
INVESTIGATING THE CAPABILITIES OF DEEP LEARNING FOR
PROCESSING AND INTERPRETING ONE-SHOT MULTI-OFFSET
GPR DATA: A NUMERICAL CASE STUDY FOR LUNAR AND

MARTIAN ENVIRONMENTS

Iraklis Giannakis,
University of Aberdeen, School of Geosciences

Aberdeen, United Kingdom
iraklis.giannakis@abdn.ac.uk

Craig Warren
Northumbria University

Northumbria, United Kingdom
craig.warren@northumbria.ac.uk

Antonios Giannopoulos
The University of Edinburgh
Edinburgh, United Kingdom
a.giannopoulos@ed.ac.uk

Georgios Leontidis
Interdisciplinary Centre for Data and AI,

University of Aberdeen
Aberdeen, United Kingdom

georgios.leontidis@abdn.ac.uk

Yan Su
Chinese Academy of Sciences

Beijing, China
suyan@nao.cas.cn

Feng Zhou
China University of Geosciences (Wuhan)

Wuhan, China
zhoufeng@cug.edu.cn

Javier Martin-Torres
University of Aberdeen, School of Geosciences

Aberdeen, United Kingdom
javier.martin-torres@abdn.ac.uk

Nectaria Diamanti
Aristotle University of Thessaloniki, Faculty of Sciences, Department of Geophysics

Thessaloniki, Greece
ndiamant@geo.auth.gr

ABSTRACT

Ground-penetrating radar (GPR) is a mature geophysical method that has gained increasing popularity
in planetary science over the past decade. GPR has been utilised both for Lunar and Martian missions
providing pivotal information regarding the near surface geology of Terrestrial planets. Within
that context, numerous processing pipelines have been suggested to address the unique challenges
present in planetary setups. These processing pipelines often require manual tuning resulting to
ambiguous outputs open to non-unique interpretations. These pitfalls combined with the large number
of planetary GPR data (kilometers in magnitude), highlight the necessity for automatic, objective
and advanced processing and interpretation schemes. The current paper investigates the potential of
deep learning for interpreting and processing GPR data. The one-shot multi-offset configuration is
investigated via a coherent numerical case study, showcasing the potential of deep learning for A)
reconstructing the dielectric distribution of the the near surface of Terrestrial planets, and B) filling
missing or bad-quality traces. Special care was taken for the numerical data to be both realistic and
challenging. Moreover, the generated synthetic data are properly labelled and made publicly available
for training future data-driven pipelines and contributing towards developing pre-trained foundation
models for GPR.

Keywords Deep Learning · Machine Learning · Chang’E-4 · Yutu-2 · Ground Penetrating Radar · GPR · Perseverance ·
inversion · FWI · big data · data imputation
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1 Introduction

In-situ ground-penetrating radar (GPR) was introduced in planetary science in 2013 as part of the scientific payloads
of Yutu-1 the Lunar rover of the Chinese Chang’E-3 mission [1]. Since then, GPR was part of the scientific payloads
of the Yutu-2 rover from the Chang’E-4 mission [2], the lander of the Chang’E-5 [3] and Chang’E-6 missions, the
rover Perseverance [4] from Mars 2020, and Zhurong rover from Tianwen-1 mission [5]. Moreover, GPR is planned
to be used in the future missions Chang’E-7 [6] and ExoMars [7], both missions expected to take place before 2030.
Consequently, GPR is one of the most mainstream scientific payloads in the new era of space exploration, and one of
the few in-situ geophysical methods applied in planetary science.

GPR is a mature geophysical method with a wide range of applications, each with its own uniqueness and challenges
[8]. To that extent, bespoke processing, modelling and interpretation tools are needed for almost each unique GPR
application. Regarding planetary GPR, numerous processing and interpretation methodologies have been suggested,
from hyperbola fitting [9, 10, 11] and migration [11] to centroid frequency shift analysis [11, 12, 13]. These approaches
provide non-unique interpretations and often require laborious and manual processing combined with high-level of
domain knowledge in GPR and geophysics in general.

The issues mentioned in the previous paragraph are not exclusive to planetary GPR. To address them, machine
learning (ML) and data-driven approaches have been proposed in an attempt to develop objective and fully automatic
interpretation frameworks primarily for Terrestrial applications. Fine-tuned foundation computer vision models and self-
supervised learning have been used for automatic hyperbola fitting for non-destructive testing [14, 15]; convolutional
neural networks and dense neural networks were suggested for removing background and ringing noise [16, 17, 18, 19];
random forest was used to estimate the diameters of rebars in concrete inspections [20]; convolutional auto-encoders
were utilised for full waveform inversion (FWI) trained using synthetic data [21]; U-net was used to fill missing traces
[22]; and unsupervised clustering was used to segment radagrams from Yutu-2 rover [23].

In the current paper we want to investigate the potential of machine learning for processing and interpreting one-shot
multi-offset GPR data collected in a planetary setup [24]. In particular, we will conduct a coherent numerical study
using realistic and challenging synthetic data focusing on two problems A) automatic full waveform inversion and
B) filling missing or bad quality traces. The models will be tuned for frequencies around 60− 100 MHz, similar to
the range of the low frequency systems employed in the planetary rovers Yutu-1, Yutu-2 and Zhurong. Moreover our
investigation will focus on media with low electric permittivity and conductivity as expected in the Lunar [25] and
Martian subsurface [26].

2 One-Shot Multi-Offset Configuration

The most common measurement configuration in planetary in-situ GPR is the common-offset (CO), where the transmitter
and receiver are moving along the measurement line while keeping their distance constant. CO has numerous drawbacks,
one of the most important is the lack of a reliable methodology for calculating the subsurface permittivity. Hyperbola
fitting (HF) is a very common approach used in CO-GPR for estimating the permittivity, however HF is reliable only
for shallow layers [11], since for deeper ones’ large boulders are necessary to give rise to visible hyperbolic reflectors;
and the interpretation has a high rate of uncertainty with increasing depth [27].

The lack of an attainable method to calculate the permittivity in CO-GPR can be tackled using multi-offset (MO)
configurations. where the receiver stands still while the transmitter is moving (or vice versa). MO-GPR has the ability to
detect layers and accurately estimate their permittivity using the normal move-out (NMO) and Dix conversion [24, 28].
In a planetary setup, a MO-GPR can be realised –in theory– by placing a receiver on the lander of the mission [24]. The
Chinese missions Chang’E-3, E-4 and Tianwen-1, all have landers, that could –in principle– be utilised for MO-GPR.
Figure 1 illustrates a numerical case study using one-shot MO-GPR for mapping Lunar ejecta. The processing applied
was a typical NMO and Dix conversion [24, 28]. The discretisation of the model is 2 cm, and the central frequency of
the source is 80 MHz. It is apparent that via this approach deep layers can be sufficiently detected and characterised.

3 Deep Learning - Processing and Interpretation

In this section we will explore the capabilities of deep learning for processing and interpreting one-shot MO-GPR data.
We will explore two problems A) Full-Waveform Inversion (FWI), and B) imputing missing traces. The section is
divided into three subsections. The first subsection describes the synthetic training data used for training, providing
details on how to generate them using the open-source electromagnetic simulator gprMax [29]. The second subsection
suggests a deep learning scheme for automatic FWI using one-shot MO-GPR data. Finally, the last subsection
investigates the capabilities of deep learning on reconstructing missing or bad quality traces.
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Figure 1: A) A generic one-shot multi-offset numerical case study. The discretisation of the model is 2 cm, and the
central frequency of the source is 80 MHz. B) Processed B-Scan. C) NMO for picking velocities. D) The mean
permittivity profile (black) and the reconstructed one (red) using Dix conversion [24].

3.1 Training Data

The synthetic training data were generated using the open-source software gprMax [29], an electromagnetic simulator
that uses a second order accuracy (in both space and time) Finite-Differences Time-Domain (FDTD) method [30].
GprMax is capable of running in parallel using multiple CPUs and GPUs [31] making it an appealing choice for
generating big data. Moreover, gprMax is tuned for GPR modelling, and is also script-able allowing for the generation
of randomly varying models.

All the models of the training data are 2D with a uniform discretization step ∆x = ∆y = 2 cm. The time-step equals
with dt = 0.0467 ns, which is 0.99 times the Courant limit. FDTD runs for 15000 iterations i.e. for a total of 700 ns.
The dimensions of the model are 50.02 × 26 m, which results to a 2501 × 1300 2D grid. Perfectly Matched Layer
(PML) is used to truncate the boundaries. In particular, a 60-layer thick PML is used in order to reduce the numerical
artifacts from the surface waves on the free-space/soil interface [32]. The excitation source is placed 2 meters from
the left boundary, and at 60-100 cm height from the surface. Both the shape and the central frequency of the pulse
varies between training samples. The central frequency varies from 60-100 MHz, and the type of the pulse is randomly
selected from gaussiandot, gaussiandotnorm, gaussiandotdot and ricker (see gprMax documentation). Using different
central frequencies and different types of pulses will allow for the model to generalise for unknown excitation sources.
The polarisation of the pulse is orthogonal to the 2D domain. Along the surface, on the same height with the transmitter
are 230 receivers, placed every 20 cm starting at a 2 meters distance from the excitation source.

Each of the models consists of a series of layers with random thickness, position, topography and dielectric properties.
Moreover, within each layer the permittivity varies stochastically using fractal correlated noise with randomly selected
fractal dimension [33]. The permittivity of the layers varies from ϵ = 2− 10, which is consistent with the permittivity
values measured in the Lunar samples from the Apollo mission [25]. The conductivity in planetary setups is negligible
(due to the absence of liquid water), and is primarily related to oxides of titanium and iron (e.g. ilmenite) [34]. For
simplicity, we assume a correlation between permittivity and conductivity σ = ϵ/1000, following the rationale that the

3
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Figure 2: A set of training data from the 4400 samples used in this study. The colorbar illustrates the relative electric
permittivity. Left figures depict the numerical models, and right figures are their corresponding B-Scans. A time-varying
gain and signal saturation is applied to the B-Scans for illustration purposes.

abnormally high permittivity value of ilmenite and its dispersive properties will increase both the overall permittivity
and the electromagnetic losses of an ilmenite-bearing formation [35].

The training data consists of 4400 samples. Figure 2 shows 4 samples and their corresponding B-Scans. Varying
layers, with different geometries and dielectric properties are included in the training data to increase the generalization
capabilities of the resulting machine learning models. The initial raw B-Scan Bi ∈ R230×15000 is a matrix with 230
traces each of which having 15000 points length, where i is the sample number. A time-varying gain is applied to
every trace A(n · dt) = A(n · dt) · n3 to enhance late reflections, where n is the time index. Subsequently each trace is
compressed and resized to 230 dimensions, resulting to a new time step that is equal to 3.0434 ns. The processed and
compressed B-Scan is now expressed as Qi ∈ R230×230, a square matrix with 230 by 230 dimensions.

The initial dielectric models can be expressed as matrices Mi ∈ R2501×1300 containing the permittivity values of the
50.02 × 26 m domain, with a spatial step of ∆x = ∆y = 2 cm. The first 4 meters of the model are free-space, and
therefore are trimmed out i.e. Mi ∈ R2501×1100. Subsequently, a nearest neighbor interpolation is applied to reduce the
dimensions of the data to Wi ∈ R224×224 resulting to the new spatial steps ∆x = 22.32 cm and ∆y = 9.82 cm.

Conclusively, the final training data consist of 4400 compressed and processed (time-varying gain) B-Scans Qi ∈
R230×230, and their corresponding dielectric models Wi ∈ R224×224.
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Figure 3: The architecture of the ensemble U-nets used for FWI. The input B-Scans have 230x230 dimensions each,
and the output models have 224x224.

3.2 Full-Waveform Inversion

In this section we aim to reconstruct the dielectric models Wi from their corresponding B-Scans Qi. In an abstract
manner this is an image-to-image translation where the input image (B-Scan) Wi ∈ R230×230 is mapped into another
image (dielectric model) Qi ∈ R224×224. A very common deep learning methodology for this type of problems is
U-net [36]. More advanced methods suitable for image-to-image translation are Generative Adversarial Networks
(GAN) [37], Pix2Pix [38]), Visual Transformers [39] etc.. Despite the benefits of these techniques, in this paper we will
employ a simple U-net in order to use it as a benchmark for comparing more advanced methodologies in the future.

The architecture of the U-net is shown in Figure 3. Dropout layers are used both in the encoding and decoding parts.
The weights were initialised using the Kaiming He method [40]. The Adam optimizer [41] was used to train the model.
The learning rate was initially set to 5e− 4, after 55 epochs the learning rate reduced to 1e− 4, and after 30 epochs it
was further reduced to 5e− 5 for another 30 epochs. The batch size equals with 5, and the loss function is the mean
absolute difference. A validation set (10%) is used to monitor the loss and stop training if the validation loss does not
improve for 30 consecutive epochs.

The U-net architecture is shown in Figure 3. The training process described in the previous paragraph is executed 10
times using different initial weights, resulting to 10 different U-nets tuned for the synthetic training samples. The final
model is an ensemble of the 10 U-nets. The performance of the model is evaluated in unknown scenarios that were not
included in the training data. Figure 4 shows a set of examples of the FWI executed using the ensemble U-nets. It is
apparent, that deep learning has the capability to reconstruct the dielectric properties of the subsurface even with just
using one-shot MO-GPR data. More advanced approaches, combined with novel pre-processing techniques can further
increase the overall accuracy, providing robust and reliable foundation models for FWI.

3.3 Fill Missing Data

Missing or bad quality data is a typical problem encountered both in Terrestrial and planetary applications of GPR
[42, 43]. In this section we explore the capabilities of deep learning on reconstructing missing traces in one-shot
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Figure 4: A set of examples comparing the ground truth permittivity models to the reconstructed ones using the suggested
ensemble U-nets. These are unknown models that were not included in the training process. Colourbars depict the
relative permittivity values. It is apparent that the proposed ensemble approach has the capability to reconstruct a
smooth representation of the subsurface.
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Figure 5: The architecture of the U-net used for filling missing data. The inputs are the corrupted B-Scans each having
230x230 dimensions, and the outputs are the initial B-Scans.

MO-GPR data. For the training we initially corrupt the data by removing traces from the original radagram. We keep
one trace every 2 meters, i.e. for every 10 traces 9 traces are removed. The empty data are replaced with zeros. The
corrupted data Di ∈ R230×230 are now used as inputs, and the initial data Wi ∈ R230×230 are the desired outputs.

Similarly to the previous sub-section, U-net is used to map the causal relationship between D and W. U-net is a very
typical scheme used to fill missing data in geophysics, with promising results in MO seismic data [44]. The architecture
of the employed U-net is shown in Figure 5. The optimizer used is Adam with learning rate 1e− 4. The batch size
is 16, and the loss function is the mean squared error. Similarly to the previous section 10% of the data are used as a
validation set with a patience of 30 epochs.

Figure 6 shows a series of examples demonstrating the capabilities of deep learning and U-net on reconstructing missing
or bad quality data. Even in the absence of 90% of the data, the trained U-net was capable of sufficiently reconstructing
and predicting the missing values.

4 Data Availability - Kaggle Competition

The training data used in this study are available in Kaggle in the community competition GprMax Deep Learning
Challenge 1 (GDLC-1). The competition aims at developing foundation deep learning models for FWI of one-shot
MO-GPR data. Any submitted model must be trained subject to synthetic data (ideally using gprMax). The participants
can either use the provided synthetic datasets, or they can use gprMax (or any software of their choice) to generate
additional data to complement training. The participants can also apply any pre-processing they think necessary to the
input files prior to training. The final evaluation metric is the mean absolute error between the ground truth permittivity
of the testing models and the reconstructed ones using the proposed ML models.

Files - Training Data

• Training_Bscan: Folder that contains the .npy files for the processed (time-varying gain) B-Scans.
• Bscan_’n’.npy: Input data. The nth Bscan saved in a numpy array, np.shape(B_Scan_’n’.npy) = (230,230).

7
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Missing Values Machine Learning Ground Truth

Figure 6: A set of testing examples used to evaluate the performance of U-net for reconstructing missing or bad quality
MO-GPR data. These samples were not included in the training process. The label "Missing Values" correspond to the
corrupted data with 9 traces removed every 2 meters. The label "Machine Learning" refers to the reconstructed B-Scans
using the proposed U-net, and "Ground Truth" refers to the original B-Scans. It is apparent that deep learning is an
appealing choice for treating missing values in one-shot MO GPR data.
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• Training_Labels: Folder that contains the .npy files for the ground truth i.e. relative permittivity structure.
• Model_’n’.npy: Labels. The nth ground truth model saved in a numpy array, np.shape(Model_’n’.npy) =

(224,224).

Files - Testing Data

• Evaluation_Dataset: Folder that contains the .npy files for the processed (time-varying gain) B-Scans from
the testing set.

• Testing_Bscan_’n’.npy: Input data. The nth testing Bscan saved in a numpy array, np.shape(B_Scan’n’.npy)
= (230,230).

The B-Scans in the training set are complete without missing traces, while the B-Scans in the evaluation set have some
random missing set of traces. This is to add an extra challenge to the competition simulating missing data or bad quality
data that need to be interpolated. The participants need to find a way to train their model for missing data or develop a
way to fill the missing data prior to FWI.

5 Conclusions

A numerical case study was presented to demonstrate the potential capabilities of one-shot multi-offset measurement
configuration combined with deep learning interpretation. Through a series of numerical tests we showcase that deep
learning can sufficiently invert for the subsurface’s’ dielectric properties, and accurately reconstruct missing or bad
quality data. Despite trained with numerical data, these models can be used as foundation models for future transfer
learning with real-data, and act as case studies for demonstrating the potential capabilities of different measurement
configurations and machine learning models for planetary GPR.
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