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Abstract

Sparsity is a central aspect of interpretability in machine learning. Typically,
sparsity is measured in terms of the size of a model globally, such as the number of
variables it uses. However, this notion of sparsity is not particularly relevant for
decision making; someone subjected to a decision does not care about variables that
do not contribute to the decision. In this work, we dramatically expand a notion of
decision sparsity called the Sparse Explanation Value (SEV) so that its explanations
are more meaningful. SEV considers movement along a hypercube towards a
reference point. By allowing flexibility in that reference and by considering how
distances along the hypercube translate to distances in feature space, we can derive
sparser and more meaningful explanations for various types of function classes.
We present cluster-based SEV and its variant tree-based SEV, introduce a method
that improves credibility of explanations, and propose algorithms that optimize
decision sparsity in machine learning models.

1 Introduction
The notion of sparsity is a major focus of interpretability in machine learning and statistical modeling
[Tibshirani, 1996, Rudin et al., 2022]. Typically, sparsity is measured globally, such as the number of
variables in a model, or as the number of leaves in a decision tree [Murdoch et al., 2019]. Global
sparsity is relevant in many situations, but it is less relevant for individuals subject to the model’s
decisions. Individuals care less about, and often do not even have access to, the global model. For
them, local sparsity, or decision sparsity, meaning the amount of information critical to their own
decision, is more consequential.

An important notion of decision sparsity has been established in the work of Sun et al. [2024], which
defined the Sparse Explanation Value (SEV), in the context of binary classification, as the number of
factors that need to be changed to a reference feature value in order to change the decision. In contrast
to SEV, counterfactual explanations tend not to be sparse since they require small changes to many
variables in order to reach the decision boundary [Sun et al., 2024]. Instead, SEV provides sparse
explanations: consider a loan application that is denied because the applicant has many delinquent
payments. In that case, the decision sparsity (that is, the SEV) would be 1 because only a single factor
was required to change the decision, overwhelming all possible mitigating factors. The framework of
SEV thus allows us to see sparsity of models in a new light.

Prior to this work, SEV had one basic definition: it is the minimal number of features we need to set
to their reference values to flip the sign of the prediction. The reference values are typically defined as
the mean of the instances in the opposite class. This calculation is easy to understand, but somewhat
limiting because the reference could be far in feature space from the point being explained and the
explanation could land in a low density area where explanations are not credible. As an example, for
the loan decision for a 21 year old applicant, SEV could create a counterfactual such as “Changing
the applicant’s 3-year credit history to 15 years would change the decision.” While this counterfactual
is valid, faithful, and sparse, it is not close because the distance between the query point and the
counterfactual is so large (3 years to 15 years). In addition, this explanation is not credible because
the proposed changes to the features lead to an unrealistic circumstance – 6-year-olds do not typically
have credit. That is, the counterfactual does not represent a typical member of the opposite class.
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Lack of credibility is a common problem for many counterfactual explanations [Mothilal et al., 2020,
Wachter et al., 2017, Laugel et al., 2017, Joshi et al., 2019]. Therefore, in this work, we propose to
augment the SEV framework by adding two practical considerations, closeness of the reference point
to the query, and credibility of the explanation, while also optimizing decision sparsity.

We propose three ways to create close, sparse and credible explanations. The first way is to create
multiple possibilities for the reference, one at the center of each cluster of points (Section 4.1). Having
a finite set of references keeps the references auditable, meaning that a domain expert can manually
check the references prior to generating any explanations. By creating references spread throughout
the opposite class, queries can be assigned to closer references than before. Second, we allow the
references to be flexible, where their position can be shifted slightly from a central location in order
to reduce the SEV (Section 4.4). The third way pertains to decision tree classifiers, where a reference
point is placed on each opposite-class leaf, and an efficient shortest-path algorithm is used to find the
nearest reference (Section 4.2). Table 1 shows a query at the top, and some SEV calculations from
our methods below, showing feature values that were changed within the explanation.

Table 1: An example for a query in the FICO Dataset with different kinds of explanations, SEV1

represents the SEV calculation with one single reference using population mean, SEV© represents
the cluster-based SEV, SEVF represents the flexible-based SEV. SEVT represents the tree-based
SEV The columns are four features.

EXTERNAL
RISKESTIMATE

NUMSATIS-
FACTORYTRADES

NETFRACTION
REVOLVINGBURDEN

PERCENTTRADES
NEVERDELQ

NUMFEATURE
CHANGED

Query 69.00 10.00 117.01 90
SEV1 72.65 21.47 22.39 90 3
SEVF 78.00 10.00 9.00 90 2
SEV© 81.00 26.00 12.00 90 3
SEVT 69.00 10.00 117.01 100 1

In addition to developing methods for calculating SEV, we propose two algorithms to optimize a
machine learning model to reduce the number of points that have high SEV without sacrificing
predictive performance in Section 5, one based on gradient optimization, and the other based on
search. The search algorithm is exact. It uses an exhaustive enumeration of the set of accurate models
to find one with (provably) optimal SEV.

Our notions of decision sparsity are general and can be used for any model type, including neural
networks and boosted decision trees. Decision sparsity can benefit any application where individuals
are subject to decisions made from predictive models – these are cases where decision sparsity is
more important than global sparsity from the individual perspectives.

2 Related Work

The concept of SEV revolves around finding models that are simple, in that the explanations for their
predictions are sparse, while recognizing that different predictions can be simple in different ways
(i.e., involving different features). In this way, it relates to (i) instance-wise explanations (iii) local
sparsity optimization Models, which seek to explain and provide predictions of complex models. We
further comment on these below.

Instance-wise Explanations. Prior work has developed methods to explain predictions of black
boxes [e.g., Guidotti et al., 2018, Ribeiro et al., 2016, 2018, Lundberg and Lee, 2017, Baehrens
et al., 2010] for individual instances. These explanations are designed to estimate importance of
features, are not necessarily faithful to the model, and are not associated with sparsity in decisions,
so they are fairly distant from the purpose of the present work. Our work is on tabular data; there
is a multitude of unrelated work on explanations for images [e.g., Apicella et al., 2019, 2020] and
text [e.g., Lei et al., 2016, Li et al., 2016, Treviso and Martins, 2020, Bastings et al., 2019, Yu et al.,
2019, 2021]. More closely related are counterfactual explanations, also called inverse classification
[e.g., Mothilal et al., 2020, Wachter et al., 2017, Lash et al., 2017, Sharma et al., 2024, Virgolin
and Fracaros, 2023, Guidotti et al., 2019, Poyiadzi et al., 2020, Russell, 2019, Boreiko et al., 2022,
Laugel et al., 2017, Pawelczyk et al., 2020]. Counterfactual explanations are typically designed to
find the closest instance to a query point with the opposite prediction, without considering sparsity of
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the explanation. However, extensive experiments [Delaney et al., 2023] indicate that these “closest
counterfactuals” tend to be unnatural for humans because the decision boundary is typically in a
region where humans have no intuition for why a point belongs to one class or the other. For SEV,
on the other hand, reference values represent the population commons, so they are intuitive. Thus,
SEV has two advantages over standard counterfactuals: its references are meaningful because they
represent population commons, and its explanations are sparse.

Local Sparsity Optimization Models While there are numerous prior works on developing
post-hoc explanations, limited attention has been paid to developing models that provide sparse
explanations. We are aware of only one work on this, namely the Explanation-based Optimization
(ExpO) algorithm of Plumb et al. [2020] that used a neighborhood-fidelity regularizer to optimize
the model to provide sparser post-hoc LIME explanations. Experiment in Appendix K in our paper
shows that ExpO is both slower and provides less sparse predictions than our algorithms.

3 Preliminaries and Motivation

The Sparse Explanation Value (SEV) is defined to measure the sparsity of individual predictions of
binary classifiers. The point we are creating an explanation for is called the query. The SEV is the
smallest set of feature changes from the query to a reference that can flip the prediction of the model.
When we make a change to the query’s feature, we align it to be equal to that of the reference point.
The reference point is a “commons,” i.e., a prototypical point of the opposite class as the query. In
this section, we will focus on the basic definition of SEV, the selection criteria for the references, as
well as three reference selection methods.

3.1 Recap of Sparse Explanation Values

Figure 1: SEV Hypercube

We define SEV following Sun et al. [2024]. For a specific
binary classification dataset {xi, yi}ni=1, with each xi ∈ Rp,
and the outcome of interest is yi ∈ {0, 1}. (This can be
extended to multi-class classification by providing counter-
factuals for every other class than the query’s class.) We
predict the outcome using a classifier f : X → {0, 1}.
Without loss of generality, in this paper, we are only interested in
queries predicted as positive (class 1). We focus on providing a
sparse explanation from the query to a reference that serves as a
population commons, denoted r. Human studies [Delaney et al.,
2023] have shown that contrasting an instance with prototypical
instances from another class provides more intuitive explanations
than comparing it with instances from the same class. Thus, we define our references in the opposite
class (negative class in this paper). To calculate SEV, we will align (i.e., equate) features from query
xi and reference x̃ one at a time, checking at each time whether the prediction flipped. Thinking of
these alignment steps as binary moves, it is convenient to represent the 2p possible different alignment
combinations as vertices on the boolean hypercube. The hypercube is defined below:
Definition 3.1 (SEV hypercube). A SEV hypercube Lf,i,r for a model f , an instance xi with label
f(xi) = 1, and a reference r, is a graph with 2p vertices. Here p is the number of features in xi and
bv ∈ {0, 1}p is a Boolean vector that represents each vertex. Vertices u and v are adjacent when their
Boolean vectors differ in one bit, ∥bu − bv∥0 = 1. 0’s in bv indicate the corresponding features are
aligned, i.e., set to the feature values of the reference r, while 1’s indicate the true feature value of
instance i. Thus, the actual feature values represented by the vertex v is xr,v

i , := bv⊙xi+(1−bv)⊙r,
where ⊙ is the Hadamard product. The score of vertex v is f(xr,v

i ), also denoted as Lf,i,r(bv).

Table 2: Calculation process for SEV− = 1

TYPE HOUSING LOAN EDUCATION Y (RISK)
(1,1,1) query Rent >10k High School High

(0,1,1) SEV−

Explanation Owning >10k High School Low

(0,0,0) reference Owning <5k Master Low

The SEV hypercube definition can also be extended
from a hypercube to a Boolean lattice as they have
the same geometric structure. There are two vari-
ants of the Sparse Explanation Value: one gradually
aligns the query to the reference (SEV−), and the
other gradually aligns the reference to the query
(SEV+). In this paper, we focus on SEV−:
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Definition 3.2 (SEV−). For a positively-predicted query xi (i.e., f(xi) = 1), the Sparse Explanation
Value Minus (SEV−) is the minimum number of features in the query that must be aligned to reference
r to elicit a negative prediction from f . It is the length of the shortest path along the hypercube to
obtain a negative prediction,

SEV−(f,xi, r) := min
b∈{0,1}p

∥1− b∥0 s.t. Lf,i,r(b) = 0.

Figure 1 and Table 2 shows an example of SEV−=1 in a credit risk evaluation setting. Since p = 3,
we construct a SEV hypercube with 23 = 8 vertices. The red vertex (1, 1, 1) corresponds to the
query. The dark blue vertex at (0, 0, 0) represents the negatively-predicted reference value. The
orange vertices are predicted to be positive, and the light blue vertices are predicted to be negative.
To compute SEV−, we start at (1, 1, 1) and find the shortest path to a negatively-predicted vertex. On
this hypercube, (0, 1, 1) is closest. Translating this to feature space, this means that if the query’s
housing situation changes from renting to the reference value “owning,” it would be predicted as
negative. This means that SEV− is equal to 1 in this case. The feature vector corresponding to
this closest vertex (0, 1, 1), is called the SEV− explanation for the query, denoted by xr,expl

i for
reference r.

3.2 Motivation of Our Work: Sensitivity to Reference Points

Since SEV− is determined by the path on a SEV hypercube and each hypercube is determined by
the reference point, the SEV− is therefore sensitive to the selection of reference points. Adjusting
the reference point trades off between sparsity (according to SEV−) and closeness (measured by ℓ2,
ℓ∞(see Section 6.1) or ℓ0 (see Section 6.4) distance between the query and its assigned reference
point). Note that this trade-off exists because SEV− tends to be small when the reference is far from
the query. More detailed explanations, visualizations, and experiments are shown in Appendix B.

Selecting References. The reference must represent the commons, meaning the negative population,
and the generated explanations should represents the negative populations as well. Moreover, the
negative population may have subpopulations; e.g., Diabetes patients may have higher blood glucose
levels, while hypertension patients have higher blood pressure. To have meaningful coverage of
the negative population, in this work, we consider multiple references, placed within the various
subpopulations. This allows each point in the positive population to be closer to a reference. LetR
denote possible placements of references. For query xi, an individual-specific reference ri ∈ R for
xi is chosen based on three criteria: it should be nearby (i.e., close), and should provide a sparse
and reasonable explanation. That is, we are looking to minimize the following three objectives over
placement of the reference ri:

∥xi − ri∥, ri ∈ R (Closeness) (1)

SEV−(f,xi, ri), ri ∈ R (Sparsity) (2)

−P (xexpl,ri

i |X−) (Negated Credibility), (3)
with the constraint that the references obey auditability, meaning that domain experts are able to check
the references manually, or construct them manually. The function SEV−(f,xi, ri) in (2) represents
the SEV− computed with the given function f , query xi, and the individual-specific reference ri
for generating the hypercube. xexpl,ri

i is the sparse explanation for the sample xi, and P (·|X−) in
the definition of credibility represents the probability density distribution of the negative population
and P (xexpl,ri

i |X−) is the density of the negative distribution at xexpl,ri

i . If P (xexpl,ri

i |X−) is large,
xexpl,ri

i is in a high-density region.

4 Meaningful and Credible SEV

We now describe cluster-based SEV, which improves closeness at the expense of SEV, and its variant,
tree-based SEV, which improves all three objectives and computational efficiency. We also present
methods to improve the credibility and sparsity of the explanations.

4.1 Cluster-based SEV: Improving Closeness
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Figure 2: Cluster-based SEV

This approach creates multiple references for the nega-
tive population. A clustering algorithm is used to group
negative samples, and the resulting cluster centroids are
assigned as references. A query is assigned to its closest
cluster center:

r̃i ∈ argmin
r∈C
∥xi − r∥2

where C is the collection of centroids obtained by clustering
the negative samples. We refer to the SEV− produced
by the grouped samples as cluster-based SEV, denoted
SEV©. Figure 2 illustrates the calculation of SEV© for
two examples located in two different centroids. A red dot
represents a query, while a blue dot represents a reference.
For each instance, it selects the closest centroid and considers the SEV hypercube, where each
cyan point represents a negatively predicted vertex and each pink point represents a positively
predicted vertex. We deduce by following the red lines that the SEV© for the two queries are 2 and 1,
respectively. The cluster centroids should serve as a cover for the negative class. To ensure that the
cluster centroids have negative predictions, we use the soft clustering method of Bezdek et al. [1984]
to constrain the predictions of the cluster centers. Details are in Appendix C.

4.2 Tree-based SEV: SEV© Variant with Useful Properties and Computational Benefits

Figure 3: SEVT Preprocessing

Tree-based SEV is a special case of cluster-based SEV,
where we consider each negative leaf as a reference
candidate, and find the sparsest explanation (path along
the tree) to the nearest reference. Here, SEV− and ℓ0
distance (i.e., edit distance) are equivalent. That is, we
find the minimum number of features to change in order
to achieve a negative prediction.

We denote SEVT as the SEV− calculated based on this
process. Here, we assume that trees have no trivial
splits where all child leaves make the same prediction. If so, we would collapse those leaves before
calculating the SEVT . The first theorem below refers to decision paths that have negatively predicted
child leaves. This is where taking one different choice at an internal split leads to a negative leaf.
Theorem 4.1. With a single decision classifier DT and a positively-predicted query xi, define Ni

as the leaf that captures it. If Ni has a sibling leaf, or any internal node in its decision path has a
negatively-predicted child leaf, then SEVT is equal to 1.

Figure 4: Efficient SEVT calculation:
Query (node 7 ) has SEVT =1, which goes
to node 10 . The path to this node is
recorded as LL at node 3 , which is along
the decision path to node 7 .

The second theorem states that SEV− and minimum
edit distance from the query to negative leaves are equiv-
alent.
Theorem 4.2. With a single decision tree classifier DT
and a positively-predicted query xi, with the set of all
negatively predicted leaves as reference points, both
SEV− and the ℓ0 distance (edit distance) between the
query and the SEV− explanation are minimized.

The proofs of those two theorems are shown in Ap-
pendix L and M. The structure of tree models yields
an extremely efficient way to calculate SEV−. We per-
form an important preprocessing step before any SEV−

calculations are done, which will make SEV− easier to calculate for all queries at runtime. At each
internal node, we record all paths to negative leaves anywhere below it in the tree. This is described
in Algorithm 2 in Appendix E. E.g., if the tree has binary splits, a path from an internal node to a leaf
node might require us to go left, then right, then left. In that case, we store LRL on this internal node
to record this path. Then, when a query arrives at runtime (in a positive leaf, since it has a positive
prediction), we traverse directly up its decision path all the way to the root node. For all internal
nodes in the decision path, we observe distances to each negative leaf, which were stored during
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preprocessing. We traverse each of these, and the minimum distance among these is the SEV−. This
is described in Algorithm 3 in Appendix E and illustrated in Figure 4. Note that we actually would
traverse to each negative node because some internal decisions might not need to be changed along
the path. In the example in Figure 4, we change the split at node 3 , and use the value that the query
already has for the split at node 6 , landing in node 10 , so SEV− is 1 not 2.

Table 3: Illustration of SEVT calculation.

ACTION
HYPER-
TENSION

DIABETES
HYPER-

LIPIDEMIA
OBESITY

HAVE
STROKE

# OF CHANGED
CONDITION

(SEV)
Instance

1 → 3 → 7
Check

node 1 & 3 No Yes No Yes Yes 7

Flip at
node 3 Check LL No Yes Yes No 10 1

3 → 6 → 10 Flip at 3 (Unchanged)
Flip at

node 1 Check LR Yes No No 5 2

2 → 5 Flip at 1 Flip at 2
Check LLR Yes Yes No No 9 2
2 → 4 → 9 Flip at 1 (Unchanged) Flip at 4

Table 3 walks through the calculation again, using the names of the features (hypertension, diabetes,
etc.). On the first action line, the decision path to the query is 3 → 6 → 10 . That means we check
1 and 3 for negative paths, yielding path LL. We flip node 3 (change Hyperlipidemia to ‘yes’)

and follow the LL path. We do not change Obesity to get to the negative node, so we record the
SEVT as 1 in that row. In our implementation, we simply stop when we reach an SEVT =1 solution,
but we will continue in order to illustrate how the calculation works. We go up to node 1 and repeat
the process for the LR and LLR paths. Those both have SEVT =2.

Note that the reference can be any point x within the leaf; if the leaf is defined by thresholds such as
3 < x1 < 5 and x2 > 7, then any point satisfying those conditions is a viable reference. Given a
query, the algorithm flips some of its feature values to satisfy conditions of a leaf with the opposite
prediction. Since any point in the leaf is a viable reference, we could choose the median/mean values
of points in the leaf as the references, or a more meaningful value. That choice will not influence the
fast calculation of SEV-T.

4.3 Improving Credibility for All SEV Calculations

As we mentioned in Section 3.2, the credibility objective encourages explanations to be located in
high-density region of the negative population. Previous SEV− definitions focus on sparsity and
closeness objectives, but did not consider credibility. It is possible to increase credibility easily while
constructing an explanation: if the explanation veers out of the high-density region, we continue
walking along the SEV hypercube during SEV calculations. Specifically, we continue moving
towards the reference until the vertex is in a high-density region. Since the reference is in a high-
density region, walking towards it will eventually lead to a high-density point. The tree-based SEV
explanations automatically satisfy high credibility:
Theorem 4.3. With a single sparse decision tree classifier DT with support at least S in each
negative leaf, the SEVT explanation for query xi always satisfies credibility at least S

N− , where N−

is the total number of negative samples.

This theorem can be easily proved because SEV− explanations generated by SEVT are always the
negative leaf nodes (which are the references), and the references are located in regions with support
at least S by assumption.

4.4 Flexible Reference SEV: Improving Sparsity

From Section 3.2, we know that queries further from the decision boundary tend to have lower
SEV−. Based on this, we introduce Flexible Reference SEV (denoted SEVF ), which moves the
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reference value slightly in order to achieve a lower value of the model output f(r̃) given a reference
r̃, and the decision function for classification f(·), which, in turn, is likely to lead to lower SEV−.
The optimization for finding the optimal reference is: r∗ ∈ argminr f(r) s.t∥r − r̃∥∞ ≤ ϵF
where the argmin is over reference candidates that are near the original reference value r̃. The
flexibility threshold ϵF represents the flexibility allowed for moving the reference within a ball. We
limit flexibility so the explanation stays meaningful. Since it is impractical to explore all potential
combinations of feature-value candidates, we address this problem by marginalizing. Specifically,
we optimize the reference over each feature independently. The detailed algorithm for calculating
Flexible Reference SEV, denoted SEVF , is shown in Algorithm 1 in Appendix D. In Section 6.2, we
show that moving the reference slightly can sometimes reduce the SEV, improving sparsity.

5 Optimizing Models for SEV−

Above, we showed how to calculate SEV− for a fixed model. In this section, we describe how to train
classifiers that optimize the average SEV− without loss in predictive performance. We propose two
methods: minimizing an easy-to-optimize surrogate objective (Section 5.1) and searching for models
with the smallest SEV from a “Rashomon set” of equally-good models (Section 5.2). In what follows,
we assume that SEV− was calculated prior to optimization, that reference points were assigned to
each query, and that these assignments do not change throughout the calculation.

5.1 Gradient-based SEV Optimization

Since we want to minimize expected test SEV−, the most obvious approach would be to choose our
model f to minimize average training SEV−. However, since SEV calculations are not differentiable
and they are combinatorial in the number of features and data points, this would be intractable.
Following Sun et al. [2024], we instead design the optimization objective to penalize each sample
where SEV− is more than 1. Thus, we propose the loss term:

ℓSEV_All_Opt−(f) :=
1

n+

n+∑
i=1

max

(
min

j=1,...,p
f((1− ej)⊙ xi + ej ⊙ r̃i), 0.5

)
,

where ej is the vector with a 1 in the jth coordinate and 0’s elsewhere, n+ is the number of
queries, and the reference point r̃i is specific to query xi and chosen beforehand. Intuitively,
f((1− ej)⊙ xi + ej ⊙ r̃i) is the function value of query xi where its feature j has been replaced
with the reference’s feature j. minj=1,...,p f((1−ej)⊙xi+ej ⊙ r̃i) chooses the variable to replace
that most reduces the function value. If the SEV− is 1, then when this replacement is made, the point
now is on the negative side of the decision boundary and f is less than 0.5, in which case the max
chooses 0.5. If SEV− is more than 1, then after replacement, f will still predict positive and be more
than 0.5, in which case, its value will contribute to the loss. This loss is differentiable with respect to
model parameters except at the “corners” and not difficult to optimize.

To put these into an algorithm, we optimize a linear combination of different loss terms,

min
f∈F

ℓBCE(f) + C1ℓSEV_All_Opt−(f) (4)

where ℓBCE is the Binary Cross Entropy Loss to control the accuracy of the training model and F
is a class of classification models that estimate the probability of belonging to the positive class.
ℓSEV_All_Opt− is the loss term that we have just introduced above. C1 can be chosen using cross-
validation. We define All-Opt− as the method that optimizes (4). Our experiments show that this
method is not only effective in shrinking the average SEV− but often attains the minimum possible
SEV− value of 1 for most or all queries.

5.2 Search-based SEV Optimization

As defined in Section 4.2, our goal is to find a model with the lowest average SEV− among classifica-
tion models with the best performance.

The Rashomon set [Semenova et al., 2022, Fisher et al., 2019] is defined as the set of all models from
a given class with performance approximately that of the best-performing model. The first method
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that stores the entire Rashomon set of any nontrivial function class is called TreeFARMS [Xin et al.,
2022], which stores all good sparse decision trees in a data structure. TreeFARMS allows us to
optimize multiple objectives over the space of sparse trees easily by enumeration of the Rashomon
set to find all accurate models, and a loop through the Rashomon set to optimize secondary objectives.
We use TreeFARMS and search through the Rashomon set for a model with the lowest average
SEV−:

min
f∈Rset

1

n+

n+∑
i=1

SEVT (f,xi),

where the Rashomon set is Rset, and where we use SEVT as the SEV− for each sparse tree in the
Rashomon set. Recall that Algorithms 2 and 3 show how to calculate SEVT . We call this search-based
optimization as TOpt.

6 Experiments

Training Datasets To evaluate whether our proposed methods would achieve sparser, more credible
and closer explanations, we present experiments on seven datasets: (i) UCI Adult Income dataset
for predicting income levels [Dua and Graff, 2017], (ii) FICO Home Equity Line of Credit Dataset
for assessing credit risk, used for the Explainable Machine Learning Challenge [FICO, 2018], (iii)
UCI German Credit dataset for determining creditworthiness [Dua and Graff, 2017], (iv) MIMIC-III
dataset for predicting patient outcomes in intensive care units [Johnson et al., 2016a,b], (v) COMPAS
dataset [Jeff Larson and Angwin, 2016, Wang et al., 2022a] for predicting recidivism, (vi) Diabetes
dataset [Strack et al., 2014] for predicting whether patients will be re-admitted within two years, and
(vii) Headline dataset for predicting whether the headline is likely to be shared by readers [Chen
et al., 2023]. Additional details on data and preprocessing are in Appendix A.

Training Models For SEV©, we trained four baseline binary classifiers: (i, ii) logistic regression
classifiers with ℓ1 (L1LR) and ℓ2 (L2LR) penalties, (iii) a gradient boosting decision tree classifier
(GBDT), and (iv) a 2-layer multi-layer perceptron (MLP), and tested its performance with SEVF

added, and the credibility rules added. In addition, we trained All-Opt− variants of these models in
which the SEV penalties described in the previous sections are implemented. For SEVT methods, we
compared tree-based models from CART, C4.5, and GOSDT [Lin et al., 2020, McTavish et al., 2022]
with the TOpt method proposed in Section 5.2. Details on training the methods is in Appendix F.

Evaluation Metrics To evaluate whether good references are selected for the queries, we evaluate
sparsity and closeness (i.e., similarity of query to reference). For sparsity, we use the average
number of feature changes (which is the same as ℓ0 norm) between the query and the explanation; for
closeness, we use the median ℓ∞ norm between the generated explanation and the original query
as the metric for SEV©. For tree-based models, we use only SEVT as the metric since SEVT and
ℓ0 norm are equivalent; for credibility, we need some way of estimating P (·|X) since we cannot
observe it directly, so we trained a Gaussian mixture model on the negative samples of each dataset ,
and used the mean log-likelihood of the generated explanations as the metric for SEV© and SEVF , for
TOpt, since it has already been a sparse decision tree, then we don’t need to calculate the credibility.

6.1 Cluster-based SEV shows improvement in credibility and closeness

Let us show that SEV© provides improved explanations. Here, we calculated the metric for different
SEV© variants, SEV© and SEV©+F (SEV© with flexible reference), and compared to the original
SEV1, where SEV1 is defined as the SEV− calculation with single reference generated by the mean
value of each numerical feature and mode value of each categorical feature of the negative population,
as done in the original SEV paper [Sun et al., 2024] under various datasets and models.

Figure 5a shows the relationship between spasity and variants, the scatter plot between mean SEV−

and mean ℓ∞ for each explanation generated by different variants. We find that SEV© improves
closeness, which was expected since the references were designed to be closer to the queries.
Interestingly, SEV© sometimes has lower decision sparsity than SEV1. SEV© was designed to trade
off SEV− for closeness, so it is surprising that it sometimes performs strictly better on both metrics,
particularly for the COMPAS, Diabetes, and German Credit datasets.
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(a) Sparsity (SEV−) and Closeness (L∞) (b) Sparsity (SEV−) and Credibility (log-likelihood)

Figure 5: Explanation performance under different models and metrics. We desire lower SEV− for
sparsity, lower ℓ∞ for closeness and higher log likelihood for credibility (shaded regions)

Interestingly, we also find that even though we do not optimize credibility for our model, Figure 5b
shows that SEV© improves credibility, particularly for the Adult, German, and Diabetes datasets by
plotting the relationship between mean SEV− and mean log-likelihood of the generated explanations.
It is reasonable since the references are the cluster centroids for the negative samples, so the expla-
nations are more likely to be located in the same high-density area. More detailed values for those
methods and metrics are shown in Appendix H.

6.2 Flexible Reference SEV can improve sparsity without losing credibility

In Section 4.4, we proposed the flexible reference method for sparsifying SEV− explanations, which
moves the reference slightly away from the decision boundary. The blue points in Figure 5a and 5b
have already shown that with small modification of the reference, the credibility of the explanations
is not affected. Figure 6a shows how SEV− and credibility change as we increase flexibility; SEV−

sometimes substantially decreases while credibility is maintained.

(a) SEV−/Credibility change rate for varying flexibility (b) Median Log likelihood and # of features changed

Figure 6: (a) Sparsity and Credibility as a function of the change of flexibility level (0 to 5%/10%/20%)
under different models and datasets (b) The median log-likelihood and number of features within
different counterfactual explanations. Points at the upper left corner are desired.

6.3 SEV− provides the sparsest explanation compared to other counterfactual explanations

Recall that SEV− flips features of the query to values of the population commons. This can be viewed
as a type of counterfactual explanation, though typically, counterfactual explanations aim to find the
minimal distance from one class to another. In this experiment, we compare the sparsity of SEV−

calculations to that of baseline methods from the literature on counterfactual explanations, namely
Watcher [Wachter et al., 2017], REVISE [Joshi et al., 2019], Growing Sphere [Laugel et al., 2017],
and DiCE [Mothilal et al., 2020].

Figure 6b shows sparsity and credibility performance of all counterfactual explanation methods on
different datasets under ℓ2 logistic regression (other information, including ℓ∞ norms for counterfac-
tual explanation methods, is in Appendix G). All SEV variants are in warm colors, while competitors
are in cool colors. SEV− methods have the sparest explanations, followed by DiCE. (A comparison
of SEV− to DiCE is provided by Sun et al. [2024].) We point out that this comparison was made on
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methods that were not designed to optimize explanation sparsity. Importantly, sparsity is essential for
human understanding [Rudin et al., 2022]. Moreover, it has been shown that SEV (especially SEV©)
would have more credible explanations than competitors, while explanations remain sparse.

6.4 All-Opt− and TOpt optimize SEV−, preserving model performance, explanation
closeness and credibility

Even without optimization, our SEV− variants improve decision sparsity and/or closeness. If we
are willing to retrain the prediction model as discussed in Section 5, we can improve these metrics
further, creating accurate models with higher decision sparsity. Figure 7a shows that gradient-based
SEV optimization can reduce the SEV without harming the closeness metric (ℓ∞) and the credibility
metrics (log-likelihood). The slashed bars represents the SEV−, ℓ∞ and log likelihood metrics
before optimization using different models, while the colored bars are the results after optimizing
with All-Opt−. We have also compared our results with ExpO [Plumb et al., 2020], which is a
optimization method that maximizes the mean neighborhood fidelity of the queries, but we have
found that explanations are not sparse, and it requires long training times; the detailed results are
shown in Appendix K.

(a) All-Opt− Performance

TRAIN ACC TEST ACC MEAN SEVT

CART 0.71± 0.01 0.71± 0.01 1.10± 0.03
C4.5 0.71± 0.01 0.71± 0.01 1.13± 0.05

GOSDT 0.70± 0.01 0.70± 0.01 1.08± 0.02
TOpt 0.70± 0.01 0.70± 0.01 1.00± 0.00

(b) SEVT performance on different tree-based models

Figure 7: (a) SEV− and ℓ∞ before and after All-Opt− on the FICO Dataset. Slashed bars are before,
solid color is after. (b) All tree-based models with similar accuracy have low SEVT .

For the Tree-based SEV, we have applied the efficient computation procedure to different kinds of
tree-based models, and compared them with the search-based optimization method (TOpt) for trees in
Section 5. The search-based algorithm works perfectly in finding a good model without performance
loss. It achieves a perfect average SEV score of 1.00.

Conclusion

Decision sparsity can be more useful than global model sparsity for individuals, as individuals care
less about, and often do not even have access to, the global model. We presented approaches to
achieving high decision sparsity, closeness and credibility, while being faithful to the model. One
limitation of our method is that causal relationships may exist among features, invalidating certain
transitions across the SEV hypercube. This can be addressed by searching across vertices that do not
satisfy the causal relationship, though it requires knowledge of the causal graph. Another limitation
is that to make the explanation more credible, the threshold to stop searching the SEV hypercube
is not easy to determine. Future studies could focus on on these topics. Overall, our work has the
potential to enhance a wide range of applications, including but not limited to loan approvals and
employment hiring processes. Improved SEV translates directly into explanations that simply make
more sense to those subjected to the decisions of models.

Acknowledgement

We acknowledge funding from the National Science Foundation under grants DGE-2022040 and
CMMI-2323978.

10



Code Availability

Implementation of Decision Sparsity discussed in the paper are available at https://github.com/
williamsyy/MultipleSEV.
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A Data Description and Preprocessing

The datasets were divided into training and test sets using an 80-20 stratification. The numerical
features were transformed by standardization to have a mean of zero and a variance of one. The
categorical features, which have k different levels, were transformed into k− 1 binary variables using
one-hot encoding. The binary characteristics were transformed into a single dummy variable using
one-hot encoding. The sizes of the datasets before and after encoding are shown in Table 4.

OBSERVATIONS
PRE-ENCODED

FEATURES
POST-ENCODED

FEATURES

COMPAS 6,907 7 7
Adult 32,561 14 107

MIMIC-III 48,786 14 14
Diabetes 101,766 33 101

German Credit 1,000 20 59
FICO 10,459 23 23

Headlines 41,752 12 17
Table 4: Training Dataset Sizes

Below we provide more details for each dataset.

COMPAS

The COMPAS dataset contains information on criminal recidivism in Broward County, Florida
[Jeff Larson and Angwin, 2016]. The goal of this dataset is to predict the likelihood of recidivism
within a two-year period, taking into account the following variables: gender, age, prior convictions,
number of juvenile felonies/misdemeanors, and whether the current charge is a felony.

Adult

The Adult data is derived from U.S. Census statistics, including information on demographics,
education, employment, marital status, and financial gain/loss [Dua and Graff, 2017]. The target
variable of this dataset is whether an individual’s salary exceeds $50,000.

MIMIC-III

MIMIC-III is a comprehensive database that stores a variety of medical data related to the experience
of patients in the Intensive Care Unit (ICU) at Beth Israel Deaconess Medical Center [Johnson et al.,
2016a,b]. The outcome of interest is determined by the binary indicator known as the “hospital
expires flag,” which indicates whether or not a patient died during their hospitalization. We chose
the following set of variables as features: age, preiculos (pre-ICU length of stay), gcs (Glasgow
Coma Scale), heartrate_min, heartrate_max, meanbp_min (min blood pressure), meanbp_max
(max blood pressure), resprate_min, resprate_max, tempc_min, tempc_max, urineoutput,
mechvent (whether the patient is on mechanical ventilation), and electivesurgery (whether the
patient had elective surgery).

Diabetes

The Diabetes dataset is derived from 10 years (1999-2008) of clinical care at 130 hospitals and
integrated delivery networks in the United States [Dua and Graff, 2017]. It consists of more than 50
characteristics that describe patient and hospital outcomes. The dataset includes variables such as
race, gender, age, admission type, time spent in hospital, specialty of admitting
physician, number of lab tests performed, number of medications, and so on. We con-
sider whether the patient will return to the hospital within 2 years as a binary indicator.
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German Credit

The German credit data [Dua and Graff, 2017] uses financial and demographic indicators such
as checking account status, credit history, employment/marital status, etc., to predict whether an
individual will default on a loan.

FICO

The FICO Home Equity Line of Credit (HELOC) dataset [FICO, 2018] is used for the Explainable
Machine Learning Challenge. It includes a number of financial indicators, such as the number of
inquiries on a user’s account, the maximum delinquency, and the number of satisfactory transactions,
among others. These indicators relate to different individuals who have applied for credit. The target
variable is whether a consumer has been 90 or more days delinquent at any time within a 2-year
period since opening their account.

Headlines

The News Headline dataset [Zhong et al., 2024] is a survey data aimed at discovering what
kind of news content is shared and what factors are significantly associated with news shar-
ing. The survey includes several factors, including, age, income, gender, ethnicity, social
protection,economic protection, truth (“What is the likelihood that the above headline is
true?”), familiarity (“Are you familiar with the above headline (have you seen or heard about it
before?)? )”), Importance (“Assuming the headline is completely accurate, how important would
you consider this news to be?”), Political Concordance (“Assuming the above headline is com-
pletely accurate, how favorable would you consider it to be for Democrats versus Republicans?”).
The goal of this data set is to predict Sharing (“If you were to see the above article on social media,
how likely would you be to share it?”).

16



B Sensitivity of the reference points

In this section, we will mainly show how sensitive SEV− is when we change the reference. Figure 8
shows an example of this, where moving the reference further away from the query (from r to the
r′) changes the SEV− from 2 to 1. In this figure, the dark blue axes represent the feature values of
different reference values, while the black dashed line represents the decision boundary of a linear
classifier. Areas with different colors represent data points with different SEV−. When the reference
moves further from the decision boundary (from r to r′), the corresponding areas for SEV− will
move away from the decision boundary. For example, the star located in the yellow area has an SEV−

of 1 instead of 2 when the reference moves from r to r′. If the reference point is r, then the query
needs to align the feature values along both x and y-axis to reach the SEV Explanation with reference
r (recall an example of SEV− explanation in Figure 2) in Section 3.2, which is the same point as r.
However, if the reference point is r′, then the query only needs to align the feature value along the
x-axis to reach the SEV Explanation with SEV= 1, which is the light blue dot.

Figure 8: SEV− distribution

Experiments have also shown that moving data points closer to the decision boundary might increase
SEV−. The result on the Explainable ML Challenge loan decision data [FICO, 2018] shown in Table
5 demonstrates that altering the reference point may increase the average SEV− (from 3 to 5), but
also introduces “unexplainable” samples (meaning SEV−≥10). Hence, SEV− is sensitive to the
reference.

Table 5: SEV− change by moving reference point r̃ moving closer to the decision boundary to r̃′

% OF SAMPLES

MODEL
REFERENCE

POINT
MEAN
SEV−

SEV
≥ 3

SEV
≥ 6

SEV
≥ 10

L2LR r̃ 2.76 2.82 0 0
r̃′ 4.95 89.23 32.3 0

L1LR r̃ 2.46 1.00 0 0
r̃′ 4.57 56.87 21.27 0
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C Detailed Description for Score-based Soft K-Means

As we have discussed in Section 4.1, SEV− needs to have negatively predicted reference points.
Therefore, when clustering the negative population, it is necessary to avoid positively predicted
cluster centers. However, for most of the existing clustering methods, it is hard to “penalize” the
positive predicted clusters, or their assigned samples. Therefore, we have modified the soft K-Means
[Bezdek et al., 1984] algorithm so as to encourage negative clustering results.

The original Soft K-Means (SKM) algorithm generalizes K-means clustering by assigning mem-
bership scores for multiple clusters to each point. Given a data set X = {x1,x2, · · · ,xn} and C
clusters, the goal is to minimize the objective function J(U, V ), where U = [uij ] is the membership
matrix and V = {v1, · · · ,vC} are the weighted cluster centroids. The objective is to minimize:

J(U, V ) =

n∑
i=1

C∑
j=1

um
ij∥xi − vj∥22 (5)

where uij is the (soft) membership score of xi in cluster j:

ui,j =
1∑C

k=1

(
∥xi−vj∥2

∥xi−ck∥2

) 2
m−1

(6)

and m > 1 is a parameter that controls the strength towards each neighboring point. When m ≈ 1,
the SKM is similar to the performance of hard K-means clustering methods. When m > 1 for point
i, it is considered to be associated with multiple clusters instead of one distinct cluster. The higher
the value of m, the more a point is considered to be part of multiple clusters, thereby reducing the
distinctness of each cluster and creating a more integrated and interconnected clustering arrangement.
To avoid the cluster group being predicted positively, we have given higher m for those positive
samples. Therefore, if the samples are predicted as positive, it reduces the possibility that those
positively predicted samples to group as a cluster, which we can replace m as m′

i for each instance
xi as

m′
i = 2m ·min{f(xi)− 0.5, 0}+ 1. (7)

The value of min{f(xi) − 0.5, 0} increases as xi is classified as positive and further away from
the decision boundary. As m′ increases, the negatively predicted samples are more associated with
one distinct cluster, while the positively predicted samples are associated with multiple clusters with
smaller weight. This makes the cluster centers less likely to be influenced by positively predicted
points. Thus, we can rewrite the objective of the soft K-Means algorithm can be modified as

J ′(U, V ) =

n∑
i=1

C∑
j=1

u
m′

i
ij ∥xi − vj∥22. (8)

We call this new objective function for encouraging negative clustering centers Score-based Soft
K-Means (SSKM). In our experiments, the clustering is applied to the dataset after PaCMAP [Wang
et al., 2021], and the feature mean of all samples in a cluster is considered as the cluster center of
this cluster, which is eventually used as a reference point. The queries are assigned to reference
points that are closest (based on ℓ2 distance) to them in the PaCMAP embedding space for SEV©

calculation.The reason why we would like to first embed the dataset is that the dimension of the
datasets might be too high for direct clustering, and PaCMAP provides an embedding that preserves
both local and global structure. Figure 9 shows the probability of the negative predicted instances, as
well as the clustering results using different kinds of clustering methods. The red points and stars
represent the positively predicted instances and cluster centers, while the blue ones are the negatively
predicted instances and cluster centers. It is evident from the Figure that that SKM is more likely to
introduce positively predicted cluster centers, compared to SSKM.

When we calculate SEV© in the experiments, all clustering parameters are tuned and fixed. For
the rest of the datasets, the embedding using PaCMAP, and their clustering results for the negative
population with their cluster centers, are shown in Figure 10. The regions with different colors
represent different clusters, the blue stars in the graphs are cluster centers, and the gray points within
the graphs are positive queries. All those cluster centers can be constrained to be predicted as negative
by tuning the hyperparameter for Score-based Soft K-Means. Note that if one of the cluster centers
cannot be constrained to be predicted as negative even with high m, then it is reasonable to remove
this cluster center when calculating SEV©.
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Figure 9: The clustering results for FICO dataset. (Left) The probability distribution for the negatively
labeled queries; (Middle) The clustering result for Original Soft K-Means Clustering; (Right) The
clustering result for Score-based K-Means Clustering The red stars represent the positively predicted
cluster centers, and the blue stars the negatively predicted cluster centers

Figure 10: Clustering Results for different datasets.
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D Detailed Algorithm for Flexible-based SEV

This section presents how the flexible-based SEV (SEVF ) has done to determine the flexible refer-
ences. The key idea of finding the reference is to do a grid search through each of the features in the
training dataset based on the original reference, and find the feature values that has the minimum
model outcome.

Algorithm 1 Reference Search for Flexible SEV

1: Input: The negative samples X−, flexibility ϵ, reference r̃, grid size G
2: Output: Flexible reference r̃′

3: Initialization: r̃′ ← r̃
4: for each feature j ∈ J , where r̃j is the reference value of feature j in X− do
5: qj ← quantile(X−

j , r̃j) {Quantile location of r̃j}
6: B+

j ← percentile(X−
j , qj + ϵ) {The upper range}

7: B−
j ← percentile(X−

j , qj − ϵ) {The lower range}

8: B
(g)
j ∼ Uniform[B−

j , B+
j ], g = 1, · · · , G

9: P
(g)
j ← f([r̃1, · · · , B(g)

j , · · · r̃J ]), g = 1 · · ·G {Slight change to feature j for prediction}

10: g′ ← argming P
(g)
j {Find minimum model outcome}

11: r̃′j ← B
(g′)
j {Update for flexible references}

12: end for
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E Detailed Algorithms for Tree-based SEV

This section presents how the tree-based SEV is calculated through two main procedure: Algorithm
2 (Preprocessing) for collecting all negative pathways and assigning them to each internal nodes and
Algorithm 3 (Efficient SEVT Calculation) for checking all negative pathways conditions for each
query and calculating the number of feature changes.

Algorithm 2 Preprocessing - Information collection process for SEVT

1: Input: Decision tree DT
2: Output: DT−, a dictionary of paths to negative predictions for each internal node encoding
3: nodes← [DT.root]
4: negative_path← []
5: {Negative path collection procedure}
6: while nodes not empty do
7: [node, path]← nodes.pop()
8: if node is a negative leaf then
9: negative_path.append(path)

10: else if node is an internal node or a root node then
11: {A}dd the child nodes and the path to the node list
12: nodes.append([node.left,path+“L”])
13: nodes.append([node.right,path+“R”])
14: else
15: Continue {if the leaf is positive, ignore it}
16: end if
17: end while
18: {Assign Negative Pathways to root or internal nodes}
19: DT− ← dict()
20: for each path in negative_path do
21: for i = 1, · · · path.length do
22: {Add the negative decision path for internal nodes}
23: curr_node← negative_path[:i]
24: {curr_node is the encoded internal node, and negative path[i:] is a negative decision path

below this node}
25: DT−[curr_node] .append(negative_path[i:])
26: end for
27: end for
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Algorithm 3 Efficient SEVT Calculation – Negative Pathways Check

1: Input: DT : decision tree, DT−: decision trees with paths to negative predictions, query value
xi, DPi: list of internal nodes representing decision process for xi, pathi: the encoded DPi

2: Output: SEVT

3: INITIALIZATION: SEVT← 0
4: decision_path← encoded(DT , xi)
5: {encoded(DT , xi) is a function to get the string representation of the query xi or a node node

for DT , e.g. "LR","LL" mentioned in section 4.2}
6: for each internal node node in DPi do
7: if node has a sibling leaf node and is predicted as negative then
8: SEVT← 1 {Based on Theoerem 4.1}
9: Break {SEVT =1 is the smallest SEVT , no further calculation needed}

10: end if
11: encoded_node←encoded(DT , node) {Get the string representation of node}
12: negative_paths← DT−[encoded_node] {Get the negative pathways encoded_node have}
13: for each path in negative_path do
14: {If the negative goes the same direction as the decision path, we don’t need to calculate this

path again}
15: {path[0] is the first character in path}
16: if decision_path[encoded_node.length]=path[0] then
17: Continue
18: end if
19: temp_sev←0
20: {Go over the condition in the path}
21: {Check if query xi satisfies, if it doesn’t satisfies the condition, then temp_sev should add 1}

22: for condition in each path do
23: if xi doesn’t satisfy condition AND xi hasn’t been changed yet then
24: temp_sev←temp_sev +1
25: end if
26: end for
27: SEVT← min{temp_sev, SEVT }{Update SEVT to be the samller one}
28: if SEVT = 1 then
29: Break {SEVT =1 is the smallest SEVT , no further calculation needed}
30: end if
31: end for
32: end for
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F Model training and parameter selection

Baseline models were fit using sklearn [Pedregosa et al., 2011] implementations in Python. The
logistic regression models L1 LR and L2 LR were fit using regularization parameter C = 0.01.
The 2-layer MLP used ReLU activation and consisted of two fully-connected layers with 128 nodes
each. It was trained with early stopping. The gradient-boosted classifier used 200 trees with a max
depth of 3. For tree-based methods comparisons, the decision tree classifiers were fit using sklearn
[Pedregosa et al., 2011] and TreeFARMS packages [Wang et al., 2022b]. Since GOSDT methods
require binary input, we used the built-in threshold guessing function in GOSDT to binarize the
features with set of parameters n_est=50, and max_depth=1. All the models are trained using a
RTX2080Ti GPU, and with 4 core in Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz.

In order to test the performance of All-Opt−, all models mentioned above were trained by adding the
SEV losses from Section 5 to the standard loss term (BCELoss). For GBDT, the training goal is to
reweigh the trees from the baseline GBDT model. The resulting loss was minimized via gradient
descent in PyTorch [Paszke et al., 2019], with a batch size of 128, a learning rate of 0.1, and the Adam
optimizer. To maintain high accuracy, the first 80 training epochs are warm-up epochs optimizing
just Binary Cross Entropy Loss for classification (BCELoss). The next 20 epochs add the All-Opt
terms and the baseline positive penalty term to encourage low SEV values. Moreover, during the
optimization process, it is important to ensure that the reference has a negative prediction. If the
reference is predicted as positive, then the SEV− may not exist, and a sparse explanation is no longer
meaningful. Thus, we add a term to penalize the reference if it receives a positive prediction:

ℓPos_ref(f) :=

n∑
i=1

max(f(r̃i), 0.5− θ)

where θ > 0 is a margin parameter, usually θ = 0.05. This term is (0.5− θ) as long as the reference
is predicted negative. As soon as it exceeds that amount, it is penalized (increasing linearly in f(r̃)).

To put these into an algorithm, we optimize a linear combination of different loss terms,

min
f∈F

ℓBCE(f) + C1ℓSEV_All_Opt−(f) + C2ℓPos_ref(f) (9)

Therefore, we are tuning both C1 and C2 to find a model with sparser explanations without perfor-
mance loss through grid search. For cluster-based SEV, the cluster centers are recalculated based on
the new model every 5 epochs.
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G The sparsity and meaningful performance of different counterfactual
explanation methods

In this section, we provide detailed information on other kinds of counterfactual explanations
generated by the CARLA package [Pawelczyk et al., 2021] on different datasets for logistic regression
models. Table 6 shows the number of features changed and the ℓ∞ for different counterfactual
explanations. These counterfactual explanations tend to provide less sparse explanations than other
SEV− variants shown in Section 6.3. For the ℓ∞ calculations, we consider only the numerical features,
since the categorical features’ ℓ∞ norm does not provide meaningful explanations. Moreover, we
have calculated the average log-likelihood of the explanations using the Gaussian Mixture Model in
scikit-learn Pedregosa et al. [2011]. The parameter n_components for each dataset is selected based
on the clustering result mentioned in Appendix C. Here, we are using the same Gaussian Mixture
Model for evaluating whether the explanation is within a high-density region.

Table 6: Explanation performance in different counterfactual explanations

DATASET
COUNTERFACTUAL

EXPLANATIONS
MEAN ℓ∞ # FEATURES CHANGE

MEDIAN
LOG-LIKELIHOOD

Adult Growing Sphere 1.07± 0.01 14± 0.00 345.03± 34.19
DiCE 0.78± 0.02 2.19± 0.12 −24752.12± 452.47

REVISE 6.1± 0.02 12.14± 0.75 345.03± 32.84
Watcher 0.01± 0.01 6.00± 0.00 345.12± 34.19
SEV1 22.62± 0.01 1.18± 0.02 −24752.12± 452.47
SEV© 2.86± 0.01 1.34± 0.02 156.88± 59.67

COMPAS Growing Sphere 0.02± 0.01 7.00± 0.00 10.47± 0.00
DiCE 1.38± 0.02 3.20± 0.45 −6.68± 0.02

REVISE 1.12± 0.03 5.54± 0.63 −1.84± 0.21
Watcher 0.01± 0.01 5.00± 0.00 10.48± 0.03
SEV1 2.31± 0.01 1.22± 0.02 14.65± 0.32
SEV© 2.06± 0.01 1.19± 0.02 14.41± 0.05

Diabetes Growing Sphere 0.01± 0.01 33.00± 0.00 320.41± 21.47
DiCE 0.71± 0.12 2.76± 0.15 −74296.98± 861.27

REVISE 0.80± 0.02 15.84± 0.02 320.41± 16.73
Watcher 0.01± 0.01 12± 0.00 320.41± 21.34
SEV1 2.7± 0.10 1.63± 0.01 309.56± 15.32
SEV© 2.31± 0.12 1.28± 0.02 320.71± 14.79

FICO Growing Sphere 0.01± 0.01 23± 0.00 −10.93± 0.42
DiCE 1.15± 0.13 3.27± 0.17 −20.11± 0.3

REVISE 0.12± 0.01 23± 0.00 −10.94± 0.42
Watcher 0.01± 0.01 23± 0.00 −10.94± 0.41
SEV1 1.81± 0.01 2.76± 0.02 −20.11± 0.32
SEV© 1.82± 0.01 2.21± 0.02 −19.32± 0.21

German Credit Growing Sphere 0.01± 0.02 20± 0.00 52.20± 0.02
DiCE 6.08± 0.01 2.76± 0.23 −53908.78± 367.84

REVISE 0.16± 0.01 7.65± 0.12 −73492.06± 492.45
Watcher 0.01± 0.00 6.00± 0.00 52.23± 0.04
SEV1 3.08± 0.01 1.51± 0.02 −124914.32± 792.52
SEV© 3.2± 0.01 1.17± 0.02 50.21± 0.32

Headline Growing Sphere 0.01± 0.00 18± 0.00 −4.56± 0.02
DiCE 1.13± 0.02 2.79± 0.14 −12.84± 0.42

REVISE 1.81± 0.13 15.93± 0.24 −6.98± 0.12
Watcher 0.01± 0.01 12± 0.00 −4.56± 0.02
SEV1 2.50± 0.02 1.98± 0.01 1.52± 0.12
SEV© 2.94± 0.02 1.62± 0.02 0.89± 0.26

MIMIC Growing Sphere 0.01± 0.01 14± 0.00 −24.52± 0.02
DiCE 1.34± 0.23 6.47± 0.24 −26.55± 0.02

REVISE 0.01± 0.00 12± 0.00 −24.52± 0.01
Watcher 0.01± 0.00 12± 0.00 −24.52± 0.01
SEV1 4.53± 0.49 1.18± 0.02 −20.11± 0.32
SEV© 1.98± 0.13 1.19± 0.02 −19.32± 0.15
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H Detailed SEV− for all datasets

In this section, we show how SEV1, SEV©, SEV©+F can increase the similarity metrics or reduce
the sparsity explanations. All the models are trained and evaluated 10 times using different splits, and
evaluated for their mean SEV−, mean ℓ∞, as well as their explanation time for each query.

Table 7 shows the model performance and SEV1 on various datasets. SEV1 is considered as a base
case for other SEV− variants to compare with. Table 7 shows that SEV1 yields very high ℓ∞ for each
model, indicating a large distance between the query and reference, which implies low closeness
according to Section 3.2.

Table 8 shows the model performance and SEV© on different datasets. Similarly, The Mean SEV©

column reports the mean SEV© for the model and the decrease in mean SEV− in percentage compared
to SEV1 (reported in the parenthesis). The Mean ℓ∞ column reports the mean ℓ∞ and the percentage
reduction compared to SEV1. On most datasets, SEV© increases, and ℓ∞ decreases, which means
that the model is providing both sparser and more meaningful explanations. For some datasets like
Adult and MIMIC, the SEV© increases, since the cluster-based reference points might be closer to the
decision boundary of the model as each query is trying to find the closest (in ℓ2 distance) negatively
predicted reference point, which might provide less sparse explanations.

Table 9 shows the model performance and SEV©+F (SEV© with variable reference) on various
datasets with different flexibility levels. The Mean SEVF column reports the mean SEV− for the
model and the decrease in mean SEV− in percentage compared to SEV1 (reported in the parenthesis).
The Mean ℓ∞ column reports the mean ℓ∞ and the percentage reduction compared to SEV1. It is
evident that with SEVF , SEV− decreases, but the ℓ∞ norm will increase due to the flexibility of the
features mentioned in section 4.4. The “flexibility used” column shows the proportion of queries
using the flexible reference instead of the original one for calculating SEVF , and the higher the
proportion, the larger decrease in SEV− the model can achieve.

Table 7: The SEV1 under different models
TRAIN TEST TRAIN TEST AVERAGE MEDIAN EXPLANATION AVERAGE LOG-

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV1 ℓ∞ TIME(10−2S) LIKELIHOOD

Adult GBDT 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.23± 0.02 18.28± 1.8 0.69± 0.08 −57437.86± 2718.7
L1LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.14± 0.01 24.2± 2.41 0.26± 0.01 −44735.07± 1393.91
L2LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.18± 0.0 22.62± 2.27 0.16± 0.01 −49293.12± 1157.19
MLP 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.27± 0.06 21.73± 3.57 0.62± 0.17 −67000.48± 5030.26

COMPAS GBDT 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.15± 0.04 1.94± 0.08 0.18± 0.02 8.15± 0.97
L1LR 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.25± 0.02 2.31± 0.07 0.12± 0.0 5.09± 0.92
L2LR 0.68± 0.0 0.67± 0.02 0.73± 0.0 0.72± 0.01 1.26± 0.03 2.41± 0.09 0.08± 0.01 5.19± 1.0
MLP 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.35± 0.12 2.3± 0.32 0.27± 0.09 6.49± 1.1

Diabetes GBDT 0.65± 0.0 0.64± 0.0 0.66± 0.0 0.66± 0.0 1.39± 0.01 2.82± 0.01 364.74± 92.38 −59814.81± 2356.74
L1LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.62± 0.01 2.6± 0.01 106.63± 79.76 −20834.12± 1378.32
L2LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.63± 0.01 2.7± 0.01 117.63± 79.76 −19117.45± 1091.56
MLP 0.65± 0.01 0.64± 0.0 0.71± 0.01 0.69± 0.0 1.69± 0.13 2.67± 0.09 136.33± 140.47 −70595.3± 3666.52

FICO GBDT 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 3.58± 0.12 1.81± 0.01 692.83± 30.77 −74.13± 8.92
L1LR 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 2.47± 0.11 1.81± 0.07 100.83± 30.77 −81.31± 7.41
L2LR 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.78± 0.01 2.76± 0.12 1.93± 0.04 481.75± 146.53 −52.09± 2.1
MLP 0.72± 0.01 0.71± 0.01 0.8± 0.02 0.78± 0.01 2.7± 0.29 1.88± 0.15 553.15± 463.34 −67.71± 13.05

German GBDT 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.02 1.39± 0.12 1.87± 0.46 2.69± 1.8 −75811.5± 6476.74
Credit L1LR 0.75± 0.01 0.75± 0.01 0.8± 0.01 0.79± 0.05 1.3± 0.06 2.45± 0.16 0.78± 0.49 −64237.32± 26906.43

L2LR 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.51± 0.15 3.08± 0.42 1.34± 0.96 −111945.26± 9916.8
MLP 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.6± 0.19 2.69± 0.45 7.68± 5.59 −119557.08± 15328.57

Headline GBDT 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.82± 0.03 2.35± 0.02 16.25± 2.45 −395.41± 340.77
L1LR 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.92± 0.01 2.51± 0.02 6.73± 0.38 −558.81± 287.68
L2LR 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.98± 0.01 2.5± 0.02 9.21± 0.49 −555.95± 286.15
MLP 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 2.03± 0.03 2.31± 0.07 26.25± 2.45 −493.37± 316.22

MIMIC GBDT 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.18± 0.02 1.28± 0.15 1.03± 0.22 −18.92± 0.37
L1LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.15± 0.02 4.53± 0.49 0.26± 0.04 −19.76± 0.52
L2LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.16± 0.02 4.34± 0.52 0.29± 0.03 −19.66± 0.49
MLP 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.18± 0.03 2.08± 0.35 0.79± 0.19 −17.25± 0.84
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Table 8: The SEV© under different models
TRAIN TEST TRAIN TEST AVERAGE MEDIAN AVERAGE AVERAGE LOG-

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV ℓ∞ TIME (10−2) LIKELIHOOD

Adult GBDT 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.39(13.01%) 2.41(-86.82%) 2.22± 0.84 −22974.51(60.0%)
L1LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.23(7.89%) 2.05(-91.53%) 0.56± 0.03 −39333.37(12.07%)
L2LR 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.34(13.56%) 2.86(-87.36%) 0.38± 0.12 −21033.54(57.33%)
MLP 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.62(27.56%) 5.16(-76.25%) 1.18± 0.53 −23421.5(60.97%)

COMPAS GBDT 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.18(2.61%) 1.52(-21.65%) 0.32± 0.03 9.08(11.41%)
L1LR 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.19(-4.8%) 1.75(-24.24%) 0.12± 0.01 5.53(8.64%)
L2LR 0.68± 0.0 0.67± 0.02 0.73± 0.0 0.72± 0.01 1.22(-3.17%) 2.06(-14.52%) 0.09± 0.01 5.98(15.22%)
MLP 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.3(-3.7%) 1.82(-20.87%) 0.15± 0.03 9.12(40.52%)

Diabetes GBDT 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.36(-2.21%) 1.89(-49.21%) 17.39± 7.21 −5572.49(90.55%)
L1LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.22(-24.6%) 2.31(-11.58%) 2.1± 0.4 −5460.38(92.27%)
L2LR 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.28(-21.47%) 2.31(-14.44%) 3.8± 1.26 −14461.36(24.36%)
MLP 0.65± 0.0 0.63± 0.0 0.7± 0.01 0.69± 0.0 1.47(-13.02%) 2.24(-16.1%) 23.28± 14.31 −11320.72(83.96%)

FICO GBDT 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.06(-42.52%) 1.08(-40.3%) 23.34± 8.86 −59.52(19.7%)
L1LR 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.0 1.79(-27.53%) 1.95(7.73%) 3.11± 1.02 −77.53(4.65%)
L2LR 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.21(-19.93%) 1.82(-5.7%) 39.49± 16.49 −58.86(-13.0%)
MLP 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.15(-20.37%) 1.75(-6.91%) 26.26± 9.01 −62.6(7.55%)

German GBDT 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.22(-12.23%) 1.73(-7.49%) 0.79± 0.53 −28478.65(62.43%)
Credit L1LR 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.77± 0.04 1.03(-20.77%) 1.52(-37.96%) 0.05± 0.01 −23691.73(63.12%)

L2LR 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 3.2(3.9%) 0.1± 0.07 −40622.35(63.71%)
MLP 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.24(-22.5%) 2.54(-5.58%) 0.24± 0.2 −40045.69(66.5%)

Headline GBDT 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.76(-3.3%) 2.18(-7.23%) 6.96± 0.84 −383.24(-3.08%)
L1LR 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.57(-18.23%) 2.94(17.13%) 0.88± 0.21 −559.35(0.1%)
L2LR 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.62(-18.18%) 2.94(17.6%) 1.46± 0.1 −556.52(0.1%)
MLP 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.67(-17.7%) 1.99(-16.08%) 3.05± 0.43 −495.08(0.0%)

MIMIC GBDT 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.49(-61.72%) 0.61± 0.12 −18.15(4.07%)
L1LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.17(1.74%) 1.8(-60.26%) 0.17± 0.03 −20.41(-3.29%)
L2LR 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.98(-54.38%) 0.19± 0.03 −20.26(-3.05%)
MLP 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.23(4.24%) 0.6(-71.15%) 0.33± 0.07 −16.77(2.78%)
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Table 9: SEV©+F under different models
FLEX- TRAIN TEST TRAIN TEST AVERAGE MEDIAN AVERAGE LOG- EXPLANATION

DATASET MODEL IBILITY ACCURACY ACCURACY AUC AUC SEV− ℓ∞ LIKELIHOOD TIME(10−2S)

Adult GBDT 0.05 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.3(5.69%) 0.95(-94.8%) −21763.14(62.11%) 3.98± 0.45
0.10 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.29(4.88%) 0.95(-94.8%) −20395.38(4.49%) 3.82± 0.32
0.20 0.88± 0.0 0.87± 0.0 0.93± 0.0 0.93± 0.0 1.29(4.88%) 0.96(-94.75%) −17611.65(69.34%) 3.63± 0.29

L1LR 0.05 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.2(5.26%) 0.96(-96.03%) −29801.44(33.38%) 1.0± 0.04
0.10 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.19(4.39%) 0.96(-96.03%) −29144.93(34.85%) 0.94± 0.04
0.20 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.19(4.39%) 0.97(-95.99%) −30245.09(32.39%) 0.91± 0.04

L2LR 0.05 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.47(-89.08%) −20693.31(58.02%) 1.59± 0.19
0.10 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.41(-89.35%) −20294.61(58.83%) 1.64± 0.18
0.20 0.85± 0.0 0.85± 0.0 0.9± 0.0 0.9± 0.0 1.32(11.86%) 2.49(-88.99%) −21987.43(55.39%) 1.59± 0.16

MLP 0.05 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.54(21.26%) 2.95(-86.42%) −27141.97(59.49%) 3.78± 1.4
0.10 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.52(19.69%) 2.75(-87.34%) −23444.97(65.01%) 3.76± 1.36
0.20 0.87± 0.0 0.86± 0.0 0.93± 0.0 0.92± 0.0 1.44(13.39%) 2.37(-89.09%) −22225.46(66.83%) 2.88± 1.11

COMPAS GBDT 0.05 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.2(4.35%) 1.44(-25.77%) 8.85(8.59%) 0.77± 0.06
0.10 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.19(3.48%) 1.4(-27.84%) 9.11(11.78%) 0.77± 0.06
0.20 0.7± 0.0 0.67± 0.01 0.77± 0.0 0.72± 0.01 1.12(-2.61%) 1.3(-32.99%) 8.97(10.06%) 0.68± 0.04

L1LR 0.05 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.62(-29.87%) 5.67(11.39%) 0.29± 0.02
0.10 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.55(-32.9%) 5.85(14.93%) 0.29± 0.01
0.20 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.14(-8.8%) 1.5(-35.06%) 5.87(15.32%) 0.28± 0.01

L2LR 0.05 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-7.14%) 1.92(-20.33%) 6.36(22.54%) 0.27± 0.01
0.10 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-7.14%) 1.85(-23.24%) 6.27(20.81%) 0.27± 0.01
0.20 0.68± 0.0 0.67± 0.01 0.73± 0.0 0.72± 0.01 1.17(-6.35%) 1.68(-30.29%) 6.26(20.62%) 0.29± 0.01

MLP 0.05 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-11.11%) 1.67(-27.39%) 8.2(26.35%) 0.39± 0.07
0.10 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-11.11%) 1.65(-28.26%) 8.19(26.19%) 0.41± 0.06
0.20 0.69± 0.01 0.67± 0.01 0.74± 0.01 0.72± 0.01 1.2(-10.37%) 1.62(-29.57%) 8.36(28.81%) 0.42± 0.07

Diabetes GBDT 0.05 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.37(-3.6%) 1.16(-58.87%) −4521.05(-92.44%) 50.03± 8.06
0.10 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.36(-2.16%) 1.35(-52.13%) −5505.82(-90.8%) 58.29± 7.65
0.20 0.65± 0.0 0.64± 0.0 0.7± 0.0 0.7± 0.0 1.35(-2.88%) 1.46(-48.23%) −5258.28(-91.21%) 54.67± 7.11

L1LR 0.05 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −11250.28(46.0%) 5.23± 0.68
0.10 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −11190.99(46.29%) 5.3± 0.7
0.20 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.2(-25.93%) 2.31(-11.15%) −7913.34(62.02%) 5.09± 0.63

L2LR 0.05 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −23047.62(22.58%) 7.05± 1.0
0.10 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −23047.64(22.58%) 7.12± 0.99
0.20 0.62± 0.0 0.62± 0.0 0.66± 0.0 0.66± 0.0 1.24(-23.46%) 2.31(-14.44%) −14691.43(21.86%) 7.41± 0.64

MLP 0.05 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.41(-13.5%) 1.73(-35.45%) −46675.04(33.81%) 40.41± 30.18
0.10 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.41(-13.5%) 1.72(-35.82%) −46689.47(33.84%) 38.03± 27.63
0.20 0.65± 0.01 0.63± 0.0 0.71± 0.01 0.68± 0.0 1.39(-14.72%) 1.73(-35.45%) −47723.79(4.23%) 30.72± 19.28

FICO GBDT 0.05 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 1.97(-44.97%) 0.87(-51.93%) −58.85(20.61%) 132.34± 34.38
0.10 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.03(-43.3%) 0.89(-50.83%) −58.47(21.13%) 162.91± 37.45
0.20 0.77± 0.0 0.72± 0.01 0.85± 0.0 0.79± 0.01 2.03(-42.18%) 0.88(-51.38%) −56.13(24.28%) 163.64± 45.55

l1lr 0.05 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.84(-25.51%) 1.89(4.42%) −77.6(4.56%) 29.88± 6.18
0.10 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.86(-24.7%) 1.96(8.29%) −78.18(3.85%) 34.15± 7.9
0.20 0.71± 0.0 0.7± 0.0 0.78± 0.0 0.77± 0.01 1.86(-24.7%) 2.09(15.47%) −79.92(-1.71%) 42.69± 9.43

L2LR 0.05 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.3(-16.36%) 1.8(-6.74%) −57.96(12.02%) 285.3± 96.59
0.10 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.28(17.09%) 1.79(-7.25%) −57.11(10.38%) 303.19± 98.72
0.20 0.72± 0.0 0.71± 0.01 0.78± 0.0 0.77± 0.01 2.24(-18.55%) 1.91(-1.04%) −57.22(10.59%) 303.85± 97.78

MLP 0.05 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.17(-18.11%) 1.63(-10.93%) −79.53(15.44%) 124.03± 50.02
0.10 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.18(-17.74%) 1.66(-9.29%) −77.83(12.98%) 135.6± 56.71
0.20 0.74± 0.01 0.71± 0.01 0.81± 0.01 0.78± 0.01 2.18(-17.74%) 1.71(-6.56%) −78.07(13.33%) 156.08± 70.95

German GBDT 0.05 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.21(-12.95%) 2.13(13.9%) −31442.17(58.53%) 6.28± 3.44
Credit 0.10 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.21(-12.95%) 1.8(-3.74%) −31253.08(58.78%) 6.87± 3.83

0.20 0.96± 0.01 0.75± 0.02 0.99± 0.0 0.77± 0.03 1.2(-12.23%) 1.91(2.14%) −36087.77(52.4%) 7.78± 4.46
L1LR 0.05 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.78± 0.04 1.03(-20.77%) 2.03(-17.14%) −24474.67(61.9%) 0.79± 0.39

0.10 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.77± 0.04 1.04(-20.0%) 2.01(-17.96%) −24862.18(-61.3%) 0.79± 0.38
0.20 0.75± 0.01 0.75± 0.02 0.8± 0.01 0.78± 0.04 1.03(-20.77%) 2.12(-13.47%) −25849.27(-59.76%) 0.7± 0.17

L2LR 0.05 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 3.0(-2.6%) −40660.55(63.68%) 2.05± 1.58
0.10 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.18(-21.85%) 3.03(-1.62%) −40228.76(64.06%) 1.84± 1.02
0.20 0.78± 0.01 0.76± 0.03 0.83± 0.01 0.79± 0.04 1.17(-22.52%) 2.93(-4.87%) −40136.71(64.15%) 1.71± 0.82

MLP 0.05 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.25(-21.88%) 2.57(-4.46%) −46257.34(61.31%) 2.99± 1.42
0.10 0.81± 0.05 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.23(-23.13%) 2.56(-4.83%) −46884.11(60.79%) 3.04± 1.67
0.20 0.81± 0.04 0.76± 0.03 0.87± 0.04 0.78± 0.04 1.21(-24.38%) 2.6(-3.35%) −41223.18(65.52%) 2.55± 1.47

Headline GBDT 0.05 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.74(-4.4%) 2.49(5.96%) −407.77(-3.13%) 22.98± 8.46
0.10 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.71(-6.04%) 2.51(6.81%) −432.26(-9.32%) 20.88± 7.71
0.20 0.82± 0.0 0.81± 0.0 0.9± 0.0 0.89± 0.0 1.53(-15.93%) 2.22(-5.53%) −543.65(-37.49%) 8.83± 2.41

L1LR 0.05 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.54(-19.79%) 2.94(17.13%) −576.99(-3.25%) 3.97± 0.15
0.10 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.55(-19.27%) 2.94(17.13%) −577.03(-3.26%) 4.16± 0.17
0.20 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.47(-23.44%) 2.94(17.13%) −577.7(-3.38%) 2.54± 0.12

L2LR 0.05 0.78± 0.0 0.78± 0.0 0.86± 0.0 0.85± 0.0 1.59(-19.7%) 2.94(-17.6%) −556.65(0.13%) 4.81± 0.2
0.10 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.6(-19.19%) 2.94(17.6%) −573.97(-3.24%) 5.1± 0.25
0.20 0.78± 0.0 0.78± 0.0 0.85± 0.0 0.85± 0.0 1.5(-24.24%) 2.94(17.6%) −574.67(-3.37%) 3.22± 0.13

MLP 0.05 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.64(-19.21%) 1.97(-14.72%) −617.43(-25.15%) 7.02± 1.86
0.10 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.64(-19.21%) 1.97(-14.72%) −604.44(-22.51%) 7.47± 2.23
0.20 0.83± 0.01 0.81± 0.0 0.91± 0.01 0.89± 0.0 1.5(-26.11%) 2.06(-10.82%) −570.13(-15.56%) 4.1± 0.79

MIMIC GBDT 0.05 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.52(-59.38%) −19.06(-0.74%) 2.93± 0.39
0.10 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.48(-62.5%) −19.08(-0.85%) 2.98± 0.39
0.20 0.91± 0.0 0.9± 0.0 0.87± 0.0 0.85± 0.0 1.21(2.54%) 0.41(-67.97%) −18.86(0.32%) 3.32± 0.43

L1LR 0.05 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.17(1.74%) 1.11(-75.5%) −21.32(-7.89%) 0.75± 0.06
0.10 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.18(2.61%) 1.15(-74.61%) −21.48(-8.7%) 0.77± 0.07
0.20 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.18(2.61%) 1.15(-74.61%) −21.48(-8.7%) 0.79± 0.08

L2LR 0.05 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.37(-8.7%) 0.86± 0.1
0.10 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.41(-8.9%) 0.84± 0.09
0.20 0.89± 0.0 0.89± 0.0 0.8± 0.0 0.8± 0.0 1.19(2.59%) 1.15(-73.5%) −21.48(-9.26%) 0.91± 0.09

MLP 0.05 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.21(2.54%) 0.58(-72.12%) −18.22(-5.62%) 1.35± 0.15
0.10 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.22(3.39%) 0.58(-72.12%) −18.12(-5.04%) 1.41± 0.14
0.20 0.9± 0.0 0.9± 0.0 0.87± 0.01 0.85± 0.0 1.22(3.39%) 0.58(-72.12%) −18.12(-5.04%) 1.43± 0.14
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I All-Opt− variants performance

In this section, we will mainly show the model performance of All-Opt© and All-Opt1, which are the
two gradient-based optimization methods used for SEV© and SEV1 optimization. Table 10 shows the
SEV1, ℓ∞ and model performance after applying All-Opt1 methods for different models on different
datasets with different levels of flexibility. It is evident that All-OptF has provided a significant
decrease in SEV, so that its values are close to 1, providing much sparser explanations without model
performance loss and closeness/credibility loss in explanations. Similar findings are observed in
Table 11.

Table 10: The model performance for All-Opt1
TRAIN TEST TRAIN TEST MEAN MEAN TRAINING MEAN

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV− ℓ∞ TIME(S) LOG-LIKELIHOOD
Adult GBDT 0.87± 0.02 0.84± 0.02 0.93± 0.01 0.90± 0.01 1.00± 0.00 5.67± 0.34 2010± 24 −39654.89± 4201.17

LR 0.84± 0.01 0.84± 0.01 0.90± 0.02 0.89± 0.01 1.03± 0.01 3.21± 0.02 60± 1 −70566.06± 10678.32
MLP 0.86± 0.01 0.85± 0.01 0.91± 0.02 0.91± 0.01 1.00± 0.00 9.52± 1.45 82± 3 −58049.77± 9932.16

COMPAS GBDT 0.70± 0.01 0.68± 0.01 0.74± 0.01 0.71± 0.01 1.01± 0.01 1.50± 0.04 244± 4 10.74± 0.98
LR 0.68± 0.01 0.68± 0.02 0.74± 0.01 0.73± 0.02 1.00± 0.00 2.13± 0.01 11± 1 9.17± 1.02

MLP 0.68± 0.01 0.67± 0.02 0.74± 0.02 0.72± 0.01 1.01± 0.01 1.90± 0.11 16± 1 14.57± 1.23
Diabetes GBDT 0.62± 0.01 0.63± 0.01 0.62± 0.01 0.64± 0.01 1.07± 0.01 1.78± 0.34 10548± 324 −14013.49± 2784.36

LR 0.62± 0.04 0.62± 0.04 0.63± 0.01 0.63± 0.01 1.07± 0.00 1.39± 0.01 217± 3 −40190.09± 10453.69
MLP 0.62± 0.01 0.65± 0.01 0.65± 0.01 0.64± 0.02 1.07± 0.00 2.50± 0.32 318± 5 −18013.49± 3894.36

FICO GBDT 0.70± 0.02 0.70± 0.02 0.77± 0.01 0.77± 0.02 1.19± 0.10 0.84± 0.12 864± 23 −40.44± 4.32
LR 0.70± 0.02 0.70± 0.02 0.77± 0.01 0.77± 0.02 1.10± 0.10 1.91± 0.33 19± 1 −20.32± 0.18

MLP 0.72± 0.01 0.72± 0.01 0.78± 0.02 0.78± 0.01 1.28± 0.09 1.23± 0.21 28± 0 −26.04± 0.43
German GBDT 0.94± 0.02 0.73± 0.02 0.99± 0.01 0.76± 0.02 1.02± 0.01 1.21± 0.05 99± 1 −27701.04± 3431.99
Credit LR 0.77± 0.01 0.75± 0.01 0.82± 0.02 0.77± 0.01 1.00± 0.00 1.39± 0.05 2± 0 −58065.80± 6843.21

MLP 0.82± 0.01 0.73± 0.03 0.93± 0.02 0.75± 0.02 1.00± 0.00 1.17± 0.08 3± 1 −85816.95± 13728.23
Headline GBDT 0.80± 0.01 0.76± 0.02 0.90± 0.01 0.89± 0.01 1.04± 0.02 2.45± 0.57 2732± 101 −4.37± 1.28

LR 0.77± 0.01 0.78± 0.01 0.86± 0.01 0.85± 0.01 1.00± 0.00 2.77± 0.44 78± 0 −2.39± 0.11
MLP 0.76± 0.02 0.77± 0.03 0.87± 0.02 0.86± 0.02 1.03± 0.03 2.78± 0.13 102± 1 −2.57± 0.89

MIMIC GBDT 0.88± 0.01 0.88± 0.01 0.84± 0.01 0.82± 0.02 1.06± 0.04 3.66± 0.02 2799± 102 −16.36± 0.54
LR 0.88± 0.01 0.88± 0.01 0.84± 0.01 0.82± 0.02 1.03± 0.03 3.67± 0.72 87± 2 −17.77± 2.22

MLP 0.89± 0.01 0.89± 0.02 0.84± 0.03 0.82± 0.03 1.00± 0.00 1.29± 0.20 115± 2 −10.38± 3.87

Table 11: The model performance for All-Opt©
TRAIN TEST TRAIN TEST MEAN MEAN MEAN

DATASET MODEL ACCURACY ACCURACY AUC AUC SEV© ℓ∞ LOG-LIKELIHOOD

Adult GBDT 0.90± 0.00 0.83± 0.01 0.89± 0.01 0.89± 0.01 1.14± 0.03 1.87± 0.03 289.07± 52.79
LR 0.84± 0.00 0.84± 0.01 0.91± 0.01 0.90± 0.01 1.01± 0.01 2.56± 0.43 299.04± 17.24

MLP 0.85± 0.01 0.84± 0.01 0.92± 0.01 0.91± 0.01 1.00± 0.00 2.37± 0.19 297.14± 32.16
COMPAS GBDT 0.68± 0.01 0.68± 0.01 0.72± 0.01 0.74± 0.02 1.02± 0.02 1.34± 0.47 10.28± 2.14

LR 0.68± 0.01 0.68± 0.01 0.72± 0.01 0.74± 0.02 1.00± 0.00 2.49± 0.21 8.67± 1.32
MLP 0.67± 0.01 0.67± 0.02 0.74± 0.01 0.72± 0.01 1.05± 0.05 1.92± 0.05 7.22± 0.56

Diabetes GBDT 0.62± 0.01 0.62± 0.02 0.66± 0.01 0.66± 0.02 1.05± 0.00 1.99± 0.01 −5231.53± 489.52
LR 0.62± 0.01 0.62± 0.02 0.66± 0.01 0.66± 0.02 1.05± 0.00 2.89± 0.46 −5937.66± 638.77

MLP 0.62± 0.01 0.62± 0.01 0.67± 0.01 0.67± 0.01 1.05± 0.00 2.12± 0.01 −5217.39± 497.78
FICO GBDT 0.70± 0.01 0.70± 0.00 0.78± 0.01 0.78± 0.01 1.48± 0.09 0.90± 0.01 −55.09± 6.79

LR 0.70± 0.01 0.70± 0.00 0.78± 0.01 0.78± 0.01 1.41± 0.08 1.60± 0.27 −15.66± 7.01
MLP 0.70± 0.01 0.69± 0.11 0.79± 0.02 0.78± 0.02 1.28± 0.19 1.23± 0.05 −18.47± 8.98

German GBDT 0.75± 0.01 0.76± 0.01 0.82± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −15797.31± 2134.01
Credit LR 0.75± 0.01 0.76± 0.01 0.82± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −45070.76± 7924.23

MLP 0.86± 0.02 0.79± 0.01 0.92± 0.01 0.80± 0.01 1.00± 0.00 1.00± 0.00 −30917.95± 5534.23
Headline GBDT 0.78± 0.02 0.79± 0.01 0.85± 0.01 0.85± 0.01 1.26± 0.03 −1.72± 0.01 −4.20± 2.97

LR 0.78± 0.02 0.79± 0.01 0.85± 0.01 0.85± 0.01 1.29± 0.10 2.93± 0.02 −2.93± 1.28
MLP 0.78± 0.02 0.78± 0.03 0.84± 0.01 0.84± 0.01 1.15± 0.12 1.69± 0.16 −2.87± 1.51

MIMIC GBDT 0.90± 0.01 0.89± 0.01 0.80± 0.00 0.80± 0.00 1.05± 0.05 1.00± 0.00 −21.80± 2.45
LR 0.90± 0.01 0.89± 0.01 0.80± 0.00 0.80± 0.00 1.00± 0.00 1.00± 0.00 −28.74± 0.75

MLP 0.89± 0.01 0.89± 0.01 0.84± 0.01 0.81± 0.00 1.01± 0.01 0.06± 0.01 −29.35± 0.36
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J SEVT in tree-based models

In this section, we show the model performance and SEVT values for different types of tree-based
models. As discussed in section 4.2, the similarity and closeness metrics in SEVT are all ℓ0 norm, so
we only need to compute the mean SEVT for each tree. Table 12 shows that most of the tree-based
models can provide sparse explanations (SEVT≤ 2), and we can also find a decision tree with the
same model performance as the other tree-based models from SEVT =1 to TOpt.

Table 12: The model performance with different tree-based methods
DATASET METHODS TRAIN ACC TEST ACC MEAN SEVT

Adult CART 0.84± 0.01 0.84± 0.01 1.11± 0.01
C4.5 0.85± 0.01 0.84± 0.00 1.10± 0.02

GOSDT 0.81± 0.01 0.81± 0.01 1.08± 0.01
Topt 0.82± 0.01 0.82± 0.01 1.00± 0.00

COMPAS CART 0.68± 0.00 0.65± 0.01 1.02± 0.01
C4.5 0.68± 0.00 0.65± 0.01 1.02± 0.01

GOSDT 0.67± 0.02 0.65± 0.01 1.12± 0.02
Topt 0.66± 0.01 0.67± 0.01 1.00± 0.00

Diabetes CART 0.63± 0.01 0.63± 0.01 1.00± 0.00
C4.5 0.63± 0.01 0.63± 0.01 1.00± 0.00

GOSDT 0.61± 0.01 0.60± 0.01 1.00± 0.00
Topt 0.62± 0.01 0.63± 0.01 1.00± 0.00

FICO CART 0.71± 0.01 0.71± 0.01 1.10± 0.03
C4.5 0.71± 0.01 0.71± 0.01 1.13± 0.05

GOSDT 0.70± 0.01 0.69± 0.01 1.80± 0.02
Topt 0.70± 0.01 0.71± 0.01 1.00± 0.00

German CART 0.75± 0.01 0.70± 0.01 1.00± 0.00
Credit C4.5 0.75± 0.01 0.70± 0.01 1.00± 0.00

GOSDT 0.75± 0.01 0.70± 0.01 1.00± 0.00
Topt 0.75± 0.01 0.70± 0.01 1.00± 0.00

Headline CART 0.78± 0.01 0.78± 0.00 1.27± 0.01
C4.5 0.77± 0.01 0.77± 0.00 1.16± 0.02

GOSDT 0.76± 0.01 0.76± 0.02 1.09± 0.02
Topt 0.77± 0.00 0.77± 0.00 1.00± 0.00

MIMIC CART 0.89± 0.01 0.89± 0.01 1.00± 0.00
C4.5 0.89± 0.01 0.89± 0.01 1.00± 0.00

GOSDT 0.89± 0.01 0.89± 0.01 1.00± 0.00
Topt 0.89± 0.01 0.89± 0.01 1.00± 0.00
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K The SEV1 results after ExpO optimization

For the ExpO comparison experiment, we used the fidelity metrics from Plumb et al. [2020] as the
penalty term for regularizing the original model. Then we evaluated the optimized model with SEV−.
We used two kinds of fidelity metrics as the regularization term: 1D fidelity and 1D fidelity. Both
of these two penalty terms aim to optimize the model f such that the local model g [Ribeiro et al.,
2016, Plumb et al., 2018] accurately approximates f in the neighborhood Nx, which is equivalent to
minimizing:

ℓfed(f, g,Nx) = Ex′∼Nx [g(x
′)− f(x′)]2. (10)

The local model g’s are linear models, and the Nx are points sampled normally around the original
query. The 1D version of Fidelity regularization requires sampling the points around each feature
of x at a time, which saves time and computational complexity. Based on the above equation, we
rewrite the overall objective function as:

min
f∈F

ℓBCE + CF ℓfed (11)

where ℓBCE is the Binary Cross Entropy Loss to control the accuracy of the training model, CF is the
strength of the fidelity term, and the training process is the same All-Opt− optimization, which we
used 80 epochs for basic training process, 20 epochs for regularization.

In this section, we show the SEV− and training time for ExpO regularizer in LR and MLP models
with 1D Fidelity (1DFed) and Global Fidelity (Fed) regularizers. Comparing the mean SEV1 of Table
13 with Table 7, it is evident that with the optimization through Fed or 1DFed, the optimized models
do not provide sparse explanations. In addition, it takes a long time to calculate Fed and 1DFed since
the regularizer’s complexity is determined by the number of queries, features, as well as the points
samples around the queries. For SEV−, the complexity is determined only by the number of queries
and the number of features, so it is much easier to calculate.

Table 13: Model performance, SEV1 and training time of LR and MLPs after ExpO with different
datasets

TRAIN TEST TRAIN TEST MEAN TRAINING
DATASET MODEL REGULARIZER ACCURACY ACCURACY AUC AUC SEV1 TIME(S)

Adult LR Fed 0.85± 0.01 0.84± 0.01 0.90± 0.01 0.89± 0.01 1.23± 0.02 1350± 162
1DFed 0.84± 0.02 0.84± 0.01 0.90± 0.01 0.90± 0.02 1.17± 0.02 510± 23

MLP Fed 0.85± 0.01 0.83± 0.02 0.90± 0.01 0.89± 0.01 1.27± 0.02 1580± 50
1DFed 0.85± 0.01 0.83± 0.02 0.90± 0.01 0.89± 0.01 1.27± 0.02 686± 23

COMPAS LR Fed 0.67± 0.02 0.66± 0.01 0.72± 0.02 0.72± 0.02 1.22± 0.04 58± 10
1DFed 0.65± 0.02 0.65± 0.01 0.73± 0.01 0.72± 0.02 1.27± 0.02 90± 5

MLP Fed 0.68± 0.02 0.66± 0.01 0.74± 0.02 0.72± 0.01 1.28± 0.03 125± 14
1DFed 0.66± 0.02 0.66± 0.02 0.72± 0.02 0.71± 0.01 1.28± 0.2 128± 15

Diabetes LR Fed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.50± 0.01 3625± 412
1DFed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.46± 0.01 1842± 245

MLP Fed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.52± 0.01 4372± 316
1DFed 0.63± 0.02 0.62± 0.01 0.60± 0.02 0.60± 0.01 1.46± 0.01 2032± 124

FICO LR Fed 0.71± 0.01 0.71± 0.01 0.78± 0.02 0.78± 0.01 2.76± 0.12 150± 21
1DFed 0.71± 0.02 0.71± 0.01 0.77± 0.01 0.78± 0.01 2.76± 0.21 150± 14

MLP Fed 0.72± 0.02 0.71± 0.01 0.79± 0.02 0.78± 0.02 2.67± 0.14 210± 13
1DFed 0.72± 0.02 0.71± 0.01 0.78± 0.02 0.77± 0.02 2.80± 0.35 195± 14

German LR Fed 0.78± 0.02 0.76± 0.01 0.82± 0.02 0.80± 0.01 1.65± 0.12 28± 0
Credit 1DFed 0.77± 0.02 0.73± 0.02 0.80± 0.01 0.76± 0.02 1.76± 0.02 15± 0

MLP Fed 0.75± 0.02 0.72± 0.02 0.82± 0.01 0.78± 0.02 1.70± 0.03 33± 2
1DFed 0.70± 0.00 0.70± 0.00 0.72± 0.02 0.73± 0.01 1.70± 0.03 20± 0

Headline LR Fed 0.77± 0.04 0.77± 0.01 0.85± 0.01 0.85± 0.00 1.87± 0.01 680± 21
1DFed 0.77± 0.01 0.77± 0.01 0.84± 0.01 0.85± 0.01 1.87± 0.02 562± 32

MLP Fed 0.77± 0.02 0.78± 0.01 0.85± 0.02 0.85± 0.03 1.87± 0.04 762± 56
1DFed 0.77± 0.02 0.77± 0.01 0.84± 0.02 0.85± 0.01 1.87± 0.04 852± 72

MIMIC LR Fed 0.89± 0.02 0.89± 0.02 0.77± 0.01 0.77± 0.01 1.18± 0.02 712± 42
1DFed 0.89± 0.02 0.88± 0.01 0.78± 0.02 0.77± 0.02 1.17± 0.02 646± 42

MLP Fed 0.88± 0.00 0.88± 0.00 0.78± 0.00 0.77± 0.01 1.15± 0.01 960± 27
1DFed 0.88± 0.01 0.88± 0.01 0.78± 0.01 0.78± 0.01 1.16± 0.01 873± 18
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L Proof of Theorem 4.1

Theorem L.1. With a single decision classifier DT and a positively-predicted query xi, define Ni

as the leaf that captures it. If Ni has a sibling leaf, or any internal node in its decision path has a
negatively-predicted child leaf, then SEVT is equal to 1.

SEV− is defined as the number of features that need to change within the given classification tree. If
you have switched a particular node from one path to another, it adds one to SEV−. Therefore, for
the internal nodes along the SEV− path, if Ni has a sibling leaf node, if we goes up to its parent node
and goes the opposite direction to change the query value for counterfactual explanation, the modified
instance will be directly predicted as negative, which leads to SEV− being equal to 1 in this case.

Figure 11 shows an example for SEVT being exactly 1, and a case illustrating that if N does not have
a sibling or any internal node in its decision path that has a negatively-predicted child leaf, SEVT

should be greater than or equal to 1. In Figure 11, the left trees are the full decision trees, where the
blue nodes are the negatively predicted leaf nodes and the red ones are positively predicted. The red
arrows graph represents the decision path for a specific instance. The person icon with a plus sign is
Ni that we would like to calculate SEVT on. The right tree is the subtree of the left tree. The person
icon with a minus is the query and the blue arrows indicate a decision pathway for SEV Explanation.

If the query is predicted as positive in node 4 , it is easy to see that if we go up to node C and goes
the opposite direction as the decision path for xi, then you can directly get a negative prediction.
In other words, if you change the feature C in the query to make it doens’t satisfy the node C ’s
condition, then it can be prediction as negative, which means that SEVT =1.

For SEVT≥ 1 case, if the query predidcted as positive in node 7 , since it does not have a sibling
leaf node, then if it goes to its parent node D and goes the opposite direction, then it would reach
node E . However, if we don’t know the query xi’s value, then I am unable to know whether I need
to change the condition in node E for higher SEVT . Therefore, in this case SEVT can be only
guaranteed to be greater or equal to 1.

Figure 11: Example of SEVT =1 in Theorem 4.1
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M Proof of Theorem 4.2

Theorem M.1. With a single decision tree classifier DT and a positively-predicted query xi, with
the set of all negatively predicted leaves as reference points, both SEV− and the ℓ0 distance (edit
distance) between the query and the SEV− explanation is minimized.

Proof (Optimality of Explanation Path):

The definition for SEV− is the minimum number of features that is needed for a positively predicted
query xi to aligned with the reference point in order to be predicted as negative. For tree-based
classifiers, the decisions are all made in the leaf nodes. Since we have set of all the negatively
predicted leaves as the reference points, then the ℓ0 distance (edit distance) between the query and the
SEV− explanation is equivalent to be the minimum ℓ0 distance between the query and the negatively
predicted leaf nodes. Each node can be considered as a list of rules of conditions that needs to be
satisfied. If a query would like to be predicted as negative in a specific node, then it needs to change
some of the feature values in the query so as to be predicted as negative, and the number of changed
feature is SEV−. Therefore, SEV− and the ℓ0 distance are the same in this theorem.

Next, we would like to show that if one of the negatively predicted leaf nodes is not considered
as reference point, then SEV− is not minimized. It is really easy to give an counterexample: if
we have a decision tree shown in Figure 12 with white nodes as root/internal nodes, blue nodes
as negatively predicted node, and the red ones as positively predicted. Suppose we have a query
predicted as positive, with feature values {A : False, B : False, C : False}, and only regard node 1
as the reference point, then both feature A and C should be change to True, in order to do a negative
prediction, in other words, if only node 1 is the reference point, then SEV−=2. However, based on
Theorem 4.1, since node 4 has a sibling leaf predicted as negative, then the SEV− is not minimized.

Figure 12: An counterexample with fewer reference point

Lastly, we would like to show that with all the negative leaf nodes considered as reference points if
an new reference points is added, the SEV− cannot be further minimized. Since we know that the
reference points should be predicted as negative, so the newly aded reference should still belongs to
one of the existing negative predicted leaf node, so SEV− cannot be further minimized.

To sum up, we have proved that with the set of all negatively predicted leaves as reference points, both
SEV− and the ℓ0 distance (edit distance) between the query and the SEV explanation is minimized.
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N Some extra examples for different kinds of SEV metrics

Table 14: Different SEV Variants Explanations in MIMIC datasets
PREICULOS GCS HEARTRATE_MAX MEANBP_MIN RESPRATE_MIN TEMPC_MIN URINEOUTPUT

Query 43806.28 10.00 91.00 29.00 9.00 34.50 162.98
SEV1 2215.88 —- —- —- —- —- —-
SEVF 2215.88 —- —- —- —- —- —-
SEV© 8739.30 —- —- —- —- —- —-
SEVT —- —- —- —- —- —- 595.48
Query 0.51 15.00 105.00 21.00 20.00 32.28 7.98
SEV1 —- —- —- 59.35 —- —- —-
SEVF —- —- —- 59.35 —- —- —-
SEV© —- —- —- 56.95 —- 36.11 —-
SEVT —- —- —- —- —- —- 595.48
Query 1.34 3.00 139.00 33.00 11.00 35.56 247.98
SEV1 —- 13.89 —- —- —- —- —-
SEVF —- 13.89 —- —- —- —- —-
SEV© —- 9.24 105.96 59.24 —- —- —-
SEVT —- —- —- —- —- —- 595.48
Query 1.64 11.00 199.00 14.00 22.00 37.06 387.98
SEV1 —- —- 102.57 —- —- —- —-
SEVF —- —- 102.57 —- —- —- —-
SEV© —- —- 107.58 —- —- —- —-
SEVT —- —- —- —- —- —- 595.48
Query 6621.40 13.00 134.00 28.00 28.00 34.72 4.98
SEV1 —- —- 102.57 —- 12.22 —- —-
SEVF —- —- 102.57 —- 12.22 —- —-
SEV© —- —- 97.70 —- 12.68 —- —-
SEVT —- —- —- —- —- —- 595.48
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Table 15: Different SEV Variants Explanations in COMPAS datasets
AGE JUV_FEL_COUNT JUV_MISD_COUNT JUVENILE_CRIMES PRIORS_COUNT

Query 50.00 0.00 0.00 0.00 11.00
SEV1 —- —- —- —- 2.21
SEVF —- —- —- —- 2.21
SEV© —- —- —- —- 4.63
SEVT —- —- —- —- 2.50
Query 23.00 1.00 0.00 1.00 5.00
SEV1 36.71 —- —- —- 2.21
SEVF 36.71 —- —- —- 2.21
SEV© 26.69 0.11 0.18 0.54 2.13
SEVT —- —- —- —- 2.50
Query 21.00 0.00 2.00 3.00 3.00
SEV1 —- —- —- 0.12 —-
SEVF —- —- —- 0.12 —-
SEV© 26.69 —- —- 0.54 —-
SEVT 33.50 —- —- —- —-
Query 23.00 0.00 1.00 1.00 4.00
SEV1 36.71 —- —- —- —-
SEVF 36.71 —- —- —- —-
SEV© 26.69 —- —- —- 2.13
SEVT 23.00 —- —- —- 2.50
Query 21.00 0.00 0.00 0.00 1.00
SEV1 36.71 —- —- —- —-
SEVF 36.71 —- —- —- —-
SEV© 28.02 —- —- —- —-
SEVT 22.50 —- —- —- —-
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