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With his formal analysis in 1951, the physicist Pyotr Kapitza demonstrated that an inverted
pendulum with an externally vibrating base can be stable in its upper position, thus overcoming the
force of gravity. Kapitza’s work is an example that an originally unstable system can become stable
after a minor perturbation of its properties or initial conditions is applied. Inspired by his ideas, we
show how non-Foster circuits can be stabilized with the application of external electrical vibration,
i.e., time modulations. Non-Foster circuits are highly appreciated in the engineering community,
since their bandwidth characteristics are not limited by passive-circuits bounds. Unfortunately,
non-Foster circuits are usually unstable and they must be stabilized prior to operation. Here, we
focus on the study of non-Foster L(t)C circuits with time-varying inductors and time-invariant
negative capacitors. We find an intrinsic connection between Kapitza’s inverted pendulum and non-
Foster L(t)C resonators. Moreover, we show how positive time-varying modulations of L(t) > 0
can overcome and stabilize non-Foster negative capacitances C < 0. These findings open up an
alternative manner of stabilizing electric circuits with the use of time modulations, and lay the
groundwork for application of, what we coin Vibrational Electromagnetics, in more complex media.

I. INTRODUCTION

In 1951, Nobel laureate Pyotr Kapitza introduced a
theory that effectively described the physics of one of the
systems that physicists were unable to interpret at that
time: the inverted pendulum with a vibrating base [1, 2].
The history of this problem dates back to 1908, when
physicist Andrew Stephenson suggested that the upper
position in a conventional pendulum could become sta-
ble with the addition of a high-frequency vibrating base
with a small amplitude of vibration [3]. The addition
of this external element can indeed counteract the force
of gravity that pulls the pendulum downwards, causing
the pendulum to swing around its upper position with-
out falling down. An experiment of this fascinating phe-
nomenon can be easily performed in a high school class-
room nowadays, although necessary conditions for stabil-
ity are not trivial and were far from clear until Kapitza’s
formal analysis in 1951.

Kapitza’s approach was based on the separation of the
time scales and the use of time-averaging techniques [4].
He assumed that the external vibrating base oscillates
with a frequency Ω much higher compared to the nat-
ural oscillating frequency of the pendulum, ω0 ≡

√
g/l

(g ≈ 9.81 m/s2 is the acceleration of gravity and l is the
length of the pendulum). If, additionally, the amplitude
of the modulation δ is small compared to the length of
the pendulum l, perturbation techniques can be invoked
to reach an approximate analytical solution. In a sce-
nario with these characteristics, it is possible to describe
the motion (i.e., the pendulum’s angle θ(t) in Fig. 1) of
the inverted pendulum with a vibrating base by separat-
ing the total contribution into two main terms: the slow
and fast components of θ(t) = θs(t) + θf (t) . The slow
component θs(t), a low-frequency term, represents the
main contribution. On the other hand, the fast compo-
nent θf (t), a small-amplitude and high-frequency term, is
a secondary perturbative contribution. Interestingly, the

time scales of the slow and fast components are rather
different. Kapitza took advantage of that to find an ana-
lytical relation between the two and obtained physically-
insightful explanation to the stability problem. See the
supplementary materials for some details.

Appealingly, Kapitza’s ideas have transcended the sci-
entific community beyond their initial application in
the description of the mechanics of the inverted pen-
dulum, leading to the subject of Vibrational Mechan-
ics. A variety of stimulations with different time scales
are commonly seen in different fields of science and en-
gineering. The overall low-frequency response of lin-
ear and, especially, nonlinear systems excited by multi-
ple inputs may be significantly affected by weak time-
varying high-frequency contributions [5–7]. This phe-
nomenon is named as Vibrational Resonance, term origi-
nally coined by Landa and McClintock [8] when studying
high-frequency nonlinear oscillators and their connection
to stochastic terms. Kapitza-inspired techniques have
been applied to the analysis of a wide variety of physi-
cal, electronic and biological systems, such as the Chua’s
circuit [9], lasers [10], logic gates [11], energy harvesters
[12], quantum wells [13], Hindmarsh-Rose neuronal sys-
tems [14], stratified media [15] or time-periodic potentials
[16, 17].

Concurrently, in a completely different discipline, the
field of metamaterials has recently gained renewed atten-
tion with the inclusion of temporal modulations as part
of their inner structure [18, 19]. The so-called space-
time or four-dimensional (4D) metamaterials are engi-
neered structures whose mechanical or electrical proper-
ties change over space and time [20]. The use of time
in material parameter variation as a new degree of free-
dom has allowed for innovative designs that overcome the
performance of their static, time-invariant counterparts,
such as magnetless non-reciprocal devices [21, 22], beam-
formers and beamsteerers [23, 24], frequency converters
[25, 26], power combiners [27], or temporal lenses [28].
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Figure 1. Connection between Kapitza’s inverted pendulum
and time-modulated non-Foster circuits. Vibrational reso-
nances appear in both systems, making them stable.

In a different context, temporal modulations have en-
abled an alternative scheme to produce non-Foster elec-
tronic components [29–32]; namely, circuit elements that
do not satisfy Foster’s reactance theorem [33]. Non-
Foster circuits are active structures whose bandwidth
characteristics are not limited by Bode-Fano and Carlin-
La Rosa bounds [34–36]. For instance, antenna and
metamaterial communities have benefited of their use
to improve impedance matching performance [37]. One
of the conventional methods for implementing simple
non-Foster elements, such as negative resistors, induc-
tors or capacitors, is via the negative impedance convert-
ers formed by transformers and cross-coupled transistors
[38]. In fact, first patented ideas on the production of
non-Foster elements date back to the 1920s and 1930s
[39–41]. Unfortunately, non-Foster components are usu-
ally unstable and their stabilization is a challenging task
[42–44].

In the present work, inspired by Kapitza’s ideas and
the field of Vibrational Mechanics, we analyze the sta-
bility conditions of time-varying non-Foster resonators.
First, we will focus on scenarios where the inductor is
time modulated and the capacitor has a time-invariant
negative capacitance. Then, we will show how a time
modulated positive inductance L(t) > 0 can stabilize a
negative element capacitance C < 0. This phenomenon,
which may seem unexpected or counterintuitive at first,
is a result of a vibrational resonance occurred in the
non-Foster resonator. Moreover, we will show that the
frequency of the already stabilized non-Foster resonator
can be tuned over time by dynamically changing L(t).

II. CONNECTION BETWEEN THE
NON-FOSTER L(t)C AND KAPITZA’S

INVERTED PENDULUM

Let us consider the non-Foster L(t)C resonator
sketched in Figure 1, formed by a time-invariant nega-
tive capacitor C < 0 and a time-varying inductor L(t). In

the time-invariant capacitor, the relation between voltage
vc(t) and current ic(t) is given by iC(t) = C dvC(t)/dt.
Similarly, the instantaneous relation between current
iL(t) and voltage vL(t) in the time-varying inductor is
given by vL(t) = d[L(t) iL(t)]/dt. Simple circuit analy-
sis reveals that the differential equation that models the
current in the non-Foster L(t)C resonator takes the form

i′′(t) + p(t) i′(t) + q(t) i(t) = 0 . (1)

Prime (′) and double prime (′′) notation indicates the
first and second derivatives of the considered function.
This equation is a second-order linear ordinary differen-
tial equation (ODE) with variable coefficients p(t) and
q(t). The variable coefficients are computed as

p(t) ≡ 2L′(t)

L(t)
, q(t) ≡

1
C + L′′(t)

L(t)
. (2)

Please note that, in the absence of modulation (δ = 0),
the governing ODE reduces to that of a conventional LC
circuit with time-invariant elements. In addition, it can
be shown that the inclusion of loss terms via a time-
invariant resistor R, to form a series RL(t)C resonator,
only affects the value of the coefficient p(t), which should
be simply updated to p(t) = (2L′(t) +R)/L(t). (See the
Suplementary Materials.)
The fact of having variable coefficients p(t) and q(t)

that depend not only on the applied modulating L(t),
but also on its first and second derivative, complicates
the analysis of the circuit considerably. It also makes
it difficult to draw direct relationships and analogy be-
tween the L(t)C circuit and Kapitza’s inverted pendu-
lum. Therefore, we now reduce the original ODE to an
equivalent differential equation that is simpler to analyze.
Given the change of variable

i(t) = ϕ(t) e−
1
2

∫ t
0
p(τ)dτ , (3)

a second-order linear ODE such as eq. (1) can be trans-
formed to the normal form [45]

ϕ′′(t) +X(t)ϕ(t) = 0 , (4)

where X(t) ≡ q(t) − 1
2p

′(t) − 1
4p

2(t). For the vari-
able coefficients p(t) and q(t) in eq. (2), the term
X(t) = 1/[L(t)C] and the ODE for the new variable ϕ(t)
takes the form

ϕ′′(t) +
1

L(t)C
ϕ(t) = 0 . (5)

In the case of L(t)C resonator, the variable coefficient
p(t) is written as p(t) = 2L′(t)/L(t), whose integral is∫ t

0
p(τ)dτ = 2 ln[L(t)]. Thus, e−

1
2

∫ t
0
p(τ)dτ = 1/L(t) and

i(t) =
ϕ(t)

L(t)
, (6)

for a generic modulation of the inductance L(t). It is
worth noting that in the way eq. (6) is given, the term
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ϕ(t) = i(t)L(t) essentially represents the magnetic flux
associated with the inductor.

To find the current i(t) in eq. (1), we can first solve
for ϕ(t) in eq. (5) and then reapply the change of vari-
able i(t) = ϕ(t)/L(t). This way of proceeding is more
convenient, since it provides us with relevant informa-
tion about the stability conditions of the system. By
inspecting eqs. (5) and (6), it is clear that the current
i(t), so the non-Foster resonator, will be stable as long
as ϕ(t) is stable and 1/L(t) is bounded. Naturally, it is
easier to set stability criteria for ϕ(t) in (5) than directly
for eq. (1). Moreover, the mathematical reduction of the
original ODE now shows a direct physical connection be-
tween the non-Foster L(t)C and the inverted pendulum.
It can be shown (See the supplementary materials) that
the ODE that describes the temporal evolution of the
angle θ(t) in Kapitza’s inverted pendulum is

θ′′(t) +
[
αΩ2 cos(Ωt)− ω2

0

]
sin [θ(t)] = 0 , (7)

In eq. (7), the parameter α ≡ δ/l is a dimensionless con-
stant that relates the amplitude of the added mechanical
vibration δ and the fixed length of the pendulum l, Ω
is the angular frequency of the added mechanical vibra-
tion, and ω2

0 ≡ g/l is the square of the natural oscillation
frequency of the pendulum (g ≈ 9.81 m/s2 is the accel-
eration of gravity). We note that the reduced ODE (5)
in the L(t)C resonator has the same exact form as the
ODE (7) in Kapitza’s inverted pendulum in the case of
considering small angles θ(t). Note that in the small-
angle approximation, sin[θ(t)] ≈ θ(t). In fact, it is pos-
sible to mimic the behavior of the inverted pendulum by
selecting a proper modulation of the inductance L(t). To
do so, we have to enforce αΩ2 cos(Ωt)− ω2

0 = 1/[L(t)C].
Thus, the time modulation L(t) that mimics the response
of Kapitza’s inverted pendulum is

L(t) =
1

C [αΩ2 cos(Ωt)− ω2
0 ]

, (8)

The associated current i(t) is computed via eq. (6):

i(t) = ϕ(t)C
[
αΩ2 cos(Ωt)− ω2

0

]
. (9)

Inspection of eq. (9) reveals that the current i(t) essen-
tially represents an amplitude-modulated version of the
temporal evolution of the angle in the inverted pendu-
lum, as ϕ(t) effectively plays the role of θ(t).

Kapitza showed that the inverted pendulum can be
stable in its upper vertical position as long as the fre-
quency of the mechanical vibration Ω exceeds the limit
value Ωlim =

√
2ω0/α, which dictates that, no matter

how small the relative amplitude of the applied vibration
α is, we can always use a frequency Ω > Ωlim high enough
to make the inverted pendulum stable. Same rationale
applies for the non-Foster L(t)C resonator. When the
applied time modulation of L(t) is that of eq. (8), the
non-Foster resonator can become stable if the frequency
of the electrical vibration Ω exceeds the limit frequency
Ωlim.

(a) (b)

Figure 2. Current i(t) in the non-Foster L(t)C resonator.
The modulated L(t) is the one that mimics the behavior of
Kapitza’s inverted pendulum [eq. (8)]. (a) Unstable case. (b)
Stable case. The red dotted line represents a normalized ver-
sion of ϕ(t). Parameters: α = 0.1, C = −10−3 F.

Figure 2 illustrates the stabilization of the non-Foster
circuit as a result of the applied modulation frequency
Ω. In order to compute the current in the circuit, we
extract ϕ(t) by numerically solving the ODE (5) and then
use eq. (9) to recover i(t). The relative amplitude of the
modulation is chosen to be α = 0.1, a relatively small
value. For this amplitude, the limit frequency that marks
stability is Ωlim =

√
2ω0/0.1 ≈ 14.14ω0. Above Ωlim,

the L(t)C circuit will be stable. The considered initial
conditions are ϕ(0) = ϕ0 and ϕ′(0) = 0, with ϕ0 = −0.2.
These values translate into the following initial conditions
for i(t): i(0) = ϕ0C(αΩ2 − ω2

0) and i′(0) = 0.
Figure 2(a) shows an unstable case, with Ω less than

the limit frequency. Figure 2(b) shows a stable case, with
Ω greater than the limit frequency. The term ϕ(t) is es-
sentially a scaled version of the envelope of the current
i(t) flowing through the non-Foster circuit. Naturally,
this can also be inferred after inspecting eq. (9). Red
dotted line in Figures 2(a) and (b) represent ϕ(t) after
normalization. In addition, please note that, when the
applied modulation of L(t) is that of eq. (8), the mag-
netic flux ϕ(t) would also represent the angle θ(t) in a
Kapitza’s inverted pendulum. Thus, if ϕ(t) is stable, then
the current i(t) is stable too.

III. STABILIZATION VIA POSITIVE L(t)

In the previous section, we have shown the physi-
cal correspondence between Kapitza’s inverted pendulum
and the non-Foster circuit. Moreover, we have illustrated
that the non-Foster L(t)C circuit can be stable if L(t) is
given by eq. (8) and the modulation frequency Ω exceeds

Kapitza’s limit value Ωlim =
√
2ω0/α. Unfortunately,

the use of (8) presents two main impracticalities. The
first one is that |L(t)| → ∞ at some temporal instants
t. Nonetheless, this impracticality is probably the least
important, since it is possible to take sufficiently large,
but finite, values of the inductance to approximate the
asymptotic behavior of L(t). The second and most im-
portant impracticality of using eq. (8) is that L(t) be-
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comes negative. Actually, L(t) is negative approximately
half of the modulation period and positive the other half.
Not only do we need a time-varying inductor to stabilize
the circuit, which is not easy to put into practice, but we
also need it to alternate between positive and negative
inductance values, which makes it effectively impossible.

Now, the question that remains is: can we find a mod-
ulating L(t) > 0 that avoids the use of negative and
zero values? Eq. (5) leaves this possibility open. If it is
possible to find a stable ϕ(t) for a positive-valued time-
modulated inductor L(t), then the current i(t) (and thus
the voltage) should be stable too. Finding via trial and
error a non-negative expression for L(t) that makes the
non-Foster system stable is really inefficient. In this re-
gard, the technique developed in [29, 32] can be help-
ful. The underlying idea there is that temporal mod-
ulations of a circuit element with positive values (e.g.,
a capacitor) allow to mimic the response of positive-
or negative-valued time-invariant circuit elements. A
double-negative (Leq < 0 and C < 0) non-Foster res-
onator is naturally stable. Thus, if a positive time-
varying inductor L(t) > 0 behaves, equivalently, as a
negative-valued time-invariant inductor Leq < 0, then
the time-varying non-Foster resonator will be stable.

In order to ensure that the time-varying inductor L(t)
behaves exactly the same as an equivalent (negative-
valued) time-invariant inductor Leq, voltages and cur-
rent flowing through both terminals have to be identical
(d[L(t)iL(t)]/dt = Leq d[iLeq(t)]/dt and iL(t) = iLeq(t)).
Voltage and current equalities lead to the expression for
L(t):

L(t) = Leq +
c1

iLeq(t)
, (10)

where c1 is a generic constant of integration. The pres-
ence of the constant c1 highlights the fact that there are
infinite solutions for L(t) that replicate the response of
the time-invariant inductor Leq.

In a conventional LeqC resonator formed by a nega-
tive inductor Leq and a negative capacitor C, the cur-
rent iLeq flowing through the inductor can be computed
as iLeq = −iC = −C dv/dt. In this scenario, the tempo-
ral evolution of the voltage across a capacitor C initially
charged with the conditions v(0) = v0 and v′(0) = 0
will be of the form v(t) = v0 cos(ωeqt). The term

ωeq = 1/
√
LeqC represents the natural oscillation fre-

quency of the equivalent LeqC resonator. Taking the
derivative of v(t), the current iLeq(t) can be expressed as
iLeq(t) = +v0Cωeq sin(ωeqt).

The former expression for the current iLeq should be
inserted into eq. (10) to compute the expression of the
time-varying inductor L(t) that mimics the behavior of
the negative Leq. However, the expression for L(t) could
still be giving negative values. Moreover, the current
iLeq(t) nulls at the instants ωeqt = nπ, with n = 0, 1, 2...,
leading to singularities in L(t). Both inconveniences can
be solved by connecting a DC current source I in parallel
with the L(t)C and LeqC resonators. After connecting

(a) (b)

Figure 3. Stabilization of the non-Foster L(t)C resonator with
a positive-valued time modulated L(t) > 0. (a) Effect of
varying the equivalent inductance Leq (for c1 = 10, I = 3
A). (b) Effect of varying the DC current source (for c1 = 10,
Leq = −1 H). In all cases, we have considered C = −1 F.

the DC current source, the current iLeq is simply com-
puted as iLeq(t) = I− iC(t) = I+v0Cωeq sin(ωeqt). This
leads to a time modulation of L(t) of the form

L(t) = Leq +
c1

I + v0Cωeq sin(ωeqt)
. (11)

By inspecting eq. (11), it can be readily inferred that
it is possible to select c1 and a DC source I that gen-
erate positive values of L(t) for all time instants, i.e.,
L(t) > 0. This modulation is indeed more convenient
from a practical perspective that the one mimicking the
response of Kapitza’s inverted pendulum [eq. (8)], which
also gave stability but at the cost of requiring negative
time-modulated inductance values. Moreover, the cre-
ated stability in the non-Foster circuit via modulations
of the form (11) can be explained based on the stability
of another known system [46]: the time-invariant LeqC
resonator with Leq < 0 and C < 0. The reader is referred
to the Supplementary Material for further information.
The proposed positive time modulation of L(t) in

eq. (11) mimics the response of an equivalent negative
Leq. Therefore, the global response of the non-Foster
L(t)C resonator connected to a DC current source is ex-
pected to be stable. In fact, eq. (11) fixes a priori the
conditions of stability for the non-Foster circuit. Pro-
vided that Leq and C are negative, voltage v(t) and cur-
rent i(t) flowing through the time-varying inductor are
periodic, of frequency ωeq = 1/

√
LeqC and peak ampli-

tudes |v0| and |I − v0Cωeq|, respectively.
Figure 3 illustrates a numerical example involving the

use of the time modulation in eq. (11) and the stabiliza-
tion of the non-Foster resonator. Top, middle and bot-
tom panels represent the applied time modulated L(t),
the voltage in the time-varying inductor vL(t), and the
current in the time-varying inductor iL(t), respectively.
Figure 3(a) shows two different scenarios for a L(t)C res-
onator with C = −1 F. The selected time modulations,
which follow the expression of eq. (11), are positive in
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Figure 4. Dynamic reconfiguration of frequency in the non-
Foster L(t)C resonator. Parameters: C = −1 F, I = 5 A,
c1 = 10.

both cases, but lead to very different voltage and current
curves. The black curve, where the time-varying mod-
ulation of L(t) mimics the action of a positive-valued
time-invariant equivalent inductance, represents an un-
stable case. See how the voltage and current grow ex-
ponentially over time. On the other hand, the red curve
represents a stable case, with L(t) mimicking an equiva-
lent negative-valued time-invariant Leq. In this case, the
temporal variation is a periodic oscillation of frequency
ωeq. Figure 3(a) clearly shows how the non-Foster L(t)C
resonator can be stabilized with a positive modulation
L(t) > 0.

Figure 3(b) illustrates the effect of the DC current
source I for a fixed equivalent inductance Leq = −1 H.
As seen, the DC current source has no effect on the volt-
age vL(t). This is because the capacitor blocks its DC
component. Conversely, the effect of I is visible in the
current iL(t). The DC current source simply raises the
current in the inductor by a value of I. Additionally,
although not explicitly shown, the constant c1 has no
effect on either voltage or current. From a practical per-
spective, the constant c1 should be considered as a free
parameter that, together with the DC current, helps to
create a positive modulation for all time instants.

Playing with the value of Leq gives a route to dynam-
ically tune the frequency ωeq of the already stabilized
non-Foster circuit. This represents an interesting dif-
ference with respect to the conventional time-invariant
LC circuits, whose natural oscillation frequency is fixed
and cannot be changed for a given inductor and capaci-
tor. Thus, the L(t)C circuit can be used as a frequency
reconfiguration. Figure 4 illustrates this functionality.
The value of Leq is dynamically changed three times us-
ing three different temporal modulations of the positive-

valued L(t): from Leq1 = −1 H to Leq2 = −1/9 H, and
then to Leq3 = −1/4 H. For a capacitor C = −1 F,
the associated equivalent frequencies are ωeq1 = 1 rad/s,
ωeq2 = 4ωeq1, ωeq3 = 2ωeq1, respectively. Figure 4(a)
shows the time-varying inductance L(t) that creates the
three equivalent inductances. Figure 4(b) illustrates how
the voltage in the inductor dynamically changes as a re-
sult of changing L(t). Results show that frequency recon-
figuration/tuning can be achieved with the non-Foster
resonator. It should be noted that the stability of the
results is also dependent on the discontinuities generated
in the changes of L(t) and the applied initial conditions.
Moreover, it is expected that frequency tuning can also
be achieved with the analogue Foster version of the res-
onator, with positive C and a time modulation of L(t)
that mimics positive equivalent inductances.

IV. CONCLUSION

In this paper, inspired by Kapitza’s ideas, we have
shown that non-Foster L(t)C resonators with time-
varying inductors and negative capacitors can be stabi-
lized with the inclusion of temporal modulations. We
have found a connection between Kapitza’s work on the
inverted pendulum with a mechanically-vibrating base
and time-modulated electric circuits. Eq. (8) provides a
time modulation of L(t) to create a one-to-one correspon-
dence between the angle θ(t) in Kapitza’s pendulum and
the current i(t) in the non-Foster L(t)C circuit. We have
described how i(t) essentially represents an amplitude-
modulated version of θ(t). Unfortunately, the expression
of L(t) in eq. (8) involves negative values and is not con-
venient from a practical perspective. In order to find
a L(t) > 0 that stabilizes the non-Foster circuit with
C < 0, we apply the technique introduced in [32]. With
the positive L(t) > 0 given by eq. (11) (and the addi-
tion of a DC current source I), we mimic the behavior
of an equivalent negative inductor Leq < 0, thus stabiliz-
ing the non-Foster circuit. Moreover, how the oscillation
frequency ωeq of the already stabilized circuit can be re-
configured in real time, giving a route for frequency tun-
ing. These results provide a new approach for stabilizing
electric circuits through time modulations and suggest
Vibrational Electromagnetics as a foundation for appli-
cations in more intricate systems and complex media.
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KAPITZA’S INVERTED PENDULUM

Equations

Let us consider the Kapitza’s inverted pendulum shown in Figure 1 [1, 2]. The center pivot is driven to oscillate
up and down, according to the function f(t). The position of the point mass m in the Cartesian coordinate system
is described by the coordinates

x(t) = l sin(θ) , (S1)

y(t) = l cos(θ) + f(t) . (S2)

When f(t) = δ cos(Ωt), the Lagrangian of this lossless system is

L =
1

2
m

[
l2(θ′)2 + 2lδΩsin(Ωt) sin(θ) θ′ + δ2Ω2 sin2(Ωt)

]
−mg [l cos(θ) + δ cos(Ωt)] , (S3)

where the first addend represents the kinetic energy, and the second addend represents the potential energy (negatively
signed) of the inverted pendulum. The superscript (’) represents the first derivative with respect to time.

The application of the Euler-Lagrange equations, d(∂L/∂θ′)/dt − ∂L/∂θ = 0, leads to a second-order nonlinear
ordinary differential equation that describes the evolution of the angle θ as a function of time:

θ′′(t) + sin [θ(t)]
[
αΩ2 cos(Ωt)− ω2

0

]
= 0 , (S4)

with α ≡ δ/l and ω2
0 ≡ g/l being a dimensionless constant and the square of the natural oscillation frequency,

respectively. Note that in the case that the pendulum is not driven (δ = 0), the former ODE reduces to the one of
the conventional simple pendulum.

Slow and Fast Components

The governing ODE for the pendulum has a difficult analytical treatment [1, 2]. Kapitza, based on the idea of
having a high-frequency vibrating component of different characteristics from the natural oscillation frequency of the
pendulum, decided to split the angle θ into two terms: the slow component θs(t) and the fast component θf (t). The
slow component is of high amplitude and low frequency, while the fast component is of small amplitude and high
frequency. Thus, the ODE can be rewritten as

θ′′s (t) + θ′′f (t) + sin (θs(t) + θf (t))
[
αΩ2 cos(Ωt)− ω2

0

]
= 0 . (S5)

From the fast component’s perspective, the slow component is practically constant over the fast period T = 2π/Ω.
Additionally, |θf (t)| ≪ |θs(t)|. Under this assumptions, eq. (S5) reduces to the following equation for the ODE of the
fast component:

θ′′f (t) + αΩ2 cos(Ωt) sin(θs) ≈ 0 (S6)

whose solution will be of the form

θf (t) ≈ α cos(Ωt) sin(θs) . (S7)
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As this equation shows, the fast component is a sort of small-amplitude version of the fast component
(θf ∝ α sin(θs)) that vibrates very fast at a frequency Ω.

In order to extract the ODE for the slow component, eq. (S5) can be time-averaged over the fast period T = 2π/Ω
with the information about θf (t) that it has been already extracted. This leads to

θ′′s (t) + sin (θs(t))

[
α2Ω2

2
cos(θs(t))− ω2

0

]
≈ 0 . (S8)

Eq. (S8) gives us information about the temporal evolution of the slow component θs. With information about the
slow and fast components, the whole solution, θ(t) = θs(t) + θf (t), can be reconstructed. Although eq. (S8) cannot
be easily treated analytically, it can be further manipulated in order to work directly with potentials and thus derive
information about the stable positions, θ = {0, π}, in the inverted pendulum.

INCLUSION OF LOSSES: NON-FOSTER RL(t)C CIRCUIT

Let us consider a non-Foster RL(t)C resonator formed by a time-invariant capacitor of negative capacitance C < 0,
a time-invariant resistor R and a time-varying inductor with positive-valued inductance L(t) > 0,∀t. Circuit elements
R, L(t), and C are connected in series. Voltage-current relations in the capacitor, resistor and inductor are given
by iC(t) = C dvC(t)/dt, vR(t) = RiR(t) and vL(t) = d[L(t) iL(t)]/dt, respectively. Considering that iC(t) = iR(t) =
iL(t) = i(t) and vC(t)+ vR(t)+ vL(t) = 0, circuit analysis leads to the ODE defined in eq. (1), but now with variable
coefficients

p(t) =
2L′(t) +R

L(t)
, q(t) =

1
C + L′′(t)

L(t)
. (S9)

The inclusion of the resistor R incorporates a new addend, i′(t)R/L(t), to the governing ODE. This new addend is
essentially in charge of incorporating losses to the system and attenuating the current i(t) over time if R > 0.

STABILITY THEOREM FOR ϕ(t)

Theorem 8.5 in [46] gives guidance on the stability of one system based on the known stability of another. The
mentioned theorem states that the solutions of linear time-varying system of the form

Φ′(t) +
[
X0 +∆X(t)

]
Φ(t) = 0 (S10)

are stable provided that the solutions of

Φ′(t) +X0Φ(t) = 0 (S11)

are stable too and that
∫∞
0

||∆X(t)|| dt < ∞, where X0 is a constant.
The stability of eq. (5),

ϕ′′(t) +
1

L(t)C
ϕ(t) = 0 ,

and, thus, of the whole non-Foster circuit, for a modulation of the form L(t) = Leq + c1/i(t) can be proven with the
application of Theorem 8.5. This is because the modulation L(t), which is formed by the addition of a constant Leq

and a time-varying term c1/i(t), resembles the form X0 +∆X(t).
We know that the solutions of

ϕ′′(t) +
1

LeqC
ϕ(t) = 0 (S12)

are stable if the constant term 1/(LeqC) is positive. For the case considered in the manuscript, C < 0 and Leq < 0,
the term 1/(LeqC) > 0, thus the solutions ϕ(t) in eq. (S12) are stable. Therefore, the application of Theorem 8.5 in
[46] states that the solutions of eq. (5) are stable too, so does the non-Foster circuit, if the applied modulation is of
the form L(t) = Leq + c1/i(t), with Leq < 0 and C < 0. This holds as long as the time-varying term c1/i(t) does
not lead to a divergent improper integral (

∫∞
0

||∆X(t)|| dt < ∞). i.e., as long as i(t) ̸= 0 ∀t and i(t) is bounded and

decaying over time. Currents i(t) of the form i(t) = [I + i0 sin(ωt)]e
−at ̸= 0 fulfill this condition. This selection of i(t)

is essentially similar to the one chosen in the manuscript [see eq. (11)], since it is possible to select an attenuation
factor a small enough (a → 0+) so that the decay is not appreciable over time and the non-Foster system is stable.
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LIST OF MEDIA AND INCLUDED ANIMATIONS

The following animations regarding Kapitza’s inverted pendulum are included as part of the supplementary material:

• “KapitzasPendulum Omega141omega0.mp4”. Parameters: δ = 0.1, l = 1 m, Ω = 14.1ω0.

• “KapitzasPendulum Omega15omega0.mp4”. Parameters: δ = 0.1, l = 1 m, Ω = 15ω0.

• “KapitzasPendulum Omega20omega0.mp4”. Parameters: δ = 0.1, l = 1 m, Ω = 20ω0.

In all cases, initial conditions are θ(0) = 20 deg, θ′(0) = 0. In order of appearance, the first animation (Ω = 14.1ω0)
shows an unstable solution, while the second (Ω = 15ω0) and third (Ω = 20ω0) animations show stable solutions.
The modulation frequency Ω in the first animation is pretty close to the limit frequency Ωlim that marks stability.
The vibrating base almost counter the effect of gravity, but the modulation frequency is not high enough and the
pendulum eventually falls. Second and third animations illustrate how the mechanical vibration counters the effect
of gravity and keeps the pendulum swinging periodically. See how the slow frequency increases (the period decreases)
as the modulation frequency Ω increases too.
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