (yellow), and ±3σ̂ (red). The RESuM model captures the overall trend of the HF
validation data, with 69% of the points falling within the ±1σ confidence band, indicating good
agreement between the model predictions and validation data.

The coverage results are shown in Figure 5. The plot indicates that 69% of the ground truth yRaw

falls within the 1 σRaw band of ˆyRaw, 95% falls within the 2 σRaw band, and 100% falls within
the 3 σRaw band. Assuming a standard normal distribution, the expected coverage at 1, 2, and 3
σ is 68.27 %, 95.45%, and 99.73% , respectively. These results indicate that the RESuM model
achieves proper coverage at 1,2, and 3 σ̂Raw. For comparison, we conducted a study without yCNP

in the RESuM model: we trained an MFGP surrogate model solely on yRaw from the LF and HF
simulations. This resulted in significantly poor coverage, as detailed in Appendix 12. This further
demonstrates that the overall agreement between the ground truth and RESuM predictions remains
good, highlighting the RESuM model’s capability to surrogate complex detector design simulations.

9
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6 LIMITATIONS AND APPLICATIONS

Limitations: The primary limitation of this work is the restricted computational resources avail-
able for thoroughly validating the model’s performance. Due to these constraints, we were limited
to generating only 100 HF simulations to assess coverage. Ideally, with unlimited computational re-
sources, a comprehensive grid search across the 5-dimensional design parameter space would allow
for more robust validation. Additionally, the active learning strategy employed in RESuM is rela-
tively simplistic. Future work will focus on exploring more sophisticated active learning algorithms
to more efficiently identify the optimal design.

Generalizability: Although this work focuses on a specific detector design scenario within the
LEGEND experiment, we believe that the mathematical formulation of RED problem, as outlined
in Section 3, is applicable to a wide range of simulation and optimization challenges in the physical
sciences. A few examples are provided below:

• Astromony: In computational astronomy, an emerging area involves simulating binary
black hole (BBH) mergers to match the gravitational wave (GW) signals detected by the
LIGO experiments (Fishbach and Holz, 2017). This process involves highly complex and
computationally expensive many-body simulations (Kruckow et al., 2018). In this context,
cosmological constants, such as the Hubble Constant and Dark Energy Density, can be
treated as design parameters θ, while the initial position, mass, and spin of each black hole
are considered event-specific parameters ϕ. The design metric m is defined as the number
of BBH mergers occuring over a given time period, with N representing the black holes
simulated. The ground truth is provided by the GW catalog from LIGO. Some related
work in this direction include (Lin et al., 2021; Broekgaarden et al., 2019).

• Material Science: First-principles simulations using Density Functional Theory (DFT) are
widely employed in condensed matter research to predict novel material properties and op-
timize designs (Dovesi et al., 2018; Hutter et al., 2014; Kang et al., 2019). These computa-
tionally expensive simulations depend on various parameters such as temperature, pressure,
and doping concentration. Despite the complicated simulation, the metrics derived from
DFT calculations typically consist of a few quantities, such as electronic band structures.
The computational intensity of DFT often limits extensive parameter space exploration,
particularly for complex materials or large-scale systems. This constraint necessitates the
development of efficient surrogate models to rapidly approximate DFT results while main-
taining acceptable accuracy, potentially accelerating materials discovery and optimization
processes.

7 CONCLUSION AND OUTLOOK

In this work, we presented RESuM, a rare event surrogate model designed for detector design op-
timization problems in physics. We began by statistically define the RED problem and proposed
a CNP-enhanced surrogate model to solve it. We demonstrated the effectiveness of RESuM on a
specific task: optimizing the neutron moderator design for the LEGEND NLDBD experiment. Our
results show that RESuM successfully identified an optimal design, reducing neutron background
by 66.5% while utilizing only 3.3% of the computational resources required by traditional methods.
The accuracy and coverage of the trained RESuM model were successfully validated with indepen-
dently simulated HF datasets. This means the surrogate model aligns well with physical simulations
with proper coverage. Based on the statistical formulation and validation results, we believe that
the RESuM model is more statistically robust and interpretable compared to other surrogate models,
such as those based on GANs, for accelerating simulations (de Oliveira et al., 2017; Z. Fu et al.,
2024).

Although this work focuses on a specific detector design problem in physics, we believe that RED
problems are prevalent in many other domains, as discussed in Section 6. Our future work will
focus on two key directions: first, we want to further refine the RESuM model by validating with
more HF simulations and improving the active learning algorithm; second, we intend to explore
additional application of the RESuM model, especially in simulating Binary Black Hole mergers

10
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in Astronomy, as outlined in Section 6. This effort seeks to foster greater collaboration across the
machine learning, physics, and astronomy communities, ultimately benefiting all fields involved.

8 REPRODUCIBILITY STATEMENT

To ensure that the RESuM model can be reliably reproduced, we have carefully documented all
aspects of the methodology and experiment. The simulation tool and package used in our work
is explicitly referenced in Section 5.0.1. The dataset, preprocessing steps, and model architecture
are described in Section 4.2, Section 5.0.1 and Section 5.0.2. Model parameters and evaluation
metrics are clearly defined in Section 4.2 and Section 5.0.2. The code of this work is anonymized
and released as the supplementary material of this submission. All scripts for data handling, model
training, and evaluation are included in the supplementary material, along with environment speci-
fications and fixed random seeds to minimize variability. The training data of this work is too large
as it involves in expensive simulations. The authors plan to release training data in the camera-ready
version.
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APPENDIX

9 MULTI-FIDELITY GAUSSIAN PROCESS

In a Gaussian process a function f̂(θ) is modeled as:

f̂(θ) ∼ GP(µ(θ), k(θ, θ′))

where k(θ, θ′) is the covariance function. Given data DN = {Θ, y}, the posterior mean and variance
at a new point θ∗ are:

µ∗ = K(θ∗,Θ)K(Θ,Θ)−1y

σ2
∗ = K(θ∗, θ∗)−K(θ∗,Θ)K(Θ,Θ)−1K(Θ, θ∗)

This model represents the joint distribution of multiple fidelities as a multivariate Gaussian process
with a specified covariance structure. The covariance matrix in this model includes both correlation
terms between fidelities and discrepancy terms within fidelities. Consequently, the HF model f̂H(θ)

is expressed in terms of the LF model f̂L(θ) with a discrepancy δ(θ):

f̂H(θ) = ρf̂L(θ) + δ(θ)

where ρ is a scaling factor and δ(x) is modeled as a GP. The joint distribution is:(
f̂L(x)

f̂H(x)

)
∼ N

(
0,

(
KLL ρKLL

ρKLL ρ2KLL +Kδ

))
For more fidelity levels, the method recursively applies:

f̂Hi(x) = ρif̂Li(x) + δi(x)
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10 ACTIVE LEARNING STRATEGY

We use integrated variance reduction to quantify and minimize the expected posterior variance over
the input space Θ. The goal of integrated variance reduction is to minimize the total variance across
the design space:

I(θnew) =

∫
Θ

σ2(θ | θnew) dθ

σ2(θ | θnew) is the updated variance at point θ after incorporating the information from the new
sample θnew. The new sampling point θnew is selected by minimizing this integrated variance:

θnew = arg min
θ′∈Θ

I(θ′)

In the context of a Gaussian Process model, the integrated variance reduction acquisition function
I(θ) simplifies to

I(θ) ≈ 1

N

N∑
i

k2(θi, θ)

σ2(θ)
.

with σ2(θ) representing the predictive variance at the observed point θ and k is the Radial Basis
Function (RBF) kernel with θi sampled randomly. Furthermore, we aim to optimize the acquisi-
tion function under parameter constraints—which limit the allowable values of the design parame-
ters—using a gradient descent algorithm to locate the global maximum. These constraints ensure
that the parameters remain within feasible ranges, reflecting the practical and structural requirements
necessary for maintaining the integrity and functionality of the overall design. The constraints are
incorporated into the acquisition function by adding penalty terms that reduce the expected improve-
ment to zero when constraints are violated, discouraging the algorithm from exploring infeasible
regions.

11 CONDITIONAL NEURAL PROCESS

The core principle of the Conditional Neural Process (CNP) framework is to approximate arbitrary
random processes using Gaussian sampling, where the mean µ and variance σ are parameterized by
neural networks. In this section, we show that the CNP score β can be viewed as an estimate of
t(θ,ϕ), with the Gaussian distribution representing the posterior of t(θ,ϕ). Furthermore, the RED
problem can be aligned with the theoretical framework of the Variational Autoencoder (VAE), as
detailed in Kingma (2013), with t(θ,ϕ) interpreted as the latent vector.

We begin by formulating the RED problem within a Bayesian framework: The training data consists
of a finite set of Xki values generated through simulation, and the objective is to construct an en-
coder q that approximates the posterior distribution of t(θ,ϕ), conditioned on the observed dataset
{Xki,ϕki,θk}.

q(t(θ,ϕ)|Xki,ϕki,θk) ≈ p(t(θ,ϕ)|Xki,ϕki,θk) (8)

According to Bayes’ theorem, the conditioned posterior in Eq. 8 could be calculated with the likeli-
hood of the observed dataset and the prior of t(θ,ϕ):

p(t(θ,ϕ)|Xki,ϕki,θk) ∝ L(Xki|ϕki,θk, t(θ,ϕ))p(t(θ,ϕ)) (9)

The prior p(t(θ,ϕ)) is conventionally set as a constant. Let Lk represents the k-th simulation Lk,
the combined likelihood of the full dataset is therefore:

L(Xki|ϕki,θk, t(θ,ϕ)) =

K∏
k=1

Lk =

K∏
k=1

Nk∏
i=1

Bernoulli(x = Xki|p = t(θk,ϕki)) (10)

Note that the ground truth of t(θ,ϕ) is unknown. In the Bayesian framework, we can only estimate it
with a probability density function, which is q(t(θ,ϕ)). The estimation of the likelihood is therefore:

L(Xki|ϕki,θk, q(t)) =

M∏
k=1

Nk∏
i=1

∫
Bernoulli(x = Xki|p = t(θk,ϕki))q(t(θ,ϕ))dt (11)
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It is important to note that the quantity t here is not a variable but a function, and the integration is
performed in the Hilbert space. The problem, therefore, becomes to find the function q∗(t(θ,ϕ)) so
that:

q∗ = arg min
q∈f(θ,ϕ)

L(Xki|ϕki,θk, q(t)) (12)

Here f(θ,ϕ) represents the set of arbitrary normalized functions of (θ,ϕ). While this optimization
problem is mathematically solvable, the integration computation in Hilbert space is mathematically
non-trivial and computationally expensive, rendering this solution impractical.

Then, here comes the CNP model, which simplifies and tackles this optimization problem in the
following steps:

First, approximate q with parameterized Gaussian, which is a natural choice if we regard the task as
a statistical parameter estimation for t(θ,ϕ):

qNN (t(θ, ϕ)) = N (µNN (θ,ϕ,w), σ2
NN (θ,ϕ,w))|Xki,ϕki,θk

(13)

Then, the neural network is trained to minimize the likelihood described in Eq. 11. Therefore, the
CNP model actually performs a statistical estimation for t(θ,ϕ) by approximating the posterior q
with Gaussians.

If we consider t(θ,ϕ) as the latent vector in the VAE model, the pre-defined Bernoulli process acts
as a probabilistic “decoder”, which generates data given the latent vector.

With this framework, our task can be generally described as follows: Assume we have a predefined
probabilistic decoder, p(x|z, c), where z represents the latent vector and c is the condition. Ad-
ditionally, we have a simulation informed by domain knowledge that generates data based on the
nominal latent vector z∗, though its exact value is unknown. Our objective is to develop a surrogate
model that performs statistical estimation, represented as q(z|x), to infer the nominal latent vector
from the simulated data x. The posterior distribution q(z|x) serves the same role as the proba-
bilistic encoder in a VAE model. We can then sample the latent vector z from q(z|x), which can
subsequently be used to generate the ”reconstructed” (surrogate) data x′. The illustration of this
architecture is shown in Figure 6.

Figure 6: Architecture of Surrogate Model for the RED Problem

In this work, as the primary objective is to optimize the design parameters rather than generate ad-
ditional simulated datasets, we utilize only the averaged CNP score β as input to the subsequent
MFGP model. Nevertheless, it is important to highlight that the trained CNP model has the poten-
tial to generate surrogate data as a fast simulator. This capability can be especially beneficial in
other studies where the detailed distribution of the latent vector parameters is of interest, enabling
more efficient exploration of the parameter space and supporting applications such as uncertainty
quantification and model validation.

For the RED problem, specifically, t(θ,ϕ) corresponds to the latent vector z, but with infinite
dimensions, as it represents a continuous function over (θ,ϕ). (θ,ϕ) acts as the condition c, and
the fusion of latent vector and condition is performed by plugging θ,ϕ into the function t to get
t(ϕ,θ)

It is worth noting that the latent vector, denoted by z, in our model, is not a conventional finite-
dimensional vector but rather a vector situated in a Hilbert space. Dimensionality reduction can be
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achieved through quantization, which involves discretizing the space by creating a grid over (θ,ϕ)
and computing values only at the selected grid points. An alternative approach is to project the latent
vector onto a set of basis functions and impose a cutoff. For instance, with Fourier decomposition,
the vector’s coefficients can be retained up to a certain frequency limit, effectively serving as a high-
frequency cutoff. In this work, we adopt the CNP model to represent it with a fixed dimensionality.

12 COMPARATIVE ANALYSIS OF MULTI-FIDELITY APPROACHES

Through the development and application of RESuM, we demonstrated the significant benefits of
employing a multi-fidelity model enhanced by the CNP to solve RED problems. RESuM integrates
three different fidelity levels, two of which are generated using the CNP. When compared to a sim-
pler multi-fidelity Gaussian Process (MFGP) model that only utilized the LF yRaw and HF yRaw

of the exact same LF and HF data, excluding the CNP outputs yCNP , the contrast in outcomes was
striking. The model without the CNP outputs produced predictions that lacked physical relevance.
The simplified model not only failed to capture the complex dependencies between design parame-
ters, but its predictions were also physically inconsistent. As shown in Figure 7, the prediction bands
for the simplified MFGP model are excessively narrow and fail to capture the actual variability of
the HF validation data. The model’s inability to describe yRaw is evident, as it does not adequately
reflect the complex interactions within the design space. The model’s 1 σ, 2 σ, and 3 σ confidence
intervals are unrealistically tight, offering little insight into the true uncertainties of the system. With
that, the coverage at 1 σ, 2 σ and 3 σ for the simplified model was only 12%, 24% and 47%, a notably
poor result compared to the RESuM model, which achieved a 1 σ, 2 σ and 3 σ coverage of 69%,
95% and 100% with much more realistic uncertainty predictions (compare Figure 5). Similarly,
attempts to use Gaussian regression with the 100 HF validation samples alone proved insufficient to
model the full 5-dimensional design parameter space. The Gaussian regression model struggled to
generalize across all design dimensions, particularly failing to produce meaningful predictions when
all parameters were included.

Figure 7: Validation of the simplified MFGP model using only LF yRaw and HF yRaw data, exclud-
ing the CNP. The MFGP model fails to adequately describe yRaw, as demonstrated by its overly
narrow prediction bands and poor alignment with the HF validation data. Despite the narrow uncer-
tainty bands, the predictions lack physical relevance, highlighting the model’s inability to capture
the complexity of the design space without the CNP

These findings underscore the complexity of the design space and the limitations of traditional
Gaussian regression or simpler multi-fidelity approaches with limited HF data. In contrast, the
CNP-enabled RESuM model effectively reduced statistical variance and provided meaningful phys-
ical insights by capturing complex relationships between design parameters θ and event-specific
parameters ϕ. Specifically, the CNP outputs yCNP smoothed the predictive landscape, allowing the
multi-fidelity Gaussian Process to interpolate and extrapolate across the design space with much
lower uncertainty. The simplified MFGP model and Gaussian regression both failed to capture con-
sistent dependencies between the design parameters and the neutron background reduction, resulting
in physically implausible predictions. The inclusion of the CNP was therefore critical in modeling
the full 5-dimensional design parameter space, enabling RESuM to achieve a substantial reduction
in computational resources while still providing accurate and robust predictions for optimizing the
neutron moderator design in the LEGEND experiment.

These observations reinforce the conclusion that the CNP framework is essential for generating
meaningful, accurate predictions in the RESuM model. By reducing uncertainty and improving
physical relevance, the CNP-based approach significantly enhances the model’s utility for optimiz-
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ing complex design problems. The ultimate reduction in computational resources, combined with
more precise predictions, underlines the effectiveness of this multi-fidelity approach.
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