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Abstract: Using deep learning to design nanophotonic devices has recently been an active
research area, with Generative Adversarial Networks (GANs) being a popular choice alongside
autoencoder-based methods. However, both generally require large datasets and computational
power, creating limitations in data-scarce scenarios. Fine-tuning GANs on limited data often
cause mode collapse and overfitting, reducing generalizability and model effectiveness. To
address this, we introduce Variational MineGAN, an optimized architecture that enhances data
efficiency by reducing overfitting. Experimental results demonstrate a Frechet Inception Distance
(FID) of 52.14 and an Inception Score (IS) of 3.59, enabling high-quality design generation and
accurate spectral response estimation, improving nanophotonics design exploration.

1. Introduction

Understanding the impact of intricate geometrical shapes on the properties of micro or nanopho-
tonic devices has been among the key challenges in photonics research [1, 2]. The conventional
design approach typically begins with an educated guess about the structure’s shape, followed
by the use of Finite-Difference Time-Domain (FDTD) or Finite Element Method (FEM) solver
software to solve Maxwell’s partial differential equations [3, 4]to obtain the spectral response of
the structure. The design parameters are then tweaked to optimize performance and iteratively
evaluated through computationally expensive simulations. This trial-and-error method is both
time and resource-intensive [5–7].

To address these limitations, different methods based on deep learning (DL) have recently
been employed for the design of nanophotonic structures. Discriminative deep learning models
have been utilized for both forward and inverse electrodynamics problems [8–10]. Additionally,
generative deep learning models such as Generative Adversarial Networks (GANs) [11] and
Variational Autoencoders (VAEs) [12] have been utilized for design optimization. Different
variations of generative model architectures have been proven to be effective in solving these
optimization problems. Kudyshev et al. used an adversarial autoencoder for topology optimization
of thermal emitters [13]. Panisilvam et al. proposed the use of asymmetric CycleGAN for the
inverse design of photonic devices [14]. These generative models excel at learning the underlying
distribution of data and generating realistic images, making them a popular choice for optimizing
nanophotonic structures based on desired spectral responses. However, they typically require
large datasets and extensive training time, which can be a significant limitation. [15, 16]

To mitigate these challenges, the concept of “knowledge transfer" has been applied in generative
model training. This approach leverages pre-trained generative models trained on large datasets
for a longer time and adapts them to new, smaller datasets. Weng et al. demonstrated the
effectiveness of using knowledge transfer to fine-tune the pre-trained GAN model on limited
data [17]. However, Noguchi and Harada addressed the issue of mode collapse associated with
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this approach and proposed freezing certain parameters of the generator [18]. While this approach
is less prone to overfitting, it significantly limits the model’s flexibility during fine-tuning [19].

To further address the shortcomings of transfer learning of the GAN model on limited data,
Wang et al. introduced the “MineGAN" approach [19]. This method employs a miner network
that transforms the input to a new distribution of target data, which facilitates the generator model
in generating images from the new target domain.

In this work, we introduce “Variational MineGAN," an extended version of MineGAN. Our
approach modifies the miner network to directly learn the properties of the target data distribution
by estimating its mean and variance instead of transforming the input to follow that distribution.
This allows better understanding and control over the latent distribution space and reduces
computational cost as well since it bypasses the use of the miner network during inference,
streamlining the image generation process.

2. Methodology

2.1. GAN Formulation

A Generative Adversarial Network (GAN) comprises a pair of networks: the Generator and the
Discriminator. The discriminator’s job is to differentiate between actual and generated fake
samples, while the generator’s job is to map random noise samples into images. Goodfellow et al.
presented the initial GAN formulation [20], which seeks to solve a two-player min-max problem
by reaching a Nash equilibrium, which is mathematically expressed as:

min
𝐺

max
𝐷
E𝑥∼𝑝data (𝑥 ) [log 𝐷 (𝑥)] + E𝑧∼𝑝 (𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))], (1)

in which 𝑧𝜖𝑅𝑑𝑧 is a latent variable obtained from a distribution 𝑝(𝑧) typically a normal
distribution with identity covariance N(0, 𝐼) or uniform distribution U[−1, 1]. On the other
hand, 𝑥 ∼ 𝑝data (𝑥) corresponds to samples drawn from the real data distribution. In this work, for
better training stability, Wasserstein GAN-Gradient Penatly (WGAN-GP) [21] loss has been used
for the discriminator, which utilizes the Wasserstein Loss [22] alongside a penalty term added to
it, instead of Binary Cross Entropy (BCE) Loss. The discriminator’s modified loss function then
takes on the following form:

𝐿𝐷 = E𝑧∼P(𝑧) [𝐷 (𝐺 (𝑧))] − E𝑥∼P𝑑𝑎𝑡𝑎 (𝑥 ) [𝐷 (𝑥)] + 𝜆E�̂�∼P�̂�
[
(∥∇�̂�𝐷 (𝑥)∥2 − 1)2] . (2)

Here, 𝑥 represents samples that are interpolated between real data samples 𝑥𝑟𝑒𝑎𝑙 ∼ 𝑃𝑑𝑎𝑡𝑎 (𝑥)
and generated fake data samples, 𝑥 𝑓 𝑎𝑘𝑒 = 𝐺 (𝑧) where 𝑧 ∼ 𝑝(𝑧). The term 𝜆 is a regularization
coefficient that controls the strength of the gradient penalty. The interpolation is done by

𝑥 = 𝛼𝑥𝑟𝑒𝑎𝑙 + (1 − 𝛼)𝑥 𝑓 𝑎𝑘𝑒, (3)

where 𝛼 is sampled from a uniform distribution U[−1, 1] [21].
In this work, for both the generator and discriminator, we follow the Progressive GAN

(Pro-GAN) architecture [14], where the training begins with images of lower resolution, and the
resolution is progressively enhanced by including additional layers to the network. Although the
original Pro-GAN paper starts training at 4×4 and goes up to 1024×1024 resolution, due to dataset
constraints, we train up to 64×64 resolution images. The latent noise dimension used in this work
is 256, and the noise vector is drawn from N(0, 𝐼). The generator and discriminator network
architecture has been illustrated in Figure 1. The convolution layers inside the “Convolution
Block" (Conv. Block) employ a kernel size of 3, stride of 1, and padding of 1. The generator
uses 256 filters for convolution blocks at 4×4 to 32×32 image sizes and 128 filters for the 64×64
size. In contrast, the discriminator follows the opposite filter setup. In the discriminator’s final
block, the three convolution layers use kernel sizes of 3, 4, and 1 with no padding. The output of
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Fig. 1. Overview of the ProGAN architecture. (a) ProGAN Generator: progressively
generates 4×4 to 64×64 images from input noise. (b) Building blocks used in generator
and discriminator. (c) ProGAN Discriminator: makes a real/fake prediction from input
image samples.

the last convolution layer skips activation, as WGAN is used. The value of 𝜆 for WGAN-GP is
set to 10. The core of the generator and the discriminator network are mirror images of each
other, and they both always grow in harmony. This ProGAN generator and discriminator are later
on used as pre-trained models for both MineGAN and Variational MineGAN.

2.2. MineGAN

MineGAN employs a miner network that steers the input noise to the most promising regions
of the latent space with respect to the target data distribution 𝐷𝑇 [19]. The miner network is a
compact neural network composed of a sequence of linear layers, each preceding ReLU activation
and batch normalization except for the last layer. Each linear layer has a dimension of 256. Figure
2 (a) illustrates the detailed configuration of the linear blocks used in the miner network and the



configuration of the miner network itself used in our implementation.
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Fig. 2. (a) Architecture of the miner network, which is composed of multiple linear
blocks, transforming input noise before passing it to the generator. (b) The overall
model architecture of MineGAN.

Let our Generator and Discriminator be trained on prior data distribution 𝑝data. We want to
fine-tune the pre-trained model on new target data distribution 𝑝𝑇data. The miner functions as
an intermediary between the input noise vector and the generator. The input passes through
the miner network at first, where it is transformed before entering the generator, in contrast to
traditional GANs, where the noise flows directly to the generator. The discriminator part remains
the same as usual, taking real and generated fake images as input and attempting to classify them.
Figure 2 (b) demonstrates the overall architecture of the MineGAN network.

MineGAN training takes place in two stages. Initially, the generator weights are kept fixed,
and only the miner is trained. In this stage, the miner network learns to transform the input noise
𝑧 ∼ 𝑝(𝑧) in such a manner that it follows the new target data distribution. The generator is no
longer fixed during the second stage of training, effectively fine-tuning the entire architecture.
However, since the miner network is composed of significantly less amount of parameters
compared to the GAN network, it is, therefore, less susceptible to overfitting [19]. It narrows
the latent distribution to align more with the target, simplifying fine-tuning by providing a more
consistent training signal, and as a result, the generator weights do not require to go through
significant updates, thus reducing the likelihood of overfitting. The employed loss functions for
the Generator and the Discriminator are

𝐿𝐺 = −E𝑧∼𝑝 (𝑧) [𝐷 (𝐺 (𝑀 (𝑧)))], (4)

and
𝐿𝐷 = E𝑧∼𝑝 (𝑧) [𝐷 (𝐺 (𝑀 (𝑧)))] − E𝑥∼𝑝𝑇 (𝑥 ) [𝐷 (𝑥)] (5)

respectively.



2.3. Variational MineGAN

In this work, we extend the MineGAN framework by introducing variational MineGAN. Instead
of directly transforming the noise as in MineGAN, our approach uses a variational miner network.
Similar to the miner network, the variational miner is also a compact neural network; however, it
has two outputs corresponding to the mean and the variance of the target distribution. Each linear
layer has a dimension of 256. Figure 3 (a) illustrates the details of the variational miner network.
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Fig. 3. (a)Architecture of the variational miner network, where input noise is processed
through a series of linear blocks to output the mean (𝜇) and variance (𝜎) of the target
distribution.(b) The overall model architecture of Variational MineGAN.

In Variational MineGAN, the input noise 𝑧 ∼ 𝑝(𝑧) goes through the miner network, and the
network gives us the parameters of a new distribution that aligns much more closely with the target
distribution. Figure 3 (b) illustrates the overall architecture of the Variational MineGAN network.
Noise samples are then taken from the new distribution and passed on to the generator. This
modification allows for better exploration of the latent space, which ensures that the generated
image samples are more representative of the target data distribution while reducing the risk
of overfitting. The variational approach also adds a form of regularization, promoting better
generalization of the model to unseen data.

Another significant advantage of the Variational MineGAN is the reduced computational
overhead during inference. Once the mean and the variance of the target distribution have been
learned by the miner, there is no need to use the miner for inference. Instead, the model uses
the learned parameters to directly sample from the latent space, resulting in a more efficient
image generation process. In contrast, MineGAN requires the miner to transform the noise
input during inference, which adds computational cost. This transformation, while effective,
operates somewhat like a black box, as we don’t have direct insight into the distribution of the
transformed noise. With Variational MineGAN, however, we gain a clear understanding of
the new distribution space as we explicitly model the mean and variance. This transparency
provides insight into how the noise is sampled and controlled, improving interpretability without



sacrificing performance.

2.4. Absorption Spectra Prediction Model

In addition to training the generative models, a separate predictive model was also trained to
estimate the absorption spectra based on the design images generated. A Convolutional Neural
Network (CNN) makes up this model that takes a 64×64 pixel grayscale design image as input,
and 80 spectral values corresponding to wavelengths ranging from 4𝜇m to 12𝜇m come out as
output. The output of this model is passed through a smoothing filter with a window size of 5 to
obtain a smooth spectral response. The architecture of this model has been illustrated in Figure
4. This model allows us to efficiently select designs that meet specific performance parameters
before conducting more resource-intensive simulations for further optimization.

64x64

Input image

Output
Spectrum

32x32 16x16 8x8 4x4

2048
80

(a)

(b)

Layer Type Output Shape No. of Parameters
Conv2D [64,64,16] 160

Batch Normalization [64,64,16] 64
ReLU [64,64,16] 0

Average Pooling2D [32,32,16] 0
Conv2D [32,32,32] 4640

BatchNormalization [32,32,32] 128
ReLU [32,32,32] 0

AveragePooling2D [16,16,32] 0
Conv2D [16,16,64] 18496

BatchNormalization [16,16,64] 256
ReLU [16,16,64] 0

AveragePooling2D [8,8,64] 0
Conv2D [8,8,128] 73856

BatchNormalization [8,8,128] 512
ReLU [8,8,128] 0

AveragePooling2D [4,4,128] 0
Flatten [2048] 0
Dense [80] 163920

Total Parameters 262032

Fig. 4. Absorption spectra prediction overview: (a) Model architecture, (b) Layer
details.

2.5. Dataset Details

To pre-train our ProGAN model, we utilized a publicly available dataset from Raman Lab of
UCLA comprising 18,770 images of metamaterial absorbers [23]. Lumerical software’s 3D
Finite-Difference Time-Domain (FDTD) simulations were used to create these data. The dataset
features seven distinct shapes, each with geometric parameter variations. These structures had
3.2×3.2 𝜇𝑚2 as their unit cell dimensions. In order to simulate periodic structures, perfectly
matched layers (PMLs) were employed above and below the plane of interest, and periodic
boundary conditions were implemented on the side boundaries. A source plane was injected
parallel to and at a distance from the plane of interest. Reflectance and transmission spectra were
calculated using the above-mentioned simulation arrangement.

For the fine-tuning stage with MineGAN and Variational MineGAN, we constructed a smaller
target dataset of 1000 images by combining images from another dataset from Raman lab [24]
with an additional 200 images of designs that we simulated, which involved variations of different
geometric structures. The physical configuration of the designs from this dataset is similar to the
one described previously. This dataset also contains the absorption spectra within the range of



4𝜇m to 12𝜇m wavelength on a separate file. This dataset was used to train the MineGAN and
Variational MineGAN models, as well as the spectra prediction model, incorporating a diverse
range of geometric shapes and sizes. This approach ensured that the target dataset introduced
new variations that the pre-trained model had not encountered before.

2.6. Training Details

2.6.1. ProGAN pre-training

For the pre-trained network, a ProGAN architecture was trained on the multiclass dataset of
Raman Lab [23]. Training started at 4×4 resolution, then 8x8, 16×16 and gradually up to 64×64
pixels. The models were trained for 30 epochs at each resolution. PixelNorm was applied after
each convolution layer, and minibatch standard deviation information was integrated into the
channel dimension of the discriminator. The learning rate was configured to 0.001 using the
Adam optimizer, Lambda-GP was set to 10, and one discriminator iteration was performed per
generator update.

2.6.2. MineGAN and Variational MineGAN Training

Both MineGAN and Variational MineGAN networks were trained on the smaller target dataset
of 1000 images to create sensor images that were not a part of the initial dataset on which the
ProGAN model was trained first. Both the generator and the discriminator were initialized with
pre-trained weights. The training took place in two stages. For stage 1 of training, the miner was
trained for 1000 epochs, keeping the generator weights frozen. The generator was then trained
for 300 epochs, and there was a relatively lower learning rate of 0.01 during the second stage of
training.

2.6.3. Absorption Spectra Prediction Model Training

The dataset for this training consisted of real images paired with their corresponding absorption
spectra, which served as ground truth. The network was trained using mean squared error (MSE)
as the loss function and Adam optimizer with a learning rate of 0.001. The model underwent
training with a batch size of 32 across 250 epochs. The dataset was divided into training and
testing portions in a ratio of 80 to 20.

3. Results and Discussion

We conducted a comprehensive evaluation of four different generative approaches: training from
scratch (ProGAN trained directly on the target dataset), Transfer GAN [17], MineGAN, and our
proposed Variational MineGAN. Each model was evaluated using two key performance metrics,
Frechet Inception Distance (FID) [25] and Inception Score (IS) [26]. FID measures the similarity
between real and generated images by comparing the distributions of feature representations.
On the other hand, IS evaluates the quality and diversity of generated images by assessing how
confidently the images are classified into distinct classes. A lower FID score and higher IS are
desirable since they indicate that the generated images are realistic and exhibit a greater diversity
of features [27, 28].

Table 1 highlights the best FID and Inception scores achieved on the 1000 image dataset
across all approaches. The Variational MineGAN shows a significant improvement over the other
methods, recording the lowest FID scores and the highest IS values, signifying its superior ability
to generate images of superior quality that closely match the real data distribution.

The FID scores, in particular, show a marked difference when compared to the models trained
from scratch or using Transfer GAN without a miner. The variational component not only
improves the model’s generalization capabilities but also reduces overfitting, which is a common
challenge in GAN training, particularly with small datasets [29]. Figure 5 shows that Variational



Approach Best FID Score Inception Score (IS)

Model Trained from Scratch 105.51 3.03

Transfer GAN 73.18 3.36

MineGAN 59.23 3.49

Variational MineGAN 52.14 3.59

Table 1. Best FID and IS for different approaches on the target dataset of 1000 images.

MineGAN generates clearer, more realistic images compared to other approaches. Images from
models trained from scratch and Transfer GAN show more artifacts and lack sharpness, which
becomes more prominent in smaller datasets.
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Fig. 5. Sample images generated by each approach.

To analyze how well these models adapt to limited data, experiments were carried out with
varying dataset sizes of 200, 500, 800, and 1,000 images. As shown in Figure 6, the FID scores of
all models improve as the dataset size increases. However, the Variational MineGAN consistently
outperforms the other approaches at every dataset size, maintaining lower FID scores even when
only 200 images were used.

The models trained from scratch and Transfer GAN experience more difficulty adapting to
smaller datasets, leading to higher FID scores and signs of overfitting. MineGAN performs better
than these methods due to the incorporation of a miner network that better aligns the latent space
with the target distribution, but it still falls short of the performance demonstrated by Variational
MineGAN.

To further investigate the degree of overfitting, we conducted an interpolation experiment
by generating images from interpolations between two latent noise vectors. This test helps to
assess how well each model captures the global structure of the data. Models that overfit tend
to generate disjointed or abrupt transitions between interpolated samples, while models that
generalize well will produce smooth and coherent transitions [30, 31]. As illustrated in figure
7, Variational MineGAN produces smooth and continuous image transitions, demonstrating its
ability to identify the underlying data distribution effectively. On the other hand, Transfer GAN
produced more erratic transitions, indicating a higher level of overfitting to the training data.
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This observation further supports the conclusion that Variational MineGAN better generalizes to
unseen data.
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Fig. 7. Smooth transitions by Variational MineGAN vs. erratic ones by TransferGAN
in case of interpolation between two latent noise vectors.

Moreover, in the case of variational MineGAN, the miner network is no longer required during
inference once we have the information of the new distribution space, allowing us to sample noise
from this new distribution and generate images directly, simplifying the process and reducing
computational overhead. Table 2 reflects the increase in time difference between MineGAn and
variational MineGAN approach as we generate more images. The efficiency difference becomes
more apparent when generating large batches of images. For instance, generating 10,000 images
with Variational MineGAN took approximately 38.49 seconds, whereas MineGAN required
45.23 seconds. This reduction in computational demand can significantly benefit large-scale
image generation tasks, making Variational MineGAN a more practical choice.

Method 1000 Images 5000 Images 10000 Images

MineGAN 6.01 sec 23.22 sec 45.23 sec

Variational MineGAN 4.58 sec 19.78 sec 38.49 sec

Table 2. Inference time comparison between MineGAN and Variational MineGAN.

After generating a diverse set of images using Variational MineGAN, these images were
passed through our trained predictive model to estimate their corresponding absorption spectra.



This model, which was fine-tuned to minimize the prediction error between real spectral values
and those predicted from design images, achieved a mean squared error (MSE) of 0.0046 on
the validation dataset. As shown in Figure 8, the model approximates the spectral response for
various designs pretty closely, with each subplot illustrating a comparison between the actual
and predicted spectra for specific designs. The higher-quality design images from Variational
MineGAN allow the predictor model to estimate the spectral response closely.

μm

μm

μm

μm

Fig. 8. Real and predicted spectra values for specific generated designs, with the
corresponding design images, simulated versions and MSE values displayed as insets.

This step allows for an efficient and rapid exploration of the generated designs. By analyzing
the predicted spectra, we can quickly identify the designs that best meet specific response criteria,
such as a peak within a particular wavelength range or a peak higher than a specific value.
After selecting the most promising design from the generated images, further validation can
be performed through simulations, and other non-geometric parameters can be fine-tuned to
optimize performance even further. This approach accelerates the iterative design process and
enhances the practicality of using generative models for photonic design.

4. Conclusion

In this work, we introduced Variational MineGAN, a framework that enhances data-efficient
transfer learning for generative AI-based design of nanophotonic structures. By leveraging
a variational miner network to adapt the latent space, our approach alleviates the challenge
of overfitting, commonly encountered in generative models, particularly in the case of small
datasets. The architecture demonstrated significant improvements in performance over previous
approaches, as measured by FID of 52.14 and IS of 3.59. This improvement in image quality not
only facilitates the exploration of better designs but also allows for a more accurate estimation
of spectral responses. Moreover, Variational MineGAN offers substantial time and resource
efficiency during inference, enabling the rapid generation of high-quality designs compared to
its predecessor, the MineGAN approach. The learning of target distribution space properties
allows an efficient generation process, reducing time and computational cost, which makes it



well-suited for large-scale applications. Although we employed the ProGAN architecture for our
experiments, this framework can be extended to any generative network, making it a versatile
tool for various design applications. Given that large datasets are often unavailable for many
types of photonic design, Variational MineGAN provides an effective solution in such cases,
empowering researchers to explore new possibilities in the design and optimization of intricate
photonic structures.
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