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Abstract

Fine-tuning Large Language Models (LLMs) has proven
effective for a variety of downstream tasks. However, as
LLMs grow in size, the memory demands for backpropa-
gation become increasingly prohibitive. Zeroth-order (ZO)
optimization methods offer a memory-efficient alternative
by using forward passes to estimate gradients, but the vari-
ance of gradient estimates typically scales linearly with the
model’s parameter dimension—a significant issue for LLMs.
In this paper, we propose the random Subspace Zeroth-order
(SubZero) optimization to address the challenges posed by
LLMs’ high dimensionality. We introduce a low-rank pertur-
bation tailored for LLMs that significantly reduces memory
consumption while improving training performance. Ad-
ditionally, we prove that our gradient estimation closely
approximates the backpropagation gradient, exhibits lower
variance than traditional ZO methods, and ensures conver-
gence when combined with SGD. Experimental results show
that SubZero enhances fine-tuning performance and achieves
faster convergence compared to standard ZO approaches
like MeZO across various language modeling tasks∗.

1. Introduction
Large Language Models (LLMs), such as the GPT and
LLaMA series [54, 60], have recently demonstrated impres-
sive capabilities in natural language processing tasks and be-
yond [1, 51]. These models utilize deep learning, particularly
the transformer architecture [55], to learn complex patterns
in language data. However, LLMs can struggle with spe-
cialized tasks that require domain-specific knowledge [48].
Fine-tuning presents an effective solution by slightly adjust-

*Our code is available at https://github.com/zimingyy/
SubZero.

†Corresponding author.

ing pre-trained LLMs with domain data, enabling them to
adapt to specific tasks more effectively.

For fine-tuning, first-order (FO) optimizers, such as
SGD [3] or Adam [29], are commonly used to achieve
promising performance on domain datasets. However, as
LLMs grow in size, FO optimizers demand increasingly
memory consumption due to the gradient computations re-
quired by backpropagation (BP) [63]. To enhance memory
efficiency, MeZO [39] first introduces the zeroth-order (ZO)
optimizer to LLM fine-tuning without BP. It just needs for-
ward passes and calculates gradient estimates using finite
differences of training loss values. Nevertheless, the variance
of ZO gradient estimates linearly depends on the perturba-
tion dimension, which corresponds to the number of model
parameters. This can become extremely large in LLMs, re-
sulting in significant performance degradation compared to
FO optimizers [19, 27, 38].

There are two main attempts to addressing the high vari-
ance of ZO gradient estimates. The first approach involves
increasing batch size alongside training steps, which reduces
gradient noise and variance in ZO gradient estimates [19, 27].
However, this leads to significant runtime and memory costs
due to the large batch size in the later training stages. The
second approach focuses on perturbing fewer parameters
by employing sparse parameter perturbations, such as ran-
dom and sparse pruning masks [38] and block-coordinate
perturbations [61], or by reducing the number of trainable
parameters through techniques like parameter-efficient fine-
tuning (PEFT) [39, 61] and tensorized adapters [58]. Recent
theoretical advancements have proposed using random pro-
jections to lessen the dimensionality dependence in ZO opti-
mizers [30, 42, 45] by applying low-dimensional perturba-
tions in random subspaces. Nonetheless, a major drawback
of this approach is the need to store a huge projection matrix
that scales with model parameter dimensionality, making it
impractical for fine-tuning large LLMs.
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Figure 1. Visualization of cosine similarity E [cosine(g, ĝ)], relative variance Var
[
∥ĝ∥

]
/ ∥g∥2, training loss, and peak total GPU memory

cost with OPT-1.3B on SST-2 in the prompt tuning scheme. All three methods utilize a batch size of 16 and run for 20K steps. Here, ĝ
represents the gradient estimated by MeZO or our SubZero, and g denotes the expected gradient E[ĝ]. Theorem 1 (b) ensures that SubZero
maintains a small distance between g and the BP gradient in a subspace. (a) and (b) demonstrate that SubZero’s estimated gradient ĝ has
lower angle error and variance than MeZO. (c) and (d) indicate that SubZero enhances convergence speed with minimal extra memory usage.

Contributions. In this work, we propose the first random
Subspace Zeroth-order (SubZero) optimization to tackle the
challenges of high-dimensional LLM fine-tuning. We intro-
duce a low-rank perturbation to estimate the gradient, specif-
ically designed for LLM architecture, leading to reduced
memory consumption and enhanced training performance.
Our main contributions are as follows.

Firstly, we propose a layer-wise low-rank perturbation
approach for gradient estimation, specifically designed for
fine-tuning LLMs. In each layer, we generate a low-rank
perturbation matrix by combining two column-orthogonal
matrices with a Gaussian random matrix, which is then used
for gradient estimation. Unlike traditional ZO methods like
MeZO [39] which apply non-low-rank perturbations to the
entire model, our approach significantly reduces the variance
of gradient estimates and the angle error between the esti-
mated gradient and its expectation, as respectively shown
in Fig. 1 (a) and (b). SubZero also improves upon random
subspace ZO methods like S-RGF [42] by using smaller and
layer-specific low-rank perturbation matrices instead of a
large and model-scale projection matrix, thus cutting mem-
ory and computational costs. Additionally, we introduce a
lazy update strategy, generating perturbations periodically
rather than iteratively, further reducing overhead. Besides,
we also successfully apply SubZero to four popular LLM
fine-tuning schemes, highlighting the compatibility of Sub-
Zero.

Secondly, we provide theoretical guarantees for SubZero.
We first convert our gradient estimation into an equivalent
formulation, highlighting the key differences between our
approach and existing traditional ZO methods [39], as well
as random subspace ZO methods [42]. Then, we prove that
the gradient estimated by SubZero closely approximates the
BP gradient, i.e., the ground-truth gradient, and enjoys signif-
icantly lower gradient variance than traditional ZO methods
like MeZO. Furthermore, we establish the theoretical conver-
gence of SubZero when combined with the SGD optimizer.

Finally, experimental results demonstrate SubZero’s supe-
rior performance and memory efficiency compared to other
ZO approaches in both full-parameter tuning and parameter-

efficient fine-tuning (PEFT) schemes, such as LoRA, prefix
tuning, and prompt tuning. For instance, SubZero improves
upon MeZO by 7.1% on LLaMA-7B and by 3.2% on OPT-
1.3B under full-parameter tuning and prompt tuning, while
maintaining nearly identical memory costs to MeZO.

2. Related Work
Zeroth-Order Fine-Tuning. ZO optimizers utilize just two
forward passes to estimate gradient without BP. Malladi
et al. [39] first used ZO optimization to fine-tune LLMs,
significantly lowering the GPU hours and memory usage
to levels similar to inference, which offers a considerable
advantage over FO optimizers. They demonstrated that LLM
fine-tuning benefits from a well-structured loss landscape by
introducing suitable task-specific prompt templates. Conver-
gence theories for ZO optimization have been elaborated in
both convex [18, 24, 40] and non-convex settings [25, 36].
However, these convergence rates typically increase linearly
with the number of trainable parameters [18, 24, 25, 36, 40].

Recently, more work in ZO has focused on improving the
convergence rates and reducing gradient estimation variance
for LLM fine-tuning. Increasing batch size can diminish
noise in ZO gradient estimation [19, 27]. Perturbing a subset
of model parameters also lowers gradient variance. This
approach induces sparse parameter perturbations through
random and sparse pruning masks [38] or block-coordinate
perturbations [61]. Additionally, some approaches tried to
reduce trainable parameters through PEFT [39, 61] and ten-
sorized adapters [58].
Random Subspace Optimization. To lessen dependence on
dimensionality, some research utilizes random projections
and low-dimensional perturbations in subspaces [30, 42, 45].
However, these methods are hindered by the need to store a
large projection matrix that increases with dimensionality,
making it impractical for fine-tuning LLMs.
Memory-Efficient Fine-Tuning. Fine-tuning generally em-
ploys FO optimizers like SGD [3] or Adam [29]. Various
approaches have been developed to reduce the memory cost
of BP, such as sparsifying gradients [53], projecting gra-
dients into a low-rank subspace [63], and quantizing op-
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timizer states to lower bits [14, 34]. Additional methods
to conserve activation and weight memory during forward
and backward passes include gradient checkpointing [8],
FlashAttention [11], QLoRA [15], and LLM.int8() [13].

3. Preliminaries
Here we introduce the most popular ZO optimization ap-
proach and existing random subspace optimization methods.
Notations. Let non-bold letter like a and A denote a scalar,
a boldfaced lower-case letter like w denote a column vector,
and a boldfaced upper-case letter like W denote a matrix.
N (0, I) is a multivariate normal distribution with a zero
mean vector and an identity covariance matrix. vec(W )
denotes the vectorization of matrix W which reshapes W
into a column vector by stacking the columns of W ver-
tically. A ⊗ B is the Kronecker product of matrices A
and B. E[x] is the expected value of a random variable
x. Var[x] is the variance of a random variable x. The ℓ2-
norm of a vector x is ∥x∥ =

√∑n
i=1 x

2
i . The spectral

norm of a matrix A is ∥A∥. The Frobenius norm of a ma-
trix A is ∥A∥F =

√
⟨A,A⟩. Cs,p

L (S) denotes the class
of s-th smooth and p-th L-smooth functions over the set
S . bdiag(A1,A2, · · · ,Al) is a block diagonal matrix with
diagonal blocks A1,A2, · · · ,Al.

We are interested in fine-tuning large LLMs [16]. These
models typically comprise multiple layers, with trainable pa-
rameter vectors represented as w=

[
wT

1 ,w
T
2 , . . . ,w

T
l

]T∈
Rd, where wi denotes the flattened parameter vector from
the i-th layer and d is model parameter dimension. Then
training these models involves optimizing the problem:

minw L(w), (1)

where L(·) denotes the loss function.
Zeroth-Order Optimization. ZO optimization is BP-free
and estimates gradients via random perturbations. A clas-
sical gradient estimator is the simultaneous perturbation
stochastic approximation (SPSA) [52], which is defined as

∇̂L(w;B) = L(w + εz;B)− L(w − εz;B)
2ε

z, (2)

where L(w;B) is the loss on a minibatch B of size B uni-
formly sampled from the training dataset D, z ∈ Rd repre-
sents a random perturbation sampled from N (0, Id), and ε
is the perturbation scale.

The SPSA in Eqn. (2) is an unbiased gradient estimator of
the desired gradient∇Ez[L(w + εz)] [40]. It only requires
two forward passes to estimate the gradient and eliminates
BP computation, greatly reducing computation cost and GPU
memory. With this estimated gradient, one integrate with
existing FO optimizers like SGD to develop corresponding
ZO optimizers, e.g., ZO-SGD defined as:

wt+1 = wt − ηt∇̂L(wt;Bt), (3)

where ηt is the learning rate at step t. In practice, MeZO [39]
implements ZO-SGD via in-place operations and uses a sin-
gle random seed to facilitate efficient perturbation regenera-
tion, greatly reducing memory overhead.
Random Subspace Optimization. Recent theoretical
work [42, 45] has explored using low-dimensional perturba-
tions in random subspaces to reduce gradient variances and
hence enhance convergence rates. The key to random sub-
space methods is the generation of the perturbation vector z̃
within a subspace spanned by P :

z̃ = Pz, (4)

where P ∈ Rd×q is a random projection matrix with entries
drawn from N (0, 1), z ∈ Rq is a low-dimensional random
perturbation vector sampled from N (0, Iq), and q < d is
the dimension of the subspace. Thus, the gradient estimator
in the subspace is given as follows:

∇̂L(w,P ;B)= L(w+εPz;B)−L(w−εPz;B)
2ε

Pz.

(5)

LLMs have a large model size, and thus their training and
fine-tuning parameters can be very high-dimensional. This
results in an excessively large matrix P which is q times
larger than the model size d in full-parameter tuning [2] and
is also large in other fine-tuning schemes e.g., LoRA [23].
Consequently, this approach significantly increases memory
requirements and computational complexity. Therefore, it is
crucial to develop an efficient subspace construction strategy
with minimal memory consumption for LLM fine-tuning.

4. Methodology
Here we first elaborate on our SubZero, a powerful ZO frame-
work for LLM fine-tuning. Then we present how to integrate
SubZero into four representative fine-tuning schemes.

4.1. Random Subspace Optimization for LLM Fine-
Tuning

Our intuition is that exploring update directions in a low-
dimensional subspace may result in a reduced variance of
the estimated gradient [42, 45] compared to the estimation
in the vanilla space as used in MeZO. Moreover, recent work
indicates that BP gradients in LLM fine-tuning rapidly con-
verge to a small subspace [22, 39, 62, 63]. Accordingly,
we propose the random Subspace Zeroth-order (SubZero)
optimization framework tailored for LLM fine-tuning. This
framework reduces gradient estimation variance, and mini-
mizes the memory overhead associated with gradient estima-
tion, such as the memory overhead caused by the projection
matrix P in Eqn. (5) used in [42, 45].
Layer-wise Random Subspace Perturbation. LLMs pri-
marily consist of dense layers that perform matrix multipli-
cation. We denote the trainable parameters of the i-th layer
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in matrix form as Wi ∈ Rmi×ni . Then we will explain how
to design its low-rank perturbation Z̃i ∈ Rmi×ni .

We propose a low-rank perturbation strategy for model
parameter matrix of each layer, contrasting with previ-
ous random subspace methods that focus on the entire
model’s parameters [42, 45]. At each step, we gener-
ate a low-dimensional random matrix Zi ∈ Rr×r, where
r ≪ min{mi, ni}, and perform QR decomposition on two
random matrices to create projection matrices Ui ∈ Rmi×r

and Vi ∈ Rni×r (see Algorithm 1). Both Ui and Vi are
column-orthogonal matrices. Our experiments in Table 6
indicate that using Gaussian random projection matrices
yields worse performance than using our designed column-
orthogonal matrices. Then we combine these three matrices
to yield a low-rank perturbation as follows:

Z̃i = UiZiV
T
i , (6)

where Z̃i is the perturbation matrix in a subspace spanned by
Ui and Vi, and Zi represents the low-dimensional random
perturbation matrix with entries sampled from N (0, 1).

Let the model consist of l layers, with the parameter
matrix set defined asW = {Wi}li=1 and the perturbation
matrix set as Z̃ = {Z̃i}li=1. Similar to Eqns. (2) and (5), we
compute the loss difference:

ρ =
L(W + εZ̃;B)− L(W − εZ̃;B)

2ε
. (7)

Note that multiplying a set by a scalar means that the scalar
is multiplied by each element in the set. The addition of two
sets means that the corresponding elements are added. This
is only for mathematical expression, and ρ in Eqn. (7) can
be calculated by two forward passes through all the layers in
practice. Then we obtain the gradient estimate for the i-th
layer as

∇̂L(Wi;B) = ρZ̃i = ρUiZiV
T
i . (8)

In Sec. 5, we analyze the effectiveness of this new gradient
estimation (8). Specifically, Theorem 1 proves the close
distance between our gradient estimate (8) and the vanilla
gradient computed by BP in FO methods, while Theorem 2
shows smaller variance and angle error of our gradient es-
timate in Eqn. (8) compared to the gradient estimate (2) in
MeZO [39]. See more theoretical details in Sec. 5.

Then, one can use estimated gradient in (8) to replace the
gradient in any FO optimizer such as SGD:

W t+1
i = W t

i − ηt∇̂L(W t
i ;Bt) = W t

i − ηtρtU t
iZ

t
iV

t
i
T
.

(9)
Here we choose SGD as the default optimizer of SubZero.
Theorem 3 in Sec. 5 guarantees the convergence of Sub-
Zero with SGD as basic optimizer and gives its convergence
rate. The choice of FO optimizers is orthogonal to ZO opti-
mization. Also, some empirical work indicates that adaptive

Table 1. Comparison of memory cost between SubZero and
representative optimizers in full-parameter tuning scheme with
RoBERTa-large on SST-2.

Method Total GPU Memory (GB)

SGD 6.063
MeZO [39] 2.683
S-RGF [42] 23.845
SubZero 2.690

optimizers like Adam [29] do not necessarily enhance con-
vergence of ZO approaches during LLM fine-tuning [21, 61].
Consequently, the combination of SubZero and Adam is in-
cluded in Appendix 8.1 due to the limited space. We apply
the primitive ZO approach. There are other ZO optimiz-
ers that utilize stochastic momentum [27] and second-order
information [64] to facilitate faster convergence. While Sub-
Zero can be adapted to these ZO optimizers, we leave a
comprehensive evaluation of these approaches for future
work.

We compare the memory overhead of SubZero with the
existing random subspace method S-RGF [42] using identi-
cal experimental settings, including layer-wise perturbation
and matching subspace dimension, with all methods utilizing
the SGD optimizer. As shown in Table 1, S-RGF’s memory
usage is roughly four times greater than SGD and 8.8 times
that of MeZO [39], while our SubZero’s memory usage is
comparable to MeZO. See more experimental comparisons
on OPT-13B in Table 5 of Sec. 6.

Lazy Low-rank Subspace Update. According to Eqn. (9),
at the t-th step, the gradient estimate of the parameter matrix
in the i-th layer, ∇̂L(W t

i ;Bt), lies within a subspace defined
by the projection matrices U t

i and V t
i . Specifically, U t

i

spans the column subspace, while V t
i determines the row

subspace, with both matrices generated iteratively, leading
to extra computational overhead to LLM fine-tuning.

However, for LLM fine-tuning, enhancing the compu-
tational efficiency and the accuracy of gradient subspace
approximation is crucial. An excessively short update inter-
val for Ui and Vi, such as generating them iteratively, can
incur high computational costs and limit exploration of the
gradient subspace they established. Conversely, a long inter-
val may result in inaccuracies in subspace approximation and
fail to capture the evolving nature of the gradient subspace.
Accordingly, we propose a lazy subspace update strategy
that periodically regenerates the projection matrices Ui and
Vi. Specifically, these matrices are generated at the first step
of every F > 1 training steps and remain unchanged for the
subsequent F − 1 steps (see lines 4-7 in Algorithm 3). We
utilize QR decomposition on two different random matrices
for generating the column-orthogonal matrices Ui and Vi,
as summarized in Algorithm 1. This lazy subspace update
strategy is both efficient and effective in all our experiments.
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Algorithm 1 GenerateProjMatrix(m,n, r)

Input: size of parameter matrix m× n, rank r.
1: Generate random matrices R1 ∈ Rm×r and R2 ∈

Rn×r whose entries are sampled from N (0, 1)
2: U , _← QR_Decomposition(R1)
3: V , _← QR_Decomposition(R2)
4: return U , V

Algorithm 2 PerturbParams(W,U ,V, r, ε, s)
Input: model parameter setW , projection matrix sets U

and V , rank r, perturbation scale ε, seed s.
1: Reset random number generator with seed s
2: for i = 1, 2, . . . , l do
3: Generate the perturbation matrix Zi ∈ Rr×r whose

entries are sampled from N (0, 1)
4: Wi ←Wi + εUiZiV

T
i

5: return W

Algorithm 3 SubZero

Input: parameter matrix in the i-th layer Wi ∈
Rmi×ni , i = 1, 2, . . . , l, loss L, step budget T , per-
turbation scale ε, learning rate schedule {ηt}, subspace
change frequency F , rank r.

1: for t = 0, 1, . . . , T − 1 do
2: Sample a minbatch Bt ⊂ D and a random seed st

3: for i = 1, 2, . . . , l do
4: if t mod F ≡ 0 then
5: U t

i ,V t
i ← GenerateProjMatrix(mi, ni, r)

6: else
7: U t

i ← U t−1
i , V t

i ← V t−1
i

8: // Note thatWt = {W t
i }li=1, U t = {U t

i }li=1,
Vt = {V t

i }li=1

9: Wt ← PerturbParams (Wt,U t, Vt, r, ε, st),
ℓt+ ← L(Wt;Bt)

10: Wt ← PerturbParams (Wt,U t, Vt, r,−2ε, st),
ℓt− ← L(Wt;Bt)

11: Wt ← PerturbParams (Wt,U t, Vt, r, ε, st)
12: ρt←

(
ℓt+ − ℓt−

)
/(2ε)

13: Reset random number generator with seed st

14: for i = 1, 2, . . . , l do
15: Regenerate the perturbation matrix Zt

i ∈ Rr×r

whose entries are sampled from N (0, 1)

16: W t+1
i ←W t

i − ηtρt
(
U t

iZ
t
iV

t
i
T
)

17: return Wt+1

SubZero maintains just three small matrices per layer: a
perturbation matrix Zi ∈ Rr×r, and two column-orthogonal
matrices Ui ∈ Rmi×r and Vi ∈ Rni×r. This design en-
hances memory efficiency, as r is generally much smaller
than the size of the corresponding parameter matrix Wi ∈
Rmi×ni (i.e., r ≪ min{mi, ni}). Morover, we employ

in-place operations and per-layer parameter updates to es-
timate gradients and update parameters in parallel (see Ap-
pendix 8.2). Consequently, SubZero uses significantly less
GPU memory than previous methods while achieving sim-
ilar or better performance. For example, fine-tuning OPT-
1.3B [60] on SST-2 [50] using SGD (without momentum)
in full-parameter scheme as shown in Table 3, SubZero re-
quires only 6.8GB GPU memory, compared to 11.5GB for
SGD, yielding a 1.6× improvement in memory efficiency,
similar as illustrated in Fig. 1 (d).

Now we are ready to summarize the overall algorithm of
SubZero in Algorithm 3. Each training step consists of three
sequential phases. First, it obtains the projection matrices
U t

i and V t
i using Algorithm 1 or directly adopts previous

ones. Next, it computes the loss value difference ρ with
Eqn. (7) by applying Algorithm 2 to perturb all parameter
matrices. Finally, SubZero updates all parameter matrices
layer by layer, following Eqn. (9).

4.2. Integration into Fine-Tuning Schemes
We describe the integration of SubZero into full-parameter
tuning [2] and three promient PEFT schemes: LoRA [23],
prefix tuning [35], and prompt tuning [32]. Typically,
SubZero can be easily incorporated into these fine-tuning
schemes. However, it encounters a challenge with ex-
tremely non-square parameter matrices, which have far more
rows than columns or vice versa. This issue is particularly
prevalent in LoRA, which employs two low-rank matrices
Ai ∈ Rmi×k and Bi ∈ Rk×ni to approximate a full ma-
trix W ′

i ∈ Rmi×ni , with k ≪ min{mi, ni}, e.g., k = 8
while min{mi, ni} = 2048 used in [61]. Consequently, it
is impossible to find a smaller rank r ≪ k to compute the
gradient estimates of Ai and Bi using Eqn. (6), imposing a
challenge when applying SubZero to this scenario.

To overcome this limitation, we propose a reshaping
strategy that transforms the original non-square matrix into
an approximate square matrix. For instance, we reshape
Ai ∈ Rmi×k into A′

i ∈ Rm′
i×k′

such that mik = m′
ik

′ and
m′

i is close to k′. This reshaping allows us to apply Eqn. (6)
to find a low-rank perturbation with rank r significantly
smaller than min{m′

i, k
′}, demonstrating the applicability

of SubZero in the scenario. Table 8 in Sec. 6.4 shows the
effectiveness of this reshaping strategy.

5. Theoretical Analysis

In this section, we theoretically analyze why SubZero can
reduce the variance of gradient estimates and hence acceler-
ate convergence. Before the analysis, we first define some
necessary notations:

P = bdiag(V1 ⊗U1, · · · ,Vl ⊗Ul), (10)

z = [vec(Z1)
T, . . . , vec(Zl)

T]T, (11)
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z̃ = [vec(Z̃1)
T, . . . , vec(Z̃l)

T]T. (12)

Then we first state the main theoretical results on our gradient
estimation in Eqn. (8).

Theorem 1. For the gradient estimation in Eqn. (8), the
following two properties hold.
a) By using gradient estimation in (8), our estimated gradient
ĝε(x,P , z) is equivalent to

ĝε(x,P , z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz, (13)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P TP =

Iq with d =
∑l

i=1 mini and q = lr2.
b) Let z ∼ N (0, Iq), and f ∈ C2,2

L2
(Rd). Then we have

Φ(x)=∥Ez[ĝε(x,P , z)]−PP T∇f(x)∥2≤
ε2

6
L2(q + 4)2.

See its proof in Appendix 8.6. Theorem 1 (a) provides
the equivalent form (13) of our gradient estimation (8). By
comparing this with the gradient estimation (5) in random
subspace optimization [42, 45], we observe significant dif-
ferences. First, our gradient estimation (13) accounts for the
layer-wise structure of the network, requiring the projection
matrix P to be block-diagonal, whereas in random subspace
optimization, P is not. Additionally, our method introduces
a layer-wise low-rank perturbation matrix, reflected by the
block-diagonal structure of P , with lazy updates to the col-
umn and row spaces defined by Ui and Vi. In contrast, ran-
dom subspace optimization simply requires P to be random.
These distinctions highlight the key differences between our
gradient estimation and existing methods in random sub-
space optimization.

Theorem 1 (b) guarantees that the distance Φ(x) between
the expected gradient estimate and the BP gradient in the sub-
space spanned by P is small. Moreover, by setting ε = 1

q+4 ,
the distance Φ(x) is bounded by a constant L2/6, inde-
pendent of the parameter dimension d. This implies that
the error in our gradient estimation does not scale with the
extremely high parameter dimensions of LLMs, providing
highly accurate gradient estimation—crucial for optimizing
LLMs.

Next, we utilize a strictly convex quadratic loss to further
analyze our gradient estimation in Eqn. (13). This choice
is motivated by the fact that, after pretraining, the LLM
parameters tend to converge toward a local minimum within
a local basin, which can be well-approximated by a quadratic
loss [41].

Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where

H ∈ Rd×d is positive definite. We have

Ez[ĝε(x,P , z)] = PP T∇f(x), (14)

Ez[∥ĝε(x,P , z)∥2] = (q + 2)∥P T∇f(x)∥2, (15)

Ez

[
⟨∇f(x), ĝε(x,P , z)⟩2

∥P T∇f(x)∥2∥ĝε(x,P , z)∥2

]
=

1

q
. (16)

See its proof in Appendix 8.6. Theorem 2 demonstrates
several advantageous properties of our gradient estimation on
the quadratic function. First, Eqn. (14) establishes the equiv-
alence between the expected gradient estimation and the BP
gradient within the subspace spanned by our projection ma-
trix P . Second, Eqn. (15) shows that, in this subspace, the
variance of the gradient estimation scales linearly with the
subspace dimension q. In contrast, the variance of gradient
estimation (2) in MeZO depends linearly on the model’s
parameter dimension d, which is significantly larger than
q. Finally, Eqn. (16) reveals that the expected cosine simi-
larity between our estimated gradient and the BP gradient
within the subspace depends only on the subspace dimension
q ≪ d, indicating that our gradient estimation provides a
highly accurate parameter update direction.

Building upon the above results, we can prove the conver-
gence of our SubZero.

Theorem 3. Let x∗ = argminx∈Rd f(x), where f ∈
C1,1

L1
(Rd) and f is non-convex. Suppose Ek =

(z0, z1, · · · , zk), where zk ∼ N (0, Iq) and η = 1
4(q+4)L1

.
{xk}k>0 is the sequence generated by Algorithm 3. For
the P defined in (10), which is updated lazily at a fixed
frequency F , we have

1

T

T−1∑
k=0

EEk

[
∥∇f(xk)∥2

]
≤ ϵ

for any T = Ω(dϵ ) if ε ≤ O
(

ϵ1/2

q3/2d1/2L
3/2
1

)
, where T =

KF , K represents the total number of subspace updates,
and ε represents perturbation scale.

See its proof in Appendix 8.6. Theorem 3 guarantees the
convergence of our SubZero when the projection matrix P
is updated at a fixed frequency F .

6. Experiments
In this section, we present comprehensive experiments to
evaluate the effectiveness of SubZero. We conduct our ex-
periments using medium-sized masked LLMs (RoBERTa-
large [37]) and large-scale autoregressive LLMs (OPT-1.3B
and 13B [60], LLaMA2-7B [54], and Mistral-7B [26]). Our
exploration covers full-parameter tuning (FT) [2] and three
PEFT schemes: LoRA [23], prefix tuning [35], and prompt
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Table 2. Performance of fine-tuning OPT-13B on SuperGLUE with various experimental settings (with 1000 examples). AVG: average
relative percentage difference with MeZO of all tasks.

Task type ———————— classification ———————— – multiple choice – — generation —
Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP AVG.
SGD(FT) 94.9 82.3 85.7 78.4 65.3 65.8 74.2 90.0 82.4 88.0 35.5 -

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6 -
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6 -
LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1 -

MeZO(FT) 92.1 71.5 71.4 74.4 61.5 60.0 60.1 87.0 82.0 84.2 31.2 0%
ZO-AdaMU(FT) 92.1 72.9 67.9 73.0 61.5 60.7 63.0 89.0 83.0 82.4 32.0 0.46%
S-MeZO(FT) 92.3 76.9 75.0 76.5 61.1 58.2 63.3 87.0 71.2 77.9 31.9 -0.10%
HiZOO(FT) 91.3 69.3 69.4 67.3 63.5 59.4 55.5 88.0 81.4 81.9 31.3 -2.15%
SubZero(FT) 92.1 74.0 73.2 75.3 65.4 60.8 61.0 88.0 82.3 84.5 32.0 1.89%
MeZO(LoRA) 92.2 74.4 69.6 75.2 64.4 59.7 58.2 87.0 82.0 82.9 31.0 0%
ZO-AdaMU(LoRA) 88.0 72.0 71.6 72.6 60.1 56.4 58.9 88.0 83.2 76.8 32.4 -1.78%
S-MeZO(LoRA) 90.8 62.2 75.0 72.9 51.9 55.8 56.4 86.0 69.9 76.4 31.7 -5.79%
HiZOO(LoRA) 90.6 67.5 69.6 70.5 63.5 60.2 60.2 87.0 81.9 83.8 31.2 -1.16%
SubZero(LoRA) 93.8 75.5 71.4 76.1 65.4 60.3 60.3 89.0 81.9 83.7 31.3 1.57%

Table 3. Performance of fine-tuning LLaMA2-7B and Mistral-7B on CB, and OPT-1.3B on SST-2.

LLaMA2-7B Mistral-7B OPT-1.3B
FT LoRA Prefix Prompt FT LoRA Prefix Prompt FT LoRA Prefix Prompt

SGD 69.6 75.0 69.6 69.6 73.2 75.0 69.6 62.5 93.2 93.0 93.1 90.7

MeZO 64.3 73.2 69.6 60.7 62.5 69.6 58.3 57.1 92.3 92.8 91.6 85.9
SubZero 71.4 75.0 76.8 66.1 64.3 73.2 64.3 62.5 93.4 92.9 92.2 89.1

Table 4. Fine-tuning performance comparison between Sub-
Zero and MeZO on RoBERTa-large and OPT-13B with non-
differentiable objectives.

Model RoBERTa-large OPT-13B
Task SST-2 SST-5 SNLI MNLI SQuAD

Zero-shot 79.0 35.5 50.2 48.8 46.2
Cross entropy (Adam) 93.9 55.9 88.7 83.8 84.2

Cross entropy (MeZO) 92.9 53.2 83.0 77.0 84.2
Cross entropy (SubZero) 92.9 54.0 84.7 77.1 84.5

Accuracy/F1 (MeZO) 92.4 46.5 81.9 73.9 80.2
Accuracy/F1 (SubZero) 92.7 47.1 83.0 74.8 81.1

tuning [32]. For comparison, we include leading ZO meth-
ods, such as MeZO [39], ZO-AdaMU [27], S-MeZO [38],
and HiZOO [64] alongside inference-only memory-efficient
baselines like zero-shot, in-context learning (ICL) [7], and
linear probing (LP) [31]. As the first and most popular ZO
optimizer for LLM fine-tuning, MeZO is considered our pri-
mary competitor. We also use the FO optimizer SGD as a
benchmark. Since appropriate prompts are critical for ZO
optimization [39, 61], all experiments incorporate prompt
templates. Since a larger batch size reduces the variance of
the estimated gradients, all compared methods use a batch
size of 16 unless otherwise specified. All experimental set-
tings are detailed in Appendix 8.2-8.5.

Table 5. Memory usage (GB) and wall-clock time (minutes) of
fine-tuning OPT-13B, with SGD’s batch size being 8 for SQuAD
and 16 for other tasks.

Task SST-2 WIC SQuAD
Method Mem. Time Mem. Time Mem. Time

Zero-shot/ICL 24.2 0 24.8 0 27.2 0
SGD(FT) 48.9 190.3 48.9 257.3 122.7 623.7

MeZO(FT) 26.1 324.9 26.6 370.5 37.4 670.2
SubZero(FT) 26.5 337.3 27.1 385.3 37.8 690.5

MeZO(LoRA) 26.1 123.9 26.6 171.6 37.4 476.7
SubZero(LoRA) 26.1 130.3 26.6 179.7 37.4 486.5

6.1. Results under Different Experimental Settings

Following the settings in MeZO [39], we evaluated Sub-
Zero using OPT-13B on the SuperGLUE benchmark [56],
which covers a diverse range of tasks, including classifica-
tion, multiple-choice, and generation, as outlined in Table 2.
The ZO methods were applied to both full-parameter tun-
ing (FT) and LoRA fine-tuning schemes. The comparisons
with vanilla LoRA and SGD with gradient accumulation are
provided in Appendix 8.1.

Table 2 presents the key findings, highlighting the best-
performing ZO method in bold. The results show that ZO
techniques significantly outperform baseline approaches like
zero-shot, in-context learning, and linear probing, under-
scoring their ability to enhance a pre-trained model’s perfor-
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Table 6. Orthogonal or random pro-
jection matrix.

Dataset Ortho. Accuracy

RTE ✗ 67.5
✓ 74.0

WSC ✗ 59.6
✓ 65.1

Table 7. Subspace change frequency
F and rank r.

F \ r 32 64 128

500 72.6 70.0 72.2
1000 73.6 71.8 74.0
2000 72.2 73.3 72.2

20000 70.4 71.1 68.6

Table 8. Reshaping strategy for non-square
matrices on SST-2 with OPT-1.3B in PEFT
schemes.

Method LoRA Prefix Prompt

MeZO 92.8 91.6 85.9
SubZero(w/o) 92.1 89.4 74.2
SubZero(w/) 92.9 92.2 89.1

mance on downstream tasks.
From Table 2, one can also observer that MeZO, the

first ZO optimizer for LLM fine-tuning, is highly compet-
itive after carefully tuning its hyperparameters. Only ZO-
AdaMU, aside from SubZero, outperforms MeZO in FT
scheme. SubZero consistently surpasses MeZO across all
tasks and fine-tuning schemes. For instance, SubZero boosts
MeZO’s accuracy from 61.1% to 65.4% on the WSC task
(+4.3%) under FT, and from 58.2% to 60.3% on MultiRC
using LoRA (+2.1%). S-MeZO demonstrated competitive
performance on several classification tasks in FT scheme.
However, SubZero outperformed S-MeZO in 6 out of 11
tasks with FT and 9 out of 11 tasks with LoRA. Addition-
ally, SubZero’s average relative percentage difference with
MeZO across all tasks was better than S-MeZO’s, which
displayed inconsistent performance due to its selective pa-
rameter masking based on pre-determined thresholds—an
approach that lacked robustness in practice. Despite tuning
S-MeZO’s hyperparameters, its performance on ReCoRD
remains unsatisfactory. Excluding ReCoRD, SubZero still
outperforms S-MeZO with 2.05% vs. 1.20% in FT scheme
and 1.74% vs. -4.90% in LoRA scheme.

We further extended our evaluation of SubZero using
OPT-1.3B, LLaMA2-7B, and Mistral-7B in FT and three
PEFT schemes: LoRA, prefix tuning, and prompt tuning.
As shown in Table 3, SubZero outperformed MeZO across
all models and fine-tuning schemes. Notably, while MeZO
struggled in the prompt tuning scheme, SubZero excelled,
achieving performance levels that closely matched those of
the SGD optimizer.

6.2. Results on Non-Differentiable Objectives
Following MeZO [39], we respectively apply SubZero to
fine-tune RoBERTa-large and OPT-13B using two non-
differentiable objectives: accuracy and F1. As a baseline,
we also report results using the cross-entropy objective with
Adam. As shown in Table 4, SubZero consistently outper-
forms MeZO across both non-differentiable objectives and
the cross-entropy benchmark, demonstrating its effectiveness
across varying optimization goals.

6.3. Memory Usage and Wall-Clock Time Analysis
Table 5 compares the memory consumption and wall-clock
time of ZO methods (MeZO and SubZero), SGD, and
inference-only approaches (zero-shot and in-context learn-

ing (ICL)) using OPT-13B. Since inference-only methods
do not involve fine-tuning, they have zero wall-clock time
and their memory usage reflects only the inference load. For
fine-tuning, all methods were run for 20K steps. The ZO
methods, including SubZero, achieved over a 1.8× reduction
in memory usage compared to SGD. Notably, SubZero’s
memory footprint closely aligns with MeZO’s, while offer-
ing improved performance. We use per-layer weight updates
for MeZO and SubZero (see Appendix 8.2), resulting in
nearly identical memory usage for FT and LoRA schemes
when one decimal place is reserved.

Although SubZero introduces additional computational
overhead for generating projection matrices via QR decom-
position, this extra time represents less than 5% of the total
wall-clock time. It is important to note that due to differ-
ences in how steps are defined between ZO methods and
SGD, direct wall-clock time comparisons between the two
are not entirely meaningful.

6.4. Ablation Study

We conducted a thorough investigation of the effectiveness
of our proposed techniques. Table 6 shows that using a
column-orthogonal projection matrix significantly outper-
forms a Gaussian random projection matrix, primarily due to
the low-rank structure of the perturbation matrices. This low-
rank perturbation is key to improving the quality of gradient
estimation.

Next, Table 7 explores the effects of subspace rank r and
update frequency F in Algorithm 3. The results demonstrate
that SubZero is robust to variations in the subspace rank.
However, performance drops sharply when the update fre-
quency is too low, as the optimization becomes constrained
to a single subspace for too long, limiting its adaptability.

Finally, Table 8 underscores the critical role of the re-
shaping strategy for handling highly non-square perturbation
matrices, essential for ensuring effective perturbations in dif-
ferent layers of the model. Together, these results highlight
the improvements brought by our design choices, particu-
larly in terms of projection and reshaping strategies, and
their impact on SubZero’s robustness and performance.

Due to limited space, the ablation studies of SubZero on
random seed, batch size, and combination with Adam are
given in Appendix 8.1.
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7. Conclusion

We have demonstrated that SubZero effectively fine-tunes
large LLMs across various tasks and schemes with a memory
cost comparable to that of inference. Extra experiments
indicate that SubZero can optimize non-differentiable
objectives. Our theory explains how SubZero reduces
the variance of gradient estimates and hence accelerates
convergence.

Limitation. In addition to the representative first-order and
primitive zero-order optimizers, we have yet to investigate
the combinations of SubZero with other first-order and zero-
order optimizers to evaluate the implications on convergence
speed. While SubZero is also compatible with memory-
efficient techniques like parameter quantization [34], we
have not thoroughly explored the practical effects of these
combinations. A theoretical analysis of the reshaping strat-
egy is certainly worth exploring. We will leave these explo-
rations for future work.
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8. Appendix
8.1. Additional Results
More Comparisons

In the main manuscript, we use the identical batch size for FO and ZO optimizers. Here, we adjust SGD with gradient
accumulation to match the memory usage of ZO optimizers, and then compare their convergence speed and performance. The
experimental settings are the same as those in Figure 1, and the experimental results are shown in Figure 2. With similar
memory usage, SubZero attains a convergence rate nearly on par with SGD, surpasses MeZO, and achieves test accuracy
comparable to that of SGD.

The vanilla LoRA is fine-tuned by Adam. We compare SubZero with SGD in the FT and LoRA schemes with vanilla
LoRA using the pretrained OPT-1.3B model on SST-2. For Adam and SubZero with SGD, we apply the constant learning rate
schedule. The results are given in Table 9. We can see that SubZero with SGD in the FT scheme outperforms vanilla LoRA in
both test accuracy and memory usage. SubZero with SGD in the LoRA scheme also achieves comparable test accuracy while
maintaining minimal memory usage.
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Figure 2. Visualization of training loss, test accuracy, and peak total GPU memory usage with OPT-1.3B on SST-2 in prompt tuning scheme.
SGD(BS, GA) refers to SGD with a batch size of BS and GA times of gradient accumulation. All ZO methods utilize a batch size of 16,
while SGD(BS, GA) applies gradient accumulation to ensure its memory usage aligns with that of the ZO optimizers. All methods are
executed for 20K steps.

Table 9. Comparison with vanilla LoRA using the pretrained OPT-1.3B model on SST-2.

Method Test Accuracy(%) Total Memory (GB)

LoRA (Adam) 93.2 10.75
SubZero (FT) 93.4 6.88
SubZero (LoRA) 92.9 6.80

More Ablation Studies
We investigate the effects of random seed, batch size, and combination with Adam for SubZero. We also provide more

results on the reshaping strategy.
We first fine-tune the OPT-1.3B model on the SST-2 dataset in prompt tuning scheme with three random seeds. We present

the results in Table 10, and hyperparameters are presented in Table 15. For various random seeds, the variance of MeZO is
quite large, whereas the variance of SubZero is small, and its average performance is superior.

Then we examine the impact of batch size for ZO optimizers using the RoBERTa-large model on SST-2 in full-parameter
tuning scheme. The results are shown in Table 11. The training epochs are 100K in Table 4, while they are 20K in Table 11.
The remaining hyperparameters are consistent with Table 4, as detailed in Appendix 8.4. For ZO optimizers, a large batch size
always gets better performance. Across various batch sizes, SubZero demonstrates better fine-tuning performance compared to
MeZO.

Next, we assess the impact of the Adam optimizer. We fine-tune the OPT-1.3B model on the SST-2 dataset, and the
experimental results are displayed in Table 12. For ZO optimizers with Adam, we perform a grid search on the hyperparameters
and find that keeping the learning rate and perturbation scale consistent with those with SGD resulted in good convergence, as
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Table 10. The impact of random seed with the pretrained OPT-1.3B model on SST-2 in prompt tuning scheme.

Seed 42 0 1234 AVG.

MeZO 85.9 83.3 80.7 83.3
SubZero 89.1 89.4 89.2 89.2

Table 11. The impact of batch size with the pretrained RoBERTa-large model in full-parameter tuning scheme.

Batch Size Method SST-2 SST-5 SNLI MNLI AVG.

16 MeZO 91.7 44.7 77.3 53.0 66.7
SubZero 91.9 45.9 77.5 52.8 67.0

32 MeZO 92.9 45.4 78.3 53.2 67.5
SubZero 93.0 45.5 79.6 54.0 68.0

Table 12. Comparison of test accuracy (%) for the pretrained OPT-1.3B model fine-tuned on SST-2 with SGD and Adam.

Method FT LoRA Prefix Prompt AVG.

SGD 93.2 93.0 93.1 90.7 92.5
Adam 92.6 93.2 92.9 93.3 93.0

MeZO_SGD 92.3 92.8 91.6 85.9 90.7
SubZero_SGD 93.4 92.9 92.2 89.1 91.9

MeZO_Adam(constant) 92.3 93.3 90.7 84.6 90.2
SubZero_Adam(constant) 93.2 92.4 90.9 89.3 91.5

MeZO_Adam(cosine) 91.9 93.1 86.1 78.7 87.5
SubZero_Adam(cosine) 91.7 92.0 86.6 83.4 88.4

Table 13. Reshaping strategy for non-square matrices with the pretrained OPT-1.3B model fine-tuned on Winogrande in the PEFT schemes.

Method LoRA Prefix Prompt AVG.

SGD 58.3 56.9 58.4 57.9

SubZero(w/o) 56.6 56.6 56.5 56.6
SubZero(w/) 57.8 57.3 57.6 57.6

detailed in Table 15. We utilize the linear and the constant learning rate schedules for SGD and Adam, respectively. For all ZO
optimizers with SGD, we apply the constant learning rate schedule. For all ZO optimizers with Adam, we test the constant
and the cosine annealing schedules. We note that SubZero surpasses MeZO when employing the Adam optimizer with both
constant and cosine annealing schedules. Also, Adam does not provide an advantage over SGD for ZO optimization, which
aligns with the conclusions of previous studies [21, 61].

Finally, we provide more ablations on the reshaping strategy with OPT-1.3B on Winogrande in the PEFT schemes. The
Winogrande dataset [47] is a benchmark for commonsense reasoning and available at https://winogrande.allenai.
org/. The results are shown in Table 13. We can set that the reshaping strategy clearly enhances performance, aligning with
the conclusion presented in Table 8.

8.2. Implementation Details
We use one A800 GPU with the PyTorch 2.1.0+CUDA 11.8 framework for ZO methods and, if needed, two A800 GPUs for
SGD.
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The gradient estimation in SubZero is applicable to parameter matrices, while LLMs mainly consist of dense layers. For
other trainable parameters, such as biases and layer normalization parameters, we recommend using the gradient estimation in
MeZO [39], as these layers contain fewer parameters.

We introduce two useful strategies to implement our SubZero efficiently in memory.
In-place Operation. As indicated in Eqn. (7), directly computing the loss difference ρ requires twice the memory of

inference, as it must store both the parameter matrix set W and the perturbation matrix set Z̃ . To mitigate this, we draw
inspiration from MeZO and utilize in-place operations. By employing the random seed trick, we store a random seed
to compute ρ (see lines 9-12 in Algorithm 3 and Algorithm 2) and regenerate the low-dimensional perturbation matrices
Z1,Z2, · · · ,Zl (see line 15 in Algorithm 3). Consequently, the memory cost for fine-tuning with SubZero is nearly equivalent
to that of inference (see Table 1 and Table 5).

Per-layer Weight Update. FO optimizers update all model parameters after BP by storing the entire gradients in memory.
In contrast, ZO optimizers like SubZero calculate gradient estimates by first determining the loss value difference from two
forward passes, then calculating the gradient estimate for each layer using this difference along with the layer’s perturbation. To
reduce memory usage during training, we can implement the parameter update with optimizer.step() after calculating
the gradient estimate for each layer.

SubZero significantly reduces GPU memory consumption with the two implementation strategies. It should note that we
use the per-layer weight update strategy for MeZO in all experiments.

To simplify hyperparameter tuning, we employ a norm alignment trick, allowing SubZero to directly utilize hyperparameter
settings, such as the learning rate, from MeZO [39]. For a random perturbation matrix Z ∈ Rm×n, and its low-rank
approximation is Ẑ = UZ ′V T, where U ∈ Rm×r, V ∈ Rn×r, and Z ′ ∈ Rr×r. If Z and Z ′ are Gaussian random matrices,
and U and V are column-orthogonal matrices, then we have:

E[∥Z∥F ] =
√

m× n

r2
E
[
∥Ẑ∥F

]
. (17)

Define µ =
√

m×n
r2 . Let MeZO’s learning rate be η and perturbation scale be ε. There are two equivalent approaches to obtain

the perturbation for SubZero. The first approach involves multiplying the random low-dimensional perturbation matrix by
µ, with SubZero adopting MeZO’s hyperparameters directly: η′ = η and ε′ = ε. The second approach keeps the random
low-dimensional perturbation matrix fixed and sets SubZero’s learning rate and perturbation scale as follows:

η′ = ηµ2, ε′ = εµ.

We argue that norm alignment is crucial for SubZero, as changing the rank r affects the norm of the gradient estimate,
complicating the fine-tuning of the associated learning rate.

S-MeZO [38], a new ZO method, aims to improve MeZO’s performance and convergence speed. However, its source code
and detailed layer-wise hyperparameter configurations have not been released. Yang et al. [58] reproduce S-MeZO using a
fixed sparsity ratio for each layer, selected based on the best overall result shown in Fig. 6 of their paper. So we perform
S-MeZO with this non-official implementation code available at https://github.com/yifanycc/AdaZeta.

8.3. Datasets
Following [39], we use SuperGLUE [56] for OPT experiments, including BoolQ [9], CB [12], COPA [46], MultiRC [28],
ReCoRD [59], RTE [4, 5, 10, 20], WiC [43], and WSC [33]. We also utilize SST-2 [49] and two question answering (QA)
datasets, SQuAD [44] and DROP [17]. For each task, we randomly sampled 1000 examples for training, 500 for validation,
and 1000 for testing.

For LLama2-7B and Mistral-7B, we use CB [12] in the full-parameter tuning and three PEFT schemes. For OPT-1.3B, we
utilize SST-2 [49] in the full-parameter tuning and three PEFT schemes.

For RoBERTa-large, we consider classification datasets: SST-2 [49], SST-5 [49], MNLI [57], and SNLI [6]. Following [39],
the test set has 1000 examples for fast iteration, while we have 512 examples per class for both training and validation.

8.4. Hyperparameters
Using a larger batch size can consistently reduce the variance in ZO optimization, thus enhancing fine-tuning performance [19,
39, 58]. However, this increase in batch size also raises the time for forward passes and significantly elevates memory usage.
We focus on developing ZO methods that minimize variance and improve performance with small batch sizes, with a default
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Table 14. The hyperparameter search grids for OPT-13B. For each task, we run 20K steps for ZO methods (MeZO, S-MeZO, and SubZero)
and SGD. We record the best model checkpoint based on the validation loss every 500 training steps.

Experiment Hyperparameter Value

MeZO(FT)
batch size 16

learning rate {1e-7, 2e-7, 5e-7, 1e-6}
ε 1e-3

MeZO(LoRA)
batch size 16

learning rate {1.5e-5, 3e-5, 5e-5}
ε 1e-3

S-MeZO(FT)

batch size 16
learning rate {1e-6, 5e-6}

ε 1e-3
sparse rate 0.75

S-MeZO(LoRA)

batch size 16
learning rate {5e-5, 1e-4, 1e-3}

ε 1e-3
Sparse rate 0.75

SubZero(FT)

batch size 16
learning rate {1e-7, 2e-7, 5e-7, 1e-6}

ε 1e-3
rank {32, 64, 128, 256 }

subspace change frequency {500, 1000, 2000}

SubZero(LoRA)

batch size 16
learning rate {1.5e-5, 3e-5, 5e-5}

ε 1e-3
rank {4, 8, 16}

subspace change frequency {500, 1000, 2000}

SGD(FT) batch size 16
learning rate {1e-4, 1e-3, 5e-3}

setting of 16. In some SGD experiments, like on MultiRC and SQuAD, the batch size is reduced to 8 due to limited GPU
resources.

Consistent with previous studies [38, 39, 58, 61], we employ SGD without momentum by default to maintain memory
efficiency. SGD utilizes the linear learning rate schedule, while all ZO methods with SGD apply a constant learning rate
schedule, with weight decay set to 0.

For RoBERTa, we run Adam for 1K steps and ZO methods for 100K steps. In the rest experiments, we run Adam for 5
epochs and SGD and ZO methods for 20K steps.

We follow previous work to set the hyperparameters in the PEFT schemes [39, 61]. For LoRA, the rank is set to 8 and α is
set to 16. For prefix tuning, the length of prefix tokens is set to 5, and we initialize these tunable representations by randomly
sampling tokens from the vocabulary and then passing them through the LLM to get their keys and values at different attention
layers. For prompt tuning, the length of prompt virtual tokens is set to 10, and the prompt tokens are initialized with actual
token values from the model’s embedding.

We present the hyperparameter search grids in Tables 14 and 15 to assist with result reproduction. For OPT-1.3B, we utilize
the same hyperparameter settings as in Table 15. For RoBERTa-large, we use a learning rate of {1e-6, 5e-6} and ε=1e-3 for
MeZO and SubZero, with a batch size of 64. The rank for SubZero is set to {8, 16, 24}, and subspace change frequency is
adjusted to {1000, 2000}.

For the ablation study, we evaluate the effectiveness of the orthogonal projection matrix using the OPT-13B model in
full-parameter tuning scheme on the RTE and WSC datasets, and the results are presented in Table 6. The hyperparameter
settings are consistent with those in Table 2, and further details are available in Table 14. The subspace dimensionality remains
fixed across all experiments. It is noteworthy that both orthogonal and non-orthogonal projection matrices can utilize the same
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Table 15. The hyperparameter search grids for LLama2-7B and Mistral-7B. For each task, we run 20K steps for ZO methods (MeZO and
SubZero) and SGD. We record the best model checkpoint based on the validation loss every 500 training steps.

Experiment Hyperparameter Value

MeZO(FT)
batch size 16

learning rate {1e-7, 5e-7, 1e-6}
ε 1e-3

MeZO(LoRA)
batch size 16

learning rate {1e-6, 5e-6, 1e-5, 3e-5}
ε 1e-3

MeZO(Prefix)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-1

MeZO(Prompt)
batch size 16

learning rate {1e-3, 5e-3, 1e-2}
ε 1e-2

SubZero(FT)

batch size 16
learning rate {1e-7, 5e-7, 1e-6}

ε 1e-3
rank {24, 48}

subspace change frequency 1000

SubZero(LoRA)

batch size 16
learning rate {1e-6, 5e-6, 1e-5, 3e-5}

ε 1e-3
rank {4, 8}

subspace change frequency 1000

SubZero(Prefix)

batch size 16
learning rate {1e-3, 5e-3, 1e-2}

ε 1e-1
rank {4, 8}

subspace change frequency 1000

SubZero(Prompt)

batch size 16
learning rate {1e-3, 5e-3, 1e-2}

ε 1e-2
rank {16, 24}

subspace change frequency 1000

SGD(FT) batch size 16
learning rate {1e-5, 1e-4, 1e-3, 5e-3}

learning rate and perturbation scale. This is because the overall perturbation matrix is scaled by a factor of 1
r , following a

similar norm alignment strategy as detailed in Eqn. (17). We also perform ablation studies on the rank and subspace update
frequency for SubZero, with results shown in Table 7. Full-parameter tuning scheme is conducted on the RTE dataset using
the OPT-13B model, with specific experimental settings outlined in Table 14. All experiments employ the same learning rate
and perturbation scale, enabled by the norm alignment technique described in Eqn. (17).

8.5. Prompt Templates

For autoregressive LLMs, we have three task types: classification, multiple-choice, and question answering. We adopt the
prompt templates for various tasks in [39], which are summarized in Table 16. For masked LLMs, we also adopt the prompt
templates in [39] and present them in Table 17.
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Table 16. The prompt templates used in the OPT-1.3B, OPT-13B, LLama2-7B, and Mistral-7B experiments.

Task Type Prompt

SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes or No

CB cls. Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sentence1>
<sentence2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 17. The prompt templates used in RoBERTa-large experiments. C is the number of classification categories.

Task C Type Prompt

SST-2 2 sentiment cls. <sentence1> It was great/terrible
SST-5 5 sentiment cls. <sentence1> It was great/good/okay/bad/terrible
MNLI 3 NLI <sentence1> ? Yes/Maybe/No , <sentence2>
SNLI 3 NLI <sentence1> ? Yes/Maybe/No , <sentence2>

8.6. Proofs

In practice, SubZero employs smaller and layer-specific low-rank perturbation matrices instead of a large model-scale
projection matrix. However, it is more convenient to prove SubZero’s properties using a model-scale projection. Fortunately,
the following lemma shows that the low-rank perturbation matrix for each layer can be represented as a layer-scale projection
matrix, which is column orthogonal.

Lemma 1. Let Z̃ = UZV T, where U ∈ Rm×r,Z ∈ Rr×r,V ∈ Rn×r, and UTU = V TV = Ir. Then we have
vec(Z̃) = P vec(Z) and P TP = Ir2 , where P = V ⊗U .
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Proof. Since vec(UZV T) = (V ⊗U)vec(Z), we only need to show (V ⊗U)T(V ⊗U) = Ir2 . In fact

(V ⊗U)T(V ⊗U) = (V T ⊗UT)(V ⊗U) = (V TV )⊗ (UTU) = Ir ⊗ Ir = Ir2 .

The proof is completed.

We can also demonstrate that the low-rank perturbation matrices across all layers can be represented as a model-scale
projection matrix. We first give the following lemma.

Lemma 2. Let a block diagonal matrix P = bdiag(P1,P2, · · · ,Pl) and z̃i = Pizi, where P T
i Pi = Ir2 and i = 1, 2, . . . , l.

Then we have z̃ = Pz, where z̃ = [z̃T
1 , . . . , z̃

T
l ]

T, z = [zT
1 , . . . , zT

l ]
T and P TP = Ilr2 .

Proof. It is easy to check that z̃ = Pz. Besides, we have

P TP = bdiag(P T
1 , . . . ,P T

l )bdiag(P1, . . . ,Pl) = bdiag(P T
1 P1, . . . ,P

T
l Pl) = Ilr2 .

The proof is completed.

We may define P = bdiag(V1 ⊗ U1,V2 ⊗ U2, · · · ,Vl ⊗ Ul) that satisfies P TP = I , z =
[vec(Z1)

T, vec(Z2)
T, . . . , vec(Zl)

T]T, and z̃ = [vec(Z̃1)
T, vec(Z̃2)

T, . . . , vec(Z̃l)
T]T. Then according to Lemma 2, the

perturbation vector of SubZero is z̃ = Pz, which is similar as existing random subspace methods in Eqn. (4), but with
SubZero’s projection matrix being block diagonal and column orthogonal.

To prove Theorem 1 and Theorem 2, we first introduce some definitions and lemmas about Gaussian distribution.

Defination 1. We say z is a standard n-dimensional Gaussian vector (denote by z ∼ N (0, In)), if its probability density
function p(z) = 1

κe
− 1

2∥z∥
2

, where κ > 0 satisfies
∫
Rn

1
κe

− 1
2∥z∥

2

dz = 1.

Defination 2. Let z ∼ N (0, In). We say x is a chi-square random variable with degrees of freedom n (denote by x ∼ χ2(n)),
if x = ∥z∥2.

Lemma 3. Let z ∼ N (0, In). For any orthogonal (n × n)-matrix Q and continuous function f , we have Ez[f(z)] =
Ez[f(Qz)].

Lemma 4. If x ∼ χ2(n), then we have

Ex[x] = n, Varx[x] = 2n.

Lemma 5. [40] Let f ∈ C2,2
L2

(Rn). Then for all x,y ∈ Rn, we have

|f(y)− f(x)− ⟨∇f(x),y − x⟩ − 1

2
⟨∇2f(x)(y − x),y − x⟩| ≤ L2

6
∥y − x∥3.

Lemma 6. [40] Let z ∼ N (0, In). For 0 ≤ t ≤ 2, we have

Ez[∥z∥t] ≤ nt/2.

For t ≥ 2, we have

nt/2 ≤ Ez[∥z∥t] ≤ (n+ t)t/2.

Lemma 7. Let z ∼ N (0, In). For all y ∈ Rn, we have

Ez[∥⟨y, z⟩z∥2] = (n+ 2)∥y∥2.
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Proof. Note that for any orthogonal (n× n)-matrix Q, we have

∥⟨y,Qz⟩Qz∥2 = ∥⟨QTy, z⟩z∥2, ∥QTy∥ = ∥y∥.

In accordance with Lemma 3, we can set y = [1, 0, . . . , 0]T, and only need to prove Ez[∥⟨y, z⟩z∥2] = n+ 2. Equipped with
Lemma 4, we get

Ez[∥⟨y, z⟩z∥2] = Ez

[
n∑

i=1

z2
1z

2
i

]
=

n∑
i=1

Ez[z
2
1z

2
i ] = Ez1

[z4
1 ] + Ez1

[z2
1 ]

n∑
i=2

Ez[z
2
i ] = n+ 2.

The proof is completed.

Theorem 1. For the gradient estimation in Eqn. (8), the following two properties hold.
a) By using gradient estimation in (8), our estimated gradient ĝε(x,P , z) is equivalent to

ĝε(x,P , z) =
f(x+ εPz)− f(x− εPz)

2ε
Pz, (13)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P TP = Iq with d =
∑l

i=1 mini and q = lr2.
b) Let z ∼ N (0, Iq), and f ∈ C2,2

L2
(Rd). Then we have

Φ(x)=∥Ez[ĝε(x,P , z)]−PP T∇f(x)∥2≤
ε2

6
L2(q + 4)2.

Proof. a) Evidently, the conclusion is established based on Lemma 1 and Lemma 2.
b) Let az(τ) = f(x+ τz)− f(x)− τ⟨∇f(x), z⟩ − τ2

2 ⟨∇
2f(x)z, z⟩. Lemma 5 implies that

|az(±ε)| ≤
ε3

6
L2∥z∥3.

Note that

Ez[ĝε(x,P , z)]− PP T∇f(x)

=
P

2κε

∫
Rq

[f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩]ze− 1
2∥z∥

2

dz.

Therefore, in accordance with Lemma 6, we have

∥Ez[ĝε(x,P , z)]− PP T∇f(x)∥

≤ 1

2κε

∫
Rq

|f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩|∥z∥e− 1
2∥z∥

2

dz

=
1

2κε

∫
Rq

|aPz(ε)− aPz(−ε)|∥z∥e−
1
2∥z∥

2

dz

≤ ε2L2

6κ

∫
Rq

∥z∥4e− 1
2∥z∥

2

dz ≤ ε2

6
L2(q + 4)2.

The proof is completed.

Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where H ∈ Rd×d is positive definite. We have

Ez[ĝε(x,P , z)] = PP T∇f(x), (14)

Ez[∥ĝε(x,P , z)∥2] = (q + 2)∥P T∇f(x)∥2, (15)

Ez

[
⟨∇f(x), ĝε(x,P , z)⟩2

∥P T∇f(x)∥2∥ĝε(x,P , z)∥2

]
=

1

q
. (16)
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Proof. It is easy to check that ĝε(x,P , z) = P ⟨P T∇f(x), z⟩z. Thus we have Ez[ĝε(x,P , z)] = PP T∇f(x). Combined
with Lemma 7, we get Ez[∥ĝε(x,P , z)∥2] = (q + 2)∥P T∇f(x)∥2. Note that for any orthogonal (q × q)-matrix Q, we have

Ez

[
⟨∇f(x), ĝε(x,P , z)⟩2

∥P T∇f(x)∥2∥ĝε(x,P , z)∥2

]
= Ez

[
⟨P T∇f(x), z⟩2

∥P T∇f(x)∥2∥z∥2

]
= Ez

[
⟨P T∇f(x),Qz⟩2

∥P T∇f(x)∥2∥Qz∥2

]
= Ez

[
⟨QTP T∇f(x), z⟩2

∥QTP T∇f(x)∥2∥z∥2

]
.

In accordance with Lemma 3, we can set P T∇f(x) = [1, 0, . . . , 0]T. Thus we have

Ez

[
⟨∇f(x), ĝε(x,P , z)⟩2

∥P T∇f(x)∥2∥ĝε(x,P , z)∥2

]
= Ez

[
z2
1

∥z∥2

]
=

1

q
.

The proof is completed.

To illustrate the convergence of Subzero with SGD, our analysis is divided into two main segments. We first investigate the
convergence behavior of SubZero solution process while keeping the projection matrix P constant. Next, we evaluate the
effects of the lazy updates to P . Based on these evaluations, we establish the global convergence of Subzero. Without loss of
generality, we concentrate on the scenario where the number of layers is 1.

First, when the subspace P is fixed, the original problem of SubZero can be reformulated as an optimization problem within
the subspace. Define h(y) = f(x+ Py), hε(y) = Ez[h(y + εz)], and gε(y) =

h(y+εz)−f(y)
ε z. According to Lemma 8, if

f is first L1-smooth, then h is also first L1-smooth.

Lemma 8. Let h(y) = f(x+ Py), where f ∈ C1,1
L1

(Rd), and P TP = I , then we have h ∈ C1,1
L1

(Rq).

Proof. The following proves that if f is first L1-smooth, then h is also first L1-smooth. For any y1 ∈ Rq and y2 ∈ Rq, we
have

∥∇h(y1)−∇h(y2)∥ =
∥∥P T∇(f(x+ Py1)− P T∇(f(x+ Py2)

∥∥
≤
∥∥P T

∥∥ ∥∇(f(x+ Py1)−∇(f(x+ Py2)∥
≤ L1 ∥P (y1 − y2)∥
= L1 ∥y1 − y2∥ .

The proof is completed.

Now, we can analyze the convergence of SubZero when fixing the subspace.

Lemma 9. [40] Let f ∈ C1,1
L1

(R). Then, for any x ∈ R, we have

Ez[∥gε(x)∥2] = Ez

[
∥f(x+ εz)− f(x)

ε
∥2
]
≤ 4(n+ 4)∥∇fε(x)∥2 + 3ε2L2

1(f)(n+ 4)3, (18)

and

∥∇f(x)∥2 ≤ 2∥∇fε(x)∥2 +
ε2

2
L2
1(f)(n+ 6)3, (19)

where fε(x) = Ez[f(x+ εz)].

Lemma 10. Let y∗ = argminx∈Rq h(y), where h ∈ C1,1
L1

(Rq) and h is non-convex. Suppose Ek = (z0, z1, · · · , zk−1, zk),
where zk ∼ N (0, Iq) and η = 1

4(q+4)L1
. {yk}k>0 is the sequence generated by Algorithm 3. Let ϕ0 = h(y0), and for k ≥ 1,

ϕk = EEk−1
[h(yk)]. For the P defined in (10), which is fixed, we have

ϕk+1 − ϕk ≤ −
1

4
ηEEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1 (20)
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Proof. If a subspace P ∈ Rd×q is fixed, the optimization objective can be reformulated as

min
y∈Rq

h(y) := f(x+ Py),

Let y0 be an initial point and {ηk}k≥0 a sequence of positive real numbers. Consider the randomized gradient search
algorithmRGε(ε > 0):

1) Generate zk and the corresponding gε(yk), where zk ∼ N (0, Iq).
2) Update yk+1 = yk − ηkgε(yk).
We aim to estimate the evolution of the function hε after one iteration of this algorithm.
Given that h is L1-Lipschitz continuous for the first derivative, and hε is Lε-Lipschitz continuous for the first derivative

(where Lε ≤ L1)[40]. Thus, we have

hε(yk+1) ≤ hε(yk)− ηk⟨∇hε(yk), gε(yk)⟩+
1

2
η2kLε∥gε(yk)∥2.

Taking expectation with respect to zk, we obtain

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2 +

1

2
η2kLε Ezk

[∥gε(yk)∥2].

Since h ∈ C1,1(Rq), from Lemma 9, we have

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2

+
1

2
η2kL1

(
4(q + 4)∥∇hε(yk)∥2 + 3ε2L2

1(q + 4)3
)
.

Setting ηk = η̂ = 1
4(q+4)L1

, we get

Ezk
[hε(yk+1)] ≤ hε(yk)−

1

2
η̂∥∇hε(yk)∥2 +

3ε2

32
L1(q + 4).

Taking the expectation with respect to Ek, we get

ϕk+1 ≤ ϕk −
1

2
η̂EEk

[∥∇hε(yk)∥2] +
3ε2(q + 4)

32
L1,

From Lemma 9, we have EEk
[∥∇h(yk)∥2] ≤ 2EEk

[∥∇hε(yk)∥2] + ε2(q+6)3

2 L2
1. Therefore,

ϕk+1 − ϕk ≤ −
1

4
η̂EEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1. (21)

The proof is completed.

Next, we need to measure the randomness of our random subspace. From Lemma 14, if the projection matrix is obtained by
Algorithm 1, we have E[PP T ] = q

dI , where q represents the dimension of the subspace, d represents the dimension of the
origin space, and P = V ⊗U (see Lemma 1).

Lemma 11. Let matrix A = (a1,a2, · · · ,ar) ∈ Rn×r be composed of column vectors ak which are mutually independent
and ak ∈ N (0, In). Suppose Gram-Schmidt process uk = ak−

∑k−1
s=1 ⟨ak, es⟩ es and ek = uk

∥uk∥ . [ak]i ↔ [ak]j represents
the exchange of the i-th element and the j-th element of ak, while all other elements remain unchanged. [ak]i = −1× [ak]i
signifies that only the i-th element of ak is multiplied by −1, while all other elements remain unchanged. Suppose f(A,U ,E)
be a function of the matrix A, U = (u1,u2, · · · ,ur) and E = (e1, e2, · · · , er), then

(1) if [ak]i ↔ [ak]j or [ak]i = −1× [ak]i, E[f ] remain unchanged.
(2) if [ak]i ↔ [ak]j ⇒ [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .
(3) if [ak]i = −1× [ak]i ⇒ [uk]i = −1× [uk]i , [ek]i = −1× [ek]i, [uk]j = 1× [uk]j , and [ek]j = 1× [ek]j , where

i ̸= j.
(4) E

[
[uk]

2
i

⟨uk,uk⟩

]
= 1

n .

(5) E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.
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Proof. According to real analysis, the matrix A is full rank almost everywhere under a Gaussian distribution, and both uk and
ek are non-zero almost everywhere.

(1) Since ak is independently and identically distributed, it obviously holds.
(2) For base case k = 1, it obviously holds. Assume the result holds for all k = 1, 2, · · · , k − 1, where k ≥ 2,

then [ak]i ↔ [ak]j ⇒ [uk]i = [ak]i −
∑k−1

s=1 ⟨ak, es⟩ [es]i, [uk]j = [ak]j −
∑k−1

s=1 ⟨ak, es⟩ [es]j , [ek]i = [uk]i
∥uk∥ , and

[ek]j =
[uk]j
∥uk∥ .

Thus, by strong induction, we have [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .
(3) For base case k = 1, it obviously holds. Assume the result holds for all k = 1, 2, · · · , k − 1, where k ≥ 2, then

[ak]i = −1× [ak]i ⇒
{
[uk]i = [ak]i × (−1)−

∑k−1
s=1 ⟨ak, es⟩ [es]i × (−1) = [uk]i × (−1)

[uk]j = [uk]j × 1, i ̸= j

⇒

{
[ek]i × (−1) = [uk]i

∥uk∥ × (−1)
[ek]j = [ek]j × 1, j ̸= i

By strong induction, we have [uk]i = −1× [uk]i , [ek]i = −1× [ek]i, [uk]j = 1× [uk]j , and [ek]j = 1× [ek]j , where
i ̸= j.

(4) Since
∣∣∣ [uk]

2
i

⟨uk,uk⟩

∣∣∣ ≤ 1, E
[

[uk]
2
i

⟨uk,uk⟩

]
exists. [ak]i ↔ [ak]j ⇒ [uk]

2
i

⟨uk,uk⟩ ↔
[uk]

2
j

⟨uk,uk⟩ .

Thus, E
[

[uk]
2
i

⟨uk,uk⟩

]
× n =

∑n
s=1 E

[
[uk]

2
s

⟨uk,uk⟩

]
= E

[
⟨uk,uk⟩
⟨uk,uk⟩

]
= 1⇒ E

[
[uk]

2
i

⟨uk,uk⟩

]
= 1

n .

(5) Since
∣∣∣ [uk]i[uk]j

⟨uk,uk⟩

∣∣∣ ≤ ∣∣∣ [uk]
2
i+[uk]

2
j

2⟨uk,uk⟩

∣∣∣ ≤ 1, E
[
[uk]i[uk]j
⟨uk,uk⟩

]
exists.

[ak]i = [ak]i ×−1⇒ E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= E

[
−[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.

Lemma 12. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each element of A is an i.i.d. N (0, 1)
random variable. Suppose A undergoes QR decomposition via the Gram-Schmidt process to yield a column-orthogonal
matrix Q ∈ Rn×r with orthonormal columns e1, e2, . . . , er and an upper triangular matrix R ∈ Rr×r. Then, for each
k = 1, 2, . . . , r, the expected value of the outer product of the k-th orthonormal column vector ek of Q is given by:

E[ekeTk ] =
1

n
I,

where I is the n× n identity matrix.

Proof. By the Gram-Schmidt process, we have ek = uk

∥uk∥ , where uk = ak −
∑k−1

s=1 ⟨ak, es⟩es. Thus, ekeTk =
uku

T
k

⟨uk,uk⟩ .
The (i, j)-th entry of E[ekeTk ] can be written as:

E[[ekeTk ]ij ] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
.

For diagonal entries (i = j): When i = j, from Lemma 11(4), we have:

E[[ekeTk ]ii] = E
[

[uk]
2
i

⟨uk,uk⟩

]
=

1

n
.

For off-diagonal entries (i ̸= j): When i ̸= j, from Lemma 11(5), we have:

E[[ekeTk ]ij ] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0.

Combining these two cases, we conclude that E[ekeTk ] is a diagonal matrix with all diagonal entries equal to 1
n . Thus,

E[ekeTk ] =
1

n
I,

where I is the n× n identity matrix. The proof is completed.
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Lemma 13. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each element of A is an i.i.d. N (0, 1)
random variable. Suppose A undergoes QR decomposition to yield an orthogonal matrix Q ∈ Rn×r with orthonormal
columns and an upper triangular matrix R ∈ Rr×r. Then, the expected value of the outer product of the matrix Q with itself
is given by:

E[QQT ] =
r

n
I

where I is the n× n identity matrix.

Proof. The QR decomposition of A is given by A = QR, where Q is an orthogonal matrix with columns e1, e2, . . . , er and
R is an upper triangular matrix. Since Q is orthogonal, QQT = Ir, where Ir is the r× r identity matrix. We aim to compute
E[QQT ]. By linearity of expectation and the fact that the columns of Q are orthonormal, we have:

E[QQT ] = E

[
r∑

k=1

eke
T
k

]
=

r∑
k=1

E[ekeTk ].

From Lemma 12, we know that E[ekeTk ] =
1
nI for each k. Therefore:

E[QQT ] =

r∑
k=1

1

n
I =

r

n
I.

The proof is completed.

Lemma 14. Let A1 ∈ Rm×r and A2 ∈ Rn×r be matrices with independent standard normal entries, i.e., each element of A1

and A2 is an i.i.d. N (0, 1) random variable. Suppose A1 and A2 undergo QR decomposition to yield orthogonal matrices
Q1 ∈ Rm×r and Q2 ∈ Rn×r with orthonormal columns, respectively. Define P = Q2⊗Q1, where ⊗ denotes the Kronecker
product. Then, the expected value of the outer product of the matrix P with itself is given by:

E[PP T ] =
r2

mn
I,

where I is the mn×mn identity matrix.

Proof. The Kronecker product P = Q2 ⊗Q1 results in a matrix P ∈ Rmn×r2 . From Lemma 13, we have Q1Q
T
1 = r

mI
and Q2Q

T
2 = r

nI . We aim to compute E[PP T ]. Using the properties of the Kronecker product, we have:

E[PP T ] = E[(Q2 ⊗Q1)(Q
T
2 ⊗QT

1 )] = E[(Q2Q
T
2 )]⊗ E[(Q1Q

T
1 )] =

r2

mn
I ⊗ I =

r2

mn
I

The proof is completed.

Now we can assess the impact of the lazy updates to P .

Theorem 3. Let x∗ = argminx∈Rd f(x), where f ∈ C1,1
L1

(Rd) and f is non-convex. Suppose Ek = (z0, z1, · · · , zk), where
zk ∼ N (0, Iq) and η = 1

4(q+4)L1
. {xk}k>0 is the sequence generated by Algorithm 3. For the P defined in (10), which is

updated lazily at a fixed frequency F , we have

1

T

T−1∑
k=0

EEk

[
∥∇f(xk)∥2

]
≤ ϵ

for any T = Ω(dϵ ) if ε ≤ O
(

ϵ1/2

q3/2d1/2L
3/2
1

)
, where T = KF , K represents the total number of subspace updates, and ε

represents perturbation scale.

23



Proof. Suppose Pj = (P0,P1, · · · ,Pj), where Pj is the sequence generated by Eqn. (10) and j ≤ K. In accordance with
Lemma 8 and Lemma 10, if the subspace is fixed, we can transform the original problem f ∈ C1,1

L1
(Rd) into h ∈ C1,1

L1
(Rq)

through transformation h(y) = f(x+ Py). Consider the update rule:

yj,0 = 0, hj(y) = f(xjF + Pjy),∀j ∈ 0, 1, · · · ,K − 1 (22)

yj,k = yj,k−1 − η∇̂hj(yj,k−1),∀k ∈ 0, 1, · · · , F (23)
xjF+k = xjF + Pjyk, (24)

In the j-th subspace, the projection matrix Pj remains constant, hence we can accumulate the changes of ϕ within the current
subspace. Using Lemma 10, we have

ϕ(j+1)F − ϕjF ≤ −
1

4
η̂

K−1∑
i=0

EEjF+i

[
∥∇hj(yj,i)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1 (25)

≤ −1

4
η̂EEjF

[
∥∇hj(yj,0)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1. (26)

Additionally, we note that ∇hj(yj,0) = (Pj)
T∇f(xjF ). Taking expectations over the overall historical projection matrix Pj ,

and noting Lemma 14, E[Pj(Pj)
T] = q

dI , with Pj independent of xjF , we get

EPj+1 [ϕ(j+1)F ]− EPj [ϕjF ] ≤ −
1

4
η̂EEjF ,Pj

[
∥(Pj)

T∇f(xjF )∥2
]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1 (27)

= − q

4d
η̂EEjF ,Pj

[
∥∇f(xjF )∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1. (28)

Assuming f(x) ≥ f∗ holds for all x ∈ Rd, and letting T = KF , summing the inequality yields

EPK−1
[ϕT ] ≤ EP0

[ϕ0]−
q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (29)

Since EPK−1
[ϕT ] ≥ f∗, we have:

f∗ ≤ EP0
[ϕ0]−

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (30)

Rearranging the inequality, we get

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
≤ EP0

[ϕ0]− f∗ + T
ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (31)

Substituting η̂ = 1
4(q+4)L1

, we obtain:

q

16d(q + 4)L1

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
≤ EP0

[ϕ0]− f∗ + T
ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (32)

Thus, we have

1

T

T∑
k=0

EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ 16(q + 4)dL1(EP0

[ϕ0]− f∗)

qT
+

2ε2(q + 6)3(q + 4)d

q
L3
1 +

3ε2(q + 4)2d

2q
L2
1. (33)

To ensure
∑T

k=0 EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ ϵ, we can choose

ε ≤ O

(
ϵ1/2

q3/2d1/2L
3/2
1

)
.

So that after Ω
(
d
ϵ

)
iterations,

∑T
k=0 EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ ϵ. The proof is completed.
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