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Abstract: Space-based gravitational wave observatories, such as LISA, Taĳi, and TianQin,
employ long-baseline laser interferometry, necessitating displacement measurement sensitivity
at 1 pm/

√
𝐻𝑧 level. A significant challenge in achieving this precision is the coupling noise

arising from far-field wavefront errors (WFE) and laser pointing jitter. This paper presents a
comprehensive noise model that incorporates three critical factors: transmitted WFE, static
pointing angle, and laser beam jitter. Utilizing the Nĳboer-Zernike diffraction theory, we derive
an approximate expression for far-field WFE, ensuring minimal error and efficient computational
performance. The approximate expression has convincing physical interpretability and reveals
how various Zernike aberrations and their coupling impact far-field WFE. Furthermore, the study
identifies that correcting optical axis deviations induced by 𝑍±1

3 through beam tilt exacerbates
far-field WFE, underscoring the necessity for active suppression of 𝑍±1

3 . The proposed model
facilitates detailed system simulations of the laser link, evaluates Tilt-to-Length (TTL) noise, and
offers theoretical insights for system optimization.

1. Introduction

Typical space-based gravitational wave detection projects, such as LISA, Taĳi, and TianQin,
aim to detect gravitational waves in the low-to-mid frequency band of 0.1 mHz to 1 Hz [1–3].
These projects utilize long-baseline laser interferometry with three-satellite formations as
their fundamental measurement principle, with arm lengths ranging from 108 to 109 m [1–3].
Considering this arm length and considering the strain sensitivity of gravitational waves
upon reaching Earth, the resolution for displacement measurements must achieve a level of 1
pm/

√
Hz [1–3]. To meet such extreme measurement requirements, the measurement methodology

itself must not only achieve this precision but also effectively eliminate or suppress a significant
amount of noise that can impact measurements within the relevant frequency band.

Far-field WFE and laser pointing jitter coupling noise, as one type of Tilt-to-Length (TTL)
coupling, represent an unavoidable source of displacement noise in measurements [4]. This noise
arises from the interaction between the pointing angle and the far-field WFE of the laser during
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inter-satellite link transmission [5–8]. Given that it is impractical to establish an experimental
setup on Earth for beam propagation over millions of kilometers, current research on this issue
primarily relies on theoretical analysis and numerical simulations.

Early research began with Robertson et al.’s estimated formula for the coupling effect of
curvature WFE and beam-pointing errors [5]. Subsequently, Waluschka conducted numerical
computations of the far-field wavefront for LISA’s arm length using simulation software [9].
In 2005, Bender utilized the Fresnel-Kirchhoff diffraction integral to analyze this issue. He
expanded the exit pupil function in a third-order power series and considered the coupling
effects of low-order aberrations, such as defocus and astigmatism, coupled with pointing jitter
on the far-field phase [7]. This work provided an overall estimation of the far-field WFE level
and proposed a transmitted wavefront quality criterion of 𝜆/20. In 2018, Sasso et al. applied
Bender’s method to analyze the coupling relationships between low-order Zernike aberrations
and tilt. They inspected the regions in the far field by adjusting the tip/tilt in the Tx pupil and
used Monte Carlo methods to study the impact of random wavefront distortions on measurement
noise [8]. Based on this model, Sasso et al. and Zhao Y. examined the combined effects of
misalignments and aberrations of the interfering wavefronts on the phase of the heterodyne
signal [10,11]. Additionally, Zhao et al. extended this method to higher-order aberrations and
investigated the far-field optical path phase on a prototype telescope [12]. Chen et al. conducted
a study on telescope optimization based on the different contributions of aberrations to coupling
noise [13]. Xiao et al. further extended this method to higher-order aberrations, focusing on how
the stationary point helps suppress coupling noise [14]. In 2019, Vinet et al. took an alternative
approach by simplifying the diffraction integral through a first-order expansion of the transmitted
WFE and numerically solving the derived expression to obtain the coupling relationship between
pointing jitter angles and aberrations [15]. Their analysis revealed varying degrees of influence
from different single aberrations on coupling noise. Additionally, Kenny, Weaver, and Tao
conducted numerical simulations on this issue using numerical integration, the Mode Expansion
Method (MEM), and the Gaussian Beam Decomposition (GBD), respectively [16–18].

We find that the current research has certain shortcomings. While the model by Sasso et
al. simplifies calculations, it may not provide strong physical interpretability. This model does
not fully clarify how individual aberrations and their coupling contribute to the far-field WFE.
Furthermore, while the model equates tip/tilt with pointing, it does not account for the influence
of other odd Zernike aberrations, such as coma, on pointing performance [16]. Vinet et al.’s
analytical calculations using Nĳboer-Zernike theory are limited to first-order approximations and
do not discuss the coupling relationships between aberrations. While numerical computations
and simulations yield accurate results, they are time-consuming and hinder rapid responses in the
noise analysis of the entire laser link. Therefore, we aim to overcome these shortcomings. In this
paper, we refer to the analysis of diffraction propagation of a single aberration under point source
conditions, as described in the Nĳboer-Zernike theory [?]. We analytically derive the diffraction
formula for distorted Gaussian beams in the far field, obtaining a model for far-field WFE
and pointing jitter noise. This model offers convincing physical interpretability, encompassing
three major factors influencing noise, meeting precision requirements, and providing rapid
computational responses. Specifically, Section 2 introduces the application of Nĳboer-Zernike
Theory to address the far-field propagation of distorted Gaussian beams. In Section 3, we present
a comprehensive coupling noise model that incorporates the quality of the transmitted wavefront,
the static pointing angle, and laser beam jitter, along with a derived formula for quantifying
the associated noise levels. Section 4 calculates the contributions of various aberrations to the
far-field WFE, revealing how different aberrations contribute to and couple with each other. This
section also discusses how aberrations affect the optical axis. In Section 5, we present a formula
for the total far-field WFE that incorporates the first 21 Zernike aberrations. Additionally, we
provide an example to illustrate how to apply this formula in the discussion of coupled noise.



Finally, Section 6 provides the conclusions and summary.

2. Nijboer-Zernike Theory and the expression of far-field wavefront error

Far-field wavefront error (WFE) and coupling noise from laser pointing jitter arise from the
following process: A local laser on one spacecraft (S/C1) is emitted through its local telescope,
with the beam assumed to be a truncated Gaussian beam at the telescope aperture. If the wavefront
is considered undistorted—meaning that the emitted wavefront is an ideal plane wave—it will
approximate a spherical wavefront after propagating over millions of kilometers. At this stage,
deviations in the initial propagation direction do not impart additional phase to the top-hat beam
received by the telescope on the receiving spacecraft (S/C2), as illustrated on the left side of
Fig. 1. However, in practice, the emitted beam’s wavefront will be distorted due to various
mechanisms, resulting in a non-ideal spherical wavefront at the receiving end, which introduces
a WFE relative to the ideal spherical wavefront. Changes in the propagation direction of the
beam then couple with these WFEs, causing additional angle-dependent phase fluctuations in the
received flat-top beam, as shown on the right side of Fig. 1, thereby affecting the measurement
accuracy. Since phase fluctuations are directly related to the laser jitter frequency and operate
within the same detection frequency band as the Tilt-to-Length (TTL) noise from the optical
bench, this coupling noise is also classified as TTL noise, as both contribute to displacement
noise in optical path measurements.

S/C 2S/C 1S/C 1 S/C 2

Fig. 1. This schematic diagram illustrates how TTL-wavefront distortion coupling
occurs. On the left, the ideal transmitted beam with jitter propagates into the telescope
aperture of another spacecraft. On the right, the propagation of the beam carrying
WFEs is depicted. The truncated wavefront is transformed from a spherical wave (left)
to a distorted wavefront (right).

In accordance with this physical model, we describe the far-field WFE as the phase difference
between the distorted Gaussian beam and the ideal Gaussian beam at the receiving side in the
far field. Frits Zernike and Bernard Nĳboer developed a diffraction theory [19], which enables
the determination of the electric field of a distorted beam in the image plane, thereby allowing
the phase term to be calculated. First, we define the initial electric field at the aperture of the
transmitting telescope as follows:

𝐸𝑎 (𝑟; 0) = 𝐸0 (𝑟; 0)𝑒𝑖𝛺𝑎 , (1)

where 𝐸0 (𝑟; 0) is the electric field of an ideal truncated circular Gaussian beam:

𝐸0 (𝑟; 0) =
{
𝑒−𝑟

2/𝑤2
0 , if 𝑟 ≤ 𝑟𝑎

0, if 𝑟 > 𝑟𝑎
(2)



where 𝑤0 is the waist radius of Gaussian beam and 𝑟𝑎 is the aperture radius of telescope. 𝛺𝑎 in
(1) is the transmitted WFE, which is described by a combination of a set of Zernike polynomials:

𝛺𝑎 (𝜌, 𝜃) =
𝑁∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑎𝑚𝑛 𝑍𝑚
𝑛 (𝜌, 𝜃), (3)

where 𝑎𝑚𝑛 represents coefficients and 𝑍𝑚
𝑛 are Zernike Polynomals written with OSA/ANSI

indexing. 𝜌 = 𝑟/𝑟𝑎 is restricted to unit disk (0≤ 𝜌 ≤1), and 𝜃 is the azimuth. 𝑛 − 𝑚 ≥ 0 and is
even. Zernike Polynomals is a circle polynomials:

𝑍𝑚
𝑛 (𝜌, 𝜃) =

{
𝑅𝑚
𝑛 (𝜌) cos (𝑚𝜃) , if 𝑚 ≥ 0

𝑅−𝑚
𝑛 (𝜌) sin (−𝑚𝜃) , if 𝑚 < 0

(4)

𝑅𝑚
𝑛 (𝜌) is the radial polynomials:

𝑅
|𝑚 |
𝑛 (𝜌) = (−1) (𝑛−|𝑚 | )/2𝜌 |𝑚 |𝑃 ( |𝑚 | ,0)

(𝑛−|𝑚 | )/2 (1 − 2𝜌2), (5)

where 𝑃
(𝛼,𝛽)
𝑡 is the Jacobi polynomial of degree t, and 𝑅𝑚

𝑛 (𝜌) satisfies the orthogonality relation:∫ 1

0
𝑅
|𝑚 |
𝑛 (𝜌)𝑅 |𝑚 |

𝑛′ (𝜌)𝜌𝑑𝜌 =
𝛿𝑛,𝑛′𝑅

|𝑚 |
𝑛 (1)

2(𝑛 + 1) . (6)

Considering that the pointing angle of the beam is negligible compared to the propagation
distance, the diffraction integral meets the conditions of the paraxial approximation. Consequently,
the electric field in the far field can be represented using Fraunhofer diffraction:

𝐸 (𝑟, 𝜓, 𝑧) = 𝑒𝑖𝑘𝑧𝑒
𝑖𝑘
2𝑧 𝑟

2

𝑖𝜆𝑧
𝑟𝑎

2
∫ 1

0

∫ 2𝜋

0
𝑒−𝜌

2
𝑒𝑖𝛺𝑎 (𝜌,𝜃 )𝑒−𝑖𝑣𝜌 cos (𝜃−𝜓) 𝜌𝑑𝜌𝑑𝜃. (7)

where 𝑤0 = 𝑟𝑎 is assumed and 𝑣 = 𝑘
𝑧
𝑟𝑎𝑟.

We will discuss the integral:

𝑈 (𝑟, 𝜓, 𝑧) =
∫ 1

0

∫ 2𝜋

0
𝑒−𝜌

2
𝑒𝑖𝛺𝑎 (𝜌,𝜃 )𝑒−𝑖𝑣𝜌 cos (𝜃−𝜓) 𝜌𝑑𝜌𝑑𝜃. (8)

We expand 𝑒−𝜌
2 and 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) within (8) separately. Firstly, for the 𝑒−𝜌

2 part, we have Bauer
formula [20]:

𝑒−𝑧 cos 𝜙 = ( 𝜋
2𝑧

) 1
2

∞∑︁
𝑙=0

(−1)𝑙 (2𝑙 + 1)𝐼𝑙+ 1
2
(𝑧)𝑃𝑙 (cos 𝜙), (9)

where 𝐼𝑙+ 1
2

is Modified Bessel functions of the first kind, and 𝑃𝑙 is Legendre polynomial. We set
cos 𝜙 = 2𝜌2 − 1, and use the relation 𝑃𝑙 (2𝜌2 − 1) = 𝑅0

2𝑙 (𝜌), it follows:

𝑒−𝜌
2
= 𝑒−

1
2 𝑒−

1
2 (2𝜌

2−1) = 𝑒−
1
2 𝜋

1
2

∞∑︁
𝑙=0

(−1)𝑙 (2𝑙 + 1)𝐼𝑙+ 1
2
( 1
2
)𝑅0

2𝑙 (𝜌). (10)

For the accuracy of the calculation results, expanding it to the second order (𝑙 = 2) is sufficient.
Secondly, for the 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) component, we apply a Taylor expansion. The expanded terms

may include cos(𝑠𝑖𝑛) (𝑚𝜃), which must be considered in the angular integral. For the angular
integral of each term in the expansion, we can derive the result using Product-to-Sum identities
and Bessel’s integrals:∫ 2𝜋

0
cos(𝑠𝑖𝑛) (𝑚𝜃)𝑒−𝑖𝑣𝜌 cos (𝜃−𝜓)𝑑𝜃 = (−𝑖)𝑚2𝜋𝑐𝑜𝑠(𝑠𝑖𝑛) (𝑚𝜓)𝐽𝑚 (𝑣𝜌). (11)



And for the radial integral part, after simplification, we handle the following integral:∫ 1

0
𝑅𝑚
𝑛 (𝜌)𝑅0

2𝑙 (𝜌)𝐽𝑚 (𝑣𝜌)𝜌𝑑𝜌. (12)

For 𝑅𝑚
𝑛 (𝜌)𝑅0

2𝑙 (𝜌) we have

𝑅𝑚
𝑛 (𝜌)𝑅0

2𝑙 (𝜌) =
𝑙+ 𝑛−𝑚

2∑︁
𝑗=0

𝑏 𝑗𝑅
𝑚
2 𝑗+𝑚 (𝜌), (13)

where

𝑙+ 𝑛−𝑚
2∑︁

𝑗=0
𝑏 𝑗 = 1,

and each 𝑏 𝑗 can be determined by Gauss Elimination. By using the relation:∫ 1

0
𝑅𝑚
𝑛 (𝜌)𝐽𝑚 (𝑣𝜌)𝜌𝑑𝜌 = (−1) 𝑛−𝑚

2
𝐽𝑛+1 (𝑣)

𝑣
, (14)

finally we can express the integral part of (8) as a linear combination of a series of 𝐽𝑛 (𝑣)/𝑣.
For example, by combining 𝑍−𝑚

𝑛 and 𝑍𝑚
𝑛 as 𝑐𝑚𝑛 𝑅𝑚

𝑛 (𝜌) cos(𝑚(𝜃 − 𝜃0)), performing a first-order
expansion for 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) part yields the following result derived from (8):

𝑈 (𝑟, 𝜓, 𝑧) = 𝑈0 (𝑟, 𝜓, 𝑧) +𝑈1 (𝑟, 𝜓, 𝑧), (15a)

𝑈0 (𝑟, 𝜓, 𝑧) =
∞∑︁
𝑙=0

(2𝑙 + 1)𝐼𝑙+ 1
2
( 1
2
) 𝐽2𝑙+1 (𝑣)

𝑣
, (15b)

𝑈1 (𝑟, 𝜓, 𝑧) =
𝑁∑︁
𝑛=0

𝑛∑︁
𝑚=0

[
𝑐𝑚𝑛 (−𝑖)𝑚−1cos𝑚(𝜓 − 𝜃0)𝑀𝑛𝑚

]
,

𝑀𝑛𝑚 =

∞∑︁
𝑙=0

(2𝑙 + 1)𝐼𝑙+ 1
2
( 1
2
)
𝑙+ 𝑛−𝑚

2∑︁
𝑗=0

1
2
𝑏 𝑗 (−1) 𝑗+𝑙

𝐽2 𝑗+1 (𝑣)
𝑣

.

(15c)

Results for higher-order expansions can also be derived using the same process. Notably,
𝑈0 (𝑟, 𝜓, 𝑧) represents the undistorted part of the Gaussian beam. The far-field WFE, denoted
as 𝛿Θ(𝑟, 𝜓, 𝑧), is defined as the phase difference in the far field between the distorted Gaussian
beam and its undistorted counterpart, expressed as:

𝛿Θ(𝑟, 𝜓, 𝑧) = 𝜆

2𝜋

(
𝐼𝑚 {𝑈 (𝑟, 𝜓, 𝑧)}
𝑅𝑒 {𝑈 (𝑟, 𝜓, 𝑧)} − 𝐼𝑚 {𝑈 (0, 𝜓, 𝑧)}

𝑅𝑒 {𝑈 (0, 𝜓, 𝑧)}

)
. (16)

3. Coupling noise model

The noise level of coupling noise arising from far-field WFE and laser pointing jitter is influenced
by three primary factors: transmitted WFE (or transmitted wavefront quality), static pointing
angle, and laser jitter. This section discusses the correlation between these three factors and the
noise level of the coupling noise using a physical model.

The far-field WFE 𝛿Θ(𝑟, 𝜓, 𝑧), derived in the previous section, is expressed in Cartesian
coordinates as 𝛿Θ(𝑥 = 𝑟 cos𝜓, 𝑦 = 𝑟 sin𝜓, 𝑧). At a fixed distance, the far-field WFE is a function
of spatial coordinates within the plane 𝛿Θ(𝑥, 𝑦, 𝑧 = 𝐿), where 𝐿 represents the arm length



between the two spacecraft. In the actual physical process, the laser’s pointing angle varies at
the transmitter while the receiver remains stationary. This can be equivalently viewed as the
transmitter’s pointing angle remaining constant while the receiver’s telescope moves within the
plane of 𝛿Θ(𝑥, 𝑦, 𝑧 = 𝐿). Given that the pointing angle is very small relative to the arm length,
the horizontal displacement corresponding to the pointing angle can be approximated as a linear
relationship:

𝑟 = 𝐿 · 𝑎, (17)

where a is the pointing angle. Taking Taĳi as an example, with an arm length of 3 Mkm, a change
in the pointing angle of 10 nrad approximately corresponds to a horizontal displacement of 30 m.
Considering that the telescope’s aperture size is only 0.4 m, the difference in WFE distribution
across the telescope aperture is negligible. This is also why the received wavefront is considered
to be a (clipped) plane wavefront, often referred to as a top-hat wavefront. The motion of the
receiver’s telescope within the plane of 𝛿Θ(𝑥, 𝑦, 𝑧 = 𝐿) can be regarded as the motion of a point
within that plane.

Next, the pointing angle can be categorized into static and dynamic pointing angles. The
static pointing angle primarily results from manufacturing or assembly errors of the telescope,
deformation of the mirrors due to thermal effects, or other slow-changing processes while in
orbit. We assume these factors introduce a shift of (𝑥0, 𝑦0) on the far-field WFE plane. The
dynamic pointing angles mainly refer to laser jitter, which causes instantaneous changes in the
pointing angle (𝜃𝑥 , 𝜃𝑦). Additionally, the static pointing angle is associated with the shift on the
plane as described by (17). The level of laser jitter is denoted as 𝐽, forming a circular area on
the far-field WFE plane 𝛿Θ(𝑟, 𝜓, 𝑧 = 𝐿), within which the shift caused by the dynamic pointing
angle is confined. Therefore, we can summarize the above model as follows:

𝑊𝐸 (𝜃𝑥 , 𝜃𝑦) = 𝛿Θ(𝐿 · 𝜃𝑥 + 𝑥0, 𝐿 · 𝜃𝑦 + 𝑦0, 𝑧 = 𝐿),√︃
𝜃𝑥

2 + 𝜃𝑦
2 ≤ 𝐽,

(18)

where 𝑊𝐸 (𝜃𝑥 , 𝜃𝑦) represents the possible range of magnitudes for the far-field WFE. It also
indicates the level of phase offset in the received top-hat beam. The noise level of the coupling
noise can be represented by the magnitude of the gradient of the WFE within the circular area,
𝑊𝐸 (𝜃𝑥 , 𝜃𝑦), which is:

𝛿(𝜃𝑥 , 𝜃𝑦) = ∥∇(𝑊𝐸 (𝜃𝑥 , 𝜃𝑦))∥ =

√︄
(
𝜕𝑊𝐸 (𝜃𝑥 , 𝜃𝑦)

𝜕𝜃𝑥
)
2
+ (

𝜕𝑊𝐸 (𝜃𝑥 , 𝜃𝑦)
𝜕𝜃𝑦

)
2
. (19)

We therefore relate the noise level of the coupling noise to the transmitted WFE, static pointing
angle, and laser jitter through (18) and (19).

4. Far field calculation

To obtain the estimation model for coupling noise, we first need to derive an approximate
expression for the far-field WFE to establish the connection. Based on the derivation in Section
2, we know that the effects of aberrations on the far-field amplitude and phase can be expressed
as a combination of Bessel functions. Fundamentally, the undistorted Gaussian beam contributes
𝐽1 (𝑣) to the real part. Therefore, the expression for the far-field WFE takes the form of∑
𝑛
𝑎𝑛𝐽𝑛 (𝑣)/

[
𝐽1 (𝑣) +

∑
𝑚
𝑏𝑚𝐽𝑚 (𝑣)

]
. To ensure effective detection, the far-field WFE requires that

the phase variation caused by a 10 nrad laser jitter must remain below 1 pm/
√

Hz in the amplitude
spectral density of the measurement noise [21]. As shown in Fig. 2, retaining terms up to 𝐽4 (𝑣)
is sufficient to meet the required computational accuracy. In addition to the transmitted WFE



Fig. 2. The ratio of Bessel functions 𝐽𝑚 (𝑣) (𝑚 ≤ 6) to 𝐽1 (𝑣). This ratio is converted to
units of "pm" by multiplying by the coefficient factor " 𝜆

2𝜋 ", where 𝜆 = 1.064× 106 pm.
In the figure, 𝑣 = 𝑘

𝑧 𝑟𝑎𝑟.

resulting from the telescope’s design, factors such as mirror fabrication, structural assembly, and
thermal effects due to the space environment during orbit also contribute to the transmitted WFE.
Typically, the first 21 Zernike polynomials are adequate to describe these effects, as shown in
Table 1 [22].

4.1. Transmitted wavefront error constraint

For clarity in this paper, we use Peak-to-Valley (P-V) error to quantify the transmitted WFE. Next,
we provide an approximate constraint based on the physical image from Section 3. Previous
studies have shown that the impact of 𝑍0

2 and 𝑍±2
2 on the far-field wavefront is significantly

greater than that of higher-order aberrations [16]. Therefore, it is reasonable to first impose an
approximate constraint on the transmitted WFE using 𝑍0

2 or 𝑍±2
2 . In this case, we choose 𝑍0

2 and
derive an approximate expression for (8) with only 𝑍0

2 aberration:

𝑈 (𝑟, 𝜓, 𝑧) = 𝑈0 (𝑟, 𝜓, 𝑧) + 𝑍0
2 (𝑟, 𝜓, 𝑧), (20)

𝑈0 (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

{
𝐼 1

2

𝐽1 (𝑣)
𝑣

+ 3𝐼 3
2

𝐽3 (𝑣)
𝑣

}
= 𝑒−

1
2 𝜋

1
2 (2𝜋)

{
𝜎0

𝐽1 (𝑣)
𝑣

+ 𝜏0
𝐽3 (𝑣)
𝑣

}
,

(21)

where

(𝜎0, 𝜏0) = (0.587 99, 0.289 21) .



Table 1. The first 21 Zernike polynomials

Order Aberration Term Value

1 X-Tilt 𝑍1
1 𝜌 cos 𝜙

2 Y-Tilt 𝑍−1
1 𝜌 sin 𝜙

3 Defocus 𝑍0
2 2𝜌2 − 1

4 0◦ Astigmatism 𝑍2
2 𝜌2 cos 2𝜙

5 45◦ Astigmatism 𝑍−2
2 𝜌2 sin 2𝜙

6 X-Coma 𝑍1
3 (3𝜌3 − 2𝜌) cos 𝜙

7 Y-Coma 𝑍−1
3 (3𝜌3 − 2𝜌) sin 𝜙

8 X-Trefoil 𝑍3
3 𝜌3 cos 3𝜙

9 Y-Trefoil 𝑍−3
3 𝜌3 sin 3𝜙

10 Spherical 𝑍0
4 6𝜌4 − 6𝜌2 + 1

11 X-2𝑛𝑑 Astigmatism 𝑍2
4 (4𝜌4 − 3𝜌2) cos 2𝜙

12 Y-2𝑛𝑑 Astigmatism 𝑍−2
4 (4𝜌4 − 3𝜌2) sin 2𝜙

13 X-Tetrafoil 𝑍4
4 𝜌4 cos 4𝜙

14 Y-Tetrafoil 𝑍−4
4 𝜌4 sin 4𝜙

15 X-2𝑛𝑑 Coma 𝑍1
5 (10𝜌5 − 12𝜌3 + 3𝜌) cos 𝜙

16 Y-2𝑛𝑑 Coma 𝑍−1
5 (10𝜌5 − 12𝜌3 + 3𝜌) sin 𝜙

17 X-2𝑛𝑑 Trefoil 𝑍3
5 (5𝜌5 − 4𝜌3) cos 3𝜙

18 Y-2𝑛𝑑 Trefoil 𝑍−3
5 (5𝜌5 − 4𝜌3) sin 3𝜙

19 X-Pentafoil 𝑍5
5 𝜌5 cos 5𝜙

20 Y-Pentafoil 𝑍−5
5 𝜌5 sin 5𝜙

21 2𝑛𝑑 Spherical 𝑍0
6 20𝜌6 − 30𝜌4 + 12𝜌2 − 1

Here we let 𝐼𝑙+ 1
2

denote 𝐼𝑙+ 1
2
( 1

2 ). And

𝑍0
2 (𝑟, 𝜓, 𝑧)1𝑠𝑡+2𝑛𝑑+3𝑟𝑑 = 𝑒−

1
2 𝜋

1
2 (2𝜋){

𝑖𝑎0
2

[
−𝐼 1

2

𝐽3 (𝑣)
𝑣

+ (−3)𝐼 3
2
( 1
3
) 𝐽1 (𝑣)

𝑣
+ 5𝐼 5

2
(−2

5
) 𝐽3 (𝑣)

𝑣

]
+

−
(𝑎0

2)
2

2

[
𝐼 1

2
( 1
3
) 𝐽1 (𝑣)

𝑣
+ (−3)𝐼 3

2
(−3

5
) 𝐽3 (𝑣)

𝑣
+ 5𝐼 5

2
( 2
15

) 𝐽1 (𝑣)
𝑣

]
+

−𝑖
(𝑎0

2)
3

6

[
𝐼 1

2
(−3

5
) 𝐽3 (𝑣)

𝑣
+ (−3)𝐼 3

2
( 1
5
) 𝐽1 (𝑣)

𝑣
+ 5𝐼 5

2
(−12

35
) 𝐽3 (𝑣)

𝑣

]}
= 𝑒−

1
2 𝜋

1
2 (2𝜋)

{[
𝜎0

2
𝐽1 (𝑣)
𝑣

+ 𝜏0
2
𝐽3 (𝑣)
𝑣

]
+ 𝑖

[
𝛼0

2
𝐽1 (𝑣)
𝑣

+ 𝛽0
2
𝐽3 (𝑣)
𝑣

]}
,

(22)



where (
𝜎0

2 , 𝜏
0
2

)
= (𝑎0

2)
2 (−0.10119, −0.0867631) ,(

𝛼0
2, 𝛽0

2

)
= 𝑎0

2 (−0.0964035,−0.607138) + (𝑎0
2)

3 (0.00964035, 0.0615342) .

Thus, the expression for the far-field WFE resulting from the single aberration 𝑍0
2 is:

𝛿Θ0
2 (𝑟, 𝜓, 𝑧) =

𝛼0
2𝐽1 (𝑣) + 𝛽0

2𝐽3 (𝑣)
(𝜎0 + 𝜎0

2 )𝐽1 (𝑣) + (𝜏0 + 𝜏0
2 )𝐽3 (𝑣)

−
𝛼0

2𝐽1 (0) + 𝛽0
2𝐽3 (0)

(𝜎0 + 𝜎0
2 )𝐽1 (0) + (𝜏0 + 𝜏0

2 )𝐽3 (0)
. (23)

By comparing the result of the approximate expression (23) with the numerical integration
result from (8), we find that, at a transmitted WFE of 𝜆/4 (P-V), the error within a 100 nrad angle
range is approximately 0.18 pm. Additionally, we compare the numerical integration results
obtained from the third-order Taylor expansion of 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) in (8) with those obtained from
directly integrating (8). The two error levels are closely aligned, as shown in Fig. 3. Therefore,
the approximate expression is validated.

Fig. 3. The error of the numerical integration obtained from the third-order Taylor
expansion of 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) compared to the direct numerical integration of (8), along with
the error of the approximate expression relative to the direct numerical integration of
(8).

A parameter space can be defined for transmitted WFE, static pointing angle, and laser jitter,
based on the requirement that the far-field WFE remains within 1pm. Figure 4 illustrates the
constraints on laser jitter and transmitted WFE for a single aberration 𝑍0

2 , with a static pointing
angle of 10nrad. Given a laser jitter of 10nrad, the transmitted WFE for defocus must be less than
approximately 𝜆/12. To generalize the model more general, we propose a broader requirement
that the transmitted WFE should be less than approximately 𝜆/10. We require that, under this
transmitted WFE, the error of the approximate expression compared to the numerical integration
is approximately at the level of 0.1 pm within a region of 100 nrad.

4.2. The real and imaginary parts of 𝑈 (𝑟, 𝜓, 𝑧)
Next, we derive the real and imaginary parts of 𝑈 (𝑟, 𝜓, 𝑧). First, we summarize the aberration
terms and their higher-order coupling terms that correspond to either the real or imaginary part
of 𝑈 (𝑟, 𝜓, 𝑧). In the third-order Taylor expansion of 𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) :

𝑒𝑖𝛺𝑎 (𝜌,𝜃 ) = 1 + 𝑖𝛺𝑎 −
1
2
𝛺𝑎

2 − 𝑖
1
6
𝛺𝑎

3, (24)



Fig. 4. The constraints on laser jitter and transmitted WFE for a single aberration,
specifically defocus, under a far-field WFE of 1pm and a static pointing angle of 10nrad.

Odd-order terms introduce 𝑖 while the even-order terms do not. For first-order terms, all Zernike
terms with odd 𝑚 introduce an additional 𝑖 through (11), classifying them as belonging to the
real part of 𝑈 (𝑟, 𝜓, 𝑧). In contrast, Zernike terms with even 𝑚 are categorized as belonging to
the imaginary part. For the second-order terms, the coupling terms between the Zernike terms
with odd 𝑚 do not introduce 𝑖 in the integral by applying Product-to-Sum Identities and (11).
Thus, they also belong to the real part of 𝑈 (𝑟, 𝜓, 𝑧). Similarly, after analyzing the coupling of
third-order terms, we summarize our conclusions in Table 2. These terms contribute differently

Real part of 𝑈 (𝑟, 𝜓, 𝑧) Imaginary part of 𝑈 (𝑟, 𝜓, 𝑧)

First order 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′

Second order 𝑍
2𝛼1+1
𝛾1 𝑍

2𝛼2+1
𝛾2 𝑍

2𝛽1
𝛾1′

𝑍
2𝛽2
𝛾2′

𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′

Third order 𝑍
2𝛼1+1
𝛾1 𝑍

2𝛼2+1
𝛾2 𝑍

2𝛼3+1
𝛾3 𝑍2𝛼+1

𝛾 𝑍
2𝛽1
𝛾1′

𝑍
2𝛽2
𝛾2′

𝑍
2𝛼1+1
𝛾1 𝑍

2𝛼2+1
𝛾2 𝑍

2𝛽
𝛾′ 𝑍

2𝛽1
𝛾1′

𝑍
2𝛽2
𝛾2′

𝑍
2𝛽3
𝛾3′

Table 2. The aberration terms and their higher-order coupling terms corresponding to
the real and imaginary parts of 𝑈 (𝑟, 𝜓, 𝑧), where 𝑍2𝛼+1

𝛾 denotes the Zernike terms 𝑍𝑚
𝑛

with odd 𝑚, and 𝑍
2𝛽
𝛾′ denotes those with even 𝑚.

to the far-field WFE 𝛿Θ(𝑟, 𝜓, 𝑧), and we can discard those that have negligible contributions.
Based on the subsequent comparison results between A.E. and N.I., retaining only the first two
orders is sufficient to meet the error requirements. For the third-order term, we retain only the
contribution from 𝑍0

2 .

■ 𝑍
2𝛽
𝛾′

For Zernike terms where 𝑚 is even, Similar to the derivation of 𝑍0
2 in Subsection 4.1, we

obtain the expressions for each even single aberration term:

©«
𝑍2
𝑛

𝑍−2
𝑛

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

−𝑖 ©«
cos 2𝜓

sin 2𝜓
ª®¬
[
𝛼±2
𝑛

𝐽1 (𝑣)
𝑣

+ 𝛽±2
𝑛

𝐽3 (𝑣)
𝑣

] , (25)



𝑍0
𝑛 (𝑟, 𝜓, 𝑧) = 𝑒−

1
2 𝜋

1
2 (2𝜋)

{
𝑖

[
𝛼0
𝑛

𝐽1 (𝑣)
𝑣

+ 𝛽0
𝑛

𝐽3 (𝑣)
𝑣

]}
, (26)

where (
𝛼±2

2 , 𝛽±2
2

)
= 𝑎±2

2 (0, −0.448 17) ,(
𝛼0

4, 𝛽0
4

)
= 𝑎0

4 (0.009 57, 0.115 68) ,(
𝛼±2

4 , 𝛽±2
4

)
= 𝑎±2

4 (0, 0.072 40) ,(
𝛼0

6, 𝛽0
6

)
= 𝑎0

6 (0, −0.012 31) .

Since the lowest-order term in the Bessel function expansion of 𝑍±4
4 is 𝐽5 (𝑣), we can

directly discard 𝑍±4
4 . We compared the WFE differences between the Approximate

Expression (A.E.) and the numerical integration (N.I.) of (8), as shown in Fig. 5. In this
calculation, 𝑍0

2 only considers the first-order expansion, specifically (𝜎0
2 , 𝜏0

2 ) = (0, 0)
and (𝛼0

2, 𝛽0
2) = (−0.0964035𝑎0

2, −0.607138𝑎0
2). Typically, lower-order Zernike aberra-

tions contribute more to the transmitted WFE than higher-order Zernike aberrations. By
considering the contributions of each aberration to the transmitted WFE and the far-field
WFE, as well as the errors in the A.E., we retain only the contribution from 𝑍0

2 .

■ 𝑍2𝛼+1
𝛾

For 𝑍2𝛼+1
𝛾 , similarly, we obtain:

©«
𝑍1
𝑛

𝑍−1
𝑛

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

©«
cos𝜓

sin𝜓
ª®¬
[
𝜎±1
𝑛

𝐽2 (𝑣)
𝑣

+ 𝜏±1
𝑛

𝐽4 (𝑣)
𝑣

] , (27)

©«
𝑍3
𝑛

𝑍−3
𝑛

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

− ©«
cos 3𝜓

sin 3𝜓
ª®¬
[
𝜎±3
𝑛

𝐽2 (𝑣)
𝑣

+ 𝜏±3
𝑛

𝐽4 (𝑣)
𝑣

] , (28)

where (
𝜎±1

1 , 𝜏±1
1

)
= 𝑎±1

1 (0.491 59, 0.173 66) ,(
𝜎±1

3 , 𝜏±1
1

)
= 𝑎±1

3 (−0.086 83, −0.578 29) ,(
𝜎±3

3 , 𝜏±3
3

)
= 𝑎±3

3 (0, 0.424 04) ,(
𝜎±1

5 , 𝜏±1
5

)
= 𝑎±1

5 (0.009 57, 0.112 95) ,(
𝜎±3

5 , 𝜏±3
5

)
= 𝑎±3

5 (0, 0.020 00) .

We can discard 𝑍±5
5 as well. Since 𝑍2𝛼+1

𝛾 does not affect the imaginary part in the absence
of other coupled aberrations, we cannot directly measure these terms or their errors using
far-field WFE, as we did with 𝑍

2𝛽
𝛾′ . In this context, we use 𝑍0

2 to estimate their contributions
by adding a term 𝑍2𝛼+1

𝛾 solely to the real part during the calculation and comparing the
difference between this “WFE” and the WFE of 𝑍0

2 , as shown in Fig. 6. It is important
to note that this does not represent the true level of the far-field WFE for the combined
aberration.



(a) 𝑍0
2 (b) 𝑍0

4 (c) 𝑍0
6

(d) 𝑍±2
2 (e) 𝑍±2

4

Fig. 5. The far-field WFE of 𝑍
2𝛽
𝛾′ (the upper half of each subfigure) and the WFE

difference between the Approximate Expression (A.E.) and the numerical integration
(N.I.) of (8) (the lower half of each subfigure). The transmitted WFEs for each aberration
are constrained to 𝜆/10, with 𝑎0

4 = 0.418879 and the other coefficients set to 0.314159.
The terms of 𝑍±2

2 and 𝑍±2
4 only display 𝑍2

2 and 𝑍2
4 .



(a) 𝑍±1
1 (b) 𝑍±1

3 (c) 𝑍±1
5

(d) 𝑍±3
3 (e) 𝑍±3

5

Fig. 6. The Difference between ”𝑊𝐹𝐸𝑍2𝛼+1
𝛾 +𝑍0

2
” and 𝑊𝐹𝐸𝑍0

2
, calculated using A.E..

𝑎0
2 and 𝑎2𝛼+1

𝛾 are set to be 0.314159. The terms of 𝑍±1
𝛾 and 𝑍±3

𝛾 only display 𝑍1
𝛾 and

𝑍3
𝛾 .

We can thus conclude that 𝑍±3
3 and 𝑍±3

5 along with their higher-order terms, can be
discarded, while 𝑍±1

1 , 𝑍±1
3 , 𝑍±1

5 , and their higher-order couplings need to be retained.

■ 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′

For 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′ , we obtain:

©«
𝑍1
𝑛𝑍

0
𝑛′

𝑍−1
𝑛 𝑍0

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

𝑖 ©«
cos𝜓

sin𝜓
ª®¬
[
𝛼
±1;0
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±1;0
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] , (29)

©«
𝑍1
𝑛𝑍

2
𝑛′ 𝑍1

𝑛𝑍
−2
𝑛′

𝑍−1
𝑛 𝑍2

𝑛′ 𝑍−1
𝑛 𝑍−2

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)


𝑖

2
©«

cos𝜓 sin𝜓

− sin𝜓 cos𝜓
ª®¬
[
𝛼1

±1;±2
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽1
±1;±2
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

]
− 𝑖

2
©«
cos 3𝜓 sin 3𝜓

sin 3𝜓 − cos 3𝜓
ª®¬
[
𝛼2

±1;±2
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽2
±1;±2
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] ,

(30)



©«
𝑍1
𝑛𝑍

4
𝑛′ 𝑍1

𝑛𝑍
−4
𝑛′

𝑍−1
𝑛 𝑍4

𝑛′ 𝑍−1
𝑛 𝑍−4

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

−
𝑖

2
©«

cos 3𝜓 sin 3𝜓

− sin 3𝜓 cos 3𝜓
ª®¬
[
𝛼
±1;±4
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±1;±4
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] ,

(31)©«
𝑍3
𝑛𝑍

0
𝑛′

𝑍−3
𝑛 𝑍0

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

−𝑖 ©«
cos 3𝜓

sin 3𝜓
ª®¬
[
𝛼
±3;0
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±3;0
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] , (32)

©«
𝑍3
𝑛𝑍

2
𝑛′ 𝑍3

𝑛𝑍
−2
𝑛′

𝑍−3
𝑛 𝑍2

𝑛′ 𝑍−3
𝑛 𝑍−2

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)


𝑖

2
©«
cos𝜓 − sin𝜓

sin𝜓 cos𝜓
ª®¬
[
𝛼
±3;±2
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±3;±2
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] ,

(33)©«
𝑍3
𝑛𝑍

4
𝑛′ 𝑍3

𝑛𝑍
−4
𝑛′

𝑍−3
𝑛 𝑍4

𝑛′ 𝑍−3
𝑛 𝑍−4

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)


𝑖

2
©«

cos𝜓 sin𝜓

− sin𝜓 cos𝜓
ª®¬
[
𝛼
±3;±4
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±3;±4
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] ,

(34)©«
𝑍5
𝑛𝑍

2
𝑛′ 𝑍5

𝑛𝑍
−2
𝑛′

𝑍−5
𝑛 𝑍2

𝑛′ 𝑍−5
𝑛 𝑍−2

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

−
𝑖

2
©«
cos 3𝜓 − sin 3𝜓

sin 3𝜓 cos 3𝜓
ª®¬
[
𝛼
±5;±2
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±5;±2
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] ,

(35)©«
𝑍5
𝑛𝑍

4
𝑛′ 𝑍5

𝑛𝑍
−4
𝑛′

𝑍−5
𝑛 𝑍4

𝑛′ 𝑍−5
𝑛 𝑍−4

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)


𝑖

2
©«
cos𝜓 − sin𝜓

sin𝜓 cos𝜓
ª®¬
[
𝛼
±5;±4
𝑛;𝑛′

𝐽2 (𝑣)
𝑣

+ 𝛽
±5;±4
𝑛;𝑛′

𝐽4 (𝑣)
𝑣

] .

(36)
And their coefficients are listed in Table 3.
We then compared the contributions of each coupling term to the far-field WFE, as shown
in Fig. 7. From the figure, we draw the following conclusions:

Fig. 7. The contribution of each coupling term 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′ to the far-field WFE.

Coefficients 𝑎2𝛼+1
𝛾 and 𝑎

2𝛽
𝛾′ are constrained to correspond to 𝜆/20, meaning that all

coefficients are equal to 0.157079 except for 𝑎0
4 = 0.20944.



𝑍0
2 𝑍±2

2 𝑍0
4

𝑍±1
1 (−0.105 98, −0.327 64) (−0.298 78, −0.076 99)1

(−0., 0.424 04)2
(−0.028 99, −0.163 54)

𝑍±1
3 (−0.163 82, 0.087 10) (−0.038 49, −0.245 59)1

(−0., 0.133 19)2
(−0.081 77, −0.077 57)

𝑍±3
3 (−0., 0.230 14) (−0.212 02, −0.133 19) (−0., 0.055 54)

𝑍±1
5 (−0.034 46, −0.235 12) (−0.012 44, −0.061 09)1

(−0., 0.003 77)2
(−0.095 54, 0.027 04)

𝑍±3
5 (−0., 0.100 72) (−0.030 36, −0.181 44) (−0., 0.146 47)

𝑍±5
5 \ (−0., 0.265 67) \

𝑍±2
4 𝑍±4

4 𝑍6
0

𝑍±1
1

(−0.048 27, −0.301 79)1
(−0., 0.036 24)2

(−0., 0.327 09) (−0.004 10, 0.041 37)

𝑍±1
3

(−0.150 90, 0.088 22)1
(−0., 0.171 79)2

(−0., 0.142 84) (−0.020 69, −0.130 51)

𝑍±3
3 (−0.018 12, −0.171 79) (−0.163 54, −0.142 84) (−0., −0.000 24)

𝑍±1
5

(−0.044 87, −0.118 36)1
(−0., 0.099 28)2

(−0., 0.027 65) (−0.061 03, −0.035 02)

𝑍±3
5 (−0.131 08, 0.049 93) (−0.010 00, −0.123 60) (−0., 0.058 53)

𝑍±5
5 (−0., 0.096 76) (−0.132 84, −0.138 99) \

Table 3. The coefficient list of 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′ . Each term should be multiplied by the

corresponding Zernike coefficients 𝑎2𝛼+1
𝛾 and 𝑎

2𝛽
𝛾′ . "( )1" and "( )2" correspond to

the coefficients (𝛼1
±1;±2
𝑛;𝑛′ , 𝛽1

±1;±2
𝑛;𝑛′ ) and (𝛼3

±1;±2
𝑛;𝑛′ , 𝛽3

±1;±2
𝑛;𝑛′ ) in (30).

1. The coupling between different terms varies, and not all coupling terms produce
significant contributions, which is quite understandable. For 𝑍2𝛼+1

𝛾 𝑍
2𝛽
𝛾′ , when

|2𝛼 + 1| − |2𝛽 | = 3, the lowest-order term in the Bessel function expansion is 𝐽4 (𝑣).
Its contribution is very small and acts only as a correction term among other coupling
terms. Additionally, we can disregard low coupling terms that contribute minimally
to the WFE.

2. For 𝑍2𝛼+1
𝛾 𝑍

2𝛽
𝛾′ with the same 𝛼 and 𝛽, it is often observed that terms with smaller 𝛾

and 𝛾′ contribute more to the far-field WFE than those with larger 𝛾 and 𝛾′. Therefore,
as the order of Zernike increases, the contribution of aberrations to the far-field WFE
generally shows a decreasing trend; however, this statement does not strictly apply to
the coupling terms. Therefore, the contributions of each coupling term still require
specific analysis.



3. 𝑍±2
2 , 𝑍±3

3 , and 𝑍±4
4 are easily correctable on the ground, while axisymmetric terms are

not; however, they may also arise due to thermal stress during in-orbit operations [22].
Since 𝑍±1

1 usually serves as a correction for the optical axis, we can neglect it in
this context. Given that higher-order terms are generally more stable than lower-
order ones, we focus on the lower-order aberrations where 𝑛 ≤ 14. Among these
aberrations, 𝑍±2

2 , 𝑍±3
3 , and 𝑍±4

4 exhibit significant coupling primarily with themselves
and relatively weak coupling with other aberrations. If telescopes are manufactured
using materials with low thermal expansion coefficients, their impact on the far-field
WFE should remain at a relatively low level. Conversely, the presence of 𝑍±1

3 and
axisymmetric aberrations will be the primary contributors to the far-field WFE.

For 𝑍2𝛼1+1
𝛾1 𝑍

2𝛼2+1
𝛾2 , we only consider 𝑍±1

1 𝑍±1
1 , 𝑍±1

1 𝑍±1
3 , 𝑍±1

1 𝑍±1
5 , and 𝑍±1

3 𝑍±1
3 . And we obtain:

©«
𝑍1
𝑛𝑍

1
𝑛′

𝑍−1
𝑛 𝑍−1

𝑛′

ª®¬ (𝑟, 𝜓, 𝑧) = 𝑒−
1
2 𝜋

1
2 (2𝜋)

−
1
2

[
𝛼1

±1;±1
𝑛;𝑛′

𝐽1 (𝑣)
𝑣

+ 𝛽1
±1;±1
𝑛;𝑛′

𝐽3 (𝑣)
𝑣

]
+ 1

2
©«

cos 2𝜓

− cos 2𝜓
ª®¬
[
𝛼2

±1;±1
𝑛;𝑛′

𝐽1 (𝑣)
𝑣

+ 𝛽2
±1;±1
𝑛;𝑛′

𝐽3 (𝑣)
𝑣

] ,

(37)

where(
𝜎
±1;±1
1;1 , 𝜏

±1;±1
1;1

)
1
= 𝑎±1

1 𝑎±1
1 (0.122 90, −0.079 48) ,

(
𝜎
±1;±1
1;1 , 𝜏

±1;±1
1;1

)
2
= 𝑎±1

1 𝑎±1
1 (0., 0.224 09) ,(

𝜎
±1;±1
1;3 , 𝜏

±1;±1
1;3

)
1
= 𝑎±1

1 𝑎±1
3 (−0.043 42, −0.245 73) ,

(
𝜎
±1;±1
1;3 , 𝜏

±1;±1
1;3

)
2
= 𝑎±1

1 𝑎±1
3 (0., 0.057 74) ,(

𝜎
±1;±1
1;5 , 𝜏

±1;±1
1;5

)
1
= 𝑎±1

1 𝑎±1
5 (0.004 79, 0.051 69) ,

(
𝜎
±1;±1
1;5 , 𝜏

±1;±1
1;5

)
2
= 𝑎±1

1 𝑎±1
5 (0., −0.018 67) ,(

𝜎
±1;±1
3;3 , 𝜏

±1;±1
3;3

)
1
= 𝑎±1

3 𝑎±1
3 (0.072 29, 0.032 66) ,

(
𝜎
±1;±1
3;3 , 𝜏

±1;±1
3;3

)
2
= 𝑎±1

3 𝑎±1
3 (0., 0.092 10) .

As what we do for 𝑍2𝛼+1
𝛾 , the difference between the "WFE" of 𝑍2𝛼1+1

𝛾1 𝑍
2𝛼2+1
𝛾2 and the WFE

of 𝑍0
2 , as shown in Fig. 8. We can thus conclude that 𝑍±1

1 𝑍±1
5 can be discarded, while 𝑍±1

1 𝑍±1
1 ,

𝑍±1
1 𝑍±1

3 , and 𝑍±1
3 𝑍±1

3 should be retained.

4.3. Amplitude and Beam direction

It is reasonable to define the line connecting the beam spot center in the image plane and the
beam origin as the optical axis. The beam propagates along this optical axis. Since the distortion
of the transmitted Gaussian beam is minimal, the spot of the distorted Gaussian beam in the far
field can still be approximated as a Gaussian beam spot. Therefore, we consider the location of
maximum amplitude to be the center of the beam spot.

From the discussion in Subsection 4.2, we see that 𝑍1
𝑛 introduces primary non-spherical

symmetric terms in the real part, causing the beam’s amplitude to deviate from the coordinate
center at the receiving side, as shown in Fig. 9.

We only consider 𝑍±1
𝑛 , 𝑍±1

1 𝑍±1
1 , 𝑍±1

1 𝑍±1
3 , 𝑍±1

3 𝑍±1
3 , and neglect the terms containing cos 2𝜓.

By performing a Taylor expansion of 𝐽𝑛 (𝑣)/𝑣 and retaining terms up to 𝑣2, we obtain:

𝑅𝑒{𝑈 (𝑟, 𝜓, 𝑧)} = −𝑎𝑣2 + 𝑏𝑣 cos𝜓 + 𝑐𝑣 sin𝜓 + 𝑑, (38)

where 𝑣 = 𝑘
𝑧
𝑟𝑎𝑟, and



(a) 𝑍±1
1 𝑍±1

1 (b) 𝑍±1
1 𝑍±1

3

(c) 𝑍±1
1 𝑍±1

5 (d) 𝑍±1
3 𝑍±1

3

Fig. 8. The Difference between ”𝑊𝐹𝐸
𝑍

2𝛼1+1
𝛾1 𝑍

2𝛼2+1
𝛾2 +𝑍0

2
” and 𝑊𝐹𝐸𝑍0

2
, calculated using

A.E.. 𝑎0
2 and all 𝑎2𝛼+1

𝛾 are set to be 0.314159. The terms of 𝑍±1
𝛾1 𝑍

±1
𝛾2 only display

𝑍1
𝛾1𝑍

1
𝛾2 .

𝑎 = 0.030 72 − 0.004 67(𝑎1
1)

2 − 0.004 67(𝑎−1
1 )2 − 0.002 41𝑎1

1𝑎
1
3 − 0.002 41𝑎−1

1 𝑎−1
3 ,

𝑏 = 0.061 45𝑎1
1 − 0.010 85𝑎1

3 + 0.001 20𝑎1
5,

𝑐 = 0.061 45𝑎−1
1 − 0.010 85𝑎−1

3 + 0.001 20𝑎−1
5 ,

𝑑 = 0.294 00 − 0.030 72(𝑎1
1)

2 − 0.030 72(𝑎−1
1 )2 + 0.021 71𝑎1

1𝑎
1
3 + 0.021 71𝑎−1

1 𝑎−1
3 .

Thus, corresponding to the location of maximum amplitude, the coordinates of the beam center
are: ( 𝑏𝑧

2𝑎𝑘𝑟𝑎 ,
𝑐𝑧

2𝑎𝑘𝑟𝑎 ).
We can add a new pair of X-Tilt and Y-Tilt to 𝑎±1

1 in the transmitted WFE as compensation to
shift the beam back to the point(0, 0), since for the required compensation shift, the following
linear relationship between the pointing angle 𝛼 and 𝑎±1

1 holds:

𝛼 =
𝑎±1

1
𝑘𝑟𝑎

. (39)

Therefore, the new 𝑎′11 and 𝑎′−1
1 are:

(𝑎′11, 𝑎′
−1
1 ) = (𝑎1

1 −
𝑏

2𝑎
, 𝑎−1

1 − 𝑐

2𝑎
). (40)



(a) 𝑍±1
1 (b) 𝑍±1

3
(c) 𝑍±1

5

Fig. 9. The real part of "𝑈0 (𝑟, 𝜓, 𝑧) + 𝑍1
𝑛 (𝑟, 𝜓, 𝑧)", where all 𝑎±1

𝑛 are set to 0.157079.
The upper half of each subfigure is calculated using A.E. while the lower half is derived
from N.I.. The terms of 𝑍±1

𝛾 only display 𝑍1
𝛾 .

We then validate this result through an example involving double aberrations of 𝑍±1
3 and 𝑍0

2 ,
while also addressing a question related to 𝑍±1

3 . The coefficients corresponding to case A in Fig.
10 are listed in Table 4. By performing calculations using (40), the resulting deviation of the
optical axis is effectively compensated, as shown in case B of Fig. 10, where the coefficients of
case B have been rescaled to 𝜆/10.

𝑍𝑚
𝑛 𝑍0

2 𝑍1
1 𝑍−1

1 𝑍1
3 𝑍−1

3

𝑎𝑚𝑛 0.188 18 0. 0. 0.152 24 0.110 61

𝑍𝑚
𝑛 𝑍0

2 𝑍1
1 𝑍−1

1 𝑍1
3 𝑍−1

3

𝑎𝑚𝑛 0.181 36 0.025 92 0.018 83 0.146 72 0.106 60

Table 4. The coefficient list of cases A and B. The corresponding transmitted WFE,
deviation of the optical axis, and far-field WFE are shown in Fig. 10.

However, correcting the optical axis results in a larger far-field WFE. As shown in Fig. 10,
the pre-correction value is 90.6068 pm, whereas the post-correction value is 102.708 pm. This
result suggests that while correcting the optical axis on the ground may appear to address the
issue of beam tilt, the presence of 𝑍±1

3 still critically affects the level of far-field WFE. Using
beam tilt to correct the optical axis, in fact, results in an even greater far-field WFE. Therefore, it
is essential to suppress 𝑍±1

3 itself rather than merely compensating for it with beam tilt.



Fig. 10. The transmitted WFE, deviation of the optical axis, and far-field WFE of
cases A and B. The transmitted WFE corresponds to 𝜆/10 in both cases A and B. The
far-field WFE (P-V) of cases A and B are 90.6068 pm and 102.708 pm, respectively.

5. Result

In summary of Subsection 4.2, we derive a formula for the far-field amplitude and WFE that
incorporates the contributions of the first 21 Zernike polynomial aberrations:

|𝐸 (𝑟, 𝜓, 𝑧) | = 𝑅𝑒{𝐸 (𝑟, 𝜓, 𝑧)} = 𝑟𝑎
2𝑅𝑒 {𝑈 (𝑟, 𝜓, 𝑧)} , (41a)

𝛿Θ(𝑟, 𝜓, 𝑧) = 𝜆

2𝜋

(
𝐼𝑚 {𝑈 (𝑟, 𝜓, 𝑧)}
𝑅𝑒 {𝑈 (𝑟, 𝜓, 𝑧)} − 𝐼𝑚 {𝑈 (0, 𝜓, 𝑧)}

𝑅𝑒 {𝑈 (0, 𝜓, 𝑧)}

)
, (41b)

𝐼𝑚 {𝑈 (𝑟, 𝜓, 𝑧)} =𝐴0
𝐽1 (𝑣)
𝑣

+ (𝐴1cos 𝜙 + 𝐴2sin 𝜙) 𝐽2 (𝑣)
𝑣

+ (𝐴3 + 𝐴4cos 2𝜙 + 𝐴5sin 2𝜙) 𝐽3 (𝑣)
𝑣

+ (𝐴6cos 𝜙 + 𝐴7sin 𝜙 + 𝐴8cos 3𝜙 + 𝐴9sin 3𝜙) 𝐽4 (𝑣)
𝑣

,

(41c)

𝑅𝑒 {𝑈 (𝑟, 𝜓, 𝑧)} =𝐵0
𝐽1 (𝑣)
𝑣

+ (𝐵1cos 𝜙 + 𝐵2sin 𝜙) 𝐽2 (𝑣)
𝑣

+ (𝐵3 + 𝐵4cos 2𝜙) 𝐽3 (𝑣)
𝑣

+ (𝐵5cos 𝜙 + 𝐵6sin 𝜙 + 𝐵7cos 3𝜙 + 𝐵8sin 3𝜙) 𝐽4 (𝑣)
𝑣

.

(41d)

The coefficients 𝐴𝑖 and 𝐵𝑖 are provided in Appendix A.
We illustrate the coupling noise model discussion through the following example. In this

example, the randomly generated transmitted WFE is constrained to 𝜆/10 (P V). The coefficients
for each Zernike aberration are listed in Table 5. The transmitted WFE, as well as its far-field
amplitude, far-field WFE, and the comparison of far-field WFEs calculated using A.E. and N.I.,



are all presented in Fig. 11.

𝑍𝑚
𝑛 𝑍1

1 𝑍−1
1 𝑍0

2 𝑍2
2 𝑍−2

2 𝑍1
3 𝑍−1

3

𝑎𝑚𝑛 −0.029 04 0.013 55 0.145 52 −0.105 27 0.056 63 0.015 81 −0.048 23

𝑍3
3 𝑍−3

3 𝑍0
4 𝑍2

4 𝑍−2
4 𝑍4

4 𝑍−4
4

−0.112 37 −0.044 78 −0.067 75 0.015 81 0.012 50 0.097 60 0.002 60

𝑍1
5 𝑍−1

5 𝑍3
5 𝑍−3

5 𝑍5
5 𝑍−5

5 𝑍0
6

0.068 91 −0.073 36 0.031 85 −0.029 97 −0.010 93 0.004 82 0.015 81

Table 5. The coefficients for each Zernike aberration. The corresponding transmitted
WFE is shown in Fig. 11.

Fig. 11. The transmitted WFE, far-field amplitude, far-field WFE (A.E), far-field WFE
(N.I), and the far-field WFE residuals between A.E. and N.I.. The optical axis is not
compensated. The coefficients are listed in Table 5.

After correcting the optical axis direction using (40), we obtain the updated coefficients of
𝑎±1

1 , with 𝒂1
1 = 0.00145 and 𝒂−1

1 = −0.00709. The corrected far-field amplitude and WFE are
shown in Fig. 12.

Next, we examine two cases where both the static pointing angle and laser jitter are at levels
of 10 𝑛𝑟𝑎𝑑/

√
𝐻𝑧 and 30 30 𝑛𝑟𝑎𝑑/

√
𝐻𝑧. To facilitate the discussion, we approximate (41b)

by performing a Taylor expansion of 𝐽𝑛 (𝑣)/𝑣 and retaining terms up to 𝑣2. In the Cartesian



Fig. 12. The updated transmitted WFE, far-field amplitude, far-field WFE (A.E),
far-field WFE (N.I), and the far-field WFE residuals between A.E. and N.I., whose
optical axis is compensated. The updated values of 𝑎1

1 and 𝑎−1
1 are 0.00145 and

-0.00709, respectively.

coordinate system, we obtain:

𝛿Θ(𝑥, 𝑦, 𝑧)

=
𝜆

2𝜋

(
𝐴0 ( 1

2 − 𝑣2

16 ) + (𝐴1cos 𝜙 + 𝐴2sin 𝜙) 𝑣8 + (𝐴3 + 𝐴4cos 2𝜙 + 𝐴5sin 2𝜙) 𝑣2

48

𝐵0 ( 1
2 − 𝑣2

16 ) + (𝐵1cos 𝜙 + 𝐵2sin 𝜙) 𝑣8 + (𝐵3 + 𝐵4cos 2𝜙) 𝑣2

48

− 𝐴0
𝐵0

)
=

𝜆

2𝜋

(
24𝐴0 + 6𝐴1𝑣𝑥 + 6𝐴2𝑣𝑦 + (𝐴3 − 3𝐴0 + 𝐴4)𝑣𝑥2 + (𝐴3 − 3𝐴0 − 𝐴4)𝑣𝑦2 + 2𝐴5𝑣𝑥𝑣𝑦

24𝐵0 + 6𝐵1𝑣𝑥 + 6𝐵2𝑣𝑦 + (𝐵3 − 3𝐵0 + 𝐵4)𝑣𝑥2 + (𝐵3 − 3𝐵0 − 𝐵4)𝑣𝑦2 − 𝐴0
𝐵0

)
,

(42)

where 𝑣𝑥 = 𝑘
𝑧
𝑟𝑎𝑥 and 𝑣𝑦 = 𝑘

𝑧
𝑟𝑎𝑦. By applying (19), we obtain the noise levels of the coupling

noise within a displacement range of 180 m (60 nrad) and 60 m (20 nrad). Fig. 13 illustrates
the maximum and minimum noise levels in these two cases.

Thus, the above process illustrates the establishment of a transfer function that relates the initial
parameters—transmitted WFE, static pointing angle, and laser jitter—to both the far-field WFE
and the coupling noise from laser pointing jitter. The model presented in this paper provides a
comprehensive framework for discussion.

6. Conclusions and Summary

In this paper, we analytically derive an approximate expression for the far-field diffraction integral
of distorted Gaussian beams based on the Nĳboer-Zernike theory, accounting for the first 21 orders



Fig. 13. The far-field WFE corresponds to the results in Fig. 12. The middle figure
show the noise levels of coupling noise within a pointing angle range of 60 nrad (up)
and 20 nrad (down), respectively. The pointing angles of 60 nrad and 20 nrad are
composed of a 30 nrad static pointing angle plus 30 nrad laser jitter, and a 10 nrad static
pointing angle plus 10 nrad laser jitter, respectively. The figures on the left and right
sides respectively correspond to the minimum and maximum noise levels within the
laser jitter ranges of 30 nrad (up) and 10 nrad (down).

of Zernike aberrations. Within a far-field WFE range of 100 nrad, this approximate expression
achieves an error level of approximately 0.1 pm compared to numerical integration, which is
sufficient to meet the requirements. Additionally, as an analytical formula, it demonstrates
rapid computational response capabilities, making it a useful tool for simulating entire laser link
systems, including TTL noise link analysis.

The approximate expression offers valuable physical insights into how different Zernike
aberrations influence far-field WFE. Through a term-by-term analysis, we find that a second-order
expansion of the distortion terms suffices to meet precision requirements. Building on this,
we calculate the coupling relationships between different orders of aberrations and determine
the contribution coefficients of each coupling term to the far-field WFE. First, we identify that
only certain couplings need to be considered based on the varying contribution coefficients and
we provide theoretical explanations for this finding. Second, we observe that the contribution
coefficients do not decrease with increasing order of the Zernike terms. Third, we propose that
among the lower-order aberrations (𝑛 ≤ 14), 𝑍±2

2 , 𝑍±3
3 , and 𝑍±4

4 primarily couple with each
other while exhibiting weaker coupling with other aberrations. When telescopes are constructed
from materials with low thermal expansion coefficients, their impact on the far-field WFE can be
mitigated. In this scenario, 𝑍±1

3 and axisymmetric aberrations, along with their coupling, emerge
as primary contributors. Subsequently, in our analysis of optical axis correction, we find that
correcting the optical axis offset caused by 𝑍±1

3 through beam tilt results in an increase in the



far-field WFE. Therefore, we conclude that the presence of 𝑍±1
3 significantly influences the level

of far-field WFE and needs to be actively suppressed rather than simply compensated by beam
tilt. These conclusions provide valuable guidance for the design and assembly of telescope.

We have established a noise model for far-field WFE and laser pointing jitter coupling noise,
encompassing three main influencing factors: transmitted WFE, static pointing angle, and laser
jitter. The model utilizes the derived approximate expression to relate the Zernike coefficients of
the transmitted WFE to the far-field WFE, resulting in an approximate noise formula. This result
can be applied not only to the link model of TTL noise, but also facilitates the establishment of a
parameter space that connects the three factors, providing theoretical support for future system
optimization.
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