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We investigate seismic motion propagation through a passively isolated mechanical system, using
Wiener filters and convolutional neural networks with time-dilation layers. The goal of this study was
to explore the capabilities of neural networks andWiener filters in characterizing a mechanical system
from the measurements. The mechanical system used is a testbed facility for technology development
for current and future gravitational wave detectors, “VATIGrav”, currently being commissioned at
University of Hamburg. It consists of a large vacuum chamber mounted on four active vibration
isolators with an optical table inside, mounted on four passive vibration isolators. In this paper we
have used seismic data recorded on the ground and on the optical table inside the chamber. The
data were divided in 6 hours for training and another 6 hours for validation, focusing on inferring
150-second stretches of time series of table motion from the ground motion in the frequency range
from 0.1Hz to about 50Hz. We compare the performance of a neural network with FTT-based
loss function and with Huber loss function to single-input, single-output (SISO) and multiple-input,
single-output (MISO) Wiener filters. To be able to compute very large MISO Wiener filters (with
15,000 taps) we have optimized the calculations exploiting block-Toeplitz structure of the matrix
in Wiener-Hopf equations. We find that for the given task SISO Wiener filters outperform MISO
Wiener filters, mostly due to low coherence between different motion axes. Neural network trained
with Huber loss performs slightly worse than Wiener filters. Neural network with FFT-based loss
outperforms Wiener filters in some frequency regions, particularly with low amplitudes and reduced
coherence, while it tends to slightly underestimate the peaks, where Wiener filters perform better.

I. INTRODUCTION

Seismic isolation plays a crucial role in enabling de-
sign performance of current and next generation ground-
based gravitational wave detectors, such as Advanced
LIGO [1], Advanced Virgo [2], KAGRA [3], GEO600 [4]
and the future Einstein Telescope [5] and Cosmic Ex-
plorer [6, 7]. Natural and human-made (e.g. by indus-
trial equipment, trucks) seismic vibrations in the lower
audio-frequency band affect gravitational wave detectors
in two main ways, depending on their coupling mecha-
nism.

Vibrations can couple directly into the detection band,
which for current LIGO and VIRGO detectors starts
at 10 Hz [1] and for future detectors such as Ein-
stein Telscope are expected to be extended down to a
few Hz [8]. These vibrations directly affect the signal
to noise ratio and related metrics such as the detector’s
astrophysical reach in Megaparsecs.

Vibrations in and below the detection band may intro-
duce large amplitude motions that interferometer (IFO)
control systems cannot fully compensate, resulting in the
optics drifting out of alignment and lock loss. Even if
the lock loss does not occur, the required large ampli-
tude actuation couples in the associated controls noise.
This type of vibrations thereby indirectly limits sensitiv-
ity and can also reduce detector’s duty cycle.
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Seismic isolation systems, together with the suspen-
sion of mirrors, act as a filter, preventing vibrations at
frequencies in the detection band from propagating to the
optics. Motion at frequencies below the detection band
contributes to the overall motion of the optics which de-
termines the required control authority [9]. It can also
couple into the measurement by non-linear effects, such
as scattered light [10]. Especially at the suspensions res-
onances this motion is critical, due to the strong motion
amplification.

This can be counteracted by using active seismic pre-
isolation platforms onto which the suspension chain is
mounted, such as Internal Seismic Isolation (ISI) plat-
form at LIGO [11] and similar solutions at gravitational
wave detector prototypes [12, 13]. This approach has
some challenges, notably it is limited by the self noise
of the sensors used in pre-isolation control loops. Sensor
self noise is propagating through the suspension chain as
spurious motion, affecting measurement degrees of free-
dom of the detector and limiting its overall sensitivity.
More sensitive local, inertial sensors and rotation sensors
are being developed to improve this [14–16].

At University of Hamburg, we are setting up a test en-
vironment to study these effects on a smaller scale, con-
sisting of a vacuum chamber with active pre-isolation,
called Vacuum system for third generation grav itational
wave detector prototyping, or VATIGrav. It is intended
for testing and the development of local and inertial sen-
sors mounted on suspensions. Especially the compact in-
terferometric sensors, which have gained strong interest
in recent years [9, 17], because they can provide greatly
improved noise performance in comparison to the cur-
rently used shadow sensors [18] at LIGO. We are devel-
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oping one concept of such a sensor in-house, based on the
technique of deep-frequency modulation [19], Compact
Balanced Readout Interferometer sensor – COBRI.
In this paper we analyze seismic motion propagating

through the mechanical system of passive seismic isola-
tion of VATIGrav, and attempt to infer the motion of
the optical table inside the vacuum chamber from the
measurement of ground motion, using convolutional neu-
ral networks (CNNs) and Wiener filters. This work is
focused on exploring capabilities of Wiener filters and
CNNs, but will also contribute towards future improve-
ments of the seismic isolation of VATIGrav, involving
more sensors and better active control.

The Wiener filter and neural network approach devel-
oped here could be of general interest for seismic isola-
tion in gravitational wave detectors. We utilize 3-axis
data for both input and output (Xgnd, Ygnd, Zgnd) →
(Xtable, Ytable, Ztable) and comparatively long time series
to capture a broad frequency range.

Previous works featuring neural networks for time se-
ries include [20], where deflection angles of a seismi-
cally isolated pendulum were predicted. Another relevant
study is the prediction of terrestial gravity fluctuations
(Newtonian) noise from an array of seismic data [21],
which motivated the overall design of our CNN. Wiener
filters were also studied for suppression of Newtonian
noise [22] as well as for active vibration isolation at 40 m
prototype interferometer lab at Caltech [23] and LIGO
detectors [24].

II. VATIGRAV: TESTBED FOR NEXT
GENERATION GW DETECTOR TECHNOLOGY

DEVELOPMENT

VATIGrav, shown in Fig. 1, is a testbed facility for
technology development for current and future gravita-
tional wave detectors, which determines its design. It
is a cubic chamber approx. 1.5 m long, 2 m wide and
2.5 m high, weighing approximately 5.5 tonnes. The
chamber features double doors in the back and a sin-
gle door in the front, resulting in internal dimensions of
1.02 × 1.74 × 1.51 m. That volume provides sufficient
space for mounting suspension chains and assembling in-
terferometers needed for testing of the local sensors, with
easy accessibility from either side to adjust the setup be-
tween test runs. The vacuum system features a turbop-
ump mounted on top and two pre-pumps located outside
of the laboratory to reduce noise. The vacuum system is
designed to achieve high vacuum levels (so far the low-
est pressure reached is 1.9 · 10−6mBa after a few days of
pumping).

The optical table inside VATIGrav (240 kg) is placed
on four Minus-K 250 CM-1 passive vibration isolators (12
kg each). CM-1 isolators perform best under weight close
to maximum payload capacity, which in our setup means
up to 190 kg of additional weight. The isolators can be
tuned with the help of vertical stiffness adjustment screw

(coarse) and load adjustment crank (fine). To be able to
operate under optimal weight while changing experimen-
tal setups, we designed an underside weight holder where
stainless steel rods can be inserted for proper balancing
(see Fig. 1). Besides, smaller stainless steel cylinders can
be placed on the optical table.

The chamber itself (weighing approximately 6 tonnes
with payload) is placed on four Ametek/TMC STACIS
III active vibration isolators. The latter are equipped
with three orthogonally oriented “GS-ONE-LF” geo-
phones and actuators each. Based on the readings from
geophones and preset controller, each of the units inde-
pendently compensates the vibrations it is sensing via
a feedback loop. Independent operation ensures that
the units are agnostic to their relative placement under
the chamber, but introduces a penalty since any tilts of
the chamber cannot be accounted for and compensated.
The controlling hardware and software is commercial and
closed-source without a possibility to make any adjust-
ments; the only possible adjustment is a limited tuning
of the control transfer function of the unit, that was per-

FIG. 1. VATIGrav chamber. The turbopump can be seen on
top of the chamber. The HRTS suspension is mounted on the
optical table inside. Below the optical table the aluminum
weight holder as well as CM-1 isolators can be seen. The
chamber is standing on STACIS III isolation feet.
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formed by the TMC personnel after installation of the
chamber.

A. Seismic isolation of VATIGrav

We measured the seismic isolation performance of
VATIGrav with two seismometers, a Trillium 360, which
is placed on the center of the optical table in the chamber
and an STS-2.5 on the ground nearby. Data recorded at
100 Hz sampling rate at night were used in this study. It
should be noted that the passive isolation is not expected
to be fully optimal yet because the additional weight was
not added for this measurement (resulting in the payload
being too light) and CM-1 isolators were not properly
tuned.

The amplitude spectral density (ASD) of the active iso-
lation (STACIS III system turned on) is shown in Fig. 3
and passive isolation (STACIS III system is off) perfor-
mance is shown in Fig. 2, for 1 hour of quiet data on
two different nights. Since the measurements were taken
in different time periods, background seismic levels are
not the same, which is visible by the difference at the
microseism peak at 0.15 Hz – higher for active isola-
tion measurement. This however does not affect main
conclusions about performance.

On the plots with passive-only isolation, resonances
are clearly visible for horizontal (X, Y ) directions, at
around 1.2-2 Hz. These resonances can be attributed to
the under-loaded CM-1 isolators, which have a 0.5 Hz
resonance frequency under optimal load [25]. No promi-
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FIG. 2. Seismic measurements on the ground and on the
optical table inside VATIGrav, STACIS III active isolation
system is not engaged. Solid lines correspond to motion of
the table, and dashed lines to motion of the ground. The
lower subplot shows linear coherence between the table and
the ground for same directions on the ground and on the table.

nent resonance appears for vertical (Z) direction, and in
general passive isolation in vertical direction does not ap-
pear to have an effect. This, as later discovered, was due
to CM-1 isolators not set up properly, essentially resting
on supports and not “floating” for the vertical motion.

At frequencies above the horizontal resonances, passive
isolation attenuates motion by close to 2 orders of mag-
nitude at maximum for horizontal directions. At high
frequencies some more resonances on the table appear,
resulting in excess motion. Resonances around 18 Hz
are the natural passive resonance of the STACIS III feet.
The origin of other higher-frequency resonances is not so
clear, they were not seen in a separate measurement on
top of the chamber. That means that these resonances
are occurring either in CM-1 isolators, or are related to
the optical table and its payload. Their origin might be-
come more clear when the passive isolation is optimized.

The active isolation system does a good job of sup-
pressing these high-frequency resonances as well as 1.2-2
Hz resonances, and shows broadband improvement above
0.2 Hz. At the same time, it is clearly visible that the ac-
tive system injects motion below the microseism peak at
0.15 Hz. This is not surprising given the noise introduced
by geophones, their readout and not optimal independent
control of each unit, which does not account for tilt.

Potential improvements of seismic isolation are possi-
ble for example by replacing the individual controllers
with global control and filtering. Later seismometers
(as higher precision sensors at low frequencies) could be
placed on the ground for feedforward- and potentially
seismometers and geophones on the table in vacuum can
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FIG. 3. Seismic measurements on the ground and on the op-
tical table inside VATIGrav, STACIS III active isolation sys-
tem is engaged. Solid lines correspond to motion of the table,
and dashed lines to motion of the ground. The lower subplot
shows linear coherence between the table and the ground for
same directions on the ground and on the table.
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be added for additional feedback control.

In the following chapters of this paper we explore
whether we can infer the motion of the table, especially at
low frequencies, from motion on the ground. We compare
time series directly, in a random window a few seconds
long, as well as amplitude spectral density (ASD) over
one hour of data. A model transforming time series, that
successfully captures motion characteristics on the table
solely from the measurements on the ground, can later
aid in a feedforward control scheme. However, the design
and the implementation of such a scheme requires further
work and is not discussed here.

III. NEURAL NETWORK DESIGN

The network architecture we used to estimate the
motion on the table from ground motion is an 1D-
convolutional neural network (1D-CNN) with increasing
time-dilation. We have chosen the CNN architecture
over, for instance, simple dense networks (where all neu-
rons are interconnected) because of its robustness against
exploding or vanishing gradients in training due to reg-
ularized weights and fewer connections. The CNNs are
therefore more efficient in training, requiring fewer com-
puting resources and memory, which allows for more com-
plex network structures with better potential for learning
with a given amount of resources, especially for images,
audio and video data [26]. Seismic data is similar in its
structure to audio data shifted to non-audible frequen-
cies.

The receptive field of a CNN is fixed by its kernel size.
To be able to infer low frequency motion, we need to
have unbroken stretches of time series as long as possi-
ble. That would require increasing the number of layers
or kernel size and would lead to more computational ef-
fort. We kept long stretches of time series (150 s, or
15,000 samples) but also used time-dilation to accommo-
date a large number of inputs with fewer computations.
It applies the convolutional kernel over a lager field of
data, and has been proven in audio-processing [27] and
in denoising of seismic data [28].

The architecture of the network can be seen in Fig. 4.
It consists of two convolution blocks with a total of 13
1D-convolutional layers. One convolution block contains
six layers with increasing time-dilation. In between the
convolution blocks a dropout layer is applied, which ran-
domly zeroes some outputs in the training (with prob-
ability defined by dropout rate), to prevent overfitting.
As an activation function the leakyReLU is used. The di-
mensionality is increased from three channels input data
(X, Y , Z) to 64 convolutional filters. The last additional
layer reduces the 64 filters back to three output chan-
nels. The number of time steps (15,000 samples) is kept
constant throughout the network.

For training the network focusing on ASD perfor-
mance, a new loss function was defined, which the CNN

aims to minimize:

loss = 1.25 · 10−6
∑

bat., chan.

∑
freq.

∣∣∣∣ ln(|rffttrue|) − ln(|rfftpred|)
fft sample frequencies

∣∣∣∣+
+

∑
freq.

∣∣∣∣arg(rffttrue) − arg(rfftpred)

fft sample frequencies

∣∣∣∣
 .

(1)

Instead of comparing the time series directly, the differ-
ence of the amplitudes and phases of fast Fourier trans-
form (FFT) from the input and output data are calcu-
lated. (Here the rfft function used as input time series
is real-valued.) The first component of loss is the am-
plitude difference, for which absolute values of the FFT
at each frequency are used. A logarithm of these values
taken first, with the result of the loss function being sensi-
tive to logarithmic amplitudes scale, as used typically for
ASD plots. The second component is phase difference,
or difference in argument of the FFT at each frequency.
Before summation over frequencies, both components are
divided by the frequency. Since rfft frequencies are lin-
early spaced, this has an effect of reweighting to logarith-
mic scale. We consider the resulting log-log scale more
natural (all spectra comparison plots in this paper feature
log-log binning). The loss is computed for all channels
and all batches and then summed up. It is then multi-
plied by a factor 1.25 ·10−6, empirically chosen to bring a
typical value close to 1. Trained using this loss function,
the network aims to get the correct amplitude of each
frequency, by producing corresponding time series.
As an alternative, we have tried other loss functions

that are applied directly to data arrays. Popular loss
functions such as the mean squared error and the mean
absolute error performed poorly for our case. Instead, we
have used the Huber loss function, defined as:

loss =
∑

data samples

{
1
2
(pred− true)2 , if |pred− true| ≤ δ,

1
2
δ
(
|pred− true| − 1

2
δ
)
otherwise.

(2)

The Huber loss function is therefore quadratic for small
deviations (less than δ), and linear for larger deviations.
This reduces sensitivity to outliers in the data [29]. In our
case the optimal value for δ was found using a parameter
sweep, explained below.
At each step in the training a subset of the data is

used, a number of 150-second chunks defined by the batch
size. Before the training, the 150-second chunks in the
training dataset are randomly shuffled to reduce chances
of overfitting.
The amount by which the network weights are allowed

to change in each step of the training, or, equivalently,
the step size along the gradient of the loss function, is
defined by the learning rate (lr). This is an important
hyper-parameter that balances reasonable speed of train-
ing (higher learning rate) with reducing the chance of
“overshooting” the optimum (lower learning rate). It is
advantageous to adjust the learning rate, starting with
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the higher value and decreasing it. A learning rate sched-
uler has been implemented, to decrease the learning rate
for higher epochs:

lr =


lrstart for epoch < 50,

lrstart · 1
lrdecay·epoch for epoch ≥ 50,

lrmin if lr < lrmin.

(3)

The learning rate is computed for each epoch and de-
pends on a start learning rate, the current epoch of the
network, the learning rate decay and a minimal learning
rate. As a minimal learning rate lrmin = 10−7 was chosen.
For the weight optimization the Nadam optimization al-
gorithm is used, which takes as a parameter the weight
decay to make the learning function smoother.

A separate validation dataset is created which is not
used during training. We used this dataset to tune
hyper-parameters of the network by using sweeps in
wandb [30].The hyper-parameters, for which the opti-
mal values are found by the sweep, are batch size, lrstart,
lrdecay, the dropout rate of the dropout layer, the weight
decay, and the Huber δ when using the Huber loss func-
tion. A sweep searches in multidimensional space of these
parameters, running training multiple times, each for 500
epochs, with the goal of minimizing loss on the valida-
tion dataset (validation loss). Bayesian hyper-parameter
optimization is used, where each run’s result guides sub-
sequent values of hyperparameters to test. A minimum
of 50 runs were used to optimize the network.

Finally, the run with best hyper-parameters performed
again, this time with validation loss being the stopping
criterion. We run the network training until the valida-
tion loss stops improving.

From the parameter sweep we got following result for
the CNN with the FFT loss function:

- batch size = 8,
- lrstart = 2.4236 · 10−3,
- lrdecay = 0.3880,
- dropout rate = 0.4,
- weight decay = 1.5161 · 10−5.

The optimal number of training epochs for the best
run was 950, determined retrospectively after training
for 1000 epochs.

And for the CNN with Huber loss function:

- batch size = 4,
- lrstart = 2.4103 · 10−3,
- lrdecay = 0.1789,
- dropout rate = 0.1,
- weight decay = 8.3082 · 10−5,
- Huber δ = 0.0659σ,

where σ is the standard deviation of the data. The
optimal number of training epochs for the best run was
only 100, training longer actually increased the validation
loss, i.e. overfitting occurred.

IV. WIENER FILTER

Wiener filters are widely used for correlated noise sub-
traction using references, and they are known to provide
optimal subtraction of this kind in linear and stationary
regime [22].

If there’s a non-linear interaction, it is expected to
be better captured by the neural network, and this is
a reason why it is of interest to perform a comparison to
Wiener filter to assess a potential neural network advan-
tage. In particular, a Wiener filter is expected to perform
worse for frequency ranges with low linear coherence. We
calculate an estimate of linear coherence to aid the com-
parison.

In our case, the regime is not necessarily stationary.
An adaptive Wiener filter could in principle account for
this [23, 24]. Since we compare to a single neural net-
work, we decided not to investigate adaptive Wiener fil-
ters here. Instead, we compute 143 Wiener filters for the
input data (corresponding to the number of 150-second
intervals), and choose the best-performing Wiener filter
among these, using a procedure described in IVB.

Seismometer

       data

1D-Conv Block with Dilation

3

15.000

64

15.000

Dropout-Layer

1D-Conv Layer

3

15.000

1D-Conv Block with Dilation

64

15.000

Prediction of seismic motion

             on the table

FIG. 4. This sketch shows the structure of the convolutional
neural network of this paper. It is a 1D convolutional neural
network with dilation and consists of 2 convolution blocks,
which contain six convolutional layers with increasing time-
dilation. Between these blocks a dropout layer can be applied.
At the end one 1D-convolutional layer is applied to reduce
the dimensionality of data from 64 convolutional filters to 3
physical axes.
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A. Optimized Wiener filter calculation

A Wiener filter can be defined as follows [22]:

ŷn =

N∑
k=0

wk · xn−k,

here ŷn is an estimation of the target signal at the time
sample n, wk are Wiener filter coefficients (N+1 of them
total, for N taps filter) and xn−k are reference channel
values for the time step n and previous N steps. Note
that at any given k, wk and xn−k are the size of num-
ber of reference channels (i.e. they contain coefficients
for and measurements in, correspondingly, each reference
channel at the time k). Therefore, wk · xn−k is a scalar
product for each k. In other words there’s another sum
contained in this formula.

The number of time steps is typically much larger than
the number of references (and certainly in our case with
2,160,000 time steps and 3 references), therefore it is
more computationally efficient to rearrange this formula
in the following way:

ŷn =

M∑
m=1

N∑
k=0

wm
k · xn−k

m ,

where M is the number of references. Now the inner
dot product (inner sum), contains long vectors of size
N (time steps), which can be efficiently multiplied using
numpy.dot function. Such simple rearrangement of sums
considerably speeds up the application of the Wiener fil-
ter.

But before a Wiener filter can be applied, the co-
efficients wm

k have to be derived first. Derivation re-
quires solving the Wiener-Hopf equations, which are
given in [22] as follows:

Cxx ·w(:) = Cxy,

where Cxx is a cross-correlation matrix between the
reference channels, Cxy is a cross-correlation vector
of target to reference channels and w(:) is the NM-
dimensional vector that is obtained by concatenating the
M columns of the matrix w, where M is number of refer-
ences.

Details of the estimation of the cross-correlation ma-
trix Cxx and cross-correlation vector Cxy are provided
in [31], and are calculated in the same way here. In [31]
the last step to obtain a solution involves inversion of the
cross-correlation matrix:

w(:) = Cxy/Cxx. (4)

The Wiener filter algorithm is already imple-
mented in scipy and MATLAB packages. However,

scipy.signal.wiener is a single-input Wiener filter
(that can be applied to high dimensional data). The
neural network does multiple-input, multiple output
(MIMO) conversion of the data. The closest we could
do to mimic this (and profit from potential correlations
between different DOFs) was to create three multiple-
input, single-output Wiener filters. Such a filter is im-
plemented in MATLAB as MISO FIRWIENER. However, as
noted in LIGO note [31], the calculation in this method
is inefficient as it does not exploit Block-Toeplitz matrix
structure, described below. For repeated calculation of
very large Wiener filters (each with 15,000 taps) it was
necessary to improve performance upon that of the cal-
culation referenced.
In [31] matrix inversion is performed with standard

MATLAB algorithms and we found it to be prohibitively
computationally expensive for Wiener filters with thou-
sands of taps, independently of whether done in MAT-
LAB or with other tools. As hinted in [31], the calcu-
lation can be sped up by exploiting the Block-Toeplitz
structure of the matrix Cxx. As an illustration, for ex-
ample with 4 references (4 blocks) the structure looks like
this:




a0 a−1 · · · a−(n−1)

a1
. . .

. . .
...

...
. . .

. . . a−1

an−1 · · · a1 a0




c0 c−1 · · · c−(n−1)

c1
. . .

. . .
...

...
. . .

. . . c−1

cn−1 · · · c1 c0




b0 b−1 · · · b−(n−1)

b1
. . .

. . .
...

...
. . .

. . . b−1

bn−1 · · · b1 b0




d0 d−1 · · · d−(n−1)

d1
. . .

. . .
...

...
. . .

. . . d−1

dn−1 · · · d1 d0




Each block in Cxx matrix is a Toeplitz matrix, which

is fully defined by its first row and first column. This can
be exploited to drastically reduce memory requirements
for keeping elements of Cxx matrix, because the number
of its unique elements is only M2 × 2(N + 1) compared
to M(N + 1)×M(N + 1) elements for a generic matrix
of the same size.

Once the unique M2 × 2(N + 1) elements of the
cross-correlation matrix are generated, we used itera-
tive solvers in scipy.linalg.sparse python module to
find the solution to the equation 4. Notably, these
iterative solvers do not require knowledge of the en-
tire matrix for each iteration. This is exploited by us-
ing scipy.sparse.linalg.LinearOperator functional-
ity to define a linear operator that specifies a rule for the
result of the product of the matrix Cxx with an arbi-
trary vector v. Because of the symmetries of the Block-
Toeplitz matrix explained above, such linear operator in
combination with unique matrix elements takes up much
less memory than the original matrix. The linear opera-
tor was implemented as a python function that does the
following:
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1. Multiplication is reduced to block-by-block mul-
tiplication, which is possible for a matrix of size
M(N + 1) × M(N + 1) and a vector v of size
M(N + 1);

2. For each block, an efficient multiplication using
scipy.linalg.matmul toeplitz is performed, re-
quiring only the unique first column and first row
values of the (current) Toeplitz matrix.

Finally with the linear operator defined as above, the
equation 4 is solved with scipy.sparse.linalg.gmres
solver. Other solvers were tested on “mock” data, and
gmres was found to be the best-performing (lowest broad-
spectrum noise) in different scenarios.

The algorithm described above is implemented
in open-source software package spicypy [32] in
spicypy.signal.wiener filter module, with example
of usage provided in [33].

B. Choosing the best-performing Wiener filter

To choose the best-performing Wiener filter, we ap-
ply each of the 143 candidates to the total time series of
input data, containing 2,160,000 time steps. We then cal-
culate the ASD spectrum of the output data and of the
time series produced by Wiener filters using the Loga-
rithmic Power Spectrum Density (LPSD) algorithm [34],
originally implemented in LTPDA package for LISA mis-
sion [35] and currently also implemented in spicypy [32].

Then calculation of the mean squared error (MSE) is
done as following:

MSEj =

√√√√ 1

143

L∑
i=0

[ASD(output)i −ASD(WFj(input))i]
2
,

where i is the frequency bin index for the ASD (L
bins total) and j is the Wiener filter index (143 total).
Using logarithmic binning of the LPSD algorithm here
results in a more “natural” MSE definition with more
sparse binning in high frequency and more frequent in
low frequencies (resulting in ≈constant binning on a log
scale).

The best filter selection algorithm is also implemented
in spicypy [32], integrated into Wiener filter generation.
By default, if the time series are longer than the num-
ber of taps of the filter, multiple Wiener filters will be
generated, and the best-performing filter will be found.

C. Effects of number and quality of references on
Wiener filter performance

When more references are added to our Wiener fil-
ter implementation, especially low coherence references
(such as X and Y ground data for a Z-direction Wiener

filter), the broad-spectrum noise in the resulting time
series increases. Possible reason is due to errors in the
correlation estimation; this seems to fit together with the
fact that extra noise depends on number of taps and is
less pronounced for filters with more taps (and therefore
more data for coherence estimation). Detailed analysis
of this effect on mock data is provided in spicypy usage
example [33].

V. WIENER FILTER AND NEURAL
NETWORK PERFORMANCE COMPARISON

We have used two 6-hour stretches of passive isolation
data over two consecutive nights collected in the same
measurement campaign as used for plots in Fig. 2. The
first 6 hours are used to train a neural network as de-
scribed in Section III that takes in 150 s of data (15,000
samples) for 3-axis ground motion at a time and produces
150 s of 3-axis inferred motion on the table. We also con-
struct an equivalent Wiener filter (with 15,000 taps), as
described in Section IV. Out of the other 6 hours of the
data, 3 hours were reserved as a validation dataset to
tune neural network hyper-parameters (see Section III).
Data from the remaining 3 hours were used in compari-
son of the results in this section. We used 1 hour of data
to compute ASDs and calculate performance metrics of
Wiener filters and neural networks, and a random few
second stretches of time series for time series plots.
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FIG. 5. Logarithmic ASD for X axis for the best-performing
Wiener filter (black solid line), best-performing neural net-
work (light blue solid line), ground data (gray dotted line)
and optical table data (red dashed line). Coherence of the X
axis on the ground with all the axes on the table is shown in
the subplot (solid line with the X axis, dashed line with the
Z axis and dotted line with the Y axis).

All data, originally in units of digits/s recorded by the
seismometers, were first normalized to improve numerical
accuracy. The data were divided by the standard devi-
ation for 6 hours of training data, calculated separately
for data on the ground and on the table, because the
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FIG. 6. Logarithmic ASD for Y axis for the best-performing
Wiener filter (black solid line), best-performing neural net-
work (light blue solid line), ground data (gray dotted line)
and optical table data (red dashed line). Coherence of the Y
axis on the ground with all the axes on the table is shown in
the subplot (solid line with the Y axis, dashed line with the
Z axis and dotted line with the X axis).
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FIG. 7. Logarithmic ASD for Z axis for the best-performing
Wiener filter (black solid line), best-performing neural net-
work (light blue solid line), ground data (gray dotted line)
and optical table data (red dashed line). Coherence of the Z
axis on the ground with all the axes on the table is shown in
the subplot (solid line with the Z axis, dashed line with the
X axis and dotted line with the Y axis).

measurement was performed using different seismometers
(STS 2.5 and Trillium 360, respectively). The data were
also high-passed at 0.1 Hz to remove noise-dominated
lower frequencies, and considering that the first signif-
icant feature in the data is the microseism peak at a
slightly higher frequency of ∼ 0.15 Hz. Then, after the
time series are passed through either the neural network
or Wiener filter, the unit of digits/s is restored by mul-
tiplying by the same standard deviation. After that, the
respective seismometer transfer function is applied to fi-

nally convert data into m/
√
Hz displacement.

The best-performing neural network turned out to be
the one with FFT-based loss function. It is shown in com-
parison to the best-performing Wiener filter in Fig. 5 - 7.
There’s a single neural network that performs the trans-
formation (Xgnd, Ygnd, Zgnd) → (Xtable, Ytable, Ztable).
However, SISO Wiener filters were used for these plots,
i.e. Xgnd → Xtable, Ygnd → Ytable, Zgnd → Ztable, be-
cause the MISO filters (Xgnd, Ygnd, Zgnd) → Xtable (and
similar for other DOFs) were found to be severely limited
by the broad-spectrum noise described in Section IVC.
This is due to low coherence of the other reference chan-
nels (e.g. Xgnd, Ygnd with Ytable), as can be seen in co-
herence subplot of Fig. 5 – 7.
We can see that for the Z axis, performance of both

neural network and Wiener filters is nearly identical and
very good, which is not surprising because in that axis
there’s almost no passive isolation and the motion is di-
rectly coupled. For the other axes, we can see that the
neural network outperforms Wiener filters for some fre-
quency regions, notably between around 2 and 10 Hz
and especially prominent for the Y axis. These regions
feature passive isolation anti-resonance with small ampli-
tudes and reduced coherence, and potentially small non-
linearities, which a neural network can apparently handle
better. That said, amplitudes of higher peaks tend to be
somewhat underestimated by the neural network, and
better estimated by Wiener filters.
There’s an interesting small feature (peak) for X axis

(in Fig. 5) between 10 and 20 Hz, where we can see a
coupling from Z direction from coherence subplot. The
neural network has information about the Z axis (un-
like a SISO WF) and performs better here. The extra
noise from additional references for the Wiener filter un-
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FIG. 8. Logarithmic ASD for X axis for the best-performing
MISO Wiener filter (black solid line), best-performing neural
network (light blue solid line), ground data (gray dotted line)
and optical table data (red dashed line). Coherence of the X
axis on the ground with all the axes on the table is shown in
the subplot (solid line with the X axis, dashed line with the
Z axis and dotted line with the Y axis).
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fortunately dominates all expected potential gains from
additional information in other axes. Besides physical
couplings, another source for such information could be
due to seismometer’s true axes U, V,W not coinciding
with X,Y, Z. Readings in X,Y, Z are actually obtained
via a coordinate transformation of the data, which leaves
a possibility of coupling due to imperfect transformation.

In Fig. 8 we show an example of (Xgnd, Ygnd, Zgnd) →
Xtable MISO filter in comparison with the same as above
neural network. Time series produced by this MISO fil-
ter have been normalized by applying a constant factor,
minimizing spectral residuals on training data. Without
normalization, the result is off by orders of magnitude.
Even with normalization, it can be seen that its perfor-
mance is still significantly worse than a simple SISO filter
shown in Fig. 5, where no such extra normalization fac-
tors were needed.

It should be noted that the algorithm producing MISO
Wiener filter has been tested in more favorable condi-
tions where all references are correlated to the output
and produces a good result (see spicypy usage exam-
ple [33]), which suggests that the issue here lies with the
data, namely the two noisy references, Ygnd and Zgnd,
with very small correlation to the output, Xtable.

The ASD result for the network with the Huber loss
(described in Section III) is shown for theX axis in Fig. 9,
just to pick one as an example. While the peak ampli-
tudes are inferred somewhat better than for the network
with FFT-based loss, it is visible that overall this net-
work shows inferior performance to both Wiener filters
and the network trained on FFT-based loss.

Time series performance for the SISO Wiener filters
is shown in Fig. 10, and for the neural networks in
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FIG. 9. Logarithmic ASD for X axis for the best-performing
Wiener filter (black solid line), CNN with Huber loss (light
blue solid line), ground data (gray dotted line) and optical
table data (red dashed line). Coherence of the X axis on the
ground with all the axes on the table is shown in the subplot.
(solid line with the X axis, dashed line with the Z axis and
dotted line with the Y axis).

Fig. 11 (FFT loss) and in Fig. 12 (Huber loss). To aid
the comparison time series are presented as two traces:
low-frequency (low-passed at 10 Hz) and high-frequency
(high-passed at 10 Hz). It is visible that Huber-loss-
trained network has slightly worse performance than
other algorithms for time series. The Wiener filter shows
very good performance in low-frequency (< 10 Hz trace),
better than neural networks, especially for the horizon-
tal axes. We can see that the FFT-loss-trained network
shows better time series performance than the Huber-
loss-trained, but does not reproduce the amplitude of an
approximately 2 Hz oscillation for the X-axis in the low-
frequency trace. This is consistent with the underesti-
mation of peaks around 2 Hz seen in ASD. However for
higher frequencies it is difficult to make the conclusion.
On these plots one can see that high-frequency time se-
ries of Wiener filter have somewhat larger spread than
that of the FFT-loss-trained network, especially visible
for the X axis.
The inference time with neural network is significantly

shorter than with Wiener filter on the same data in the
setup that we have used. Table I shows performance
comparison with loss values and typical timings for the
same 1 hour of data as used for the ASD plots. Timings
cannot be compared directly however, because the neural
network inference ran on a GPU (NVIDIA GeForce RTX
3090), while the Wiener filter inference was performed on
a CPU (Intel Core i7-9800X, 3.80 GHz).

CNN FFT loss CNN Huber loss Wiener filter

MAE 0.2769 0.1729 0.6874
MSE 0.1261 0.0492 0.9433
RMSE 0.3551 0.2217 0.9713
FFT loss 0.5750 · 10−3 0.9880 · 10−3 0.7568 · 10−3

Huber loss 0.0162 0.0094 0.0432
Run time 0.34± 0.01 s 0.34± 0.01 s 24.01± 0.61 s

TABLE I. Performance comparison of the CNN with different
loss functions and Wiener filter shown in metrics calculated
with their output and the true data (same 1 hour as used for
the ASD plots), the different losses and a run time perfor-
mance.

VI. CONCLUSION AND OUTLOOK

In this paper we investigated seismic motion propa-
gation through a passively isolated mechanical system,
using Wiener filters and convolutional neural networks.
The mechnical system studied is a gravitational-wave de-
tector technology testbed “VATIGrav” that is currently
being commissioned at University of Hamburg. VATI-
Grav consists of a seismically-isolated vacuum chamber
and an optical table inside. It will be used as testbed
for displacement and inertial sensors, as well as control
algorithms, to improve the low-frequency performance of
current and future ground-based gravitational wave de-
tectors.e studied how well we could infer seismic motion
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FIG. 10. A six seconds time series showing the inference
by the SISO Wiener filter of the table motion from ground
motion and the true table motion. Each shown as two traces:
low-frequency (low-passed at 10 Hz, solid lines) and high-
frequency (high-passed at 10 Hz, dashed lines).
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FIG. 11. A six seconds time series showing the inference
motion by the CNN trained with the FFT loss of the table
motion from ground motion and the true table motion. Each
shown as two traces: low-frequency (low-passed at 10 Hz,
solid lines) and high-frequency (high-passed at 10 Hz, dashed
lines).

on the table from the motion on the ground. We used 150
seconds of ground motion data sampled at 100 Hz to infer
150 seconds of motion on the table at the same sampling
rate with both approaches, comparing the performance
in the ASD plots for 1 hour of data and randomly chosen
few seconds of time series.

Our goal was to achieve good performance in broad
frequency range, spanning from 0.1 to 50 Hz. We have
used a CNN with time-dilation layers to strengthen the
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FIG. 12. A six seconds time series showing the inference
motion by the CNN trained with the Huber loss of the table
motion from ground motion and the true table motion. Each
shown as two traces: low-frequency (low-passed at 10 Hz,
solid lines) and high-frequency (high-passed at 10 Hz, dashed
lines).

performance for lower frequencies, and tried two differ-
ent loss functions. The first one, Huber loss, is calcu-
lating the difference in amplitude for each time sample,
with quadratic response for small differences and linear
response for large differences, to ignore outliers. The
second is a custom loss function that is calculating the
difference of the FFTs in amplitude and phase. All neu-
ral networks take 3-axis motion data as input and output
3-axis motion data.
Broad frequency range and relatively long time series

presented a challenge for deriving Wiener filters, the al-
gorithm had to be optimized using block-Toeplitz struc-
ture of the Wiener-Hopf equations to be computationally
efficient. We compute SISO Wiener filters (one axis of
ground motion as input and the same axis as output) and
MISO (all axes as input and one axis as output).
We found that the MISO Wiener filters perform quite

poorly for our data, where the coherence between differ-
ent channels (motion axes) is low. Adding extra reference
axes introduces penalty in extra noise which in this case
is larger than any potential gains from information about
cross-couplings. SISO Wiener filters, on the other hand,
performed quite well both as seen on ASD plots and in
time series directly.
Among neural networks, the Huber-loss-trained net-

work showed good but somewhat inferior performance.
The FFT-loss-based network was significantly better
and outperformed the Wiener filters in some frequency
ranges, as seen in the ASD plots. However it tended
to slightly underestimate the peaks, especially in lower
frequencies, and hence low-frequency time series plots
for Wiener filters show better agreement. Overall we
find that the FFT-loss-based neural network showed ad-
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vantage over the Wiener filter for low-amplitude low-
coherence regions, but does not surpass its performance
everywhere. It is in principle possible that with fur-
ther optimization the performance of the neural network
could be further improved. It is also worth consider-
ing other network architectures, such as encoder-decoder
approaches, e.g. the U-net architecture, which may be
well-suited for data with input and output of the same
dimensionality [36]. Another angle not explored here is,
in addition to inference, also forecasting time series a
few seconds in the future, which can be useful for con-
trol. Finally there are alternative approaches to Wiener
filters and neural networks to study a mechanical system
using measurement data. They include simple linear al-
gorithms, for example least mean squares (LMS) algo-
rithms [37] (a class of adaptive filters), as well as more
general non-linear algorithms, such as Sparse identifica-
tion of nonlinear dynamics (SINDy) [38].
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