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ABSTRACT
The effect of baryon physics associated with galaxy formation onto the large-scale matter distribution of the Universe is a key
uncertainty in the theoretical modelling required for the interpretation of Stage IV cosmology surveys. We use the FLAMINGO

suite of simulations to study the baryon response due to galaxy formation of the total matter power spectrum. We find that it
is only well converged for simulation volumes in excess of 2003 Mpc3. We report results for simulations of varying feedback
intensity, which either match the X-ray inferred gas fractions in clusters and the z = 0 stellar mass function, or shifted versions
of the data, as well as for different implementations of AGN feedback. We package our results in the form of a Gaussian process
emulator which can rapidly reproduce all the simulations’ predictions to better than 1% up to the comoving wavenumber
k = 10 h ·Mpc−1 and up to z = 2 for all the feedback models present in the FLAMINGO suite. We find that the response becomes
stronger, the range of scales affected increases, and the position of the minimum of the response moves to smaller scales as
the redshift decreases. We find that lower gas fractions in groups and clusters lead to a stronger response and that the use of
collimated jets instead of thermally driven winds for AGN feedback enhances the effect. Lowering the stellar masses at fixed
cluster gas fractions also increases the magnitude of the response. We find only a small (1% at k < 10 h ·Mpc−1) dependence
of our results on the background cosmology, but a wider range of cosmology variations will be needed to confirm this result.
The response we obtain for our strongest feedback models is compatible with some of the recent analyses combining weak
lensing with external data. Such a response is, however, in strong tension with the X-ray inferred gas fractions in clusters used
to calibrate the FLAMINGO model.
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1 INTRODUCTION

Over nearly three decades, our standard model of cosmology, the
ΛCDM model, has received substantial scrutiny from the commu-
nity and successfully passed a multitude of stress tests (see e.g. Do-
delson & Schmidt 2020; Lahav & Liddle 2022). This vast program,
designed to find faults in the model, understand its limitations, and
identify possible extensions is continuing in this decade with ex-
ceedingly demanding precision tests, generally grouped under the
“Stage IV cosmology probe” label. Many of these tests are focusing
on the growth of the large scale structure (LSS) and are providing in-
dependent constraints from the geometric probes, such as the baryon
acoustic oscillations (BAO) or Type 1a supernovae, or the analysis
of fluctuations of the cosmic microwave background (CMB). Most
of these programs were designed to shed some light on the nature
of both dark matter and dark energy as well as to explore some of
the tensions currently emerging between orthogonal probes (see e.g.
Abdalla et al. 2022).

The many different LSS tests (e.g. cosmic shear, galaxy cluster-
ing, redshift-space distortions, CMB lensing, Sunyaev–Zel’dovich
power spectra, and combinations thereof) probe the matter content
of the Universe and its distribution across many different length-
scales and at multiple epochs throughout cosmic time. As the scales
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probed become smaller with each generation of instruments, the
challenge of making accurate theoretical predictions grows. Many
of the probes mentioned above are now exploiting information well
into the non-linear regime, where perturbation theory is not suffi-
cient anymore. The main approach used over the last twenty years
has been to resort to the “halo model” analytic formalism (e.g. Sel-
jak 2000; Smith et al. 2003; Asgari et al. 2023) itself (usually) cal-
ibrated on the results of N-body simulations (e.g. Takahashi et al.
2012; Mead et al. 2016). More recently, the ability to run a suffi-
ciently large number of cosmological simulations has allowed an
alternative approach based on the direct interpolation between simu-
lations (typically via emulators) to predict many quantities required
for data analysis (e.g. Heitmann et al. 2016; Lawrence et al. 2017;
DeRose et al. 2019; Euclid Collaboration et al. 2019; Bocquet et al.
2020; Angulo et al. 2021; Storey-Fisher et al. 2024).

Both the halo model and emulators trained on pure N-body sim-
ulations would suffice if the scales probed were not affected by the
behaviour of baryons. Whilst on large scales, k ≲ 0.1 h ·Mpc−1, the
joint baryon and dark matter fluid behaves similarly to a pure dark
matter model (with initial conditions accounting for BAO), studies
based on simulations including hydrodynamics and galaxy forma-
tion effects have shown that the matter field on smaller scales devi-
ates significantly from the pure N-body predictions (e.g. van Daalen
et al. 2011, 2020; Schneider & Teyssier 2015; Mummery et al. 2017;
Springel et al. 2018; Salcido et al. 2023; Pakmor et al. 2023; Schaye
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et al. 2023) and that neglecting this effect will result in catastrophic
systematic errors (e.g. Semboloni et al. 2011). The amplitude of the
baryonic effect depends on uncertain feedback processes and is thus
difficult to predict. However, the amplitude is understood to depend
on observables such as the baryonic content of groups and clusters
(e.g. Semboloni et al. 2011, 2013; van Daalen & Schaye 2015; Chis-
ari et al. 2019; van Daalen et al. 2020; Mead et al. 2020; Salcido
et al. 2023; van Loon & van Daalen 2024) and halo models repro-
ducing these observables confirm the importance of baryon effects
(Debackere et al. 2020). The modelling of these deviations, com-
monly referred to as “baryon effects”, is crucial for the interpreta-
tion of future surveys probing the matter distribution deep into the
non-linear regime.

Thanks to its speed and flexibility, the community’s preferred ap-
proach thus far, has been to use relatively simple analytic prescrip-
tions to correct the predictions of N-body simulations (e.g. Schnei-
der & Teyssier 2015; Aricò et al. 2021) or halo models (e.g. Mead
et al. 2021). These correction procedures themselves come with free
parameters which could, in principle, be marginalised over when in-
ferring cosmological information from survey data (e.g. Asgari et al.
2021; Aricò et al. 2023; Bigwood et al. 2024). Whilst being power-
ful, these extended halo models and other “baryonification” proce-
dures also come with some drawbacks. The most important ones
being the relatively simple nature of the models and the implicit as-
sumption that the baryon physics is independent of the chosen back-
ground cosmology. These models also do not come with a clear ab-
initio prediction for the strength of the correction required, though
attempts have been made to link some of their parameters to observ-
ables to restrict the range of valid input parameters (e.g. Schneider
& Teyssier 2015; Mead et al. 2020; Debackere et al. 2020; Schneider
et al. 2022; Tröster et al. 2022; Aricò et al. 2023).

An alternative approach is to exploit hydrodynamical simulations.
Their cost is much larger than the evaluation of corrective methods,
but recent advances have allowed for large suites of simulations that
vary the input parameters of their sub-grid models to be run (e.g. Le
Brun et al. 2014; McCarthy et al. 2017; Villaescusa-Navarro et al.
2021; Salcido et al. 2023; Schaye et al. 2023). Among the advan-
tages of this approach are the self-consistent nature of the modelling
and the relative ease with which the simulated data can be connected
to observables.

Whilst knowing and understanding the exact feedback mecha-
nisms in galaxies would provide an ab-initio prediction for the prop-
erties of groups and clusters and thus of the baryon effect on the
matter power spectrum, this is far beyond our current understanding
of galaxy formation. Numerical simulations thus come with sub-grid
recipes which are calibrated to match specific observables. The nat-
ural choice, based on the discussion above, is to target the gas or
baryon fractions in groups and clusters of galaxies. The BAHAMAS

(McCarthy et al. 2017), FABLES (Henden et al. 2018), and AN-
TILLES (Salcido et al. 2023) projects all took this approach to set the
value of their free parameters. Thanks to the rather large simulation
volumes probed, the effects of galaxy formation on the matter power
spectrum from the COSMO-OWLS and BAHAMAS simulations are
often used as references for the range of possible outcomes (e.g.
Amon & Efstathiou 2022; Preston et al. 2023). They have also been
used as input to some of the simpler corrective models described
above (e.g. Mead et al. 2021; Aricò et al. 2023). Running large suites
of simulations varying parameters around the best-fitting model is
possible, but a more efficient approach to restrict the plausible pa-
rameter space is to build on the work of van Daalen et al. (2020). By
analysing virtually all simulations from the literature at the time and
building on the results from Semboloni et al. (2011, 2013), they for-

malised robustly the connection between group and cluster baryonic
content and the effect of baryons on the matter power spectrum. Sal-
cido et al. (2023) built on this idea to construct an emulator trained
on the 400 simulations of their ANTILLES suite to predict the bary-
onic response of the matter power spectrum as a function of various
combinations of cluster properties. Their emulation approach relat-
ing the unknown effect to some (almost) observable quantities al-
lows to use their tool in cosmology inference (thanks to its speed)
whilst providing meaningful data-driven priors.

In this study, we follow similar steps using the FLAMINGO suite
of cosmological simulations (Schaye et al. 2023; Kugel et al. 2023).
These simulations cover much larger simulated volumes than the
ANTILLES suite and have been calibrated, using modern machine-
learning-based techniques, to reproduce the observed gas fractions
in groups and clusters. Whilst the connection to the power spectrum
is less direct for the gas fraction, it is more easily observable than
the total baryon fraction and the gas fraction is typically much larger
than the stellar fraction for the relevant halo masses. The FLAMINGO

simulations have been shown to reproduce a series of observables of
the cluster population (Schaye et al. 2023; Braspenning et al. 2024;
Kay et al. 2024) and thus offer a good baseline for the understanding
of the effect of baryons on the matter power spectrum. Furthermore,
the use of variations of the base model, where the observables have
been shifted in a systematic fashion (Kugel et al. 2023), allows for
a direct connection between the baryonic response and the observ-
ables the simulations were calibrated to. Additionally, the simula-
tions themselves have already been used to investigate the role of
baryons on the so-called S8 tension (McCarthy et al. 2023, 2024; El-
bers et al. 2024). In this paper, we construct a simple and fast Gaus-
sian process emulator predicting the baryon effects on the power
spectrum as a function of redshift and simulation calibration targets.
By publicly releasing our emulator, we provide a simple and effi-
cient way of incorporating the results of the FLAMINGO suite of
simulations in analysis pipelines of upcoming surveys.

This paper is organised as follows. In Sec. 2, we introduce the
simulation model used and verify the convergence of the results with
the simulation volume. In Sec. 3, we describe the procedure used to
construct our baryon response emulator and validate it. In Sec. 4, we
explore some results obtained using the emulator. Finally, we offer
some conclusions in Sec. 5.

2 SIMULATIONS & POWER-SPECTRA MEASUREMENTS

In this section, we present the simulations used for this study (§2.1),
describe how the matter power spectra are measured (§2.2) and anal-
yse the convergence of the results (§2.3).

2.1 The FLAMINGO suite of simulations

The FLAMINGO simulations and the strategy used to calibrate their
free parameters to match relevant observables are described in
Schaye et al. (2023) and Kugel et al. (2023). We provide here a brief
summary of the key components.

The simulations were performed using the SWIFT simulation code
(Schaller et al. 2024)1, a fully open-source coupled cosmology, grav-
ity, hydrodynamics, neutrino & galaxy formation code. The gravity
is solved using a 4th-order fast-multipole-method (FMM, see e.g.

1 Publicly available, including the exact version used for the FLAMINGO

simulations, at www.swiftsim.com.
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Baryonic matter power spectrum suppression in FLAMINGO 3

Cheng et al. 1999) coupled to a Particle-Mesh method in Fourier
space for the long-range interactions using the splitting method of
(Bagla & Ray 2003). Cosmological neutrinos are evolved using the
δ f -method of Elbers et al. (2021). The equations of hydrodynam-
ics are evolved using the SPHENIX (Borrow et al. 2022) flavour of
Smoothed Particle Hydrodynamics (SPH).

The hydrodynamical simulations include subgrid prescriptions for
radiative cooling following Ploeckinger & Schaye (2020), an en-
tropy floor at high densities and star formation using the method
of Schaye & Dalla Vecchia (2008), stellar feedback using kinetic
winds (Dalla Vecchia & Schaye 2008; Chaikin et al. 2022), and the
chemical enrichment model of Wiersma et al. (2009). Supermassive
black holes and thermally driven AGN feedback are modeled follow-
ing Springel et al. (2005), Booth & Schaye (2009) and Bahé et al.
(2022). The models with “jet” AGN feedback (see below) alterna-
tively use the method of Huško et al. (2022) to produce feedback
using collimated jets.

As is the case in all galaxy formation models, the simulations of
the FLAMINGO suite have free parameters in their subgrid recipes.
The approach chosen for this project to calibrate the feedback pa-
rameters was to construct a Gaussian process emulator, trained on a
Latin hypercube of simulations, to predict the observables as a func-
tion of the subgrid parameters. This emulator was then used to cal-
ibrate the models against observational data, as presented in detail
by Kugel et al. (2023). The simulations were chosen to reproduce
the z = 0 galaxy stellar mass function as well as the gas fractions
in groups and clusters inferred from X-ray and weak-lensing data.
This choice is similar to the one made for the BAHAMAS simula-
tions (McCarthy et al. 2017) but using a more systematic approach
via the emulator.

Besides its added objectivity over calibration by hand, the use of
an emulator to set the free parameters of the model offers an addi-
tional advantage: the possibility to rapidly generate simulated mod-
els where the data is shifted by particular amounts with respect to
observations. In the case of the cluster gas fractions, we created dif-
ferent models where the observed gas fractions are shifted up and
down compared to the results by ±Nσ, where σ is the scatter in the
data (see Kugel et al. 2023, for the exact definitions). Once the emu-
lator has been fitted to these shifted data points, we run a full simula-
tion using the predicted subgrid parameter values. These simulations
are labelled as “fgas ±Nσ” in Table 1. Similarly, we generated mod-
els fitting shifted versions of the stellar mass function, effectively
lowering/increasing the mass of every galaxy by ±Nσ, where, σ is
the systematic error on the measurements. These runs are labeled as
“M∗ ±Nσ” in Table 1. Finally, we ran two simulations using the jet
model of AGN for two different shifts of the gas fractions. These
runs are labelled as “Jet fgas ±Nσ” in Table 1.

Outside of the tests in §4.3, the simulations used in this study
adopt as values of the cosmological parameters the maximum like-
lihood values from the DES year 3 data release (Abbott et al.
2022) combined with external probes (their ‘3×2pt + All Ext.’
model: Ωm = 0.306, Ωb = 0.0486, σ8 = 0.807, h = 0.681, ns =

0.967,
∑

mνc2 = 0.06eV). The initial conditions (ICs) were gener-
ated using the MONOFONIC code (Hahn et al. 2021; Elbers et al.
2022) using a 3-fluid formalism with a separate transfer function
for each of the dark matter, gas, and neutrinos. The ICs used par-
tially fixed modes (Angulo & Pontzen 2016), setting the amplitudes
of modes with (kL)2 < 1025 to the mean variance, where L is the
side-length of the simulated box and k the modes’ wave-number.
The multi-fluid approach (Rampf et al. 2021) used by MONO-
FONIC allows to obtain a perfect match of the gravity-only and full-
hydrodynamics power spectrum on the largest scales.

Table 1. The nine different simulations of the FLAMINGO suite used in this
study. All models assume the same cosmology and were run in 1 Gpc3 vol-
umes using the same initial conditions. The first column gives the simulation
names used by Schaye et al. (2023). The next two columns give the amount
by which the gas fractions or stellar masses were shifted when calibrating
the model. The last column indicates whether the model was run with the
fiducial (thermal isotropic) AGN model or with the collimated jet implemen-
tation. The last three columns are the three parameters used as input to our
baryon response emulator.

Simulation name fgas ±Nσ M∗ ±Nσ Jet fraction

fgas+2σ +2 0 0%
L1_m9 (fgas+0σ) 0 0 0%
fgas−2σ -2 0 0%
fgas−4σ -4 0 0%
fgas−8σ -8 0 0%
M∗ −σ -4 -1 0%
M∗ −σ fgas−4σ -4 -1 0%
Jets 0 0 100%
Jets fgas−4σ -4 0 100%

2.2 Measurements of power-spectra and baryonic response

The measurement of power spectra is performed over the course of
the simulation at 122 different times between z = 30 and z = 0. At
z < 2, we obtain a power spectrum measurement after every redshift
interval ∆z = 0.05.

For each computation, we deposit the particles on a regular grid of
size 2563 using a triangular-shaped-clouds approach which is self-
consistently compensated in Fourier space (see e.g. Jing 2005). Once
the density field is computed, we compute its power spectrum using
a fast-Fourier transform. To reach k-modes beyond the spacing of
the base grid, we use the foldings technique of Jenkins et al. (1998)
with a folding factor of 4 between iterations and use 7 iterations.
This allows us to measure the matter power spectrum up to scales
k > 1000 h ·Mpc−1, much beyond the needs of this project.

We measure the total matter power spectrum (i.e. the sum of the
gas, dark matter, stars, black holes, and neutrinos) in the hydrody-
namical simulations and perform the same computation in the dark-
matter-only simulations, where the matter field is represented by a
single type of particle. By using the same grid and folding settings
between all the runs, we obtain measurements in the same bins in k-
space and can thus simply obtain the matter power spectrum ratios,
i.e. the baryonic effect on the power spectrum, by dividing the two
spectra.

The z = 0 baryonic responses for the simulations listed in Table 1
were already presented by Schaye et al. (2023) (their Fig. 22) and
compared to the results of the BAHAMAS (McCarthy et al. 2017)
and MILLENNIUM-TNG (Pakmor et al. 2023) predictions. Schaye
et al. (2023) also showed that the results of the various FLAMINGO

runs are in excellent agreement with the model of van Daalen et al.
(2020) relating the baryonic response to the mean baryon fraction in
clusters of mass M500,c = 1014 M⊙, where M500,c is the mass within
a radius encolsing a spherical overdensity 500 times larger than the
critical density of the Universe.

2.3 Convergence test with simulation volume

As the effect of baryon physics on the matter power spectrum is
thought to be driven by haloes of different masses for the different k
modes (see e.g. Semboloni et al. 2011; van Daalen et al. 2020; De-
backere et al. 2020; Mead et al. 2020; Salcido et al. 2023; van Loon

MNRAS 000, 1–14 (2024)
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Figure 1. Top: The baryonic response at redshift z = 0 (left) and z = 1 (right) for the fiducial FLAMINGO model extracted from simulations with different
volumes, labeled by the box side length. Bottom: The ratio of the response in each simulation to the response obtained in the largest simulation (L = 2800 Mpc).
The shaded regions correspond to fractional errors of 0.5% and 1% respectively. At both redshifts, the results are converged at the 1% level for simulations
with volumes in excess of 2003 Mpc3 up to k ≈ 10 h ·Mpc−1. Simulations with a side-length of 400 Mpc are not converged to better than 0.5% even on scales
k ≈ 1 h ·Mpc−1, with a larger deviation at higher redshift. Note also the reduction in the level of noise when larger simulation volumes are used.

& van Daalen 2024), it is important to ensure that the haloes respon-
sible are well sampled in the simulation volume used for the analysis
and are not affected by cosmic variance. To verify this, we present
the baryonic response of the matter power spectrum at z = 0 and
z = 1 for different simulations in the FLAMINGO suite using exactly
the same galaxy formation model and at fixed resolution in Fig. 1.
We use the fiducial FLAMINGO model here (i.e. fgas+0σ, M ∗+0σ,
0% jet, labeled as the L1_m9 model in Table 1) but we verified that
the results are similar for other models. The different line colours
correspond to simulations using cubic volumes whose side-lengths
are indicated in the figure and range from 50 Mpc to 2.8 Gpc (the
‘L2p8_m9‘ model of Schaye et al. 2023).

For volumes with side-length in excess of 200 Mpc at z = 0, we
find that the baryonic response is converged at the 2% level for the
entire range of k values probed by current and upcoming surveys. A
convergence to better than 0.5% is only achieved for the simulation
with a 1 Gpc side-length. At z = 1 (right panel), the convergence at
the 1% level is also achieved for volumes > 2003 Mpc3. However, at
a more precise level, the simulations are further from the converged
result on larger scales than at z = 0. As smaller k values are affected
by haloes of larger masses, this difference in convergence can be in-
terpreted as the absence of the rarer objects at higher redshift. In the
analysis that follows, we will make use of simulations with a volume
of 1 Gpc3, well within the regime where the results are converged.

Based on this simulation volume analysis, we caution that matter
power spectrum responses extracted from simulations such as IL-
LUSTRIS (Vogelsberger et al. 2014), EAGLE (Schaye et al. 2015),
HORIZON-AGN (Chisari et al. 2018), SIMBA (Davé et al. 2019),
and CAMELS (Delgado et al. 2023) (all using simulated volumes
≲ 1003 Mpc3) are likely not converged. Furthermore, if the differ-
ence from a converged result in these models has the same sign as
we find in the FLAMINGO runs, one could expect the results of these
studies to have overestimated the baryonic response of these models
at k < 4 h ·Mpc−1. On the other hand, from our analysis the response

reported for the TNG model (Springel et al. 2018) would be con-
verged for their largest volume (≈ 3003 Mpc3). This is confirmed
by the results of the MILLENNIUM-TNG simulations, using a very
similar model in a 7403 Mpc3 volume, reported by Pakmor et al.
(2023). We note that if the baryonic response is dominated by the
activity in haloes of lower mass than in FLAMINGO (as in e.g. EA-
GLE or TNG), the response might be converged in smaller volumes
already as the number density of the haloes responsible will be less
affected by cosmic variance than for our model.

The results of our convergence tests here are consistent with the
findings of van Daalen et al. (2011) who found that the total matter
power spectra at z = 0 are not converged in hydrodynamical simula-
tions with volumes < (100/h Mpc)3 (their appendix A) and of van
Daalen et al. (2020) who found the response to be converged only
for volumes ≳ (100/h Mpc)3 (their Appendix A).

3 GAUSSIAN PROCESS EMULATOR

In this section, we describe the procedure used to construct our
power spectrum response emulator (§3.1) and the validation steps
we performed to assess its quality (§3.2).

3.1 Construction of the emulator

To construct our emulator, we make use of the nine runs listed in
Table 1 and measure the baryonic response as described in §2.2. We
measure the ratio R(k) = P(k)/PDMO(k) for 31 values of k logarith-
mically spaced between 10−1.5 and 101.5 h ·Mpc−1 (i.e. ∆ log10 k =
0.1) at five different redshifts (z = 0.,0.5,1.0,1.5, and 2.0). We thus
have a coarse representation of R as a function of five input numbers:
k, z, and the three model parameters used to describe the baryonic
physic in the simulations (fgas±Nσ, M*±Nσ, and jet fraction) as
given in Table 1. Note that even though our simulations are with

MNRAS 000, 1–14 (2024)
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the fiducial AGN model or the jet-based AGN model, we treat the
AGN model as a continuous number going from 0% jet to 100% jet.
Similarly, we do not restrict the emulator to only accept input pa-
rameter values within the range where it was trained. Whilst these
are somewhat uncertain interpolations and extrapolations, we prefer
to be able to cover a wide range of scenarios with our model, even if
some of them may not be reproduced by actual simulations.

We then train the Gaussian process emulator (see Rasmussen &
Williams (2006) for an introduction) provided by the publicly avail-
able python package SWIFTEMULATOR 2 (Kugel & Borrow 2022),
itself an overlay, specialised in scaling relations extracted from sim-
ulations, of the commonly used GEORGE3 package (Ambikasaran
et al. 2015).

The emulator was trained on a small number of k bins to reduce
the amount of internal data generated and speed up the prediction
process. As we will show below, the number of bins we used is suf-
ficient to achieve better than 1% relative accuracy for the range of
input parameters relevant to our application. We note that we just
used the tools above as-is and that no specific hyper-parameter tun-
ing was necessary. The only hyper-parameter choice made was to
force the emulator to assume a mean model of R(k) = 1 ∀ k and em-
ulate the difference from this imposed model rather than letting the
emulator freely choose a mean R(k) (typically a polynomial) around
which to emulate differences.

When using the emulator to make predictions, we use the
quadruplet (z, fgas±Nσ, M∗ ± Nσ, fjet) to get the values of R at
the 31 points along the k-axis defined above. We then use spline
interpolation to compute R at the exact k values of interest. By
predicting the value of R for all the 31 k-bins at the same time, we
can more rapidly return R(k) for a range of k values at once, which
is the most common scenario. As we empirically have R(k) = 1 for
all k < 10−1.5 h ·Mpc−1 in our models, we extend our emulator to
simply return R = 1 on all scales larger than the training range. This
effectively allows us to predict the baryonic response in the range
k ∈ (−∞,101.5] h ·Mpc−1, meaning that our emulator can easily be
coupled to other tools predicting PDMO(k) to obtain a P(k) including
baryon effects over the whole range of scales relevant to current
cosmological analysis needs.

We note that the entire prediction step described above takes
≈ 1 ms to be performed on a single compute core. This implies that
our emulator can be used in cosmology model inference searches
(e.g. using an MCMC sampler) without leading to problematic time
overheads. It could also be used as a simple extension to the com-
monly used Boltzmann solvers such as CAMB (Lewis et al. 2000)
or CLASS (Lesgourgues 2011) on top of their already-implemented
non-linear extensions such as HALOFIT (e.g. Smith et al. 2003).

The emulator can also optionally return an estimate of the
variance for its predictions (See Sec. II.A of Ambikasaran et al.
(2015) for the exact definition). This can be useful to estimate the
confidence of the emulator in a given part of the parameter space.
As we will show below, this variance is overestimated for low
values of k as we did not attempt to force the emulator to always
return R = 1 at values of k close to our largest scale bins.

Our emulator is distributed publicly in the form of a python
package named FLAMINGOBARYONRESPONSEEMULATOR and

2 https://swiftemulator.readthedocs.io/
3 https://george.readthedocs.io/

Figure 2. The accuracy of the baryonic response emulator for the FLAMINGO

fiducial model (L1_m9) as a function of redshift. The coloured dots show the
raw power spectra ratios measured directly from the simulations at 21 dif-
ferent redshifts. The lines show the emulator predictions for the correspond-
ing redshifts. Note that the emulator was only trained on data at an interval
∆z = 0.5. The vertical dotted lines indicate the k-range over which the em-
ulator was trained. The bottom panel shows the ratio between the emulator
prediction and the raw simulation output. The shaded regions correspond to
fractional errors of 0.5% and 1% respectively. For all redshifts and for all
k < 10 h ·Mpc−1, the emulator is accurate to better than 1%.

will be made available on the FLAMINGO project web-page4 or
directly via the PyPi package index upon acceptance of this
manuscript for publication. Comprehensive documentation and us-
age examples are provided on the web-page.

3.2 Verification and accuracy

Before exploring the results, we start by assessing the quality of the
emulator’s predictions for the data points it was trained on.

In Fig. 2, we show the baryon response for our fiducial model
(fgas= 0σ, M∗ = 0σ, fjet=0) at 21 different redshifts and for 61 dif-
ferent values of k. Recall that we only trained on 5 redshifts and 31
bins in k. For each redshift, the dots indicate the raw results from the
simulation whilst the lines show the predictions of the emulator. In
the bottom panel, we present the ratio between the raw simulation
results and the emulator predictions, with the grey shaded regions
indicating 0.5% and 1% differences respectively.

Before discussing the performance of the emulator, we analyse
the evolution with redshift of the response. We find that the re-
sponse becomes stronger as the simulation evolves. The position of
the mimimum of the response moves from k = 6 h ·Mpc−1 at z = 2 to
k = 10 h ·Mpc at z = 0. The range of scales affected by baryons also

4 https://flamingo.strw.leidenuniv.nl/
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Figure 3. The accuracy of the baryonic response emulator for the FLAMINGO

feedback variations (the runs listed in Table 1 with the line colours match-
ing the convention of Schaye et al. (2023)) it was trained on at z = 0.5. The
coloured dots show the raw power spectra ratios measured directly from the
simulations. The lines show the emulator predictions for the corresponding
model. The vertical dotted lines indicate the k-range over which the emu-
lator was trained. The bottom panel shows the ratio between the emulator
prediction and the raw simulation output. The shaded regions correspond to
fractional errors of 0.5% and 1% respectively. For all the models and for all
k < 10 h ·Mpc−1, the emulator is accurate to better than 1%.

increases with decreasing redshift. At z = 2, the response is negligi-
ble up to scales k ≈ 1 h ·Mpc, with the departure from unity (i.e. no
response) shifting to k ≈ 0.1 h ·Mpc by z = 0

Turning now to the verification of our model, we find that for all
redshifts shown and for all k < 10 h ·Mpc, the emulator described
above can reproduce the simulation data with an accuracy better than
1%. At larger values of k, we find that the emulator is less accurate
but still returns an answer with a relative error better than 2%.

In Fig. 3, we show the performance of the emulator for the other
models it was trained on. We arbitrarily picked z = 0.5 for the figure
but verified that the results are identical at other redshifts. The con-
clusion here is similar to the one for the previous exercise: the em-
ulator reaches a relative accuracy better than 1% for k < 10 h ·Mpc
and degrades to around 2% on smaller scales.

To be more quantitative, we measured the relative difference be-
tween the emulator predictions and the raw simulation results for all
z < 2 at which we have data and for all nine feedback models. We
recorded the maximal error reached and found that at k < 10 h ·Mpc,
this never exceeds 1.1%. At k < 3 h ·Mpc and for 0 ≤ z ≤ 2, the most
relevant range for current cosmology measurements, the relative er-
ror of the emulator is always smaller than 0.25%.

We can thus conclude that the emulator designed in the previ-
ous section faithfully reproduces the raw simulation results. Unless
stated otherwise, the rest of this paper will only use the emulator to
show results and not the raw simulation data.

3.3 Alternative description of input parameters

As discussed in § 2.1 and more thoroughly in Kugel et al. (2023),
the FLAMINGO simulations were calibrated to match the inferred
gas fractions from a combined data set of X-ray and weak-lensing.
We then uniformly shifted the data by a certain number of σ and cal-
ibrated the model to match these shifted data sets. The ‘fgas±Nσ’
input parameter of our emulator corresponds to the σ-shift with re-
spect to the original data set used by Kugel et al. (2023). Instead of
referring to models defined with respect to a fixed data set, it may be
advantageous to instead use the absolute gas fractions in groups or
clusters as the input parameter of the emulator.

van Daalen et al. (2020) showed that across many galaxy forma-
tion models, a tight relationship exists between the baryon fraction
in a certain halo mass bin and the baryonic response at a fixed scale
k. Different halo masses then dominate the effect at different k val-
ues (see also van Loon & van Daalen 2024). Using these fractions is
thus a meaningful input parameter that can also be directly related
to observables. Similarly, the response emulator from the ANTILLES

suite (Salcido et al. 2023) also uses the baryon fraction (either at a
fixed halo mass or across a range of masses) as input to their model.
However, given the limited range of models varying the stellar frac-
tions in the FLAMINGO suite, we choose to instead use the gas frac-
tions as a the parameter we vary and leave the exploration of more
general variations where we alter both the stellar and gas factions
(and thus the baryon fractions) to a future study.

As various observational data sets are able to constrain the gas
fractions in different halo masses and because the FLAMINGO sim-
ulations may not necessarily match the trend with mass of all these
observations, we decided not to pre-define a specific halo mass for
which the gas fraction is used as input to our model. We, instead,
choose to present the connection between the gas fraction at z = 0
and the actual input parameter ‘fgas±Nσ’ in Fig. 4 and let users of
our package decide based on their available observational input data
which halo mass best suits their needs.

In Fig. 4, we show, using different line colours for each halo mass,
the mapping between the gas fractions in the simulation at that halo
mass and the input parameter ‘fgas±Nσ’ of our emulator. We use
M500,c as our halo mass definition and report the gas fractions (nor-
malised by the cosmic mean) within the corresponding over-density
radius R500,c. This choice was made to match the radii commonly
used by cluster studies. The dashed lines correspond to the simula-
tions using the jet AGN implementation. Note that since this model
was only run for two different values of ‘fgas±Nσ’, the mapping at
more extreme values is not available.

For intermediate masses, M500,cr ∼ 1014M⊙, the two models for
AGN feedback agree (i.e. the solid and dashed lines overlap). This
is largely a consequence of the calibration effort as this is the mass
range that was the most constraining in the data set used by Kugel
et al. (2023). At higher, and especially at lower masses, the two
models start to differ. This, in turn, leads to differences in the bary-
onic response these models generate for a fixed ‘fgas±Nσ’, as can
be seen in Fig. 3 when comparing the ‘Jets‘ and ‘L1_m9‘ models
(both using ‘fgas= 0σ’) or the two models calibrated to ‘fgas=−4σ’.

One can then use Fig. 4 and the gas fractions obtained from ob-
served data sets to set a prior on the range of values our parameter
‘fgas±Nσ’ can take; for instance when attempting to marginalize
over baryon effects for cosmology inference.
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Figure 4. The value of the fgas±Nσ input parameter to our emulator as a
function of the z = 0 gas fraction within R500,cr of the simulated clusters for
different halo masses (different line colours). The solid lines correspond to
the values extracted from the simulations with the thermal AGN model whilst
the dashed lines show the values for the simulations exploiting the jet-based
AGN model.

4 RESULTS

Having demonstrated that the emulator we built is sufficiently accu-
rate, we now turn to the exploration of some of the baryonic response
predictions of the FLAMINGO model.

4.1 The baryonic response in FLAMINGO

In this section, we present a selection of results at z = 0 by varying
the emulator’s input parameters one by one.

4.1.1 Varying the gas fraction for the thermal AGN model

We start by studying the effect of changing the ‘fgas±Nσ‘ parameter
for the purely thermal AGN model while keeping the stellar masses
at their fiducial values. In Fig. 5, we vary this parameter from −10 to
+4, i.e. going from a model that would lead to gas fractions in clus-
ters 10σ below the data used for calibration to a model 4σ above
it. The different line colours correspond to the responses for the dif-
ferent parameter values. We use solid lines to indicate models for
which we have a simulation and which were thus part of the training
set. For these, we additionally show using dots the actual simula-
tion data. The dashed lines correspond to the emulator’s prediction
for models where no simulation currently exist and are thus inter-
polations or extrapolations beyond the training set. Finally, we indi-
cate using a shaded region the 2−σ error estimate on the prediction
reported by the emulator (for a formal definition see Ambikasaran
et al. 2015).

As can be seen, the response becomes larger as the value of the

Figure 5. Predictions of the FLAMINGO baryon response emulator at red-
shift zero for different models using thermal AGN feedback deviating from
the X-ray inferred gas fractions the simulations were designed to reproduce
and expressed as the number of sigma discrepancy between the calibrated gas
fraction and the data. The variables kept fixed in the emulator are displayed
on the top left. The dots correspond to raw data from the simulations with the
solid lines showing the emulator prediction at the same value of fgas±Nσ.
The dashed lines show the emulator predictions for interpolation or extrapo-
lation beyond the simulations used for its construction. The shaded regions
show the 2-sigma uncertainty of the emulator prediction.

parameter ‘fgas±Nσ‘ decreases. This is, in agreement with previ-
ous studies linking the baryon content of clusters to the intensity
of the response in simulations (e.g. Semboloni et al. 2011, 2013;
van Daalen et al. 2020; Salcido et al. 2023) or from empirical/phe-
nomenological models (e.g. Schneider et al. 2019; Debackere et al.
2020; Aricò et al. 2021; Mead et al. 2021). At values of ‘fgas±Nσ‘
below −8, the change in the response becomes smaller and the
predicted response overall reaches a saturation value; meaning the
FLAMINGO model cannot produce an even stronger response when
only this parameter is changed. We note, however, that we have not
run a simulation at that point; this is an extrapolation from the emu-
lator only.

Similarly, at values of the parameter much above the training
regime, we find that the predicted response from the emulator flirts
with the unity line, in a likely unphysical manner. Whilst understand-
ing the behaviour of the model in this regime could lead to valuable
physical insights, we choose not to spend more time in this area as
the match to observations and cosmological data sets seems to re-
quire a response that is typically stronger than our fiducial model
(e.g. McCarthy et al. 2024), let alone models overshooting the gas
fraction data we calibrated to.

Note also the position of the minimum of the response. For the
values of ‘fgas±Nσ‘ explored here, we find that the minimum stays
in the range k = 8 to 10 h ·Mpc−1 with a weak dependence on
‘fgas±Nσ‘. To first order, the input parameter changes the normali-
sation of the response without changing the affected range of k. It is
instructive to compare this to Fig. 2 where we see that the position
of the minimum does decrease systematically with redshift.
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Figure 6. Same as Fig. 5 but for the model using the AGN jet model. For
fgas±Nσ values beyond the training range, the emulator returns a large un-
certainty, even at low values of k. The prediction error is there largely overes-
timated, mainly due to the fact that there are only two simulations sampling
this part of the parameter space. At fixed value of fgas±Nσ, the emulator
predicts a larger response than in the case with purely thermal AGN.

4.1.2 Varying the gas fraction for the jet AGN model

We now repeat the exercise of varying ‘fgas±Nσ‘ but for the model
with “100% jet”. In terms of the 3D parameter space of inputs to our
emulator, we are exploring the same directional vector as above but
starting from a position shifted along the jet fraction axis. The result
of this exercise is displayed in Fig. 6 where we used the same line
style convention as in the previous figure.

As can be seen, the size of the shaded regions indicating the em-
ulator uncertainty is significantly larger than for the thermal AGN
model (i.e. 0% jet). This stems from the fact that we have only two
runs (the two solid lines in the figure) using the jet AGN model and
the predictions made in this area of the parameter space are thus
more uncertain, especially when extrapolating beyond the training
range. Note also that we do not show the ’fgas−10σ‘ and ’fgas+4σ‘
predictions as their large uncertainties make them lose any signifi-
cance. The uncertainty at low k is strongly overestimated as all phys-
ical models have to return to unity in that regime; at least for the
range of parameters explored here. This large uncertainty is a conse-
quence of keeping our emulator simple with no physical insights that
would allow it to return a more physically-motivated uncertainty in
the low-k regime. It is possible that a different choice of mean model
for the emulator would have led to a smaller error estimate. We do,
however, prefer to keep the model as shown here; the level of un-
certainty that is acceptable will be application-dependent. We thus
leave the choice of what to use to users of the emulator.

Overall, the baryonic response obtained for our model with 100%
jet shows a stronger dependence on the input parameter value
than for the equivalent model with 0% jet. For negative values
of ’fgasNσ‘, the response is stronger and for positive values it is
weaker than in the thermal AGN case. However, the range of the
k-range affected and the position of the minimum are similar.

Figure 7. Same as Fig. 5 but for predictions of the FLAMINGO baryon re-
sponse emulator when the fraction of AGN work done by the jet model is
varied between 0% and 100%, here for models fitting the gas fraction data
shifted by −4σ. Note that simulations have only been performed at the two
extremes of the jet fraction range.

4.1.3 Interpolating between AGN models

The impact of the choice of AGN model is clear from the previ-
ous two figures. As we constructed our emulator with the formally
binary jet model option replaced by a continuous fraction, we can
explore the effect of changing the model. We show this in Fig. 7,
where we vary the jet fraction for the case of ’fgas−4σ‘. We picked
this value of the gas fractions for the figure as it shows a larger differ-
ence between models than for the fiducial ’fgas+0σ‘ but the effect is
similar at other values. We note that there is no simple way to gen-
erate an actual FLAMINGO simulation that has a jet fraction other
than 0% or 100%. The results shown here are purely an interpola-
tion constructed from the emulation.

As can be seen from the figure, the response is stronger for a larger
jet fraction. This is consistent with the gas fractions shown in Fig. 4,
with the halo masses, at the relevant k-scale, most responsible for
the response displaying a lower gas fraction in the jet model (dashed
lines). The uncertainty reported by the emulator is here again quite
large, largely because only two actual simulations span this dimen-
sion of the training set. The uncertainty at low-k is also likely over-
estimated given that all models are expected to return to unity there.

4.1.4 Varying the stellar fractions in the model

Having explored the first two dimensions of the parameter cube, we
now turn to the variation of the last input parameter, the change in
the z = 0 stellar masses. This corresponds to models where the mass
of every galaxy is lowered/increased by a certain number of σ from
the original data (GAMA DR4, Driver et al. 2022) that the fiducial
FLAMINGO simulations were calibrated to. We show the effect of
this parameter in Fig. 8, where we adopt the same line style con-
vention as for the three last figures. Along this axis, the number of
actual training points is again very small (two) so the emulator’s pre-
dictions become rapidly very uncertain. The uncertainty on the ob-
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Figure 8. Same as Fig. 5 but varying the fit to the z = 0 stellar mass function
whilst keeping the gas fraction in clusters fixed to the fiducial value.

served data is, however, much smaller here than for gas fractions and
this does leave us with less freedom to drastically change the amount
of stellar mass formed overall in our simulations. The effect of this
parameter is smaller than the changes in the gas fractions studied
above. The uncertainty on the stellar masses in the data only signif-
icantly impacts the baryonic response for k > 1 h ·Mpc−1. At fixed
gas fraction in clusters, we find that a lower stellar mass function
leads to stronger baryonic response. This is in line with expectations
as it requires the stars and the AGN to provide more feedback to
suppress the formation of stars in the objects on top of the feedback
required to obtain the requested gas fraction.

As discussed in § 3.3, a future improvement of our emulator will
be to offer more variations of both the gas and stellar fractions inde-
pendently to have a broader coverage of the possible baryon fraction
in clusters, akin to the model of Salcido et al. (2023). We leave these
improvements for a future release of more FLAMINGO simulations
extending the parameter space in these directions.

4.2 Evolution with redshift

In the previous subsection, we focused on the results at z = 0. As
most of the cosmology surveys use data at higher redshifts and us-
ing many bins or bins spanning a wide redshift range, it is interesting
to quantify the evolution of the response with redshift. Our emulator
was trained with data from the simulations up to z = 2, a range be-
yond sufficient for all current and upcoming surveys. It can thus be
directly used in the analysis of survey data.

The evolution of the response, in particular of the k-range affected
and of the position of the minimum of the response, with redshift for
our fiducial model was already presented in Fig. 2. Besides this base
case, exploring the full range of models discussed in § 4.1 across all
redshifts would extend our study too much, we thus restrict our evo-
lution analysis here to the simple question of whether models with
stronger feedback also display a stronger evolution in time. To mea-
sure this, we take the baryonic response at z = 1 and compare it to
the response at z= 0 for different values of the “fgas” parameter. The

Figure 9. The ratio of the baryon response at redshift z= 1 and z= 0 for mod-
els with different values of the fgas±Nσ value, as indicated in the legend.
Note the smaller range of the vertical axis used here. Models with no redshift
evolution of the response would display a flat line on this figure. The models
with lower gas fractions in clusters, i.e. with more intense feedback, show a
stronger evolution with redshift of the predicted baryonic response.

result of this experiment is displayed in Fig. 9 where we show the
ratio between the two responses. The different coloured lines corre-
spond to different values of “fgas” (i.e. different feedback strengths).
Models displaying no evolution in their response between z = 1 and
0 would be shown as a horizontal line of value 1. The further a model
is from this line (in either direction), the more redshift evolution is
found. As can be expected, the stronger the feedback response at
z = 0 (i.e. the smaller the value of “fgas”), the stronger the evolution.
The responses for different feedback strengths thus look more simi-
lar at higher redshift. As the response is mainly driven by the AGN-
induced gas flows in large haloes (e.g. van Daalen et al. 2011), we
can qualitatively understand this trend by the need of massive galax-
ies to first form and by the time it then takes for the expelled gas to
reach large distances.

We note that we have verified that the same trend holds for models
using a jet fraction > 0 or a different M ∗−σ value.

4.3 Dependence on the cosmological model

The emulator was trained on simulations that all assume the same
background cosmology. If the emulator is to be used in cosmology
inference using survey data, this would imply that we assume that
the response is independent of the cosmology chosen. Whilst verify-
ing this assumption is a critical task, it is beyond the scope of this pa-
per and of the current range of simulations present in the FLAMINGO

suite.
Elbers et al. (2024) explored the correlation between cosmo-

logical model and baryonic response in the FLAMINGO simula-
tions, especially in the context of neutrino mass variations. They
found a small dependence, which they were able to explain using
the changes in the halo mass-concentration relation induced by the
changes in the cosmology. We do not repeat this exercise here, but
we complement it with an analysis of an additional two simulations
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Figure 10. Comparison of the matter power spectrum baryonic response
from our emulator (solid line) trained on our runs using our fiducial cos-
mology to the responses obtained from simulations using our low S 8 (LS8)
cosmology (dashed lines). The bottom panel shows the ratio of the predic-
tion of the emulator, trained on our fiducial cosmology model only, to the
two simulations we have run using the LS8 cosmology. The shaded regions
indicate < 0.5% and < 1% relative difference with respect to the raw simu-
lation prediction. For the relevant range of k-scales and for the two models
which span a wide range of possible responses within the FLAMINGO suite,
we find that the cosmology dependence of the baryonic response is below
1% of the total signal.

using the “lensing cosmology” (LS8) cosmological model (Ωm =

0.305, Ωb = 0.0473, σ8 = 0.760, h = 0.682, ns = 0.965,
∑

mνc2 =

0.06 eV) of Amon & Efstathiou (2022). We ran two simulations
with this background cosmology. The first one using the “fgas+0σ”
baryon physics model and the second one using the “fgas-8σ” one.
These two models largely bracket the responses we obtained in the
FLAMINGO suite. We then compare the baryonic responses pre-
dicted by these simulations to the predictions of the emulator that
was trained on the fiducial cosmology.

We show this comparison in Fig. 10. The emulator predictions
are shown as solid lines whilst the raw simulation data is displayed
using dashed lines. The bottom panel shows the ratio between the
two to highlight the differences. For both feedback models (differ-
ent colours), we find that the relative difference between the em-
ulator predictions (trained on our fiducial cosmology) and the raw
simulation data is smaller than 1% for all k < 10 h ·Mpc−1. The fig-
ure shows this comparison at z = 0 but we verified that the same
conclusion holds also at higher z.

Interpreting this result in the light of the analytic model of Elbers
et al. (2024), we can understand the small difference due to cos-
mology as coming from the small change in the mass-concentration
relation of haloes between our fiducial cosmology and the LS8 one
(as expected from models of the concentration such as Correa et al.
2015). From the analysis of Elbers et al. (2024), we do expect to

Figure 11. Comparison of the z= 0 matter power spectrum baryonic response
in four FLAMINGO models (from our emulator) to the response obtained in a
selection of simulations from the literature (see text for details). Depending
on the input parameters, the response returned by the FLAMINGO emulator
can be similar to many published models; only the models with the strongest
feedback are beyond the range of our emulator. Of particular interest are
the two models at “fgas-8σ” using the thermal and jet models which closely
resemble the COSMO-OWLS models with ∆TAGN = 8.3 and 8.5 respectively
that are often used in the literature as representatives of the baryonic response
in hydrodynamical simulations.

find larger differences (up to a few percent at k = 10 h ·Mpc−1) for
variations within ΛCDM that affect the mass-concentration relation
more (see their section 4).

We leave the full exploration of the cosmological dependence of
the power spectrum response to a future study, where we will expand
the emulator to also predict the response as a function of cosmolog-
ical parameters.

4.4 Comparison to other studies

We conclude our description of the baryonic response in FLAMINGO

with a comparison of our model to results from other simulations
and models. We restrict our analysis to z = 0 but understanding the
evolution of the response with time will be important for current and
future surveys where data from a wide range of redshifts enters the
analysis.

4.4.1 Comparison to hydrodynamical simulations

In Fig. 11 we compare four models extracted from our emulator to a
selection of simulations from the literature. We use here the compi-
lation of homogenized data from van Daalen et al. (2020), expanded
to more recent runs. In particular, we show the results from SIMBA

(Davé et al. 2019), ILLUSTRIS (Vogelsberger et al. 2014), EAGLE
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(Schaye et al. 2015), FABLE (Henden et al. 2018), HORIZON-AGN
(Chisari et al. 2018), MILLENNIUM-TNG (Pakmor et al. 2023),
three variations of BAHAMAS (McCarthy et al. 2017), and four
variations of COSMO-OWLS (Le Brun et al. 2014). Note that, as
discussed in § 2.3, some of these simulations exploited volumes that
are likely too small to produce converged results.

As can be seen, the range of predictions from all these models is
relatively broad, as is the baryon fraction in clusters they predict (van
Daalen et al. 2020). Nevertheless, our emulator can cover a large
range of models with its predictions. Only the two most extreme
models (ILLUSTRIS and COSMO-OWLS-AGN-∆T8.7) are beyond
the reach of our emulator, and likely of what the FLAMINGO family
of simulations can produce without alterations to the physics.

It is interesting to note that our models with “fgas-8σ” using the
thermal and jet models closely resemble the COSMO-OWLS mod-
els with ∆TAGN = 8.3 and 8.5 respectively. The latter of these two
models is often used as a representative of a large baryonic response
when analysing data sets (e.g. Mead et al. 2020; Amon & Efstathiou
2022; Preston et al. 2023; Bigwood et al. 2024). Fine tuning of the
parameters of the emulator could likely lead to our model matching
other simulations shown here. We thus conclude that our family of
models and the emulator constructed on top of it are able to cover
almost the entire range of predictions from the literature. Missing
the strongest responses is, however, possibly a limitation as recent
studies seem to suggest stronger responses are required to explain
the data (Amon & Efstathiou 2022; Preston et al. 2023), in particu-
lar kSZ observations (Bigwood et al. 2024; Hadzhiyska et al. 2024;
McCarthy et al. 2024) and the tSZ power spectrum (McCarthy et al.
2014, 2018, 2023).

With its connection to gas fractions at specific halo masses
(Fig. 4), our emulator can be meaningfully be related to observables.
These can in turn be used to provide a prior on the range of re-
sponses compatible with the data. The more meaningful labelling of
the models via “fgas±Nσ”, as compared to a label based on subgrid
parameter values, helps in this respect.

4.4.2 Comparison to the ANTILLES suite

Using the ANTILLES suite of 400 simulations run with the OWLS
model, Salcido et al. (2023) constructed a model, “SP(k)”, predicting
the baryonic response using the baryon fraction in groups and clus-
ters as input parameter to their model. Their much wider range of
simulations allows them to encompass a much wider range of pos-
sible responses than we can with our FLAMINGO-based emulator.
They offer multiple versions ranging in complexity of the input go-
ing from a single parameter to providing the fractions over a range
of halo masses. We use this latter version here to compare to our
models. Specifically, we measured the baryon fractions as a func-
tion of halo mass (note the difference with the gas fractions we used
in Fig. 4) for our fiducial FLAMINGO model and used them as an
input to their model. The resulting response is shown for five dif-
ferent redshifts in Fig. 12 alongside the response obtained from our
emulator.

As can be seen, despite using the exact baryon fractions of the
simulations as input, the SP(k) model predictions do not match
the FLAMINGO results. They predict a stronger response at k ≈
1h ·Mpc−1 and a weaker one at k > 3h ·Mpc−1, in particular at low
redshift. This indicates that knowing the baryon fraction in haloes
is not a sufficient condition to obtain the baryonic response. Indeed,
Debackere et al. (2020) used a halo model to show that the baryon
fraction beyond R500c is important.

The FLAMINGO and ANTILLES simulations do not have the same

Figure 12. Comparison of the matter power spectrum baryonic response at
different redshifts in the fiducial FLAMINGO simulation from our emulator
(solid lines) to the one predicted by the SP(k) model of Salcido et al. (2023)
(dashed lines) fitted to the true M500,c - baryon fraction relation extracted
from the FLAMINGO halo catalogs.

stellar fraction in their haloes and this likely explains part of the dif-
ference here. Note that it may be possible to explore our emulator to
match SP(k) more closely. One could, for instance, lower “M∗±Nσ”
whilst increasing “fgas±Nσ” in order to maintain the same baryon
fraction in haloes. However, as we do not have predictions for the
stellar fractions as a function of these parameters, we leave this ex-
ercise for a future study with a more comprehensive emulator. This
simple comparison nevertheless indicates that predicting the bary-
onic response using a single number (e.g. the baryon or gas fraction)
per halo mass bin may not be sufficient and more complex models
will have to be constructed in the future.

4.4.3 Can FLAMINGO feedback solve the S 8 tension?

Over the last few years, precision tests of the ΛCDM mod-
els, particularly those exploiting low-redshift weak-lensing and
large-scale structure probes, have reported measurements of S 8 ≡

σ8
√
Ωm/0.3 in conflict with the value inferred from the primary

CMB anisotropies and BAO experiments. Depending on the data
sets and their analysis, this so-called tension can reach 3σ (Hey-
mans et al. 2021; Abbott et al. 2022; Amon et al. 2023; Miyatake
et al. 2023; McCarthy et al. 2023).

Among the different solutions put forward to solve this tension,
the possibility that (baryon and galactic feedback) physics on the
scales of groups and clusters clusters contributes to the non-linear
effects on the range of scales on which the power spectrum is probed
is an interesting proposition as it does not require an alteration of
the background cosmological model. We explore here whether the
response obtained in the FLAMINGO model is compatible with the
required baryon-induced non-linear solution to the tension.

Amon & Efstathiou (2022) constructed a toy model for the effect
of baryons, inspired by the functional form obtained from the HM-
CODE2020 (Mead et al. 2020), and constrained it to reconcile the
weak-lensing shear analysis of the KiDS-1000 survey and the pri-
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Figure 13. Comparison of the z = 0 matter power spectrum baryonic response in four FLAMINGO models (from our emulator) to the response inferred from the
analyses of different weak-lensing cosmology probes combined with a halo model or a baryonification model. The right panel shows analyses where in addition
either primary CMB anisotropy data or kSZ data was used to infer the response (see text for details). Note the reduced k-range plotted here compared to the
previous figures.

mary CMB anisotropy data. Using a similar approach, Preston et al.
(2023) combined the DES year 3 shear data to the CMB data to
also constrain the required non-linear power spectrum changes. Both
these constraints are shown as, respecively, the blue and magenta
shaded regions in the right panel of Fig. 13. A parallel approach is
to exploit the weak-lensing data alone in combination with a halo
model or emulator for the baryonic response. The analysis of Aricò
et al. (2023) and Bigwood et al. (2024), both exploiting the DES year
3 data but with different emulators (BACCO (Aricò et al. 2021) and
BCEMU (Giri & Schneider 2021) respectively) and different analy-
sis pipelines, are shown as shaded regions in the left panel of Fig. 13.
Finally, additional datasets informing the emulators or models on the
gaseous content of haloes can be used. The constraints of Bigwood
et al. (2024) including kSZ data from ACT are shown in the right
panel of Fig. 13 (see also Schneider et al. 2022). In both panels, we
show the response obtained for four models spanning the range of
FLAMINGO emulator input parameter values.

As can be seen, the more extreme models in the FLAMINGO suite
are compatible with some of the inferred baryonic responses in these
studies. In particular, both the two ‘fgas−8σ’ models (i.e. with ther-
mal AGN and with collimated jet AGN) are within the ranges de-
manded by the analysis of Bigwood et al. (2024) (with or without
added kSZ constraints). Interestingly, these FLAMINGO models dis-
play gas fractions that are in strong tension with the gas fractions
in groups and clusters inferred from joint X-ray and weak-lensing
analyses (Kugel et al. 2023). Putting aside the option of systematic
error or selection effects affecting either data sets, this could indi-
cate that more complex physics, for instance more advanced feed-
back models, are required in simulations to jointly match the X-ray
and kSZ measurements (see also Hadzhiyska et al. 2024; McCarthy
et al. 2024).

The constraints on the power spectrum response derived by Amon
& Efstathiou (2022) and to a lesser extent Preston et al. (2023) and
Aricò et al. (2023) (at k ≲ 0.5 h ·Mpc−1) are out of reach of our emu-

lator and likely of what can be achieved using the FLAMINGO model
without altering the sub-grid models. If the Universe does look like
a FLAMINGO model with extreme feedback (e.g. ‘fgas−8σ’), the
tension between the CMB and the low-redshift small-scale probes
would nevertheless be reduced, though a more quantitative analy-
sis of this change is left for future studies. Note, however, that the
S 8 tension also manifests itself in other probes not related to weak-
lensing, such as in the thermal SZ power spectrum (see e.g. Mc-
Carthy et al. 2014, 2018, 2023) and that altering the small-scale mat-
ter power spectrum may not be sufficient.

5 CONCLUSIONS

In this study, we used the hydrodynamical simulations from the
FLAMINGO project (Schaye et al. 2023; Kugel et al. 2023) and ex-
tracted their total matter power spectra, which were then compared
to ones taken from the dark matter only counterparts of the sim-
ulations. By taking the ratio of the two matter power spectra, we
obtained the baryonic response of the matter power spectrum gener-
ated by baryonic physics associated with galaxy formation. We then
constructed a Gaussian process emulator using four parameters: the
redshift and the three parameters describing baryon physics of the
simulations as input parameters to reproduce the simulated baryonic
response in the range of scales k = 10−1.5−101.5 h ·Mpc−1, sufficient
for all current and planned large-scale structure probes. These pa-
rameters are the offset of the gas fractions in clusters with respect to
the simulation calibration data (‘fgas±Nσ’), the offset of the galaxy
masses used for the calibration (‘M∗±Nσ’) and the fraction of AGN
feedback output in the form of collimated jets. We then explored the
accuracy of the emulator thus constructed and the general predic-
tions for the baryonic response in the FLAMINGO simulations. Our
findings can be summarized as follows:

• The baryonic response at z = 0 and z = 1 is converged to better
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than 1% only for simulations using volumes in excess of 2003 Mpc3.
A convergence to better than 0.5% is only achieved for volumes
larger than 4003 Mpc3 and the higher redshift results display a dif-
ference with respect to the converged answer on larger k-scales than
at lower redshift (Fig. 1).
• The emulator constructed from nine FLAMINGO models is able

to reproduce the results of the simulations with a relative error of
less than 1% for scales up to k = 10 h ·Mpc−1 and for all redshifts
up to z = 2 (Figs. 2 & 3).
• The emulator requires less than 1 ms per invocation on a single

compute core to provide the response at all k values. It can thus
be used as part of a model inference exercise for surveys without
penalty.
• The ‘fgas±Nσ’ input parameter to our model can be related

to the gas fraction in groups/clusters and this latter quantity can be
extracted from observations to serve as prior on the range of inputs to
our emulator. The mapping between the two quantities for different
halo masses is given in Fig. 4.
• We find the baryonic response to be stronger for models with

lower gas fractions in groups and clusters (parameter ‘fgas±Nσ’,
Fig. 5 & 6) and for lower stellar fractions (Fig. 8).
• The response is stronger, at fixed gas fractions in clusters,

for the models using collimated AGN over thermal AGN feedback
(Fig. 7).
• The baryonic response is stronger at lower redshift with the

range of k-scales affected growing as the redshift decrases. Simulta-
neously, the position of the minimum of the response moves to larger
k (Fig. 2).
• Models with stronger feedback (and thus a stronger response)

display a larger evolution in their response between z = 1 and z = 0
(Fig. 9).
• The dependence of the response on the cosmological model is

small (< 1% for all relevant k, Fig. 10) but we only probed two spe-
cific cosmological models, leaving room for a stronger dependence
when other parameters are changed.
• By varying its input parameters, our emulator can cover a wide

range of responses found in simulations from the literature (Fig. 11)
except the most extreme models. The connection between our in-
put parameters and the gas fraction in haloes also allows for a more
physically meaningful description of the response, compared with
the use of subgrid parameter values.
• Comparing our model to the model obtained from the AN-

TILLES simulations, we find that, even when using the simulated
baryon fractions as input parameters, the SP(k) model does not
match our results (Fig. 12). This indicates that more than one pa-
rameter is necessary to describe the baryonic response.
• When comparing our emulator to the constraints on the bary-

onic response derived from either the analysis of weak-lensing with
halo models, baryonification models, or when combined with addi-
tional datasets, we find that the most extreme FLAMINGO models
can match some of these constraints (Fig. 13). These models are,
however, in tension with the cluster X-ray data used to constrain our
fiducial model.

We plan to extend our emulator in the future to provide more
independent variations in the gas and stellar fractions in clusters as
well as including changes in cosmological parameters. This latter
improvement will allow us to break free from the assumption that
the baryonic response is separable from cosmology.

The emulator in its present form should nevertheless be sufficient
for the analysis of current cosmological surveys where the separa-
bility assumption is still commonly made.
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