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Abstract

The COVID-19 pandemic has underscored the need for low-
cost, scalable approaches to measuring contactless vital signs,
either during initial triage at a healthcare facility or virtual
telemedicine visits. Remote photoplethysmography (rPPG)
can accurately estimate heart rate (HR) when applied to close-
up videos of healthy volunteers in well-lit laboratory settings.
However, results from such highly optimized laboratory stud-
ies may not be readily translated to healthcare settings. One
significant barrier to practical application of rPPG in health-
care is accurate localization of region of interest (ROI). Clin-
ical or telemedicine visits may involve sub-optimal lighting,
movement artifacts, variable camera angle, and subject dis-
tance. This paper presents an rPPG ROI selection method
based on 3D facial landmarks and patient head yaw an-
gle. We then demonstrate robustness of this ROI selection
method when coupled to Plane-Orthogonal-to-Skin (POS)
rPPG method when applied to videos of patients presenting
to an Emergency Department for respiratory complaints. Our
primary contributions are twofold: (1) a robust ROI selec-
tion framework that adapts to real-world clinical scenarios,
and (2) first unrestricted rPPG dataset collected from emer-
gency ward settings, addressing critical gaps between con-
trolled laboratory conditions and real-world clinical environ-
ments. Our results demonstrate effectiveness of our proposed
approach in improving accuracy and robustness of rPPG in a
challenging clinical environment.

Introduction
Telemedicine, which delivers medical care through phone
and video technology, has been vital for increasing ac-
cess to healthcare for at-risk populations, especially during
the COVID-19 pandemic. It became a key tool for main-
taining care while minimizing viral transmission. However,
telemedicine has posed challenges for diagnosing and treat-
ing patients remotely, particularly in obtaining vital signs
like heart rate (HR), which are central to diagnostics. Tra-
ditional methods, such as palpation or sensor-based ap-
proaches like ECG or pulse oximetry, require patient contact
or specialized equipment, which can be costly and inacces-
sible, especially during a pandemic (Beleche et al. 2022).

Non-contact heart rate (HR) extraction using remote
photoplethysmography (rPPG) detects periodic micro-color
variations from blood flow. The rPPG pipeline involves four
stages: 1) extracting a region of interest (ROI) from the
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Figure 1: Overview of R2I-rPPG for real-time heart rate ex-
traction: (a) input video (b) face detection with 3D landmark
localization, (c) ROI definition using landmarks, (d) tempo-
ral color averaging over ROIs, (e) POS algorithm applica-
tion for raw HR signal extraction, and heart rate calculation
via interbeat analysis. (fps=frames per second, extHR= Ex-
tracted HR, GTHR= ground truth HR)

video, 2) averaging RGB signals over the ROI to form a 3-D
signal, 3) extracting a 1-D PPG signal with minimized noise,
and 4) analyzing the PPG signal to estimate HR.

The forehead or cheeks are typically chosen as ROIs due
to their high vascularity. For example, method proposed
by Verkruysse, Svaasand, and Nelson (2008) requires user
to manually select an ROI through a graphical user inter-
face. Numerous studies have attempted to address artifacts in
heart rate detection caused by factors such as head rotation
(Chen et al. 2018), facial expressions, illumination varia-
tions (Lee et al. 2022), changes in skin tone, motion artifacts,
and variable alignment of ROI to face of subject (Zheng et al.
2020). However, most skin segmentation and tracking algo-
rithms lack standardized methods for selecting and track-
ing ROIs affected by skin tone variations and head rotation.
Most existing automatic ROI detection algorithms are also
computationally expensive and vulnerable to facial hair and
face mask errors (Maki et al. 2020). RGB channels contain
the most information about color changes corresponding to
blood volume pulse (De Haan and Jeanne 2013). To suppress
noise in PPG, De Haan and Jeanne (2013) assume a stan-
dardized skin color to white-balance in video frames and use
chrominance analysis to extract blood volume pulse. Paper
by McDuff, Gontarek, and Picard (2014) project RGB signal
to PPG using principal component analysis (PCA), identify-
ing subspace containing most variation due to blood flow.
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Poh, McDuff, and Picard (2010) and McDuff, Gontarek,
and Picard (2014) both test independent component analysis
(ICA) to compute three maximally independent linear pro-
jections of RGB signal. Tsouri and Li (2015) demonstrated a
generalized blind source separation method, which assumes
that signal is a linear mixture of independent color chan-
nels and that one is due to heart pulsations. An approach
called Plane-Orthogonal-to-Skin (POS), proposed by Wang
et al. (2016), exploits property that adding two anti-phase
signals with same amplitude cancels out specular distor-
tion. Accordingly, their POS method projects color traces
onto plane orthogonal to skin tone in temporally normalized
RGB space, where intensity component cancels out. Finally,
HR extraction can then be achieved using signal processing
methods such as those using autocorrelation (Parrish, Dono-
hue, and Dietz 2019), absolute magnitude difference func-
tion (Yousefi, Nourani, and Panahi 2012), or Fourier power
and phase spectra (Verkruysse, Svaasand, and Nelson 2008).

In this paper, we propose a novel approach to remote pho-
toplethysmography that focuses on robust detection of infor-
mative facial regions using 3D landmarks while accounting
for head orientation. Our method uniquely combines adap-
tive ROI selection with signal enhancement techniques to
improve PPG signal quality under realistic conditions. To
the best of our knowledge, this is the first work to integrate
3D facial landmarks with dynamic ROI selection and real-
time heart rate extraction in clinical settings that encompass
head rotation, body motion, and varying illumination condi-
tions.

Our proposed method, R2I-rPPG, presents a compre-
hensive approach to remote photoplethysmography (rPPG)
through a systematic four-stage framework. The framework
begins with precise facial feature detection and identifica-
tion, followed by intelligent ROI selection that adapts to
head yaw angle variations using identified facial features.
The third stage involves signal extraction from selected ROI
utilizing POS method, while final stage encompasses heart
rate extraction through filtered signal analysis. This struc-
tured approach enables robust heart rate measurement across
varying head positions and lighting conditions, addressing
key challenges in remote physiological monitoring.

Our method makes following contributions:

• We identify ROI in 3D, using landmarks in a 3D repre-
sentation of a face.

• Our ROI selection algorithm dynamically adapts to head
rotation by resorting to a region from one of cheeks if
forehead gets occluded.

• Our HR extraction algorithm works in real-time on a
2.60GHz CPU with 4GB RAM, and proposed R2I-rPPG
HR extraction pipeline is effective under real-world clin-
ical conditions.

• We introduce first unrestricted rPPG dataset collected
from emergency ward settings, addressing critical gap
between controlled laboratory conditions and real-world
clinical environments for remote vital sign monitoring.

Related Work
This section presents an overview of available public
datasets, the use of 3D face landmarks for face tracking, ROI
selection methods, filtering of rPPG signal obtained from
ROI, and HR extraction from rPPG signal.

Datasets:
Few public datasets are available for rPPG-based HR extrac-
tion; many such datasets, like those used by (Kwon, Kim,
and Park 2012; Poh, McDuff, and Picard 2010), are private
and include forward-facing close-up views of healthy volun-
teers in nonclinical environments.

MAHNOB-HCI: (Soleymani et al. 2011) Although this
dataset was created for emotion analysis, it has been adopted
for testing rPPG algorithms. In this dataset, 30 participants
(17 female and 13 male, ages between 19 to 40 years old)
were shown fragments of movies and pictures while moni-
toring them with six video cameras. Each camera captures a
different viewpoint, a head-worn microphone, an eye gaze
tracker, and physiological sensors measuring ECG, elec-
troencephalogram, respiration amplitude, and skin temper-
ature.

VIPL-HR: This dataset (Niu et al. 2018) contains 2, 378
visible light videos (VIS) and 752 near-infrared (NIR)
videos of 107 subjects. Moreover, dataset contains head
movements, illumination variations, and acquisition device
changes, replicating a less constrained scenario for HR ex-
traction. In this dataset, all videos were recorded in a labo-
ratory setting.

Tracking ROI:
Several methods exist to detect and track ROI, but a method
that can track same ROI in video frame sequence in real-time
is necessary for HR extraction.

The Viola-Jones face detection: This technique can be em-
ployed to automatically detect a subject’s face (Viola and
Jones 2001). The method provides a bounding box coor-
dinate defining subject’s face. Implementing face detection
at every frame is computationally expensive. Moreover, it
causes undesired noise because face’s output bounding box
is inconsistent between successive frames.

Adaptive skin detection: Skin segmentation is performed
using an algorithm proposed by Conaire et al. (Conaire,
O’Connor, and Smeaton 2007). However, this method is not
robust enough to change head position.

3D facial landmark: Face localization in a single image
is challenging (Zhang, Li, and Sun 2018) due to ambiguous
nature of facial landmarks in a 3D perspective. Li et al. (Li
et al. 2014) used 3D facial landmarks to detect faces and
then track ROI in video frame sequences.

MediaPipe Face Mesh: A robust, real-time 3D-landmark
detection method (Lugaresi et al. 2019). It is a lightweight
machine-learning-based solution typically used for live aug-
mented reality effects. It employs machine learning to infer
3D facial surfaces. This method does not track landmarks
and detects them independently for each frame, which is
more accurate. It is an accurate and robust model that it-
eratively bootstraps and refines predictions.



ROI selection:
Selecting a suitable ROI for rPPG-based HR extraction is
essential and challenging (Fouad, Omer, and Aly 2019). For
PPG, we need skin pixels; to acquire them, we have to track
ROI in frame sequence, or we can extract same ROI us-
ing 3D landmarks. Lee et al. (2022) uses relative satura-
tion value range to extract skin pixels by converting RGB
to HSV color and plotting histogram to get threshold which
is not adaptive and may vary subject to subject (e.g., it can
be affected by hair, skin color, and head rotation). In (Zheng
et al. 2020), bounding box of left eye is used to find bound-
ing box of forehead, but this method does not work when
left eye is not detected. Maki et al. (2020) identified left and
right cheek ROIs based on face patch visibility. In (Maki
et al. 2020), 68 3D landmarks require temporal localization
and an additional step to make them temporally stable over
successive frames. There is still a need for more robust ROI
detection, as it is an essential factor in rPPG algorithm’s per-
formance over a period of time. Existing methods try to track
ROI. To remove limitation of ROI tracking, 3D landmarks
can be used to acquire same ROI for each video frame inde-
pendently.

Integration of multiple ROI: HR can be extracted from
multiple facial skin regions (or different body parts alto-
gether). In (Fouad, Omer, and Aly 2019), ROI selection
using skin segmentation from three different facial regions
(forehead, left cheek, and right cheek) is presented. This
method used skin segmentation to get ROI, which is not an
effective nor efficient method to get skin pixels. Zheng et al.
(2020) observed that having additional regions improves
predictions. Due to limited diversity of available datasets, no
known physical model relates these three regions (see Fig-
ure 3) per current explorations. To our knowledge, no single
skin segmentation method invariant to skin color exists and
instead of averaging over all skin regions, we can keep indi-
vidual skin regions as separate sources.

RGB Signal Acquisition:
Several approaches exist to extract HR signal from ROI pix-
els, including color-based (e.g., rPPG) (Yang, Wang, and Lu
2022) and motion-based (e.g., ballistic motion) (Balakrish-
nan, Durand, and Guttag 2013) techniques. Balakrishnan,
Durand, and Guttag (2013) presented a motion-based ap-
proach, observed tiny head oscillations generated by cardio-
vascular circulation, and extracted pulse signals from trajec-
tories of numerous recorded features. Due to method’s re-
liance on motion tracking, participants were instructed not
to move freely throughout experiment. All current methods
for extracting HR from a sequence of frames may be di-
vided into machine-learning techniques and non-machine-
learning techniques. Machine learning algorithms are inap-
propriate for real-time applications because they require ex-
tensive training and computation. Due to needed computing
power, small devices such as smartphones and edge devices
are unsuitable for machine learning approach. In addition,
output of machine learning model for real-time applications
is biased and erroneous.

ICA (Poh, McDuff, and Picard 2010): This method uses
decomposition based on blind source separation to achieve

independent components from temporal RGB mixtures.
They normalized RGB signals, ignoring that PPG signals
induced different known relative amplitudes in individual
channels. Therefore, this method is approximation-based
and gives approximation of original mixture.

GREEN (Verkruysse, Svaasand, and Nelson 2008): In
rPPG, extracting data from green channel is preferred over
extracting from red and blue channels, as green channel con-
tains fewer artifacts. This work demonstrated that green sig-
nal has highest pulsatility, an intrinsic property of a car-
diovascular system, but this requires an additional charge-
coupled device (CCD), and this method has two main limita-
tions. First, movement artifacts and, second, reduced signal-
to-noise due to CCD-generated noise in recorded pixel val-
ues.

PCA (Lewandowska et al. 2011): Estimates projected sig-
nals using an unsupervised data-driven approach and se-
lects best candidate as output. Essential difference between
PCA and ICA is their assumptions concerning relationship,
specifically whether two signals are correlated or indepen-
dent. Therefore, this method does not exploit unique charac-
teristics of skin reflection properties and also loses informa-
tion.

CHROME (De Haan and Jeanne 2013): A chrominance-
based method that performs color channel normalization
to overcome distortion. This method introduces flexibility
when estimating projection direction and reduces sensitiv-
ity to prior knowledge used for pulse extraction. CHROME
eliminates specular reflection components with a projection.
However, it exhibits secular residual in projected signals.

Plane-Orthogonal-to-Skin (POS): A mathematical model
incorporating pertinent optical and physiological skin prop-
erties to increase our understanding of algorithmic princi-
ples behind rPPG. The novelty of this algorithm is in using
a plane orthogonal to skin tone in a temporally normalized
RGB space. POS requires less accurate knowledge (Wang
et al. 2016) of blood volume pulse signature and is more tol-
erant to distortions. It can be considered a greedy algorithm.
This work uses a POS algorithm to extract raw HR signals
from three ROIs.

HR Extraction:
The extracted HR signal is subject to noise interference, po-
tentially affecting frequency computation. To address this,
filtering techniques are applied to enhance signal and im-
prove signal-to-noise ratio, as detailed in previous studies
(Benedetto et al. 2019). HR, a measure of duration between
heartbeats called interbeat interval (IBI), is extracted from
filtered signal using IBI analysis, as demonstrated in (Aygun,
Ghasemzadeh, and Jafari 2019). Additionally, other studies
have utilized fast Fourier transform (FFT) for HR extraction
(Zhang et al. 2018).

R2I-rPPG
The methodology and general structure of our remote HR-
measuring techniques are illustrated in Figure 1. Our ap-
proach utilizes MediaPipe’s Face Mesh for detecting 3D fa-
cial landmarks. We study robust ROI selection method based



on yaw angle of head, which is combined with signal filter-
ing methods for HR extraction.

The face detection process begins using MediaPipe’s Face
Mesh, a real-time face detection method. This method pro-
vides 468 3-D facial landmarks and is resistant to spatial
distortions, appearance distortions, head rotations, and body
motion. Figure 2 illustrates facial landmarks detected by
MediaPipe. This approach is computationally inexpensive,
making it suitable for real-time applications. Once face area
is retrieved, ROIs such as cheeks are selected using land-
marks and highlighted within face box. Within these ROIs,
remote rPPG signal is extracted from pixels. Extracted sig-
nal is then subjected to signal extraction techniques, includ-
ing frequency analysis (Fourier transform) and peak identi-
fication (Inter-beat analysis), to estimate an individual’s HR.

Figure 2: (a) 3D Face mesh: 468 3D-landmarks (using Medi-
aPipe). (b) Three ROI from 1. forehead center, 2. left cheek,
and 3. right cheek (each 40 × 40 centered on respective 3D
landmark). ROI’s size in pixels, 40x40, is a hyper-parameter
and can be set manually based on video’s frame size.

Face Mesh: 3D-landmarks
Modern face alignment algorithms perform well to automat-
ically detect facial 3D landmarks. Checking ROI’s visibility
using head’s yaw angle removes requirement for a separate
step to determine head’s rotation. Our proposed method uti-
lizes facial landmarks to determine ROI, and same face land-
marks are recognized independently in each video frame.
This removes limitation of ROI tracking. Facial Mesh func-
tion of MediaPipe extracts 468 3D landmarks from a facial
image (see Figure 2a). In this work, MediaPipe, a machine
learning method, is utilized to infer 3D surface geometry. In
our proposed method, we use center of forehead, left cheek,
and right cheek in each frame as landmarks for identifying
ROI (see Figure 2b). MediaPipe Face Mesh method returns
center of forehead as 151st landmark, whereas left cheek is
50th and right cheek is 280th. These landmarks are used as
center of ROIs. To overcome restrictions of face tracking or
head movement, we use extracted 3D landmarks for each
frame independently to locate same ROI across frames.

Adaptive ROI selection:
Our method leverages multiple facial ROIs (forehead and
bilateral cheeks) for robust rPPG signal extraction, selected
for their large exposed skin surface area. The ROI selection
utilizes 3D facial landmarks to identify fixed 40 × 40 pixel

regions at the central forehead and bilateral cheek coordi-
nates. This selection process, formalized in Algorithm 1,
adapts to varying head poses and visibility conditions.

Algorithm 1: Adaptive ROI Selection for R2I-rPPG
Require: Video frame, 3D facial landmarks
ROI size← 40× 40 pixels
if forehead visible then

ROI ← forehead region ▷ Primary ROI selection
else

if yaw angle > 15◦ then ▷ Head rotation threshold
ROI ← right cheek region

else
ROI ← left cheek region

end if
end if
return ROI

While the forehead serves as the primary ROI, our system
implements an adaptive mechanism for cases of occlusion
(by hair, headwear, or accessories). The selection between
bilateral cheeks is determined by head yaw angle: the right
cheek ROI is utilized when head rotation exceeds 5 degrees
leftward, and the left cheek otherwise (Figure 3). This ap-
proach maintains signal quality across different head orien-
tations and occlusion scenarios.

Figure 3: Out of three identifiable ROIs (forehead, right
cheek, and left cheek), most appropriate and visible ROI for
raw HR signal extraction is selected based on yaw angle.

HR Extraction:
In this study, ROI is first selected, and then POS algorithm is
utilized to extract HR signal from a sequence of frames. As
shown in Figure 4(a), raw extracted HR signal displays fluc-
tuations in intensity within a specific range based on RGB
color channels. To effectively extract pulsatile component
of HR signal, amplitude selective filtering (ASF) method
proposed by Wang et al. (2017a) is applied. ASF is used to



select RGB frequency components that fall within assumed
pulsatile amplitude range. However, due to differing rela-
tive strengths of frequency components caused by cardiac
and motion activity in RGB camera outputs, color distortion
filtering (CDF) method introduced by Wang et al. (2017b)
is employed to improve performance. This method exploits
physiological and optical properties of skin reflections. Af-
ter CDF, a moving average filtering method is applied to ex-
tracted signal to remove any remaining random noise while
preserving a sharp step response (as shown in Figure 4d and
Equation 1). As observed by comparing Figure 4c & d, ap-
plying this filter helps increase signal-to-noise ratio by ef-
fectively removing noise.

The moving average filter is defined as

y[i] =
1

M
σM−1
j=0 x[i+ j] (1)

where x is input signal, y is output signal, and M is number
of points in moving average.

Figure 4: Signal filtering and spectrum analysis. Left: Se-
quential filtering stages showing (a) raw HR signal, (b) ASF
filtered signal, (c) CDF filtered signal, and (d) moving av-
erage filtered signal demonstrating noise reduction. Right:
Power spectrum estimation using (e) Welch’s method, (f)
CSD, and (g) interbeat analysis for frequency analysis. PSD:
power spectral density.

To determine HR from a filtered signal, we calculated
power spectral density using three methods as shown in Fig-
ure 4 (e, f, g). Welch’s method resulted in a loss of informa-
tion for high-frequency values, while Cross Spectral Density
(CSD) method resulted in a zero PSD after a certain fre-
quency value. However, Interbeat Interval (IBI) analysis can
accurately determine HR within a desired frequency range.

Therefore, we used IBI analysis for all videos in this study
to calculate HR from a signal. Intervals between consecutive
heartbeats are calculated as follows:

tRR,i = tn − tn−1 (2)

Where tRR,i is ith cardiac interval in rPPG signal, and tn
denotes occurrence of nth peak. Finally, HR is calculated
as HRw = 1

meanIBIw
, where meanIBIw is mean of IBIs

that fall within a time window w and choice of w is a hyper-
parameter.

Experiments Settings and Results
We implement our proposed method on two datasets: first,
our introduced realistic dataset and second, vision for vitals
(V4V) (Revanur et al. 2021) public baseline dataset. Videos
in our new dataset are complex and close to natural condi-
tions. All videos in our dataset were recorded in emergency
ward at a hospital. At this time, field of rPPG studies is af-
fected by a lack of datasets, so we believe this new dataset
will be a valuable contribution to this field. Below is further
elaboration on our dataset.

Dataset Collection:
The V4V dataset is more white-skin-dominated. To address
lack of diversity in the V4V dataset, a new dataset was cre-
ated specifically tailored for rPPG, but not limited to it (see
video recording setting in Figure 5). The purpose of this
dataset was to evaluate robustness of proposed HR extrac-
tion method and to introduce a new public baseline with di-
verse face skin colors for rPPG. Videos of subjects lying on
a bed were recorded using a fixed camera equipped with ring
lights to prevent casting of shadows. videos were recorded
at 30 frames per second with a 3840 × 2160 resolution us-
ing H.264 (high profile) coding. subjects were instructed to
perform specific movements such as heavy breathing, shift-
ing their body positions, head rotation, and changing facial
expressions to introduce variation in dataset.

Figure 5: Recording setup comparison: (left) conventional
public datasets with controlled settings vs. (right) our un-
restricted emergency ward setup allowing natural patient
movement and variable camera positions.

Experimental Settings:
The experimental evaluation of our approach was conducted
using two distinct datasets. The first dataset, our dataset,



comprised videos with durations ranging from 15 to 30
seconds, recorded at 30 frames per second (fps). The sec-
ond dataset, V4V (Revanur et al. 2021), contained videos
spanning 10 to 25 seconds in length, captured at 25 fps.
Throughout all experiments, we maintained a consistent ROI
with dimensions of 40 × 40 pixels. We follow frame-by-
frame analysis with continuous forehead visibility verifica-
tion, enabling dynamic ROI selection based on visibility cri-
teria. For each video in both datasets, a single HR was ex-
tracted. To ensure reproducibility and assess computational
efficiency, all experiments were performed using a single
CPU configuration. This standardized experimental setup
facilitated consistent evaluation across both datasets while
maintaining computational practicality through focused ROI
analysis.

Results:
We evaluate R2I-rPPG on our dataset, down-sampled
videos, and the V4V public dataset. To evaluate the accuracy
of our method, we employed various statistics commonly
used in literature, such as HR error between extracted and
ground-truth HR, mean and standard deviation of HR error,
root mean squared HR error, and mean of error rate percent-
age (Li et al. 2014).

Figure 6: Setup to get ground truth (GT) from video. We use
results from ECG readings.

Stationary and Head Motion Condition: To validate
proposed method, extracted HR values were compared to
ground truth (GT) HR from electrocardiogram (ECG) sig-
nal in input video (see Figure 6). For duration of each video
sample, we take an average of HR from ECG. In the sce-
nario where the subject’s head remained stationary (Table
1), measurements from both the forehead and cheek regions
showed strong agreement with ground truth values. The
forehead measurements demonstrated mean absolute errors
ranging from 0.35 to 2.16 BPM from the ground truth. No-
tably, when selecting the optimal ROI between left and right
cheeks (based on yaw angle), the measurements showed
comparable or slightly better accuracy, with deviations rang-
ing from 0.84 to 5.37 BPM from ground truth values. In Ta-
ble 2, we selected five short video clips, ranging in length
from 20 to 40 seconds, in which subject’s head is not sta-
tionary, and extracted HR using our method. When subjects
were in motion (Table 2), the measurements showed greater
variability, as expected. The forehead measurements devi-
ated from ground truth by 0.18 to 5.03 BPM, while the opti-
mal cheek measurements showed larger variations, ranging
from 5.53 to 10.62 BPM.

GT Forehead Best of L & R cheek
84.0 86.21 87.01
92.0 91.75 92.84
104.2 103.85 98.83
93.5 95.66 95.12

Table 1: Subject’s head is not moving: comparison of HR
extracted by R2I-rPPG from forehead and best ROI from
left or right cheeks, decided by yaw angle.

GT Forehead Best of L & R cheek
89.21 86.02 94.74
73.10 75.00 83.72
95.00 97.30 88.06
89.15 92.33 81.20
79.00 84.03 87.20

Table 2: Subject’s head is in motion: HR extracted by R2I-
rPPG from forehead and optimal ROI between left (L) or
right (R) cheek, as determined by yaw angle.

ROI Analysis for Head Position: After down-sampling
video quality, we created a few sample videos to validate our
proposed method on low-resolution video frames. Using our
proposed method, extracted HR for all these video samples.
See Table 3; presents extracted HR and GT HR for down-
sampled videos. Results obtained in case of down-sampled
video reflect that our method works in low-resolution video
samples. See Table 4; we use our proposed method to extract
HR for vision for vitals (V4V) (Revanur et al. 2021) dataset,
which verifies that our method gives significantly better re-
sults on public baseline datasets.

Performance on Down-sampled Videos: The evaluation
of R2I-rPPG on down-sampled videos demonstrated re-
markable resilience to reduced video quality. Across eight
test subjects (Exp06-01 to Exp17-02), our method main-
tained high accuracy with minimal deviation from ground
truth values: we downsample a set of videos from our dataset
and extract HR (see Table 3). This provided a means to
evaluate accuracy and reliability of proposed HR extrac-
tion method for low-quality videos. To validate proposed
method, R2I-rPPG was evaluated using Bland-Altman plots
and absolute error (AE) of its estimation:

AE = |HRext −HRGTs|
where HRext is extracted HR and HRGT is GT HR form
ECG. As in Figure 7 (left), mean absolute error (MAE)
is 02.28BPM for nine subjects (Table-1 and 2). Bland-
Altman plot obtained from proposed method is depicted see
Figure 7; this plot compares HRext and HRGT . It can be
seen that measurement values all fall inside 98% bound with
±2SD. Our results demonstrate potential of our method in
a real-world scenario, where we measure HR from a video
of a person talking and rotating their head.

Cross-dataset Validation (V4V-Dataset) These results
collectively demonstrate that R2I-rPPG: i) Maintains accu-
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Figure 7: Left: GT and R2I-rPPG extracted HR for nine subjects (Table 1, 2) with MAE = 02.28BPM . Right: Bland-Altman
plot with an average mean difference of −1.44. Solid red line represents mean of difference, dashed red line ±2 standard
deviation (SD) of mean of difference, and dashed green line ±3 SD of mean of difference.

Subject GT R2I-rPPG Rouast et al.
Exp06-01 86.70 90.45 75.01
Exp06-02 89.40 87.56 79.84
Exp06-03 90.63 87.87 78.30
Exp06-04 85.30 87.37 78.80
Exp09-01 89.00 86.95 65.96
Exp10-01 91.05 89.65 74.48
Exp15-02 79.01 81.48 71.34
Exp17-02 95.20 94.73 63.27

Table 3: HR for down-sampled videos using R2I-rPPG (our)
and Rouast et al.. R2I-rPPG produces comparable results
with original high-quality video inputs, even when video
quality is reduced.

Subject GT R2I-rPPG Rouast et al.
F025-T04 80.30 79.88 79.30
F079-T10 89.54 91.94 95.40
F076-T08 93.09 93.21 86.58
F001-T10 110.22 108.33 104.50
F017-T05 95.04 100.09 98.57
F001-T01 99.71 97.69 92.98

Table 4: R2I-rPPG extracted HR for V4V-Dataset, and by
Rouast et al. a real-time method. In all videos, subject’s head
is always visible. So, R2I-rPPG only considers ROI from
forehead. Here, we show that our proposed method works
for other baseline datasets.

racy across different video quality levels, ii) Shows robust
performance across different datasets, iii) Outperforms ex-
isting methods, particularly in challenging conditions, iv)
Provides reliable measurements regardless of ROI selec-
tion, with forehead measurements showing particular sta-
bility during motion. The method’s consistent performance
across these diverse scenarios suggests its potential for real-
world applications where video quality and subject move-
ment may vary significantly.

Conclusion
This work presents R2I-rPPG, a robust remote photoplethys-
mography framework that leverages both yaw-angle estima-
tion and 3D facial landmark detection for adaptive ROI se-
lection. By introducing 3D landmark-based tracking, our ap-
proach overcomes the limitations of traditional face-tracking
methods in rPPG systems. The demonstrated real-time per-
formance and low computational overhead make our solu-
tion particularly suitable for edge device deployment. Ex-
perimental results show strong performance across diverse
scenarios, including challenging cases with down-sampled
smartphone video inputs. Given the growing importance of
remote patient monitoring in healthcare delivery, R2I-rPPG
represents a significant step toward accessible, non-invasive
vital sign measurement. Future work will focus on expand-
ing the range of extractable physiological parameters and
validating the system’s efficacy in clinical settings. We be-
lieve this research advances the field of camera-based phys-
iological sensing and contributes to the broader goal of de-
mocratizing healthcare access through computer vision tech-
nologies.
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