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Quasinormal modes (QNMs) are usually characterized by their time dependence; oscillations at
specific frequencies predicted by black hole (BH) perturbation theory. QNMs are routinely identi-
fied in the ringdown of numerical relativity waveforms, are widely used in waveform modeling, and
underpin key tests of general relativity and of the nature of compact objects; a program sometimes
called BH spectroscopy. Perturbation theory also predicts a specific spatial shape for each QNM
perturbation. For the Kerr metric, these are the (s = −2) spheroidal harmonics. Spatial information
can be extracted from numerical relativity by fitting a feature with known time dependence to all
of the spherical harmonic modes, allowing the shape of the feature to be reconstructed; a program
initiated here and that we call BH cartography. Accurate spatial reconstruction requires fitting to
many spherical harmonics and is demonstrated using highly accurate Cauchy-characteristic numeri-
cal relativity waveforms. The loudest QNMs are mapped, and their reconstructed shapes are found
to match the spheroidal harmonic predictions. The cartographic procedure is also applied to the
quadratic QNMs – nonlinear features in the ringdown – and their reconstructed shapes are compared
with predictions from second-order perturbation theory. BH cartography allows us to determine the
viewing angles that maximize the amplitude of the quadratic QNMs, an important guide for future
searches, and is expected to lead to an improved understanding of nonlinearities in BH ringdown.

I. INTRODUCTION

The ground-based gravitational wave (GW) observa-
tories LIGO [1] and Virgo [2] have already observed the
merger of dozens of high-mass binary black holes (BHs)
[3] and the current observing run is expected to yield
many more observations [4, 5]. The final stage of the
merger process, known as the ringdown, is associated
with the remnant object settling down into its final state.
The ringdown can be described by perturbation theory
(PT) which predicts the existence of damped sinusoidal
oscillations, known as quasinormal modes (QNMs) [6].

QNMs can be used directly for parameter estimation,
especially for high-mass systems where only the late in-
spiral is observed [7, 8], or indirectly when incorporated
as part of inspiral-merger-ringdown waveform models [9–
11]. However, the most important application of QNMs is
to tests of general relativity (GR), fundamental physics,
and the nature of extremely compact objects. QNMs
have been used to test Hawking’s area theorem and the
consistency of the inspiral and ringdown signals [12, 13].
The no-hair theorem states that BHs should be com-
pletely characterized by their mass and spin (charge is
excluded for astrophysical BHs). When multiple QNMs
are detected, consistency between their frequencies al-
lows us to test this in a program called BH spectroscopy
[14–16]. This requires the clear identification of at least
two QNMs and this has been the subject of much dis-
cussion in the literature [17–21]. However, to date, all
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observations are consistent with the standard picture of
a vacuum Kerr BH in GR [22].

BH ringdown can also be studied using numerical rel-
ativity (NR). This is typically done by fitting QNMs to
individual spherical harmonic modes of the waveform.
Because the number of QNMs present is unknown a pri-
ori, care must be taken to avoid overfitting [23, 24]. A
related issue is the choice of the start time of the ring-
down, t0. An early start time is preferable because it
maximizes the amount of signal in the ringdown. How-
ever, a later start time is needed for the QNM description
to be valid. The optimal choice of t0 is not well defined
[25, 26] and is further complicated by the possible inclu-
sion of overtones which are known to fit the signal from
as early as the time of peak strain [27, 28]. This suggests
a surprisingly early start time for the ringdown and may
be the result of nonlinearities becoming trapped behind
the common horizon of the merging BHs [29].

Recently, there has been interest in going beyond lin-
ear PT to second order in the metric perturbation, ei-
ther to allow ringdown analyses to start at earlier times
or to reduce the systematic errors from the nonlineari-
ties remaining at late times. A key prediction of second-
order PT is the existence of quadratic QNMs (QQNMs)
[30–32]. These are sourced from a pair of linear ‘parent’
modes, whose frequencies sum to give the QQNM fre-
quency. It has been shown that not only are QQNMs
potentially detectable, they can be comparable in am-
plitude to QNMs. In particular, the QQNM sourced
from the square of the fundamental ℓ = m = 2 QNM
has an amplitude that is comparable to the fundamental
ℓ = m = 4 QNM. Including nonlinear effects will be key
to improving the modeling of the ringdown [23, 24].
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FIG. 1. Left: From NR, the spatial reconstruction of the fundamental QNM (ℓ = m = 2, n = 0, prograde), normalized to
agree with the corresponding spheroidal harmonic, plotted on the sphere in Mollweide projection. This mapping was performed
for the 0001 CCE waveform with a ringdown starting t0 = 8M after the peak of the ℓ = m = 2 mode strain (see Table I). Right:
From PT, the predicted spheroidal harmonic shape. In both panels, the real parts of the functions are plotted and they match
well up to a rotation around the z-axis. The spatial mismatch between these two functions is Mα = 1.16×10−9 (see Sec. II C).
If the reconstruction is performed at different t0, then the reconstruction is observed to rotate around the sphere with angular
frequency equal to the real part of the QNM frequency. Because 0001 is non-precessing, there is a symmetry between the ±m
modes; the (ℓ,m, n) = (2,−2, 0) prograde QNM has a similar structure concentrated in the southern hemisphere.

Another motivation for studying QQNMs is their pos-
sible relationship to the GW memory effect. Sometimes
called non-linear displacement memory, this is the per-
manent displacement in test particle separation after the
passage of a transient GW signal [33–37]. GW mem-
ory has not yet been observed, but is expected to be
prominent in the azimuthally-symmetric m = 0 modes
of the signal [38, 39]. Pairs of prograde modes with ±m
indices have frequencies that are symmetrically placed
in the complex plane and hence source a QQNM with a
purely imaginary frequency. These non-oscillatory modes
resemble a low-frequency, persistent displacement. More-
over, the combination of parent modes with ±m indices
gives rise to QQNMs which are azimuthally symmetric
with m = 0. Together with the inherent nonlinear na-
ture of QQNMs, this hints at a connection which might
allow the GW memory effect to be studied using QNMs.

To date, most fits (using either QNMs or QQNMs)
have been performed to individual spherical harmonics
of the waveform. Alternatively, the GW signal from a
particular viewing direction can be fit. These approaches
do not use all of the information in the NR simulation.
Recently multi-mode, or angle-averaged, fits have been
used, fitting a QNM model to all spherical modes simul-
taneously [40]. By using all the modes (effectively using
the signal at all viewing directions) this exploits all of
the information available in the NR simulation. Angle-
averaged fits required another ingredient from PT: the
predicted distribution of the GW radiation in different di-
rections from the source. This distribution will be called
the ‘spatial shape’ of the QNM and is a function on the
2-sphere. For the Kerr metric, the QNM shapes are given
by the spin-weighted spheroidal harmonics [41]. This in-
formation is usually provided in the mode-mixing coeffi-

cients that relate the spheroidal and spherical harmonics.

It is also possible to extract the QNM shapes directly
from the NR data, without knowledge of the spheroidal
harmonics. By fitting a feature with common time de-
pendence to all spherical modes and treating the mode
mixing coefficients as a free parameters, the shape can
be reconstructed numerically. In analogy to the iden-
tification of modes using their time dependence in BH
spectroscopy, this approach is called BH cartography.

This process can produce a spatial reconstruction of the
shape of any QNM. An example of such a reconstruction
is shown in Fig. 1 for the loudest fundamental QNM.
Because this reconstruction is performed using the GW
signal, it is formally defined on a sphere at future null
infinity. However, it reveals the structure of the pertur-
bations that source the GW signal and are located deep
in the strong gravitational field, near the photon sphere
of the remnant BH.

BH cartography is a novel method for investigating the
ringdown. Applied to the linear QNMs, it merely allows
us to verify a well-understood prediction of first-order
PT, namely the spheroidal harmonics. However, second-
order perturbation theory does not make such a clear,
unique prediction for the QQNM shapes, leading to dif-
ferent predictions being used in the literature [30, 42].
Reconstructing the shapes of the QQNMs numerically
allows us to test the different predictions. These recon-
structions also allow us to determine the viewing direc-
tions that maximize the amplitude of the QQNMs with
implications for their observability. Hence, knowing the
quadratic mixing will be important for future waveform
modelling.

The layout of this paper is as follows. Sec. II describes
the methods used, including a brief introduction to the
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key elements from BH PT (Sec. IIA), the least-squares
fitting procedures to the NR data (Sec. II B), the new
techniques for spatially mapping components of the ring-
down signal (Sec. II C), and the CCE waveforms used in
this study (Sec. IID). In Sec. III the mapping methods
are demonstrated by applying them to the linear QNMs
which are already well understood from linear PT. This
allows us to validate the BH cartography method. Then,
Sec. IV applies the mapping to the QQNMs, revealing the
spatial structure of the nonlinear perturbations. Con-
cluding remarks are presented in Sec. V. Throughout,
natural units are used in which G = c = 1.

II. METHODS

Throughout, h is used to denote the NR waveform and
h to denote a QNM model for the GW signal.

A. Ingredients from perturbation theory

GW signals contain two polarizations; these can be
conveniently combined into a single complex quantity
called simply the GW strain, h = h+−ih×. The radially-
scaled GW strain can be expanded in spin-weight s = −2
spherical harmonics, −2Y

ℓm,

rh(t, θ, ϕ) = M

∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓm(t) −2Y
ℓm(θ, ϕ), (1)

where M is a mass scale, usually taken to be the total
irreducible mass of the source. We adopt the convention
that spherical harmonic indices are placed in superscript
and, when they are introduced, spheroidal harmonic in-
dices will be placed in the subscript. The strain is defined
at future null infinity, parameterized by the angles θ and
ϕ on the sphere and (retarded) time t. The harmonic
modes hℓm(t) are obtained as an output of NR simula-
tions.

In the ringdown, linear PT suggests that the GW
strain can be modeled as a sum of QNMs,

rh(1)(t, θ, ϕ)=M
∑
ℓ,m

∞∑
n=0

[
Cℓmne

−iωℓmn(t−t0)−2Sℓmn(θ, ϕ)

+ C ′
ℓmne

−iω′
ℓmn(t−t0)−2S

′
ℓmn(θ, ϕ)

]
, (2)

where it has been assumed, for simplicity, that the frame
(θ, ϕ) is adapted to the remnant BH. That is, the spin
of the remnant BH points along the z-axis of the chosen
coordinate system. It is always possible to perform a ro-
tation into such a frame. The superscript (1) in the nota-
tion is intended as a reminder that this part of the model
for h comes from linear PT. The ringdown is assumed to
be the perturbation of a Kerr BH, which is naturally de-
scribed using the spheroidal harmonics −2Sℓmn.

Each term in the expansion in Eq. 2 is a QNM. The
indices ℓ ≥ 2 and |m| ≤ ℓ label angular modes while
the index n ≥ 0 labels the radial-like overtones. For
each triple (ℓ,m, n) there exists a pair of QNMs with
different signs of the real part of their QNM frequency,
ω′
ℓmn = −ω∗

ℓ−mn. The modes in this pair are sometimes
referred to as the regular mode and mirror mode (de-
noted with a prime). The mirror modes are associated
with the modified spheroidal harmonics, −2S

′
ℓmn(θ, ϕ) =

−2S
∗
ℓ−mn(π − θ, ϕ). In Eq. 2, this pair of regular and

mirror modes has been written explicitly however, it will
be convenient to distinguish them with another index
p ∈ {+,−} for the regular and mirror mode respectively.
Therefore, a QNM is uniquely identified by the tuple of
four indices (ℓ,m, n, p).
The distinction between regular and mirror modes is

related to the direction in which the perturbation propa-
gates around the Kerr BH. A mode is said to be prograde
(i.e. co-rotating with the BH) if the signs of m and p are
the same (if mp > 0). If mp < 0, then the mode is said to
be retrograde (i.e. counter-rotating with the BH). Modes
with m = 0, along with all QNMs on Schwarzschild BHs,
do not fit either the prograde or retrograde label. Typi-
cally, in a quasi-circular merger, the prograde modes are
excited with significantly larger amplitudes than the ret-
rograde modes.
The QNM model in Eq. 2 involves many indices. In

a moment, when QQNMs are introduced, the number
of indices will increase further. Therefore, it is helpful
to introduce the following abbreviated notation for the
QNM model in Eq. 2;

rh(1)(t, θ, ϕ) = M
∑
α

Cαe
−iωα(t−t0) −2Sα(θ, ϕ), (3)

where α denotes the tuple of QNM indices (ℓ,m, n, p).
The spheroidal harmonics are the natural basis for de-

scribing perturbations of Kerr BHs. The spheroidal basis
does not align perfectly with the spherical basis. This
leads to a phenomenon called mode mixing. The mode
mixing coefficients are functions of the BH spin and are
defined as

µℓm
α =

∫
dΩ −2Sα(θ, ϕ)

(
−2Y

ℓm(θ, ϕ)
)∗
, (4)

where dΩ denotes integration over the sphere
parametrized by the angles θ and ϕ. The mode
mixing coefficients and frequencies were calculated using
the qnm package [43].
Going beyond linear PT introduces additional terms

into the model in Eq. 3. Notable among these are the
quadratic QNMs (QQNMs). This second order part of
the model, denoted with a superscript (2), is given by

rh(2)(t, θ, ϕ) = M
∑
α

∑
α′

Cαα′e−i(ωα+ωα′ )(t−t0) (5)

× Fαα′(θ, ϕ).

Each pair of QNMs, (α, α′), in the linear model (Eq. 3)
generates a QQNM in the quadratic model (Eq. 5).
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The frequency of the QQNM is given by the sum of
the frequencies of the two linear QNMs, ωα + ωα′ . The
spatial structure of the QQNM, Fαα′(θ, ϕ), is expected
to be a product of two spheroidal harmonics. There are
several possibilities for how this might be done. These
are discussed in Sec. IV where they are compared with
the numerical results.

B. Least-squares fitting

The free parameters of the QNM model are the QNM
complex amplitudes Cα. The spheroidal harmonics and
the QNM frequencies are functions of the final spin mag-
nitude of the remnant BH (the frequencies are also scaled
by the remnant mass, Mf ). These were determined from
the asymptotic bondi data objects obtained using the
scri package [44–47] with the relevant files from the CCE
data, and are given in Table I.

To perform model fits to data, we use the least-squares
fit implemented in the qnmfits package [48]. More de-
tails on the single and multi-mode fitting procedure are
given in Appendix A. For all simulations, the time t = 0
is set to be the peak of the amplitude of the 22 mode,
|h22(t)|.
For the NR data used in the fits, if the sums are trun-

cated such that only modes with ℓ ≤ ℓmax are included,
the resultant number of spherical harmonics −2Y

ℓm is
(ℓmax + 3)(ℓmax − 1). For the QNM models, if the sums
are truncated such that all modes with ℓ ≤ ℓmax and
n ≤ nmax are included, the number of QNMs (including
both p = ±1) is 2(ℓmax + 3)(ℓmax − 1)(nmax + 1). Un-
less otherwise stated, all of the results in this paper were
obtained using ℓmax = 8, nmax = 7.
For the QQNM double sum in Eq. 5, only individ-

ual terms were included, corresponding to the specific
QQNMs under investigation.

To measure the quality of a QNM (or QQNM) model fit
to a single spherical mode of the NR data, the mismatch
is used. The mode mismatch is defined as

Mℓm = 1−
|
〈
hℓm

∣∣hℓm〉
|√

⟨hℓm|hℓm⟩ ⟨hℓm|hℓm⟩
, (6)

where the usual signal inner product is denoted with an-
gle brackets and is defined as

〈
hℓm

∣∣hℓm〉
=

∫ T

t0

dt hℓm(t)
(
hℓm(t)

)∗
. (7)

The modulus, denoted | · |, in the numerator of Eq. 6
maximizes the inner product between the model and NR
data with respect to a phase shift.

An angle-averaged mismatch is used to measure the
quality of a model fit to all spherical modes. This is
defined in a similar way to the mode mismatch in Eq. 6,
but it involves all of the spherical harmonic modes and is

averaged over all possible viewing directions. The angle-
averaged mismatch is defined as,

MΩ = 1− | [h|h] |√
[h|h] [h|h]

, (8)

where the angle-averaged inner product, is denoted with
square brackets and is defined as

[h|h] =
∫

dΩ

∫ T

t0

dt h(t, θ, ϕ)h(t, θ, ϕ)∗ (9)

=
∑
ℓ,m

〈
hℓm

∣∣hℓm〉
. (10)

C. Mapping

The spatial mapping technique turns the mode mixing
coefficients from a fixed set of numbers imposed on the
QNM model to a set of parameters that can be freely
varied by the least-squares fitting algorithm.
To implement this, the QNM model in Eq. 2 can be

modified as follows,

rh(1)(t, θ, ϕ) =
∑
α̸=α̃

[
Cαe

−iωα(t−t0) −2Sα(θ, ϕ)
]

(11)

+
∑
ℓ,m

[
Aℓm

α̃ e−iωα̃(t−t0) −2Y
ℓm(θ, ϕ)

]
.

Here, α̃ is mode that is being spatially mapped. The first
summation is the same as in the usual model in Eq. 3 and
includes all modes except the one that is mapped. The
second summation has only one QNM, the mapped mode
α̃, but includes an independent copy of it separately in
each spherical harmonic. In this model, Cα and Aℓm

α̃ are
regarded as free complex amplitudes to be determined
from the NR data by least-squares fitting. The mapping
model in Eq. 11 can be expanded in spherical harmonics
using the mode mixing coefficients in Eq. 4,

rh(1)(t, θ, ϕ) =
∑
ℓ,m

rh(1)ℓm(t)−2Y
ℓm(θ, ϕ), where

(12)

rh(1)ℓm(t) = Aℓm
α̃ e−iωα̃(t−t0) +

∑
α̸=α̃

Cαµ
ℓm
α e−iωα(t−t0).

In this form it is more easily seen how the new free am-
plitude parameters Aℓm

α̃ take on the role of the mixing
coefficients for the mapped mode α̃.
The mapped QNM has one such amplitude for each of

the (ℓmax +3)(ℓmax − 1) different hℓm NR modes used in
the fit (for ℓmax = 8, this equals 77). When all amplitudes
are taken together, they contain the information required
to reconstruct the spatial structure of the QNM.
In contrast to an amplitude Cα that is obtained with

an assumed spatial structure predicted from PT, the set
of independent amplitudes, Aℓm

α̃ , does not assume any
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particular spatial structure. Therefore, spatial mapping
can determine the spatial structure of QNMs from NR.
Agreement between the prediction and the reconstruc-
tion gives another way to verify the presence of a QNM
in the data. The shape of the reconstructed mode is given
by,

Aα̃(θ, ϕ) =
∑
ℓ,m

Aℓm
α̃ −2Y

ℓm(θ, ϕ). (13)

This can be visualized directly, e.g. by plotting on the
sphere θ, ϕ using any cartographic projection (see, for
example, the Mollweide projection plots in Figs. 1, 4, 7
and 11). Alternatively, when assessing how accurately
the spatial structure of a mode has been recovered com-
pared to a theoretical prediction, we use the recovered
Aℓm

α̃ coefficients to define yet another mismatch,

Mα̃ = 1− |{Aα̃|−2Sα̃}|√
{Aα̃|Aα̃}{−2Sα̃|−2Sα̃}

, (14)

where

{Aα̃|−2Sα̃} =

∫
dΩ Aα̃(θ, ϕ)

(
−sSα̃(θ, ϕ)

)∗
(15)

=
∑
ℓ,m

Aℓm
α̃

(
µℓm
α̃

)∗
. (16)

This measures the agreement between the recovered
shape and the predicted spheroidal harmonic. The modu-
lus in the numerator of Eq. 14 maximizes the inner prod-
uct between the reconstruction and the NR data with
respect to a rotation about the z-axis.
Note that the mismatch can be improved, and the over-

all mapping sped up, by limiting the data and model
to only include modes with the same m as the mapped
mode.

It is also possible to extend this approach to map more
than one QNM at the same time by removing another
term, say α̃′, from the first sum in Eq. 11 and includ-
ing another sum over ℓ,m for the new mapped mode α̃′

with coefficients Aℓm
α̃′ . However, the quality of the re-

construction (e.g. as quantified using Mα̃) decreases as
the number of mapped modes is increased. An exam-
ple of this is shown in Appendix B. The details of the
changes to the least squares fitting procedure needed for
the spatial mapping are detailed in Appendix A.

D. CCE waveforms

This work uses NR waveforms from the Spectral Ein-
stein Code (SpEC), found in the Simulating Extreme
Spacetimes (SXS) catalog [49, 50]. Analysis was per-
formed with the 13 publicly available simulations with
waveforms obtained using Cauchy-characteristic extrac-
tion (CCE). These waveform data were created using the
SpECTRE CCE module [51–53].

TABLE I. CCE waveforms used in this study. All NR data
were obtained from the public catalog [49]. The final column
gives the best ringdown start time that minimizes the angle-
averaged mismatch MΩ for a QNM model with ℓmax = 8 and
nmax = 7.

ID q Descriptive name Mf [M ] χf t0 [M ]

0001 1 q1 nospin 0.95162 0.6864 17

0002 1 q1 aligned chi0 2 0.94551 0.7464 21

0003 1 q1 aligned chi0 4 0.93759 0.8038 23

0004 1 q1 aligned chi0 6 0.92684 0.8578 26

0005 1 q1 antialigned chi0 2 0.95159 0.6863 17

0006 1 q1 antialigned chi0 4 0.95149 0.6859 17

0007 1 q1 antialigned chi0 6 0.95133 0.6851 17

0008 1 q1 precessing 0.95758 0.6033 11

0009 1 q1 superkick 0.94943 0.6786 29

0010 4 q4 nospin 0.97793 0.4716 16

0011 4 q4 aligned chi0 4 0.97026 0.6860 12

0012 4 q4 antialigned chi0 4 0.97200 0.6720 17

0013 4 q4 precessing 0.98089 0.4298 6

Currently, only a limited number of CCE waveforms
are available in the public catalog; see Table I. These sim-
ulations sparsely cover a range of progenitor parameters
such as spin magnitudes, orientations, and binary mass
ratio, q. All simulations were transformed into the super-
rest frame at 300M after the peak strain using the scri
package. The waveforms were subsequently shifted in
time so that the peak of the 22 mode amplitude, |h22(t)|,
occurs at t = 0 [40, 54–56].
The CCE method of waveform extraction is more faith-

ful to the true GW strain than waveforms obtained by
extrapolation [52]. This improvement is particularly im-
portant for studies of the ringdown using multiple QNMs.
This is also true of the mapping procedure developed
here.
For each simulation taken from the catalog, the high-

est resolution level and the second smallest worldtube
radius are together used as the preferred CCE waveform.
Waveforms from other levels and worldtube radii were
used to estimate the size of the NR errors, as described
in Appendix C.

III. LINEAR QNM RESULTS

The new spatial mapping methods are demonstrated
by first applying them to linear QNMs. In this case, first-
order PT makes a clear, unambiguous prediction for the
shape of the QNMs – the spin-weight s = −2 spheroidal
harmonics. This provides a way to test the BH cartog-
raphy programme.
Figure 2 shows the mismatch results for simple QNM

fits to simulation 0001. The left panel shows the mis-
match in the ℓ = m = 2 spherical mode when fitted using
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FIG. 2. Mismatches for linear QNM overtone model fits to the NR simulation 0001. In both panels, the gray region indicates
the NR error estimate described in Appendix C. When a curve first dips below the numerical error, the line style changes
to dashed. Left: The individual mode mismatch in the ℓ = m = 2 spherical harmonic mode. The fit uses a QNM model
with fundamental plus overtones, including the α = (2, 2, n,+) modes with n ∈ {0, 1, . . . , nmax}. Right: The angle-averaged
mismatch calculated across all (thick lines) ℓ,m spherical harmonic modes up to ℓmax = 8. The model includes all QNMs up
to those with ℓmax = 8 and n = nmax. As with the single mode case, increasing the number of overtones reduces the overall
mismatch and shifts the minima of the mismatch to earlier times, associated with an earlier starting time for the ringdown,
but it does so more smoothly in the angle-averaged case. A significantly improved angle-averaged match is achieved if the
axisymmetric m = 0 spherical harmonics are excluded from this fit (thin lines). These modes are poorly fit by QNMs.
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FIG. 3. The spatial mismatch between spatially reconstructed QNMs and the expected spheroidal harmonics. Left: The
spatial mismatch for the loudest QNM for each ℓ in simulation 0001 up to ℓ = 6. Because q = 1, the loudest mode in the ℓ = 3
sector is the m = 2 mode; similarly for the other odd ℓ values. The grey region indicates the NR error in the (2,2,0,+) mode
mapping, described in Appendix C. The other modes have different (larger) associated errors which are not shown here, but
the change in the style of each from solid to dashed indicates the point where the spatial mismatches first drop below their
corresponding error thresholds. Right: The spatial mismatch for the overtones α̃ = (2, 2, nmax,+) in simulation 0001. The
gray region indicates the NR error in the n = 0 QNM, and the solid to dashed transition in the other lines indicates the point
where the spatial mismatches first drops below its corresponding error threshold. The first three overtones are shown and their
reconstructions get progressively worse but show minima in the spatial mismatches at earlier start times, consistent with their
faster decay rates. The higher order overtones have worse spatial mismatches and are not shown.

a QNM model with a variable number of overtones. This
is similar to Fig. 1 in Ref [27]. The right panel shows the
angle-average mismatch calculated using all modes when
fitted using a QNM model including all the QNMs (up
to ℓmax and nmax).

Both panels in Fig. 2 display a similar structure, start-
ing with a rapidly declining mismatch approaching a min-
imum at a time on or after t0 = 0. At later times, the
mismatch increases as the signal decays. The minima get
pushed to earlier start times with an increasing number

of overtones, related to the possibility of using an ear-
lier choice of start time. The start times that give the
minimum angle-average mismatch for the nmax = 7 QNM
model are listed for each simulation in Table I; these start
times are used in subsequent figures.

The accuracy of the angle-averaged QNM fits are lim-
ited by the m = 0 spherical harmonic modes. In the right
panel of Fig. 2, the thin lines indicate the angle-average
mismatch withm = 0 modes excluded from the fit. There
is a considerable improvement in the mismatches, down
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to the level expected given the numerical noise present
in the simulation. This shows that the m = 0 are fit
less well by the QNM model than all the other m modes.
This may be due to the presence of the non-oscillatory
GW memory signal in these modes. There may also be
an imperfect mapping to the superrest frame for these
modes, affecting fits at late times.

Having established that the QNM models are able to
faithfully represent the NR data, we now turn to map-
ping. Figure 3 shows the results of spatially mapping var-
ious QNMs. The left panel shows the spatial mismatch
of some of the loudest fundamental (n = 0) QNMs in
simulation 0001. Because this is a simulation of equal-
mass quasicircular binary BHs (q = 1), the symmetry
ϕ → ϕ + π forces all spherical harmonic modes with
odd m indices to be identically zero. Therefore, the
loudest mode in, for example, the ℓ = 3 sector is the
(ℓ,m) = (3, 2) mode. The right panel shows the spatial
mismatch for some of the ℓ = m = 2 QNM overtones,
with the largest overtone in the model being mapped
in each case, analogously to the right panel in Fig. 2.
In both panels, the mismatch of the fundamental mode
is considerably smaller than that of the subdominant
modes. Generally, the mismatch values decrease with
increasing amplitude of the QNM.

In the figures above, the mismatches are plotted as a
function of start time. If the mode reconstruction is per-
formed with a different choice of start time, then the val-
ues obtained for the Aℓm

α̃ amplitudes are different. Typi-
cally, for a reasonable range of t0 values in the ringdown,
the magnitude of the amplitude decreases exponentially
and the phases of the amplitudes increase linearly with
increasing t0. The decreasing amplitude is due to the ex-
ponential decay of the QNMwith a timescale given by the
reciprocal of imaginary part of ωα̃. The changing phase
corresponds to the rotation of the perturbation sourcing
the QNM around the symmetry axis of the BH. The ro-
tation occurs at a frequency related to the real part of
ωα̃. To track this rotation, the following angle can be
used,

Φα = arg
(
{Aα̃

∣∣−2Sα̃}
)
. (17)

The rate of change of this angle with the ringdown
start time t0 is plotted in Fig. 4 for the same QNMs used
in the left panel of Fig. 3. The values agree with the
predicted real part of the QNM frequencies. In terms of
the spatial reconstruction, this corresponds to a rotation
of the QNM around the sphere indicated by the top four
panels taken at the start times indicated by squares on
the lower panel. The spatial mapping technique uses the
QNM frequency to determine the spatial structure, so
this is not a demonstration of inferring the frequency
from a free parameter. Instead, the figure shows that
the frequency can be reconstructed from the phase of the
values of Aℓm

α̃ over a range of start times.
To demonstrate the mapping to each spherical mode,

the top panel in Fig. 5 shows the individual mode am-
plitudes in a reconstruction of the fundamental α̃ =

−20 0 20 40 60 80 100

t0 [M ]

0

1

2

d
Φ
α̃
/
d
t 0

(2, 2, 0, +)

(3, 2, 0, +)

(4, 4, 0, +)

(5, 4, 0, +)

(6, 6, 0, +)

Reconstructed Re(ωα̃)

FIG. 4. The top four figures show the real part of the spatial
reconstruction of the (2,2,0,+) QNM at the start times indi-
cated by squares on the main plot. These demonstrate the ro-
tation of the QNM around the sphere. Main plot: Derivative
of the argument Φα of the spatial mismatch (corresponding
to the phase shift between the mapped and predicted spatial
structure) with respect to ringdown start time t0. The solid
lines show this quantity for simulation 0001 for the same 5
QNMs (matching colors) used in the left panel of Fig. 3. The
shaded regions give an estimate of the error in the recon-
structed frequencies and are described in Appendix C. The
horizontal dashed lines give the predicted rotation frequen-
cies, which are the real part of the complex QNM frequen-
cies, ωα̃. An animated version like these showing the rotation
around the BH is available at [57].

(2, 2, 0,+) QNM. For clarity, the decay-corrected am-
plitudes are plotted; that is each mode amplitude is
plotted multiplied by an exponential factor to cor-
rect for its expected decay rate so that |Âℓm

(220+)| =

|Aℓm
(220+)e

iω(220+)(t−t0)|.
The bold colored lines are the m = 2 modes given in

the legend. A consistent amplitude, across a range of
start times, in the ℓ ≤ 4 modes indicates that this QNM
is being confidently detected. It is necessary that a QNM
is detected in at least two spherical harmonics in order
for there to be a sensible mapping reconstruction. In this
representation of the results, the familiar mode-mixing
coefficients are related to the vertical separation of the
horizontal lines on this plot.
The m ̸= 2 modes have also been included as translu-

cent lines. In a multimode fit, all mixing coefficients
where m ̸= 2 would be zero and therefore so would the
corresponding amplitudes. In contrast, here, where all
spherical modes have been included in the spatial map-
ping, these amplitudes appear as non-zero values. The
translucent gray lines moving diagonally along the figure
are vanishing spherical modes, which are being scaled by
the decay correction absorbed into the amplitude. The
remaining translucent red lines are spherical modes for
which the spatial mapping has attributed some non-zero
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FIG. 5. The magnitude of the decay-corrected amplitudes,
|Âℓm

(220+)|, obtained from spatial mapping of the (2,2,0,+)
mode for the 0001 waveform are plotted. The thick colored
lines show the spherical modes indicated in the legend that
are expected to have large amplitude. Translucent grey lines
indicate odd m modes, and the translucent red lines indi-
cate even m ̸= 2 modes. The ratios of selected amplitudes
are plotted in the lower panels. The values for the ratios of
the spheroidal harmonics predicted by linear PT (expressed
in terms of ratios of mode mixing coefficients) are plotted as
horizontal dashed lines. The translucent area surrounding the
lines on the three panels indicates the NR uncertainty in the
values obtained. The way this is determined is described in
Appendix C.

amplitude. The contrast in the structure of these modes
and the m = 2 modes suggests that spatial mapping is
correctly identifying the relevant spatial structure of the
(2, 2, 0,+) mode. The non-zero amplitudes of the m ̸= 2
modes can be considered an indication of the numerical
accuracy of the spatial mapping technique.

The bottom panels in Fig. 5 shows the magnitude of
the ratios of the amplitudes in the (2, 2) and either (3, 2)
or (4, 2) spherical modes respectively. These values agree
with the magnitudes of the ratios of the corresponding
mixing coefficients, which are also plotted. This provides
an alternative mode-specific way to verify the accuracy of
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M
α̃
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(660+)

(550+)

(440+)

(330+)

(320+)

(220+)

(210+)

(200+)

FIG. 6. The spatial mismatch for the best three recon-
structed modes for all CCE waveforms. Highlighted columns
indicate precessing simulations. In all cases, it was possible
to reconstruct at least three QNMs with a spatial mismatch
of ≲ 10−5 with their associated spheroidal harmonics. In all
cases, except the precessing and asymmetric 0013 simulation,
the best mapped mode is the fundamental (2, 2, 0,+) QNM.
The identity of the next best mapped QNMs changes depend-
ing on the parameters of the progenitor binary. In all cases,
the best three mapped QNMs are all prograde n = 0 modes.

the spatial mapping technique beyond using the spatial
mismatch. This is particularly helpful in checking that
the reconstruction is not simply a consequence of overfit-
ting to the loudest spherical mode (which, in this case,
would be ℓ = m = 2).
Finally, Fig. 6 gives the QNMs with the lowest mis-

match obtained when spatially mapping every mode in-
dividually, for each simulation. As noted in Fig. 2 and
again here, the (2, 2, 0,+) mode – which is typically loud-
est – is almost always reconstructed considerably more
accurately than subdominant modes. The exception is
simulation 0013, which is an asymmetric binary with pre-
cessing spins, resulting in the unusual combination and
ordering of the best three reconstructed modes.
The analysis in this section demonstrates that spatial

mapping can effectively reconstruct the spatial structure
of QNMs without explicitly providing mode mixing coef-
ficients. At first-order, where PT makes clear predictions
about the spatial structure, the technique offers another
method for detecting QNMs and may, in analogy with
the single and multi-mode fits in Fig. 2, provide another
way to determine the start time of the ringdown.

IV. QUADRATIC QNM RESULTS

Second-order PT does not give a clear, unique predic-
tion for the spatial shape of second-order QQNMs. Be-
cause the QQNM is sourced by two linear QNMs, it is
expected that the shape Fαα′ (see Eq. 5) will be given by
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FIG. 7. Leftmost panel: The real part of the normalized spatial reconstruction of the dominant QQNM with α̃ = α̃′ =
(2, 2, 0,+) for the 0001 NR simulation. Other panels: The various predictions for the shape of this QQNM discussed in
the main text. Prediction A clearly has qualitatively the wrong shape and is therefore discarded. The remaining B, C,
and D predictions all have qualitatively similar shapes (from B(i) to D, the spatial mismatches with the reconstruction are
Mα̃ = 7.4× 10−4, Mα̃ = 2.9× 10−4, Mα̃ = 2.5× 10−4, and Mα̃ = 2.6× 10−4) and are further investigated in Fig. 8.

some quadratic combination of spheroidal harmonics.

Prediction A: A naive guess for these functions is
to take the product of two parent spheroidal harmonics:

−2Sα(θ, ϕ) and −2Sα′(θ, ϕ). Then the spatial shape of
the QQNM takes the form

A : Fαα′(θ, ϕ) ∝ −2Sα(θ, ϕ)−2Sα′(θ, ϕ). (18)

However, while this gives qualitatively the correct de-
pendence on the azimuthal ϕ coordinate, it gives the
wrong θ-dependence; see, for example, the reconstruc-
tion of the dominant QQNM in Fig. 7. In particular,
it predicts that the dominant QQNM’s largest observed
amplitude would be at the north pole (θ = 0). This is
in disagreement with the reconstruction, which shows a
finite angle θmax ≈ 35◦ for this maximum. This is fur-
ther quantified in Fig. 8, where θmax is plotted for the
α = α′ = (2, 2, 0,+) QQNM for all simulations.

This prediction cannot be correct because the resulting
Fαα′ does not have the required -2 spin weight for a GW
field. Instead Fαα′ in Eq. 18 has spin-weight -4 resulting
from the fact that the product of a spin-weight s function
and a spin-weight s′ function has spin-weight s+ s′.

Prediction B: This issue can be resolved by using a
product of spheroidal harmonics with spin weights which
sum to -2. There is not a unique choice for this. The
possibilities for the fundamental QQNM with α = α′ =

(2, 2, 0,+) are

B (i) : Fαα′(θ, ϕ) ∝ −2Sα(θ, ϕ) 0Sα′(θ, ϕ), (19)

B (ii) : Fαα′(θ, ϕ) ∝ −1Sα(θ, ϕ)−1Sα′(θ, ϕ). (20)

For other QQNMs with α ̸= α′, there is no symmetry
between the spin-weight indices in Eq. 19 and the order
in which the spheroidal harmonics are used gives addi-
tional possibilities. Furthermore, for QQNMs that in-
volve higher ℓ indices, there are more possible combina-
tions involving spheroidal harmonics with |s| ≥ 3. (Note,
the spin weight is constrained to be |s| ≤ ℓ.)
Prediction C: There is another proposal given in [42].

This assumes that the shape of the QQNM is given by
a single spheroidal harmonic which, rather than being
defined by its indices, has a modified spherodicity defined
using the frequency ωα + ωα′ of the QQNM,

C : Fαα′(θ, ϕ) ∝ −2Sλµ

(
θ, ϕ;χf [ωα + ωα′ ]

)
, (21)

where λ = ℓ+ ℓ′ and µ = m+m′. Here, the notation for
the spheroidal harmonics from Ref. [43] is used.
Prediction D: An alternative resolution to the spin-

weight issue is to take the product of two parent
spheroidal harmonics with spin weights which do not sum
to -2, but act on them with the appropriate spin-weight
raising or lowering operator to obtain the required spin-
weight -2 function. For example, taking the product of
two spin-weight -2 spheroidal harmonics as in prediction
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FIG. 8. The values of θmax for the dominant QQNM with
α̃ = α̃′ = (2, 2, 0,+) are given for all simulations in Table
I, plotted as a function of the dimensionless spin of the final
remnant BH, χf . For each simulation, the reconstruction was
performed at the start time t0 indicated in Table I to obtain
the central marker and for a range of start times ±5M about
this time to determine the uncertainty estimates shown in
the error bars. The predicted values for this angle are plotted
as smooth curves obtained using the B(i), B(ii), C and D
predictions, with the grey shading indicating the region within
which reconstructed values of θmax are expected to be.

A but acting on them twice using the spin-weight raising
operator gives,

D : Fαα′(θ, ϕ) ∝ ð2 (−2Sα(θ, ϕ)−2Sα′(θ, ϕ)) . (22)

For each of these predictions, a corresponding
quadratic mode mixing coefficient µℓm

αα′ can be computed.
These three predictions are compared in Fig. 7 against
the reconstruction of the fundamental QQNM in simu-
lation 0001. Prediction A is clearly disfavoured and is
not discussed further. Visually, there is little difference
between the other predictions.

Interestingly, the B, C and D predictions all correctly
suggest that the projected amplitude of the fundamen-
tal QQNM is maximized at a non-zero viewing angle,
away from the axis of the remnant BH’s final spin. This
has important consequences for the observability of this
QQNM in GW data. This angle is investigated further
in Fig. 8 where it is plotted as a function of the spin
magnitude of the remnant for all remaining predictions.
This angle depends only mildly on the remnant BH spin.
The projected amplitude of the fundamental QQNM is
always maximized by a viewing angle in a narrow range
around 30◦ ≲ θ ≲ 45◦. For a non-spinning remnant,
the predictions agree on a value of 30◦ for the viewing
angle. The maximum amplitude viewing angle of the re-
constructed simulations all live (within their error bars)
in the narrow range given by the predictions.

In general, error bars are larger for lower remnant
spins. This is most clearly demonstrated in the two
simulations with the smallest spins, which are consid-
erably harder to map, resulting in a greater sensitivity
on the start time used. This effect may be due to higher

10−12

10−10

10−8

10−6

10−4

10−2

100

|Â
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FIG. 9. The magnitude of the decay-corrected amplitudes
obtained from spatial mapping of the fundamental quadratic
mode with α̃ = α̃′ = (2, 2, 0,+) for simulation 0004. The solid
lines indicate the m = 4 spherical modes, whilst the translu-
cent grey lines indicate odd m modes, and the translucent
red lines indicate even m ̸= 4 modes. The ratios of selected
amplitudes are plotted in the lower panels. The values for the
structure predicted by second-order PT (expressed in terms
of ratios of second-order mode mixing coefficients) are plotted
as horizontal dashed lines. The translucent area surrounding
the lines on the three panels indicate the NR uncertainty in
the values obtained.

spin remnants having longer ringdowns, which provides
more signal on which to perform the mapping, leading to
smaller errors.

Figure 9 shows the reconstructed amplitudes Aℓm
α̃α̃′ for

the fundamental QQNMs in simulation 0004 as a func-
tion of start time. These (decay-corrected) amplitudes
show a clear stable behavior across a wide range of start
times for several different ℓ indices. This is important be-
cause, as noted above, in order for these reconstructions
to be meaningful it is necessary to detect the feature in
multiple spherical harmonics.

For the equal-mass simulation 0004, the reconstruc-
tions do not appear to match any prediction. As noted
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|Â
`
m
α̃
α̃
′|

(2, 0)

(3, 0)

(4, 0)

(5, 0)

(6, 0)

(7, 0)

(8, 0)

0

50

100

|A
2
0
α̃
α̃
′/
A

3
0
α̃
α̃
′| B (i)

B (ii)

C

D

Mapped

|µ20
α̃α̃′/µ

30
α̃α̃′ |

−25 0 25 50 75

t0 [M ]

0

50

|A
2
0
α̃
α̃
′/
A

4
0
α̃
α̃
′|

B (i)

B (ii)

C

D

Mapped

|µ20
α̃α̃′/µ

40
α̃α̃′ |

FIG. 10. The magnitude of the decay-corrected amplitudes
obtained from spatial mapping of the QQNM α̃ = (2, 2, 0,+),
α̃′ = (2,−2, 0,−) for simulation 0004. The solid lines indi-
cate the m = 0 spherical modes, whilst the translucent grey
lines indicate odd m modes, and the translucent red lines in-
dicate even m ̸= 0 modes. The ratios of selected amplitudes
are plotted in the lower panels. The values for the structure
predicted by second-order PT (expressed in terms of ratios
of second-order mode mixing coefficients) are plotted as hor-
izontal dashed lines. The translucent area surrounding the
lines on the three panels indicate the NR uncertainty in the
values obtained.

in Ref. [30], second-order PT does not make a unique pre-
diction for the shape of the QQNMs. This is in contrast
with linear PT which predicts a spheroidal harmonic for
each QNM. At second order, it is instead possible that the
true spatial structure may be formed from some combi-
nation of the predicted modes that cannot be determined
analytically.

A. m = 0 modes

Among all possible QQNMs, there is a subset of
modes with parent QNMs α = (ℓ,m, n, p) and α′ =
(ℓ,−m,n,−p). These modes have purely imaginary fre-

FIG. 11. The real part of the spatial reconstruction of the
α̃ = (2, 2, 0,+), α̃′ = (2,−2, 0,−) QQNM for the 0004 wave-
form, plotted as a function of the angles on the sphere using a
Mollweide projection. The spatial structure is compared to B
(i) with a symmetric combination of spin weights, which has
the required axisymmetry of the QQNM along the equator,
where the amplitude is expected to be loudest. The agree-
ment between the spatial reconstruction and the prediction is
poor, which is reflected in the mismatch of Mα = 3.2× 10−2.

quencies and are therefore non-oscillatory, unlike most
other QNMs or QQNMs. Because the azimuthal indices
of the linear QNMs in the pair sum to zero, the result-
ing QQNM appears in the azimuthally symmetric m = 0
sector. Additionally, if mp > 0, then because both lin-
ear QNMs in the pair are prograde and typically excited
with large amplitudes. The resulting QQNM is therefore
also expected to have a large amplitude. These proper-
ties suggest a connection between this subset of QQNMs
and the GW memory effect.
To investigate these further, the α̃ = (2, 2, 0,+), α̃′ =

(2,−2, 0,−) QQNM is spatially mapped, and the ampli-
tudes and their ratios are plotted in Fig. 10. In princi-
ple, this combination of prograde parent modes should be
the loudest m = 0 mode in the ringdown, if it is indeed
present. The stability of the mapped amplitudes is con-
siderably weaker than in the previous cases, which may
indicate that this QQNM is too quiet to be clearly de-
tected. However, flat regions in the amplitudes and upper
amplitude ratio give some indication that the mapping is
successfully identifying the mode and its corresponding
mixing.
The mode is reconstructed in Fig. 11. Choosing op-

tion B (i), with an equal combination of s = −2, s′ = 0
and s = 0, s′ = −2, gives the required axisymmetric
structure. However, it does not match with the overall
expected shape. No individual prediction matches the
spatially reconstructed mode. However, again, it is pos-
sible that the correct structure is some combination of
modes.

V. DISCUSSION

This paper has demonstrated that it is possible to de-
termine the specific spatial shape of QNMs and QQNMs.
Using CCE waveforms, it has been shown that the angu-
lar structure of QNMs can be accurately reconstructed
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in agreement with first order PT. In analogy with single
and multi-mode ringdown fits, the spatial mapping pro-
cedure has a mismatch – called the spatial mismatch –
which, correspondingly, has a minimum that represents
the region around which the QNM is clearly present in
the ringdown.

The spatial mapping procedure is effective across many
simulations and QNMs, including the mapping of sev-
eral QNMs simultaneously. The full spatial shape can
be plotted which, using the phase information contained
in the mapping amplitudes, can be used to reconstruct
the real part of the QNM frequency. This was found to
be associated with the rotation of the modes around the
sphere.

In contrast to first order, second order PT makes no
clear prediction about the spatial structure of QQNMs.
Hence, spatial mapping presents a method to obtain this
structure for a given QQNM and remnant black hole.
This is likely to be useful in future precision waveform
modelling, where second-order effects will be important.

The spatial mapping has been applied to what is ex-
pected to be the loudest QQNM, demonstrating that this
method can determine the spatial structure for second

order PT. The technique was also applied to the loud-
est m = 0 QQNM. This mode is special due to a possible
connection with the memory effect. We demonstrate that
it may be possible to reconstruct this mode, providing
another way to investigate this connection.
While the predictions considered in this work vary, we

have shown they are generally qualitatively very simi-
lar to each other and the reconstructed spatial structure.
Perhaps the most significant finding is that the loudest
α̃ = α̃′ = (2, 2, 0,+) QQNM is not visible at θ = 0. In-
stead, the projected amplitude is maximized at a view-
ing angle of θ ≈ 35◦ for a remnant with spin χf ≈ 0.7.
This will hopefully provide a guide for future searches of
QQNMs in GW data.
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Appendix A: Single and multi-mode fitting

This appendix describes the single and multi-mode least-squares fitting used in this paper, carried out using the
qnmfits package, in addition to the modifications required to perform spatial mapping. Here, in addition to the
abbreviated notation α = (ℓ,m, n, p) for the indices of the various QNMs, a similar abbreviated notation β = (ℓ,m)
for the spherical mode indices is also introduced. Recall, spherical β indices are placed in superscript while spheroidal
α indices are placed in subscript. The perturbation order is suppressed in the notation of this appendix. The strain
time series is sampled at discrete times tk, with k = 0, 1, . . . ,K − 1. The summation convention is not used; all
summations are written explicitly.

Starting from the QNM model in Eq. 3 and expanding the spheroidal harmonics in terms of the spherical harmonics
using the mode mixing coefficients in Eq. 4, gives the following QNM model for a single spherical harmonic mode,

rhβ(t) = M
∑
α

Cαµ
β
α exp(−iωα[t− t0]). (A1)

Hereafter, the factors of r (on the left-hand side) and M (on the right-hand side) in Eq. A1 are dropped from our
notation for simplicity. When fitting a single spherical harmonic mode, the mode mixing coefficient can be absorbed
into a redefinition of the QNM amplitude, C̃α = Cαµ

β
α. The amplitudes C̃α, are determined by minimizing the sum

of the squares of the fit residuals,

Rβ =
∑
k

(
hβ(tk)−

∑
α

C̃α exp(−iωα[tk − t0])
)2

. (A2)

The QNM models considered here, e.g. in Eq. A1, are all linear models that depend linearly on the parameters to
be determined. This would not be true if, for example, the QNM frequencies or the mass and spin of the remnant
were included as free parameters. In this sense, the fitting to be performed is simple and can be reduced to a linear
algebra operation, as described below. This is what allows us to include such a large number of QNMs in some of the
angle-averaged fits used in this paper.

In order to efficiently minimize the quantity in Eq. A2, the model in Eq. A1 is first recast as a matrix equation
hhhβ = aaaβ ·CCC. It is then possible to rewrite the sum of the squared residuals in Eq. A2 as the Euclidean 2-norm of a
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matrix-vector equation,

Rβ =
∣∣∣∣hhhβ − aaaβ ·CCC

∣∣∣∣2. (A3)

The quantity hhhβ is a vector of length K containing the NR data for the spherical mode β, CCC is a vector of length N
(the number of QNMs used in the fit; i.e. the number of terms in the sum over α) containing the QNM amplitudes
to be determined, and aaaβ is a matrix of shape (K,N) containing the exponential factors from Eq. A1. Specifically,

in terms of components, these are given by (hhhβ)i = hβ(ti) with β fixed, (aaaβ)ij = exp(−iωj(ti − t0)), and CCCj = C̃j .
In this form, the numpy.linalg.lstsq function can be used to efficiently minimize the sum of the squared residuals
and find the corresponding QNM amplitudes, CCC.
When fitting a QNM model to multiple spherical harmonic modes simultaneously (as is done in the angle-averaged

fits) it is no longer possible to ignore the mode mixing coefficients by a redefinition of the amplitudes. A QNM
(ℓ,m, n, p) generates a contribution in all the spherical modes (ℓ′,m′) with m = m′; this effect is illustrated in the
shaded column of plots in Fig. 12. The QNM model in Eq. A1 is now used for all values of β for which NR data is
available (instead of just a single value) and the QNM amplitudes Cα are determined by minimizing the following
sum of the squares of the fit residuals summed over all spherical harmonic modes,

R =
∑
β

∑
k

(
hβ(tk)−

∑
α

Cαµ
β
α exp(−iωα[tk − t0])

)2

. (A4)

This quantity can also be written as the Euclidean 2-norm of a matrix-vector equation,

R =
∣∣∣∣hhh− aaa ·CCC

∣∣∣∣2. (A5)

Here the vectors and matrices are now formed by stacking together (concatenating) all the spherical harmonic modes.
For example, the quantity hhh is now a vector of length KM (where M is the number of spherical harmonics used in
the fit; i.e. the number of terms in the sum over β) formed from stacking all the K-vectors hhhβ together. The order in
which the vectors are stacked is arbitrary, but must be done consistently with the construction of the matrix aaa. The
quantity aaa is now a (KM,N) matrix containing the mode mixing and exponential factors in Eq. A4. The quantity CCC
is still a vector of length N containing the QNM amplitudes to be determined. Specifically, in terms of components,

these are given by (hhh)i = hβ(tk) with β = i//K and k = i%K, (aaa)ij = µβ
j exp(−iωj(tk − t0)) again with β = i//K

and k = i%K, and CCCj = Cj . Here, Python notation is used for the modulus and integer division operations. In this
form, the numpy.linalg.lstsq function can again be used to efficiently minimize the sum of the squared residuals
and find the corresponding QNM amplitudes, CCC.
An angle-averaged fit to multiple spherical harmonic modes is illustrated in Fig. 12 for simulation 0013. Each panel

shows both the data, hβ , and the QNM model, hβ , for one spherical harmonic mode. The model gives a good fit to
all the modes, as can be seen by examining the residuals. It should be stressed that each panel in this figure is not a
separate fit; they are all part of the same fit. This is necessary because of the mode mixing effect and is illustrated
graphically by highlighting the effect of a single QNM (the fundamental α = (2, 2, 0,+) mode) in different spherical
harmonics (see the three plots with m = 2 in the highlighted column). In this example, because mode mixing only
occurs between modes with the same index m, the different columns of this figure are, in fact, independent. However,
when mapping (see Sec. II C) the shape of a particular mode, the mode mixing coefficients are effectively promoted
to free parameters and all parts of this plot would be coupled.

The angle-averaged fitting procedure can be extended to include a spatially mapped mode, α̃. Using the mapping
model from Eq. 11 (see also Eq. 12), the sum of the squared residuals in Eq. A4 now becomes,

R =
∑
β

∑
k

(
hβ(tk)−Aβ

α̃ exp(−iωα̃[tk − t0])−
∑
α ̸=α̃

Cαµ
β
α exp(−iωα[tk − t0])

)2

, (A6)

where the parameters to be determined are now both the amplitudes Cα (for all α ̸= αÃ) and Aβ
α̃ (for all β). This

quantity can also be written as the Euclidean 2-norm of a matrix-vector equation. In practice, this is done by starting
from the matrix aaa in the angle-averaged fit in Eq. A5, identifying the column corresponding to the mode to be
mapped, j = α̃, and replacing it with stacked matrices of shape (K,M) that, in terms of components, is given by
(ã̃ãa)ij = δβj exp(−iωα̃(tk − t0)). Consequently, the mapped mode is fit to each spherical mode individually, as in the

single-mode case in Eq. 11, absorbing the mixing coefficient into the amplitude Aβ
α̃, which is now associated with a

spherical mode in the model.
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Appendix B: Simultaneous mapping of multiple QNMs

The spatial mapping techniques can be generalized to mapping any number of QNMs and QQNMs simultaneously.
To map multiple modes, the procedure in Appendix A is followed, replacing every column corresponding to a mapped
mode with a stacked matrix. The resulting amplitude vector will then contain one value for each QNM or QQNM in
the model, in addition to M amplitudes for each mapped mode α̃. The resulting reconstructions and corresponding
mismatches deteriorate with an increasing number of mapped modes, however several modes can still be mapped with
remarkable accuracy. Fig. 13 demonstrates the simultaneous mapping of the five loudest modes used in Fig. 3 and
Fig. 4, with all QNMs and spherical modes with m ∈ {2, 4, 6} included in the fit. The mismatches are nonetheless
comparable to Fig. 3, albeit slightly higher, corresponding to the loss in accuracy from removing additional spatial
information from the fit.

−25 0 25 50 75 100

t0 [M ]

10−10

10−7

10−4

10−1

102
M

α

(2, 2, 0, +)
(3, 2, 0, +)
(4, 4, 0, +)

(5, 4, 0, +)
(6, 6, 0, +)

FIG. 13. The spatial mismatch between spatially reconstructed QNMs and the expected spheroidal harmonics. Here, the
loudest QNMs for each ℓ in simulation 0001 up to ℓ = 6 are mapped simultaneously. This is in contrast with the left-hand
panel of Fig. 3 where each QNM is spatially mapped individually. The grey region indicates the NR error in the (2,2,0,+) mode
and the change in the style of each line from solid to dashed indicates the point where the spatial mismatches first drop below
their corresponding error thresholds. Only QNMs and spherical modes with m ∈ {2, 4, 6} are used.

Appendix C: Numerical error

The numerical error, which is expected to be present in all NR simulations, is determined in several ways throughout
this paper. All the methods involve comparing the preferred version of the CCE simulations (Level 5, second smallest
radius) to the other possible combinations of the Level 4 and 5, and second and third smallest worldtube radii.

For the plots in Fig. 2, the three other possible waveforms are each shifted in time to find the optimal alignment that
minimizes the mismatch with the preferred waveform. This is done by rolling the waveform by discrete time intervals
and computing the mismatch until the minimum is found, then shifting the position of t = 0 by this corresponding
amount. After this alignment, the mismatch was calculated between the preferred simulation and the three remaining
simulations from t0 to T = t0+100M . The maximum mismatch was taken at each t0 and used as the numerical error
at this point. This is the approach given in [25].

For the spatial mismatch plots in Fig. 3, the mapping was performed with the four simulation level and radius
combinations. The spatial mismatch was calculated between the reconstruction from the preferred simulation and
each of the remaining three and the maximum value at each t0 was used to quantify the numerical error.
In Figs 4, 5, 9, and 10 where a particular numerical value is recovered, a range was computed by determining

the value for all simulation level and radius combinations and plotting the maximum and minimum at each t0 as a
translucent region around the preferred simulation value.

For all analysis in this paper, CCE waveforms were used. To demonstrate the benefit of this method of extraction,
Fig. 14 compares the decay-corrected amplitudes obtained from spatial mapping of the (2, 2, 0,+) QNM for two no-
spin, equal mass ratio progenitor simulations. The first simulation, taken from the CCE catalog displays extremely
stable amplitudes for ℓ ≤ 4 over a range of start times spanning at least 100M . This is in contrast to the extrapolated
simulation, whose amplitudes appear to decay into noise significantly earlier from around 25M. The difference in
amplitude stability between simulations highlights the necessity of using the CCE waveforms, particularly at second
order where modes are substantially quieter.
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FIG. 14. The magnitude of the decay-corrected amplitudes obtained from spatial mapping of the QNM (2, 2, 0,+) are compared
for two no-spin, equal mass ratio progenitor simulations. The bold lines are obtained using the CCE simulation 0001, and the
dotted lines are obtained from simulation 0001 in the catalog of extrapolated waveforms.

Appendix D: Computing quadratic structure predictions

The mode-mixing coefficients sµ
β
α allow us to expand the spin-weighted spheroidal harmonics in the spin-weighted

spherical harmonics basis,

sSα(θ, ϕ) =
∑
β

sµ
β
α sY

β(θ, ϕ), (D1)

where the mode-mixing coefficients are defined by the following integral,

sµ
β
α =

∫
dΩ sSα(θ, ϕ)

(
sY

β(θ, ϕ)
)∗

(D2)

This is consistent with the definition in Eq. 4, but with the spin-weight dependence of the mode-mixing coefficients
made explicit in the notation. Note that the mode-mixing coefficients are not spin weight s objects; here, the
preceding subscript s is intended as a reminder that these coefficients are to be used in the expansion of the spin-
weight s spheroidal harmonics. The mode-mixing coefficients are functions of the BH remnant spin χf (although this
dependence is suppressed in our notation for clarity) and are computed using the qnm package.

In a similar way, the coefficients ss′κ
ββ′β′′

allow us to re-expand products of two spin-weighted spherical harmonics
in the spin-weighted spherical harmonics basis. Because the product of a spin-weight s and a spin weight s′ field has
spin weight s+ s′, this re-expansion is done in terms of the spherical harmonics with this spin weight,

sY
β(θ, ϕ) s′Y

β′
(θ, ϕ) =

∑
β′′

ss′κ
ββ′β′′

s+s′Y
β′′

(θ, ϕ), (D3)

where the ss′κ
ββ′β′′

coefficients are defined by the following integral,

ss′κ
ββ′β′′

=

∫
dΩ sYβ(θ, ϕ) s′Yβ′(θ, ϕ)

(
s+s′Y

β′′
(θ, ϕ)

)∗
. (D4)

These coefficients are not functions of the BH remnant spin and, like sµ
β
α, they are not spin-weight fields. They are

computed using the spherical package.
These components allow us to expand the predictions for the quadratic shape functions Fαα′ discussed in the main

text in the spin-weighted spherical harmonic basis
Prediction A. Substituting Eq. D1 twice into Eq. 18 and using Eq. D3 to re-expand the product of two spin-weight

s = −2 spherical harmonics in terms of the spin-weight s = −4 spherical harmonics gives

A : Fαα′(θ, ϕ) ∝
∑
β

∑
β′

∑
β′′

−2µ
β
α −2µ

β′

α′ (−2)(−2)κ
ββ′β′′

−4Y
β′′

(θ, ϕ). (D5)
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Prediction B. Consider the B (i) prediction with s = −2 and s′ = 0. Substituting Eq. D1 twice into Eq. 19 and
using Eq. D3 to re-expand the product of a spin-weight s = −2 and a spin-weight s = 0 spherical harmonic in terms
of the spin-weight s = −2 spherical harmonics gives

B (i) : Fαα′(θ, ϕ) ∝
∑
β

∑
β′

∑
β′′

−2µ
β
α 0µ

β′

α′ (−2)(0)κ
ββ′β′′

−2Y
β′′

(θ, ϕ). (D6)

Similar expressions can be written down for the other spin-weight combinations: B (ii) and so on.
Prediction C. It is difficult to write down this prediction concisely in the same notation used in this section.

Instead, it is more convenient to compute the mixing directly from Eq. D2 using spheroidal harmonics with modified
spheroidicity determined using the spheroidal package.

Prediction D. The spin-weight raising operator satisfies ðsY β(θ, ϕ) =
√
(βℓ − s)(βℓ + s+ 1)s+1Y

β(θ, ϕ), where
βℓ is the polar ℓ index from the β tuple of spherical indices. From Eq. 22, the term inside the parentheses is identical
to prediction A and can be written as Eq. D5, then acting twice with the spin-weight raising operator gives,

D : Fαα′(θ, ϕ) ∝
∑
β

∑
β′

∑
β′′

−2µ
β
α −2µ

β′

α′ (−2)(−2)κ
ββ′β′′

√
(β′′

ℓ + 4)(β′′
ℓ − 3)(β′′

ℓ + 3)(β′′
ℓ − 2) −2Y

β′′
(θ, ϕ). (D7)
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