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Abstract

Coordinated reply attacks are a tactic observed in online in-
fluence operations and other coordinated campaigns to sup-
port or harass targeted individuals, or influence them or their
followers. Despite its potential to influence the public, past
studies have yet to analyze or provide a methodology to de-
tect this tactic. In this study, we characterize coordinated re-
ply attacks in the context of influence operations on Twitter.
Our analysis reveals that the primary targets of these attacks
are influential people such as journalists, news media, state
officials, and politicians.
We propose two supervised machine-learning models, one to
classify tweets to determine whether they are targeted by a re-
ply attack, and one to classify accounts that reply to a targeted
tweet to determine whether they are part of a coordinated at-
tack. The classifiers achieve AUC scores of 0.88 and 0.97,
respectively. These results indicate that accounts involved in
reply attacks can be detected, and the targeted accounts them-
selves can serve as sensors for influence operation detection.

Introduction
Social media platforms are the primary environments in
which civic engagement takes place. They play an impor-
tant role in the exchange of ideas, discussion of political
agendas, and development of political identities thanks to
the ease with which one can access and consume informa-
tion and build influence. However, social media platforms
are also exploited by coordinated groups to purposefully dis-
tribute misleading information (Weedon, Nuland, and Sta-
mos 2017), artificially amplify certain content (Elmas, Over-
dorf, and Aberer 2022), or interfere with elections (Ferrara
et al. 2020; Office of the Director of National Intelligence
2017; Neudert, Howard, and Kollanyi 2019). These types of
social media exploitation are referred to as information op-
erations or influence operations (IOs).

Influence operations are organized attempts to achieve a
specific effect, such as manipulating public opinion, usually
through coordinated tactics (Pamment and Smith 2022). IO
tactics include public relations via advertising or paid digi-
tal influencers (Ong and Cabañes 2018); hashtag hijacking
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to distort trends and attract or distract the attention of main-
stream media (Ong and Cabañes 2018); use of inauthentic
and automated accounts to create the appearance of popu-
larity (Elmas 2023; Woolley and Howard 2018); deletion of
content violating terms of service to avoid detection by plat-
forms (Torres-Lugo et al. 2022); troll accounts (Zannettou
et al. 2019a); the spread of disinformation and propaganda
(Woolley and Howard 2018); political memes (Rowett 2018;
Zannettou et al. 2020; Ng, Moffitt, and Carley 2022); and
‘kompromat’ strategies to influence political events (Wool-
ley and Howard 2018).

IOs can be state-sponsored, and originate domestically or
in a foreign state (Bradshaw and Howard 2017). A prime
example of foreign-initiated campaign was the effort to in-
terfere in the 2016 US Presidential Election by the Rus-
sian Internet Research Agency (IRA) (Senate Select Com-
mittee on Intelligence 2019). Reports on IOs from differ-
ent countries like China, Brazil, and Nigeria show that such
campaigns have emerged as a global threat (Bradshaw and
Howard 2017; Woolley and Howard 2018; Bush 2020).

Here we focus on coordinated reply attacks, where a
group of accounts work together to target specific individ-
uals or entities by flooding their posts with replies. This can
be done to overwhelm the target, push a particular narrative,
or generate engagement. Coordinated reply attacks are ac-
tively employed in influence operations (Matthews and Go-
erzen 2019; Bush 2020). Such a tactic has been used for
harassment, as observed for example in a hate-speech cam-
paign against Mehreen Faruqi, Australia’s first female Mus-
lim senator (Thomas, Thompson, and Wanless 2020); ampli-
fication by inauthentic accounts (Weedon, Nuland, and Sta-
mos 2017); and spamming, trolling, and incitement.

In this paper, we provide the first quantitative, large-scale
study of coordinated reply attacks in influence operations
reported by Twitter.1 We explore the targeting patterns of IO
actors employing this tactic and introduce methods to detect
the targets of these attacks and the actors involved. We pose
the following research questions:

• RQ1: Who are the targets of coordinated replies, and
what specific topics characterize the tweets that attract
such coordinated responses?

1Although Twitter is now called X, we use the previous name
because the data analyzed here predates the name change.
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• RQ2: Among a set of tweets by potential targets, how
can we identify those that receive coordinated replies?

• RQ3: Given a set of targeted tweets, how can we detect
the accounts that participate in coordinated replies?

We make the following contributions:

• We find that primary targets of coordinated reply attacks
are mostly influential people such as journalists, news
media, state officials, and politicians. Most of the targets
are attacked only once. The attacks for most of the tar-
gets are sporadic and tend to focus on specific contexts,
such as politics. The attackers can originate from within
the target’s country or from foreign states.

• We present a classifier model to identify tweets that are
targeted by coordinated replies. This model is general-
izable to other contexts, as it does not use any features
specific to IOs. It can also be developed into a tool for
monitoring and safety.

• We present a second model that performs well on the task
of detecting accounts that are involved in reply attacks.

Related Work
Given the dearth of prior research on coordinated reply at-
tacks, we review the literature on IOs in general.

Characterization of Influence Operations
Influence operations present novel challenges to content
moderation on social media. A crucial initial step to ad-
dress these challenges is to characterize how IO actors op-
erate: their tactics, motivations, and engagement patterns.
Matthews and Goerzen (2019) present different trolling
techniques used in social media, from dogpiling to sock
puppetry, along with interventions. Zannettou et al. (2019a)
observe that Russian trolls displayed different behavior in
the use of Twitter compared to random users. The same au-
thors also find that Russian trolls on Twitter and Reddit were
pro-Trump, while Iranian trolls were anti-Trump (Zannet-
tou et al. 2019b). The images shared by Russian trolls ap-
peared in many popular social networks as well as main-
stream and alternative news outlets, and focused on Russia,
Ukraine, and the USA (Zannettou et al. 2020). Dutt, Deb,
and Ferrara (2018) analyze the advertisements purchased by
IRA accounts on Facebook and identify their changing cam-
paign targets over time by performing clustering and seman-
tic analysis. Stewart, Arif, and Starbird (2018) investigate
the behavior of Russian trolls around the #BlackLivesMat-
ter movement and find that the trolls infiltrated both right-
and left-leaning political communities to participate in both
sides of the discussion. Farkas and Bastos (2018) manu-
ally annotate IRA-linked tweets into 19 different categories
to study whether IRA operations are consistent with clas-
sic propaganda models. Merhi, Rajtmajer, and Lee (2023)
find that the accounts involved in an IO in Turkey were re-
silient to large-scale shutdown. Elmas, Overdorf, and Aberer
(2023) discover that IO actors and other adversarial accounts
often change their names and assume new identities. The
Stanford Internet Observatory (2021) produced several re-
ports describing influence campaigns and a range of tactics

used by IO actors, including coordinated reply attacks (Bush
2020). While that work provides a qualitative description of
the tactic, here we focus on methods to detect it.

Coordinated reply attacks are also carried out by auto-
mated accounts; social bots have been reported to target in-
fluential users in an attempt to direct their attention toward
fake news (Shao et al. 2018). Financial rather than political
incentives may be the drivers of such tactics, as in the case of
cryptocurrency manipulation (Yang and Menczer 2024). The
methods presented here are context-independent and there-
fore could be applied to these kinds of campaigns.

Detection of Influence Operations

Many supervised machine-learning models have been pro-
posed in the literature to detect IO actors, especially IRA
trolls on Twitter, using deceptive linguistic cues (Addawood
et al. 2019) and behavioral and linguistic features (Im et al.
2020). Luceri, Giordano, and Ferrara (2020) propose an in-
verse reinforcement learning model for this task. Alizadeh
et al. (2020) build a content-based classifier to detect tweets
from troll accounts in Russia, China, and Venezuela IO cam-
paigns. Work from Sharma et al. (2021) uses a generative
model to learn hidden group behavior to identify coordi-
nated accounts. Ezzeddine et al. (2023) present an LSTM-
based approach that identifies troll accounts based on behav-
ioral cues. Kong et al. (2023) propose an interval-censored
transformer Hawkes architecture to identify IO operators.

Our work is similar to the above-mentioned efforts in the
use of a supervised learning approach to identify coordi-
nated accounts. However, we design features that leverage
the targeting behaviors of the IO actors, specifically focus-
ing on reply/comment engagements. Our method does not
use any IO-specific features or sentiment cues, therefore it
can be generalized to different social media platforms that
have similar engagement functionalities.

Influence operations are one kind of coordinated cam-
paign. A body of work has explored unsupervised methods
to detect coordinated behaviors in general. Pacheco et al.
(2021) introduced a network-based framework for coordi-
nation detection. As campaigns use more than one tactic
at a time, Uyheng, Cruickshank, and Carley (2022) present
a multi-view modularity clustering method. A Bayesian
model by Hudson Smith, Ehrett, and Warren (2024) lever-
ages similarities in narrative and account characteristics.
Nwala, Flammini, and Menczer (2023) propose a language
framework that represents user actions and content as se-
quences of symbols to find coordinated accounts. Unlike the
above methods, we do not cluster accounts based on similar
behaviors. We classify individual posts based on aggregate
features of their replies, and individual accounts based on
their metadata and reply activity.

Data Collection

For the present study of coordinated reply attacks, we use 43
different state-sponsored IO datasets released by the Twit-
ter Moderation Research Consortium from October 2018 to



December 2021.2 These datasets are archives of suspended
accounts that Twitter claims to have been involved in foreign
influence operations. Along with the account metadata, the
datasets provide all the tweets generated by the accounts.

Since according to Twitter the campaigns in these datasets
are coordinated by a single entity, they provide us with
ground truth for our study. Indeed, if we observe mass
replies to a single target from multiple accounts labeled by
Twitter as coordinated, we can establish that the coordinated
reply attack tactic has been used.

Target Dataset
First, we merge the datasets of all the IOs and keep all the
replies by IO accounts to tweets by non-IO accounts. We
refer to the latter accounts as targets and to the replies by
IO accounts as IO replies. There are in total 17,873,714 IO
replies from 44,425 IO accounts targeting 15,256,547 tweets
by 1,763,084 distinct targets. From this data, we extract
15,016 targets and 96,041 tweets that received five or more
direct replies from IO accounts. We assume these tweets
have been targeted by coordinated reply attacks, and we la-
bel them as targeted tweets. The threshold of five or more
replies is arbitrary; a robustness analysis shows that the de-
tection of targeted tweets does not seem to be affected by
this parameter, as discussed later (Fig. 7).

The targeted tweets can still be publicly available at the
time of our analysis, allowing us to collect all of their replies.
Some of these replies may have originated from non-IO
repliers, both before and after the IO accounts were taken
down by Twitter. We refer to these replies as normal replies
and to their authors as normal repliers. Since we only have
direct replies by IO accounts, we only consider direct replies
by normal repliers as well; replies to replies are discarded.
In addition to the metadata about the IO replies that are
present in the initial data, we query the /users/:id,
/search/all, and /tweets/?ids= endpoints of the
Twitter API3 to collect metadata about the targets, the tar-
geted tweets, their normal replies, and the normal repliers.

Among the 15,016 targets, 5,041 were suspended, 3,992
could not be found (possibly deleted accounts), and 5,983
were alive at analysis time (2,031 verified and 3,952 non-
verified accounts). Of the total 96,041 targeted tweets,
43,048 could not be found, which means these tweets could
have originated from deleted or suspended accounts; 18,808
had unauthorized access; and 34,185 were accessible. For
our influence operation case studies (RQ1), we consider this
target dataset of 34,185 tweets by 5,983 targets.

Classification Dataset
To identify tweets targeted by coordinated replies (RQ2) and
accounts that participate in such activity (RQ3), we consider
targeted tweets as our positive examples. For corresponding
negative examples, we collect control tweets posted by the

2IO datasets were available at transparency.x.com/en/reports/
moderation-research until summer 2024. An archival version of
the site is available at web.archive.org/web/20240829231920/https:
//transparency.x.com/en/reports/moderation-research.

3developer.twitter.com/en/docs/twitter-api/

Figure 1: Data collection for the classifiers. The dashed line sepa-
rated the last IO reply and the first successive tweet by the target.

same targets after the last IO reply. This ensures that the
tweets in our control data did not receive any coordinated
replies by IO accounts. Fig. 1 illustrates the data collection.

As in the case of positive examples, we only retain con-
trol tweets with five or more replies. In addition, to avoid
bias due to the diverse activity of the targets, we collect
from each target as many control tweets as targeted tweets.
Specifically, we select control tweets that were posted im-
mediately after the last IO reply, subject to the five-reply
minimum. In cases where we could not obtain as many con-
trol tweets as targeted tweets, we ensure a balanced dataset
by keeping the most recent targeted tweets.

Similar to the targeted tweets, we fetch all the replies
to the control tweets and all replier metadata. The result-
ing classification dataset includes 3,866 targeted tweets and
the same number of control tweets by 1,507 targets. There
are in total 881,918 and 323,378 repliers in the positive and
negative examples, respectively. These include IO and nor-
mal repliers. While the full classification dataset is used for
RQ2, for RQ3 we only use the positive examples (targeted
tweets): 7,670 IO repliers and 874,248 normal repliers.

RQ1: Targets and Topics
In this section, we present an exploratory analysis of the tar-
gets of coordinated reply attacks and two case studies of spe-
cific campaigns where we can analyze the targets as well as
the topics of their targeted tweets and other tactics employed
in the campaigns.

Exploratory analysis of target metadata (Fig. 2a) shows
that targets tend to have more followers (median 22,540)
than following (median 707). This suggests that targets can
be influential people. Reply attacks tend to be selective
(Fig. 2b): only a few tweets by each target were targeted
(median one). The median number of coordinated replies re-
ceived by targeted tweets was eight (Fig. 2c). However, 54
of the targeted tweets received more than 1,000 replies. Co-
ordinated replies tend to occur quickly after a targeted tweet,
with a median delay of 3 hours (Fig. 2d).

To better understand what kinds of accounts were tar-
geted, we annotated some target profiles with the corre-
sponding professions or organization types and country of
origin. We used manual annotation by checking each Twitter
profile, description, the profession metadata indicated by the

transparency.x.com/en/reports/moderation-research
transparency.x.com/en/reports/moderation-research
web.archive.org/web/20240829231920/https://transparency.x.com/en/reports/moderation-research
web.archive.org/web/20240829231920/https://transparency.x.com/en/reports/moderation-research
developer.twitter.com/en/docs/twitter-api/


Figure 2: Complementary cumulative distribution functions
(CCDF) of statistics describing target accounts and their tweets.
(A) Numbers of followers and following (friends) of targets.
(B) Number of targeted tweets per target. (C) Number of coordi-
nated replies received by each targeted tweet. (D) Time delay be-
tween targeted tweets and their coordinated replies.

‘briefcase icon,’ and by searching Google for the accounts
with more than a million followers. We grouped profession
and organization types into broad categories, such as state
officials, news media, and politicians. Accounts with insuf-
ficient information were labeled ‘Not Available.’

As the annotation process was time-consuming, we fo-
cused on two cases, namely two of the five campaigns with
the most targets: Serbia (the top campaign with 1,175 tar-
gets) and Egypt (the fifth campaign with 372 targets). In the
next subsections, for each case, we report the top 10 target
professions/types and countries. We also inspected the tar-
geted tweets to understand the context of the attacks. In pre-
processing, we translated the targeted tweets into English
and removed stop words and emojis.

Case Study: Serbia. The majority of accounts targeted by
the Serbia campaign, approximately 648, were from Serbia
itself, with the remaining coming from the Balkan region
(Fig. 3a). This suggests that the campaign focused its ef-
forts on influencing public opinion within Serbia. Fig. 3b
reveals that the coordinated reply attacks primarily targeted
journalists (102), state officials (99), news media organi-
zations (76), and politicians (43). A wordshift graph (Gal-
lagher et al. 2021) highlighting the most prominent terms
in the targeted tweets (Fig. 3c) shows that the campaign
focused on President Vucic, the Serbian Progressive Party
(SNS), the 2017 election, the “1 out of 5 Millions” protest,
and the Serbia-Kosovo diplomatic crisis. These findings are
consistent with analysis by Bush (2020), who reported that
the primary objective of IO actors involved in the Serbia
campaign was to rally support for President Alexander Vu-

Figure 3: Characterization of the Serbia campaign. Distributions
of (A) countries and (B) professions of the targets. (C) Wordshift
graph comparing the most frequent words in targeted and non-
targeted tweets.

cic and his party, the SNS. This was achieved by promoting
the popularity and visibility of Vucic and the SNS through
retweeting their content and replying to other accounts with
supportive messages. The IO accounts also targeted oppo-
nent political parties with derisive tweets and attempted to
discredit them by flooding their posts with negative com-
ments. This tactic aimed to create a public perception that
the opposition was unpopular.

Case Study: Egypt. Fig. 4a shows that the majority of
accounts targeted by the Egypt campaign were from mul-
tiple Middle East and North Africa countries, primarily
Saudi Arabia (74 targets), Egypt (39), UAE (36), Qatar
(30), and Yemen (26). This suggests a potential interstate
attack. News media organization (67), journalists (52), and
state officials (29) were again the main targets of the co-
ordinated replies (Fig. 4b). The analysis of common terms
in the targeted tweets (Fig. 4c) and manual inspection re-
veal that the Egypt campaign primarily focused on religious
themes, terrorism, and current affairs like the Iran Nuclear
deal (2018), Yemen’s Houthi movement, Sudan’s military
coup, and the Muslim Brotherhood. These observations are
consistent with a report by DiResta, Kheradpir, and Miller
(2020), describing an IO activity orchestrated by Egypt and
the UAE, supporting the Saudi and Egyptian governments
and criticizing Qatar, Turkey, Yemen, Iran.

Both case studies indicate that influential people like jour-
nalists, news media, state officials, and politicians, are the
primary targets of coordinated reply attacks. These targets
can be from different countries than the campaign’s country
of origin. The topics of the targeted tweets depend on the
current affairs of the specific geographic region or country.

RQ2: Tweet Classification
Identifying the tweets that receive inauthentic coordinated
replies is a necessary first step toward the detection of
both the targets and the perpetrators of a coordinated at-
tack. To address this challenge, we propose a campaign-
independent classifier for identifying IO-targeted tweets.



Figure 4: Characterization of the Egypt campaign. Distributions
of (A) countries and (B) professions of the targets. (C) Wordshift
graph comparing the most frequent words in targeted and non-
targeted tweets.

Table 1: Reply-level attributes used to generate features for the
tweet classifier.

Set Attributes

Engagement
like count
retweet count
reply count

Entities
mention count
hashtag count
url count

Delay reply time diff
Similarity cosine

The same methodology could also be generalized to plat-
forms other than Twitter.

Classifier Features
The tweet classifier leverages several features extracted
from tweets and from the replies they receive. Let us first
focus on tweet-level features, specifically tweet engage-
ment. We find a few key differences between the engage-
ment metrics of IO-targeted vs. control tweets. As illus-
trated in Fig. 5a, IO-targeted tweets receive more replies
(median 31 vs. 22 for control tweets). On the other hand,
control tweets receive slightly more retweets (median 84
vs. 75 for IO-targeted tweets, Fig. 5b) and more likes (me-
dian 420 vs. 250, Fig. 5c). This suggests that organic en-
gagement generated more positive interactions and shar-
ing, while inauthentic activity mainly focused on manipu-
lating conversations through replies. Based on these obser-
vations, we use three tweet-level features: reply count,
retweet count, and like count.

Next, let us consider reply-level features. These are based
on eight attributes, listed in Table 1. Engagement and en-
tity attributes are defined for each reply. The delay is also
defined, for each reply, as the difference between the times-
tamps of the tweet and the reply. The similarity is designed
to capture the presence of similar narratives in replies, a

common characteristic of inauthentic engagement. To this
end, we first generate vector embeddings for the replies us-
ing the LaBSE model (Feng et al. 2020), which supports 109
languages. The cosine attribute is then computed for each
pair of replies to the same tweet as the cosine similarity be-
tween the corresponding vectors.

Since targeted tweets can have many replies, this proce-
dure yields many attribute values that must be aggregated
to obtain a set of features for each tweet. In the case of en-
gagement, entities, and delay attributes, we have one value
per reply. For the similarity attribute, we have one value
per a pair of replies. In all cases, we aggregate these val-
ues to obtain a single distribution of attribute values for each
tweet. From these distributions we compute the following 12
summary statistic features: range, 25/50/75 quartiles, inter-
quartile range, minimum, maximum, mean, standard devia-
tion, skewness, kurtosis, and entropy. Since we do this for
each of eight attributes, the total number of reply-level fea-
tures used in the classifier is 8×12 = 96. Including the three
tweet-level features, the classifier uses a total of 99 features.

Results
We compare different machine learning models: Logistic
Regression, Random Forest, AdaBoost, Decision Tree, and
Naive Bayes. Prior to training, we standardize the input fea-
tures via z-scores. We conduct 10-fold cross-validation to
mitigate over-fitting of the training data and report on the
mean precision, recall, and F1 values across folds along with
AUC in Table 2. Precision, recall, and F1 depend on a thresh-
old to transform the model score into a binary classification
label. We tune the threshold to maximize the mean F1 across
folds. In the following, we focus on Random Forest (with
100 estimator trees), which yields the best scores overall.

To study the contributions of different features, we fol-
lowed two approaches. First, we trained and tested Random
Forest on individual tweet-level features and reply-level fea-
ture sets. The results using 10-fold cross-validation are given
in Table 3. Second, we performed a permutation feature im-
portance test, which measures the importance of features by
computing the loss in accuracy when the values of those fea-
tures are shuffled (permuted). To simplify the analysis, for
each reply-level attribute we shuffled all the corresponding
features rather than each feature individually. For example,
for the like count engagement attribute, we shuffled all
12 summary statistics features at once. We repeated this test
10 times and recorded the drop in mean F1 score from 10-
fold cross-validation for each iteration. The distribution of
these drop values is given in Fig. 6.

Both approaches consistently show that reply-level en-
gagement features are the most important. A classifier using
only those features achieves F1=0.77 and AUC=0.84 (Ta-
ble 3), and removing those features causes significant drops
in F1 (Fig. 6). In our classification dataset, the majority of
targets are from the Serbia campaign. IO accounts in this
campaign were not intended to generate engagement with
other Twitter users; instead, they primarily boosted retweet
and reply counts for other IO accounts to artificially am-
plify Vucic and his allies on Twitter (Bush 2020). In fact, we
find that replies to targeted tweets from IO accounts have a



Figure 5: Engagement received by targeted and control tweets. (A) Replies, (B) retweets, and (C) likes.

Table 2: Results of different algorithms in the tweet classification task. We present standard errors rounded to the second decimal point.

Classifier Prec. Rec. F1 AUC
Logistic Regression 0.65 ± 0.00 0.86 ± 0.00 0.74 ± 0.00 0.80 ± 0.00
Random Forest 0.73 ± 0.00 0.87 ± 0.00 0.80 ± 0.00 0.88 ± 0.00
AdaBoost 0.64 ± 0.00 0.89 ± 0.00 0.74 ± 0.00 0.81 ± 0.00
Decision Tree 0.52 ± 0.01 0.95 ± 0.02 0.66 ± 0.00 0.69 ± 0.00
Naive Bayes 0.49 ± 0.00 1.00 ± 0.00 0.66 ± 0.00 0.68 ± 0.00

Table 3: Contributions of different tweet-level features and reply-
level feature sets to the Random Forest tweet classifier. The last
row (using all features) corresponds to the results in Table 2.

Features set Prec. Rec. F1 AUC
reply count 0.5 0.99 0.67 0.59
retweet count 0.49 1 0.66 0.54
like count 0.49 1 0.66 0.52
Engagement 0.69 0.86 0.77 0.84
Entities 0.52 0.95 0.67 0.65
Delay 0.51 0.96 0.67 0.66
Similarity 0.54 0.96 0.69 0.68
All features 0.73 0.87 0.80 0.88

higher mean retweet count than replies from normal repli-
ers (0.63 vs 0.31) and also a higher mean like count (1.28
vs 0.81) and mean reply count (0.20 vs 0.13). However, our
data does not allow us to determine if such engagement was
mostly driven by IO accounts or organic.

Since reply-level engagement may be affected by the
popularity of the targeted tweets, it is legitimate to ask
whether tweet-level engagement features would provide suf-
ficient signals to discriminate between targeted and control
tweets. However, Table 3 indicates that tweet-level reply,
like, and retweet counts do not provide very informative sig-
nals for tweet classification. To further explore this question,
let us measure the correlation between tweet-level features
(reply count, retweet count, and like count)
and the corresponding reply-level engagement counts. As
each original tweet can have many replies, there are many
more replies than original tweets. We therefore calculate
the mean correlation between pairs of tweet/reply engage-
ment features across 10 random samples of replies matching
the number of original tweets. The correlations are all very
small (around 0.001), confirming that reply engagement is
not a mere reflection of tweet popularity.

We previously defined targeted tweets as those that re-

Figure 6: Permutation feature importance for tweet classifier. We
report the median (orange line), 50% confidence interval (box), and
99.3% confidence interval (whiskers) of the drop in F1 score when
each feature/attribute is shuffled. Boxes with the same color indi-
cate attributes in the same feature set. Larger values indicate higher
importance.

ceive five or more replies from IO accounts. Let us test the
robustness of our classifier with respect to this definition by
considering a range of threshold values between five and 20
replies from IO accounts. This filters down the set of tar-
geted tweets and corresponding control tweets. We follow
the same procedure described above to construct the classi-
fication dataset, extract the features, and train and evaluate
the classifier. Fig. 7 reports the mean precision, recall, F1,
and AUC from 10-fold cross-validation. While we observe
slight increases as the criterion for defining targeted tweets
becomes more stringent, the results appear to be robust with
respect to this parameter.

Next, let us evaluate the generality of the classifier by test-
ing how well a model trained on one campaign performs



Figure 7: Scores of tweet classifiers based on different thresholds
for the number of IO replies received by targeted tweets.

Table 4: F1 scores obtained from same-campaign (diagonal
entries, in bold) and cross-campaign evaluations of the tweet
classifier. RS=Serbia, SA=Saudi Arabia, TR=Turkey, EG=Egypt.
SA/EG/AE is a campaign involving three countries.

Train Test
RS SA TR EG SA/EG/AE Other

RS 0.85 0.54 0.61 0.56 0.52 0.65
SA 0.55 0.76 0.53 0.63 0.74 0.68
TR 0.61 0.60 0.74 0.63 0.65 0.68
EG 0.43 0.37 0.36 0.65 0.38 0.39
SA/EG/AE 0.47 0.58 0.57 0.60 0.73 0.48
Other 0.62 0.59 0.63 0.56 0.52 0 .74

when tested on other campaigns. First, we split the classifi-
cation dataset into six subsets: one for each of the top five
campaigns, based on the number of targeted tweets, and one
with data aggregated from the remaining campaigns. Sec-
ond, we train campaign-specific models on each of these
datasets, as in the original tweet classification setup. Finally,
we evaluate the models on test data from each dataset. In the
diagonal of Table 4 we report F1 values when the model
trained on one campaign is tested on the same campaign
(mean across 10-fold cross-validation). The off-diagonal F1
values are obtained when the model trained on all data from
one campaign (optimized to maximize F1) is tested on other
campaigns. As expected, the models perform better when
trained and tested on the same campaign. However, models
can generalize, with F1 drops that depend on the specific
campaigns. This suggests that at least some commonalities
exist across coordinated reply campaigns.

RQ3: Replier Classification

Once we identify potentially targeted tweets, we can attempt
to detect, among the accounts that reply to them, those that
are engaged in coordinated activity. Distinguishing authen-
tic replies from inauthentic ones poses a non-trivial chal-
lenge, given that inauthentic accounts attempt to create an
impression of authenticity. For this task, we train a super-
vised replier classifier using the targeted tweet dataset.

Figure 8: Differences between complementary cumulative distri-
butions of IO and normal replier metadata: (A) age, (B) following
count, (C) follower count, and (D) activity, as measured by the sum
of the numbers of original tweets, replies, quotes, and retweets.

Classifier Features

We engineer features for each replier from their profile meta-
data and their replies to the targeted tweets. Starting with
profile metadata, we calculate the age of repliers by subtract-
ing the account creation date from the date of the last reply
by the account. As illustrated in Fig. 8(A), most IO repli-
ers are relatively new accounts, with a median age of 0.37
years compared to 2.08 years for normal repliers. Despite
their relatively young age, IO repliers display a higher me-
dian number of followers (282) and followings (380) com-
pared to normal repliers, whose medians are 114 and 292,
respectively (Figure 8(B, C)). However, IO repliers exhibit
lower activity levels (original tweets + replies + quotes +
retweets), with a median of 699 compared to 4406 for nor-
mal repliers (Figure 8(D)).

To leverage these key differences between IO and nor-
mal repliers, we create four features specific to profile meta-
data: age, follower rate, following rate, and
activity rate. Since the numbers of followers/follow-
ing and the activity are correlated with an account’s age, we
normalize the rate features by the age of the account.

Each replier may be involved in one or more replies to
multiple targeted tweets. Therefore, we create a number
of features that summarize the characteristics of the set of
replies generated by each replier, including replies to multi-
ple targeted tweets. These features are based on eight reply
attributes, which we organize into four sets, just like those
listed in Table 1. The only criterion that distinguishes how
these features are calculated in the tweet versus the replier
classification task is the reply set — all replies to a tweet in
the former case and all replies by a replier in the latter.



Given a set of replies, the replier classifier features are
calculated as for the tweet classifier, with two exceptions.
First, the delay of each reply is computed with respect to the
timestamp of the targeted tweet to which the reply was di-
rected. Second, cosine similarity s for replier i is calculated
for each pair (rti , r

t
j) where rti is a reply by i to a targeted

tweet t and rtj is a reply by a different user j to the same
targeted tweet t. We obtain a distribution of these similar-
ities ∪t∈T (i) ∪j∈J(t) s(r

t
i , r

t
j) across the set J(t) of other

users who reply to t and then across the set T (i) of targeted
tweets that receive a reply from i.

From the distribution of each attribute, we compute nine
summary statistic features: range, 25/50/75 quartiles, inter-
quartile range, maximum, minimum, mean, and entropy. We
do not calculate standard deviation, skewness, and kurtosis
because they are not defined for many repliers who are in-
volved in a single reply to a single targeted tweet.

We end up with four profile metadata features and 8×9 =
72 reply-level features, for a total of 76 features.

Results
The targeted tweet dataset is highly imbalanced with 0.8%
IO repliers (7,670 vs. 874,248 normal repliers). Such an im-
balance leads to poor classification, which can be addressed
in two ways. First, we downsampled the normal repliers by
creating 10 different balanced datasets. Each includes all the
IO repliers and an equal number (7,670) of normal repliers,
sampled without replacement. We train and test the model on
each balanced dataset using 10-fold cross-validation and re-
port the average performance score. As a second approach,
we over sampled the IO repliers by splitting the data into
train and test sets, then replicating the minority class. Repli-
cation occurs only in the training data, to avoid data leakage.
We run 10-fold cross-validation on the resulting dataset. The
first approach might eliminate some potential false positives
— normal repliers with similar reply behavior — potentially
making the task easier. In the second approach, the model is
tested on data that still maintains the class imbalance, po-
tentially overfitting the training data. This approach is also
more expensive due to the large dataset. Given these comple-
mentary disadvantages, below we report on both methods.

We standardize the features with z-scores and report the
mean performance metrics obtained by different machine
learning models: Logistic Regression, Random Forest, Ad-
aBoost, Decision Tree, and Naive Bayes. As in the tweet
classifier, we tune the threshold to maximize the mean F1
across folds. Table 5 shows that all classifiers perform better
with downsampling, and Random Forest (with 100 estimator
trees) performs the best with both downsampling and over-
sampling. Therefore, let us focus on this model — Random
Forest trained with downsampling — for further analysis.

To test the contribution of each feature to the replier clas-
sifier, we follow the same procedure as for the tweet clas-
sifier. However, here we report the averages across the 10
balanced dataset. Table 6 reports on mean 10-fold cross-
validation scores for Random Forest trained and tested on
each profile metadata feature and reply feature set. Fig. 9
reports on the results of a permutation feature importance

Figure 9: Permutation feature importance for replier classifier. We
report the median (orange line), 50% confidence interval (box), and
99.3% confidence interval (whiskers) of the drop in F1 score when
each feature/attribute is shuffled. Boxes with the same color indi-
cate attributes in the same feature set. Larger values indicate higher
importance.

Figure 10: (A) Distributions of cosine similarity attributes for
replies by IO and normal repliers. (B) Similarity distributions for
normal repliers (blue, same as in panel (A)) and the 10 different
samples (different colored outlines).

test. Both analyses consistently shows that the similarity
among replies is the most important feature. To help inter-
pret this finding, Fig. 10(A) compares the distributions of
similarity attributes for replies by IO versus normal repliers.
Replies by IO repliers are more similar to other replies to the
same tweets, compared to those by normal repliers. This is
a pattern that the classifier can exploit. We also observe in
Fig. 10(B) that the downsampling process does not bias the
similarity distributions.

So far, we have tested the replier classifier on balanced
datasets. In more realistic scenarios, the data may be imbal-
anced with different ratios of coordinated and organic repli-
ers. To test whether the classifier can generalize to such sce-
narios, we train and test with 10-fold cross-validation using
different positive to negative data ratios ranging from 1:5
to 1:45. Fig. 11 shows that precision and AUC are robust to
class imbalance, whereas recall (and consequently F1) drops
as the class imbalance increases. While this result indicates
that balancing the classes affects recall, we also found that
training on the original imbalanced dataset leads to a high



Table 5: Results of different algorithms in the replier classification task. Top: downsampling of the majority class (normal repliers). Bottom:
oversampling of the minority class (IO repliers). We present standard errors rounded to the second decimal point.

Downsampling Prec. Rec. F1 AUC
Logistic Regression 0.89 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.93 ± 0.00
Random Forest 0.93 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.97 ± 0.00
AdaBoost 0.90 ± 0.00 0.90 ± 0.00 0.90 ± 0.00 0.96 ± 0.00
Decision Tree 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.88 ± 0.00
Naive Bayes 0.62 ± 0.02 0.86 ± 0.02 0.68 ± 0.00 0.87 ± 0.00
Oversampling Precision Recall F1 AUC
Logistic Regression 0.27 ± 0.00 0.48 ± 0.01 0.35 ± 0.00 0.94 ± 0.00
Random Forest 0.70 ± 0.00 0.72 ± 0.01 0.71 ± 0.00 0.96 ± 0.00
AdaBoost 0.47 ± 0.02 0.54 ± 0.02 0.50 ± 0.01 0.96 ± 0.00
Decision Tree 0.55 ± 0.01 0.51 ± 0.01 0.53 ± 0.01 0.75 ± 0.01
Naive Bayes 0.06 ± 0.00 0.50 ± 0.03 0.10 ± 0.00 0.86 ± 0.00

Table 6: Contributions of different profile features and reply-level
feature sets to the Random Forest replier classifier. The last row
corresponds to the results in Table 5 (top).

Features set Prec. Rec. F1 AUC
activity rate 0.60 0.63 0.61 0.65
following rate 0.54 0.52 0.53 0.56
follower rate 0.55 0.51 0.53 0.56
age 0.58 0.66 0.61 0.66
Delay 0.57 0.60 0.58 0.62
Engagement 0.57 0.57 0.53 0.63
Entities 0.63 0.50 0.53 0.63
Similarity 0.85 0.84 0.84 0.92
All features 0.93 0.92 0.92 0.97

false-positive rate and deteriorated precision.
Next, we test the generalizability of the replier classifier

by training and testing the model across different campaigns.
Similarly to the tweet classifier, we prepare six campaign
datasets: five selected based on the highest number of IO
repliers and one by aggregating the remaining campaigns.
In the diagonal of Table 7 we report F1 values when the
model trained on one campaign is tested on the same cam-
paign (mean across 10-fold cross-validation and 10 different
balanced datasets). The off-diagonal F1 values are obtained
when the model trained on one of the balanced datasets (se-
lected to maximize F1) is tested on other campaigns. We
observe that the campaign-specific models tend to perform
well both on their own campaigns and across campaigns.
The Serbia campaign is an exception, where we observe
a sizable deterioration in cross-campaign evaluation. These
results suggest that the features of the replier classifier are
relevant across different campaigns.

Discussion
Understanding the engagement patterns of IO operators is
crucial for identifying vulnerable individuals and devising
effective countermeasures. Our Serbia and Egypt campaign
case studies reveal that journalists, state officials, news me-
dia, and politicians are primary targets for coordinated IO
attacks. These attacks can originate either from within the
targeted country or from other nation-states. Our findings
further suggest that influential individuals may serve as po-

Figure 11: Replier classification scores for different data imbal-
ance ratios.

Table 7: F1 scores obtained from same-campaign (diagonal en-
tries, in bold) and cross-campaign evaluations of the replier classi-
fier. HN=Honduras; see Table 4 for other country codes.

Train Test
SA RS TR EG HN Other

SA 0.96 0.79 0.86 0.86 0.55 0.90
RS 0.53 0.89 0.76 0.53 0.48 0.49
TR 0.90 0.91 0.92 0.84 0.84 0.85
EG 0.92 0.90 0.88 0.92 0.74 0.90
HN 0.93 0.97 0.98 0.89 0.95 0.91
Other 0.95 0.89 0.92 0.89 0.72 0.94



tential sensors for identifying IO campaigns.
To detect coordinated reply attacks, we propose a

campaign-independent and general machine learning frame-
work consisting of a tweet classifier and a replier classifier.
First, the tweet classifier identifies tweets that receive co-
ordinated replies, narrowing the scope for further investiga-
tion. This classifier is robust to variations in targeted tweet
popularity and general across various campaigns. An anal-
ysis of the features used by the classifier indicates that the
level of engagement received by the replies is the most dis-
tinguishing factor.

Second, the replier classifier identifies operators engaged
in coordinated reply attacks. In addition to generalizing
across campaigns like the tweet classifier, the replier clas-
sifier is also capable of handling different levels of class im-
balance. The most significant features for replier classifica-
tion are those describing the distribution of similarity be-
tween replies from a replier and those from other repliers to
the same tweets.

This study presents a proof of concept for the proposed
classifiers, evaluated on a number of IO campaigns that have
been detected and taken down by Twitter. Our experiments
were carried out on compute nodes equipped with two 64-
core AMD EPYC 7742 2.25 GHz CPUs and 512 GB of
RAM. The efficacy, efficiency, and robustness of our clas-
sifiers would ideally be validated in the wild. Unfortunately,
due to changes in data-sharing policies from X/Twitter, we
are unable to conduct such tests.

The proposed framework can be extended to other plat-
forms with similar reply functionalities, including Face-
book, Threads, Mastodon, and Bluesky. Additionally, our
models could be developed into products or extensions that
users could employ for enhanced online safety.

Our study has potential impacts on platform integrity and
public dialogue. First, it reveals that what looks like public
reactions may in fact be efforts to manipulate a target and
other participants of a genuine conversation. For instance,
politicians may be posting on social media to solicit pub-
lic opinions. Coordinated replies may skew their perception
of public sentiment (Stewart et al. 2019). Such replies can
further distort genuine discourse if portrayed by the me-
dia as reflective of public opinion. Secondly, coordinated
replies enable malicious actors to maximize the public ex-
posure of their posts by exploiting the popularity of their
targets, thereby amplifying their influence. This pollutes on-
line dialogues with spam, influence campaigns, and divisive
messages that harass the targeted individuals or provoke the
public. Such behavior may also alienate the targets and pre-
vent them from sharing their opinion on social media. For all
these reasons, platforms should protect the targets from co-
ordinated reply attacks. The research community may use
our methodology to detect coordinated reply attacks and
study the campaigns, perpetrators, and their potential effects
on the individuals. Our methodology may also guide the de-
velopment of countermeasures by social media platforms.

Ethical Impact. This study has been granted exemption
from Institutional Review Board review ( Indiana Univer-
sity protocols 12410 and 1102004860 ). Our results can be

reproduced using code available at github.com/osome-iu/io-
coordinated-replies and data available at doi.org/10.5281/
zenodo.13896309 . The collection and release of the dataset
comply with the Twitter platform’s terms of service. To mit-
igate the potential ethical risks of analyzing human subjects,
we only rely on the data of public Twitter accounts do not
include any raw data. We only manually inspect the pro-
files of the targets of the attacks, who are public figures and
constitute the vulnerable group our study aims to protect.
We provide our annotation data about these profiles for re-
producibility. Our classification models do not use any per-
sonally identifiable information. We only report aggregated
results. While our main objective is to detect coordinated
replies, an attack that is frequently employed by informa-
tion operations, we acknowledge that it may be also used by
regular social media users organizing among themselves for
activism. Thus, we suggest that our classifiers should com-
plement human investigation when employed in the wild.
Furthermore, they should not be misused to label users as in-
formation operation accounts without thorough human veri-
fication.
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rating contains personally identifiable information or
offensive content? Yes. The Twitter profiles are public
information.

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
Yes. The link to data is included in the paper so that
anyone can access it, including the details of the meta-
data in the Datasheet to make it interoperable and
reusable.

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? The Datasheet is
available at ANON.

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity...

(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA

(d) Did you discuss how data is stored, shared, and dei-
dentified? NA
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