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Abstract: Space-based gravitational wave observatories, such as LISA, Taiji, and TianQin,
employ long-baseline laser interferometry, necessitating displacement measurement sensitivity
at 1 pm/VHz level. A significant challenge in achieving this precision is the coupling noise
arising from far-field wavefront errors (WFE) and laser pointing jitter. This paper presents a
comprehensive noise model that incorporates three critical factors: transmitted WFE, static
pointing angle, and laser beam jitter. Utilizing the Nijboer-Zernike diffraction theory, we derive
an approximate expression for far-field WFE, ensuring minimal error and efficient computational
performance. The approximate expression has convincing physical interpretability and reveals
how various Zernike aberrations and their coupling impact far-field WFE. Furthermore, the study
identifies that correcting optical axis deviations induced by Z;-'l through beam tilt exacerbates
far-field WFE, underscoring the necessity for active suppression of Z3il. The proposed model
facilitates detailed system simulations of the laser link, evaluates Tilt-to-Length (TTL) noise, and
offers theoretical insights for system optimization.

1. Introduction

Typical space-based gravitational wave detection projects, such as LISA, Taiji, and TianQin,
aim to detect gravitational waves in the low-to-mid frequency band of 0.1 mHz to 1 Hz [1-3].
These projects utilize long-baseline laser interferometry with three-satellite formations as
their fundamental measurement principle, with arm lengths ranging from 108 to 10° m [1-3].
Considering this arm length and considering the strain sensitivity of gravitational waves
upon reaching Earth, the resolution for displacement measurements must achieve a level of 1
pm/ VHz [1-3]. To meet such extreme measurement requirements, the measurement methodology
itself must not only achieve this precision but also effectively eliminate or suppress a significant
amount of noise that can impact measurements within the relevant frequency band.

Far-field WFE and laser pointing jitter coupling noise, as one type of Tilt-to-Length (TTL)
coupling, represent an unavoidable source of displacement noise in measurements [4]. This noise
arises from the interaction between the pointing angle and the far-field WFE of the laser during



inter-satellite link transmission [5-8]. Given that it is impractical to establish an experimental
setup on Earth for beam propagation over millions of kilometers, current research on this issue
primarily relies on theoretical analysis and numerical simulations.

Early research began with Robertson et al.’s estimated formula for the coupling effect of
curvature WFE and beam-pointing errors [5]. Subsequently, Waluschka conducted numerical
computations of the far-field wavefront for LISA’s arm length using simulation software [9].
In 2005, Bender utilized the Fresnel-Kirchhoff diffraction integral to analyze this issue. He
expanded the exit pupil function in a third-order power series and considered the coupling
effects of low-order aberrations, such as defocus and astigmatism, coupled with pointing jitter
on the far-field phase [7]. This work provided an overall estimation of the far-field WFE level
and proposed a transmitted wavefront quality criterion of 4/20. In 2018, Sasso et al. applied
Bender’s method to analyze the coupling relationships between low-order Zernike aberrations
and tilt. They inspected the regions in the far field by adjusting the tip/tilt in the Tx pupil and
used Monte Carlo methods to study the impact of random wavefront distortions on measurement
noise [8]. Based on this model, Sasso et al. and Zhao Y. examined the combined effects of
misalignments and aberrations of the interfering wavefronts on the phase of the heterodyne
signal [10, 11]. Additionally, Zhao et al. extended this method to higher-order aberrations and
investigated the far-field optical path phase on a prototype telescope [12]. Chen et al. conducted
a study on telescope optimization based on the different contributions of aberrations to coupling
noise [13]. Xiao et al. further extended this method to higher-order aberrations, focusing on how
the stationary point helps suppress coupling noise [14]. In 2019, Vinet et al. took an alternative
approach by simplifying the diffraction integral through a first-order expansion of the transmitted
WEFE and numerically solving the derived expression to obtain the coupling relationship between
pointing jitter angles and aberrations [15]. Their analysis revealed varying degrees of influence
from different single aberrations on coupling noise. Additionally, Kenny, Weaver, and Tao
conducted numerical simulations on this issue using numerical integration, the Mode Expansion
Method (MEM), and the Gaussian Beam Decomposition (GBD), respectively [16—18].

We find that the current research has certain shortcomings. While the model by Sasso et
al. simplifies calculations, it may not provide strong physical interpretability. This model does
not fully clarify how individual aberrations and their coupling contribute to the far-field WFE.
Furthermore, while the model equates tip/tilt with pointing, it does not account for the influence
of other odd Zernike aberrations, such as coma, on pointing performance [16]. Vinet et al.’s
analytical calculations using Nijboer-Zernike theory are limited to first-order approximations and
do not discuss the coupling relationships between aberrations. While numerical computations
and simulations yield accurate results, they are time-consuming and hinder rapid responses in the
noise analysis of the entire laser link. Therefore, we aim to overcome these shortcomings. In this
paper, we refer to the analysis of diffraction propagation of a single aberration under point source
conditions, as described in the Nijboer-Zernike theory [?]. We analytically derive the diffraction
formula for distorted Gaussian beams in the far field, obtaining a model for far-field WFE
and pointing jitter noise. This model offers convincing physical interpretability, encompassing
three major factors influencing noise, meeting precision requirements, and providing rapid
computational responses. Specifically, Section 2 introduces the application of Nijboer-Zernike
Theory to address the far-field propagation of distorted Gaussian beams. In Section 3, we present
a comprehensive coupling noise model that incorporates the quality of the transmitted wavefront,
the static pointing angle, and laser beam jitter, along with a derived formula for quantifying
the associated noise levels. Section 4 calculates the contributions of various aberrations to the
far-field WFE, revealing how different aberrations contribute to and couple with each other. This
section also discusses how aberrations affect the optical axis. In Section 5, we present a formula
for the total far-field WFE that incorporates the first 21 Zernike aberrations. Additionally, we
provide an example to illustrate how to apply this formula in the discussion of coupled noise.



Finally, Section 6 provides the conclusions and summary.

2. Nijboer-Zernike Theory and the expression of far-field wavefront error

Far-field wavefront error (WFE) and coupling noise from laser pointing jitter arise from the
following process: A local laser on one spacecraft (S/C1) is emitted through its local telescope,
with the beam assumed to be a truncated Gaussian beam at the telescope aperture. If the wavefront
is considered undistorted—meaning that the emitted wavefront is an ideal plane wave—it will
approximate a spherical wavefront after propagating over millions of kilometers. At this stage,
deviations in the initial propagation direction do not impart additional phase to the top-hat beam
received by the telescope on the receiving spacecraft (S/C2), as illustrated on the left side of
Fig. 1. However, in practice, the emitted beam’s wavefront will be distorted due to various
mechanisms, resulting in a non-ideal spherical wavefront at the receiving end, which introduces
a WFE relative to the ideal spherical wavefront. Changes in the propagation direction of the
beam then couple with these WFEs, causing additional angle-dependent phase fluctuations in the
received flat-top beam, as shown on the right side of Fig. 1, thereby affecting the measurement
accuracy. Since phase fluctuations are directly related to the laser jitter frequency and operate
within the same detection frequency band as the Tilt-to-Length (TTL) noise from the optical
bench, this coupling noise is also classified as TTL noise, as both contribute to displacement
noise in optical path measurements.
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Fig. 1. This schematic diagram illustrates how TTL-wavefront distortion coupling
occurs. On the left, the ideal transmitted beam with jitter propagates into the telescope
aperture of another spacecraft. On the right, the propagation of the beam carrying
WEE:s is depicted. The truncated wavefront is transformed from a spherical wave (left)
to a distorted wavefront (right).

In accordance with this physical model, we describe the far-field WFE as the phase difference
between the distorted Gaussian beam and the ideal Gaussian beam at the receiving side in the
far field. Frits Zernike and Bernard Nijboer developed a diffraction theory [19], which enables
the determination of the electric field of a distorted beam in the image plane, thereby allowing
the phase term to be calculated. First, we define the initial electric field at the aperture of the
transmitting telescope as follows:

E(r;0) = Eo(r;0)e", @)
where E(r;0) is the electric field of an ideal truncated circular Gaussian beam:
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where wy is the waist radius of Gaussian beam and r,, is the aperture radius of telescope. 2, in
(1) is the transmitted WFE, which is described by a combination of a set of Zernike polynomials:

N n
Qulp.O) =), >, arZl(p.6), 3)

n=0 m=—-n
where a)' represents coefficients and Z]' are Zernike Polynomals written with OSA/ANSI

indexing. p = r/r, is restricted to unit disk (0< p <1), and 6 is the azimuth. n —m > 0 and is
even. Zernike Polynomals is a circle polynomials:

R (p)cos (m0), ifm=>0

2 (0:0) = {R;m(P) sin (-m#6), ifm <0 W

R (p) is the radial polynomials:

Iml ¢ N — (_1y(n=ImD)/2 |m| p(Im].0) A2
Ry (p) = (1) P P(n—|m|)/2(1 2p°), (5)
where P,(a’ﬁ ) is the Jacobi polynomial of degree t, and R)'(p) satisfies the orthogonality relation:
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Considering that the pointing angle of the beam is negligible compared to the propagation
distance, the diffraction integral meets the conditions of the paraxial approximation. Consequently,
the electric field in the far field can be represented using Fraunhofer diffraction:

eikze%rz 1 p2n , _ )
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where wg = r, is assumed and v = krar.
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We will discuss the integral:
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We expand e~ and /2 (P:9) within (8) separately. Firstly, for the e P’ part, we have Bauer
formula [20]:

—zcos¢p _ (T % N _
e = () ;( D21+ D1}, (2)Py(cos 9), ©

where 1, 1 is Modified Bessel functions of the first kind, and P; is Legendre polynomial. We set
cos ¢ = 2p* — 1, and use the relation P;(2p* — 1) = RY, (p), it follows:

e P = 1071 Z pmigd 121 (=Dl + 1)11+%(%)Rgl(p). (10)

For the accuracy of the calculation results, expanding it to the second order (I = 2) is sufficient.

Secondly, for the e/« (#-¢) component, we apply a Taylor expansion. The expanded terms

may include cos(sin)(m6), which must be considered in the angular integral. For the angular

integral of each term in the expansion, we can derive the result using Product-to-Sum identities
and Bessel’s integrals:

2
/ cos(sin) (m@)e P (0=¥) 4o = (—iY"2rcos(sin) (my)Jm (vp). (11)
0



And for the radial integral part, after simplification, we handle the following integral:

/0 R (0)RY,(p)Jm(vp)pdp. (12)
For R (p)Rgl (p) we have
l+n—21n
R (PR (p) = > bR (p), (13)
=0
where
l+151"
bi=1,
j=0

and each b; can be determined by Gauss Elimination. By using the relation:

1
/ R (p)Jm(vp)pdp = (~1)"2 m%(v)» (14)
0
finally we can express the integral part of (8) as a linear combination of a series of J,,(v)/v.
For example, by combining Z," and Z!" as ¢}’ R''(p) cos(m (6 — 6))), performing a first-order
expansion for e/« (#-9) part yields the following result derived from (8):

U(r ¢, z) = Uo(r, ¥, 2) + Ui (r, 4, 2), (15a)
Uo(r,l//,z)=Z(21+1)Il+ (= )J”“(V) (15b)
=0
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Results for higher-order expansions can also be derived using the same process. Notably,
Uo(r,y, 7) represents the undistorted part of the Gaussian beam. The far-field WFE, denoted
as 60(r,y, 7), is defined as the phase difference in the far field between the distorted Gaussian
beam and its undistorted counterpart, expressed as:

A (Im{U(r.¢,2)}  Im{U0,¢,2)}

00(r, ¢, 2) = Re{U(r,¢,2)} Re{U(0,¥,2)}

(16)

3. Coupling noise model

The noise level of coupling noise arising from far-field WFE and laser pointing jitter is influenced
by three primary factors: transmitted WFE (or transmitted wavefront quality), static pointing
angle, and laser jitter. This section discusses the correlation between these three factors and the
noise level of the coupling noise using a physical model.

The far-field WFE 6O(r, ¥, z), derived in the previous section, is expressed in Cartesian
coordinates as 6®(x = rcosy, y = rsiny, z). At a fixed distance, the far-field WFE is a function
of spatial coordinates within the plane 6®(x,y,z = L), where L represents the arm length



between the two spacecraft. In the actual physical process, the laser’s pointing angle varies at
the transmitter while the receiver remains stationary. This can be equivalently viewed as the
transmitter’s pointing angle remaining constant while the receiver’s telescope moves within the
plane of §@(x, y, z = L). Given that the pointing angle is very small relative to the arm length,
the horizontal displacement corresponding to the pointing angle can be approximated as a linear
relationship:

r=L-a, a7

where a is the pointing angle. Taking Taiji as an example, with an arm length of 3 Mkm, a change
in the pointing angle of 10 nrad approximately corresponds to a horizontal displacement of 30 m.
Considering that the telescope’s aperture size is only 0.4 m, the difference in WFE distribution
across the telescope aperture is negligible. This is also why the received wavefront is considered
to be a (clipped) plane wavefront, often referred to as a top-hat wavefront. The motion of the
receiver’s telescope within the plane of 6®(x, y, z = L) can be regarded as the motion of a point
within that plane.

Next, the pointing angle can be categorized into static and dynamic pointing angles. The
static pointing angle primarily results from manufacturing or assembly errors of the telescope,
deformation of the mirrors due to thermal effects, or other slow-changing processes while in
orbit. We assume these factors introduce a shift of (xg, yo) on the far-field WFE plane. The
dynamic pointing angles mainly refer to laser jitter, which causes instantaneous changes in the
pointing angle (6, 6,). Additionally, the static pointing angle is associated with the shift on the
plane as described by (17). The level of laser jitter is denoted as J, forming a circular area on
the far-field WFE plane 6O(r, y, z = L), within which the shift caused by the dynamic pointing
angle is confined. Therefore, we can summarize the above model as follows:

WE(6x,0y,) = 6O(L - 6 +x0, L - 0y + yo, 2 = L),

(18)
02 +0,2 < J,

where Wg (6, 6,) represents the possible range of magnitudes for the far-field WFE. It also
indicates the level of phase offset in the received top-hat beam. The noise level of the coupling
noise can be represented by the magnitude of the gradient of the WFE within the circular area,
WE(6y, 6y), which is:

OWE(6x,0y) 2 OWg(6y,0y)
y ) +( y

2
a0, a0, '

6(9)6’9))) = ”V(WE(OXaey))” = \/( ) (19)

We therefore relate the noise level of the coupling noise to the transmitted WFE, static pointing
angle, and laser jitter through (18) and (19).

4. Far field calculation

To obtain the estimation model for coupling noise, we first need to derive an approximate
expression for the far-field WFE to establish the connection. Based on the derivation in Section
2, we know that the effects of aberrations on the far-field amplitude and phase can be expressed
as a combination of Bessel functions. Fundamentally, the undistorted Gaussian beam contributes
Ji(v) to the real part. Therefore, the expression for the far-field WFE takes the form of

Sand,(v)/ [J (V) +2 bme(v)] . To ensure effective detection, the far-field WFE requires that
n m

the phase variation caused by a 10 nrad laser jitter must remain below 1 pm/VHz in the amplitude
spectral density of the measurement noise [21]. As shown in Fig. 2, retaining terms up to J4(v)
is sufficient to meet the required computational accuracy. In addition to the transmitted WFE
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Fig. 2. The ratio of Bessel functions J;,;(v) (m < 6) to J;(v). This ratio is converted to
units of "pm" by multiplying by the coefficient factor "%", where A = 1.064 x 10° pm.
In the figure, v = %rar.

resulting from the telescope’s design, factors such as mirror fabrication, structural assembly, and
thermal effects due to the space environment during orbit also contribute to the transmitted WFE.

Typically, the first 21 Zernike polynomials are adequate to describe these effects, as shown in
Table 1 [22].

4.1. Transmitted wavefront error constraint

For clarity in this paper, we use Peak-to-Valley (P-V) error to quantify the transmitted WFE. Next,
we provide an approximate constraint based on the physical image from Section 3. Previous
studies have shown that the impact of Zg and Z;Z on the far-field wavefront is significantly
greater than that of higher-order aberrations [16]. Therefore, it is reasonable to first impose an
approximate constraint on the transmitted WFE using Zg or Zg—'z. In this case, we choose Zg and

derive an approximate expression for (8) with only Zg aberration:

U(r,g,2) = Up(r i, 2) + Z3(r, 40, 2), (20)
Uo(r,v,z) = ei%ﬂ%(ZN) {IéM +31%M}
% % @1

J J
= e_%n%(Zn) {0‘0ﬂ +T()ﬂ} ,
v v
where

(00, 7o) = (0.58799, 0.28921).



Table 1. The first 21 Zernike polynomials

Order Aberration Term Value
1 X-Tilt Z! pCOS ¢
2 Y-Tilt A ! p sin ¢
3 Defocus z) 202 -1
4 0° Astigmatism Z% p?cos2¢
5 45° Astigmatism Z;? p?sin2¢
6 X-Coma Z, (3p® = 2p) cos ¢
7 Y-Coma z;! (3p> —2p)sing
8 X-Trefoil z3 p>cos 3¢
9 Y-Trefoil Z; 3 p3sin3¢
10 Spherical z? 6p* —6p% +1
11 X-2"4 Astigmatism | Z2 (4p* = 3p?) cos 2¢
12 Y-2"4 Astigmatism Z4_2 (4p* - 3p?) sin2¢
13 X-Tetrafoil z; p*cosde
14 Y-Tetrafoil z* ptsindg
15 X-2"4 Coma zh | (10p° - 12p° +3p) cos ¢
16 Y-2"¢ Coma Z;l (10p° = 12p3 +3p) sin¢
17 X-2"4 Trefoil 253 (5p° —4p3) cos 3¢
18 Y-2"4 Trefoil z3? (5p° —4p3) sin3¢
19 X-Pentafoil Z: p° cos 5¢
20 Y-Pentafoil Zs > P’ sin5¢
21 24 Spherical z) 20p° — 30p* + 12p% - 1

Here we let ;, 1 denote Il+%(%). And
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where
(ag, Tg) = (a9)? (~0.10119, —0.0867631) ,

(ag, ﬂg) = a9 (-0.0964035, —0.607138) + (a3)* (0.00964035, 0.0615342) .

Thus, the expression for the far-field WFE resulting from the single aberration Zg is:

adJi(v) + B33 (v) a9J1(0) + B3J3(0)

(00 + 1 (v) + (10 +T)J3(v) (00 +09)J1(0) + (10 +70)J3(0)

(23)

609 (r, ¥, 2) =

By comparing the result of the approximate expression (23) with the numerical integration
result from (8), we find that, at a transmitted WFE of 1/4 (P-V), the error within a 100 nrad angle
range is approximately 0.18 pm. Additionally, we compare the numerical integration results
obtained from the third-order Taylor expansion of ¢!« (¥-9) in (8) with those obtained from
directly integrating (8). The two error levels are closely aligned, as shown in Fig. 3. Therefore,
the approximate expression is validated.

Angle / nrad
0 50 100

0.00f ———__

-0.05
W (3rd Taylor expansion Numerical
integration vs Numerical integration)

Errors / pm
5
S

[ (3rd Taylor expansion Approximate
expression vs Numerical integration)

045 - - - - - - -

-0.20

0 50 100 150 200 250 300
rim

Fig. 3. The error of the numerical integration obtained from the third-order Taylor
expansion of e%a (0. 0) compared to the direct numerical integration of (8), along with
the error of the approximate expression relative to the direct numerical integration of

(8).

A parameter space can be defined for transmitted WFE, static pointing angle, and laser jitter,
based on the requirement that the far-field WFE remains within 1pm. Figure 4 illustrates the
constraints on laser jitter and transmitted WFE for a single aberration Z?, with a static pointing
angle of 10nrad. Given a laser jitter of 10nrad, the transmitted WFE for defocus must be less than
approximately 1/12. To generalize the model more general, we propose a broader requirement
that the transmitted WFE should be less than approximately 1/10. We require that, under this
transmitted WFE, the error of the approximate expression compared to the numerical integration
is approximately at the level of 0.1 pm within a region of 100 nrad.

4.2. The real and imaginary parts of U(r, v, z)

Next, we derive the real and imaginary parts of U(r,, z). First, we summarize the aberration
terms and their higher-order coupling terms that correspond to either the real or imaginary part
of U(r, ¥, z). In the third-order Taylor expansion of ¢/<a(#-0).

1

. 1
elQa(P;g) =1+ lQa — EQaz - i69u3, (24)
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Fig. 4. The constraints on laser jitter and transmitted WFE for a single aberration,
specifically defocus, under a far-field WFE of 1pm and a static pointing angle of 10nrad.

Odd-order terms introduce / while the even-order terms do not. For first-order terms, all Zernike
terms with odd m introduce an additional i through (11), classifying them as belonging to the
real part of U(r, ¢, z). In contrast, Zernike terms with even m are categorized as belonging to
the imaginary part. For the second-order terms, the coupling terms between the Zernike terms
with odd m do not introduce i in the integral by applying Product-to-Sum Identities and (11).
Thus, they also belong to the real part of U(r,y, z). Similarly, after analyzing the coupling of
third-order terms, we summarize our conclusions in Table 2. These terms contribute differently

Real part of U(r,y, 2) Imaginary part of U(r, ¢, z)
First order Z%“” Ziﬁ
2a1+1 52ar+1 2B\ 528> 2a+1 726
Second order 2" 72, Z By V4 Ny Zy Zy/
. 2a1+] S2a0+1 23+l 2a+152B1 2B 2a1+1 S2ar+1 528 281 2B 2B:
Third order | Zy"" Z, " 2y zZ Z)’l’] Zyz’2 Z,"" 2 z), Zyl’] Zy2’2 Zy}f

Table 2. The aberration terms and their higher-order coupling terms corresponding to

the real and imaginary parts of U(r, ¥, z), where Z%‘”l denotes the Zernike terms Z"*

with odd m, and Z)Z,/,g denotes those with even m.

to the far-field WFE 60O(r, ¥, z), and we can discard those that have negligible contributions.
Based on the subsequent comparison results between A.E. and N.I., retaining only the first two
orders is sufficient to meet the error requirements. For the third-order term, we retain only the

contribution from ZJ.
[ ] Zz’,8
¥

For Zernike terms where m is even, Similar to the derivation of Zg in Subsection 4.1, we
obtain the expressions for each even single aberration term:

72 cos 2 J J
Nz = e bat@my =i Y| |02 10 g O IL o
zZ2 sin 2y v v




J
l(V)+ 2
v

Zg (r,y,z) = e"in? (2m) {i [ag J3‘(}V) ]} , (26)

where
(o3%, B2%) = a5 (0, 0.44817),
0 20\ _ 0
(o9, B2) = a§ (0.00957, 0.11568),
(o3, %) = a3 (0, 0.07240),
(a2, 52) = ad (0, —0.01231).
Since the lowest-order term in the Bessel function expansion of Zf‘ is J5(v), we can
directly discard Zf“. We compared the WFE differences between the Approximate
Expression (A.E.) and the numerical integration (N.I.) of (8), as shown in Fig. 5. In this
calculation, ZJ only considers the first-order expansion, specifically (o), 79) = (0, 0)
and (o), B9) = (—0.096403549, —0.607138a9). Typically, lower-order Zernike aberra-
tions contribute more to the transmitted WFE than higher-order Zernike aberrations. By

considering the contributions of each aberration to the transmitted WFE and the far-field
WEE, as well as the errors in the A.E., we retain only the contribution from Zg .

2a+l
[ ] Zy

For Z%‘”l, similarly, we obtain:

7] cosy

"Nrow,2) = e trt2m) a;‘—h(v)w,f‘—h(v)] : @7)
z! sin v v
z3 cos3

N0 = e bt am {0 [afwwfw] o)
z3 sin 3y v v

where
(o, 731) = o' (0.491 59, 0.17366),
(o3, 7f1) = 3! (-0.086 83, ~0.57829),
(o2, %) = a2 (0, 0.42404),
(0", 721) = a2 (0.00957, 0.11295),

(053’ T;S) =a$? (0, 0.02000) .

We can discard Z;—'S as well. Since Z%‘”l does not affect the imaginary part in the absence
of other coupled aberrations, we cannot directly measure these terms or their errors using
far-field WFE, as we did with Ziﬁ . In this context, we use Zg to estimate their contributions
by adding a term Z%‘”l solely to the real part during the calculation and comparing the
difference between this “WFE” and the WFE of Zg, as shown in Fig. 6. It is important
to note that this does not represent the true level of the far-field WFE for the combined
aberration.
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Fig. 5. The far-field WFE of fo,; (the upper half of each subfigure) and the WFE
difference between the Approximate Expression (A.E.) and the numerical integration
(N.L) of (8) (the lower half of each subfigure). The transmitted WFEs for each aberration

are constrained to 1/10, with ag =

0.418879 and the other coefficients set to 0.314159.

The terms of Zfz and Zfz only display Z% and Z‘%.
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Fig. 6. The Difference between "WFE ,2a+1, ,0” and WFE 0, calculated using A.E..
Y 2 2

a% and a%‘“l are set to be 0.314159. The terms of Z;l and 271,3 only display Z)l, and
Zs,.
Y

We can thus conclude that Z;—'3 and Z;—'3 along with their higher-order terms, can be

di

scarded, while Z¥', Z$!, ZZ!, and their higher-order couplings need to be retained.

n Z2a'+l Z2',B
Y Y

For Z)z,““Z)zf,g , we obtain:

VAVAS cos o oJ.
o = trten i || 20 e O L )
z;'2", sin i ’ v
VAY AAVAY
nen e (r,zp,z):e_%ﬂ%(Zn)
z,'7: 7,'7.}
i|cosy siny s15422(V) +1542J4(V) i [cos3y  sin3y s1222(v)
E . nn’ + ﬁln;n/ - E . n;n’
—siny  cosy v sin3y  —cos 3y

(30)

+B

+1;+2 J4(v)

nn’




zZyz4,

z\zt z'z

3
n

z3

z372,
Z.372,
z3z%
z,37%,
z372,
Z372,

Z37%
zZ,°7%,

And their coefficients are listed in Table 3.

17-4 . .
ZnZn' (r,2) = e_%ﬂ% (27) i cos3y  sin3y ai_1§,i4 J(v) +18:t.1;it4 Ja(v) |
2\-sin3y cos3y /L ™" Yy
31
v cos3Y\ [ 50/a(v AT
) | () =it 2 [ w0 20) | pesoJal )} .6
Zy sin 3y v oy
Z37Z72 Meosw —sin . |
" N rz) = e int (2m) { = v 4 01'3,/12]2(\/) + 322 J4(v) ’
Z,°77 2\siny  cosy JL ™" mnt oy
(33)
2z i [ cos sin T o/
o (r9 l;b, Z) = e_%ﬂ'% (271') i w l’b |:(Yi_3’,i4 2(‘}) +Bi_3’,i4 4(V) ’
Z;3Z—,4 21 _ sing cosy n;n nn "
n
(34)
Z3Z7 (cos3y  —sin3 A |
" () = e 112 (2nm) L v v 1'5,:;2J2(V) + 52 Ja(v) ’
ZJSZ;'Z 2\ sin 3y cos3y n mn %
(35)
%z i [cos —sin T T
n“n (}’, ,ﬁ, Z) — e_%ﬂ'%(Zﬂ') i l’l, l// [a/i.S’;—"“ 2(\/) +'Bi.5’,i4 4(V)] .
Z;5Z—,4 2 sing  cosy n;n wn
n
(36)

We then compared the contributions of each coupling term to the far-field WFE, as shown
in Fig. 7. From the figure, we draw the following conclusions:

z; z? z z
0.23630 0.14754 0.00029 0.02511
0.46072 0.00013 0.12649
Z§3 0.00041 0.00013 0.05514 0.49896 0.00000
Z§1 0.21073 0.03802 0.13692 0.00002 0.37245
Z§3 0.00041 0.09280 0.00013 0.40005 0.03041 0.00000
Z§5 0.00000 0.00024 0.00000 0.00009 0.40525 0.00000

Fig. 7. The contribution of each coupling term Z)Z,‘“'lzi,ﬁ to the far-field WFE.

Coefficients a

2a+1
Y

B

coefficients are equal to 0.157079 except for ag =0.20944.

and ai, are constrained to correspond to 1/20, meaning that all



0 +2 0
Z z; Z

29878, —0.07699),

Z*!| (~0.10598, —0.32764) (_0( 0., 0.42404)
—U., U. 2

(—-0.028 99, —0.163 54)

ZE' | (-0.16382, 0.087 10)

(-0.03849, —0.24559),

(-0, 0.13319),  (70-08177, -0.07757)

73 (=0., 0.230 14) (=0.21202, —0.133 19) (=0., 0.055 54)

.01244, -0.06109),

Z:' | (-0.03446, —0.23512) (_O( 0., 0.00377)
—V., U. 2

(—0.095 54, 0.02704)

z3 (-0., 0.10072) (-0.03036, —0.18144) (—0., 0.14647)

z:5 \ (-0., 0.26567) \

+2 +4 6
zt zt z8

|| (~0.04827, —0.30179),

(L0.. 0.03624), (-0., 0.32709) (=0.004 10, 0.04137)

(=0.15090, 0.08822);

(~0.. 0.17179), (—0., 0.14284) (-0.02069, —0.13051)

73| (<0.01812, =0.17179) (=0.16354, —0.14284)  (=0., —0.00024)

(-0.04487, —0.11836),

(~0.. 0.09928), (-0., 0.02765) (=0.06103, —0.03502)

753 (=0.13108, 0.04993)  (-0.01000, —0.123 60) (-0., 0.05853)

73 (-0, 0.09676)  (0.13284, —0.13899) \

Table 3. The coeflicient list of Z%,“”fo . Each term should be multiplied by the
%,(”1 and aiﬁ
the coefficients (a;=1+> ﬁl,i;.l,;l/ﬂ) and (a3 =52 ﬁ3i,lrf2) in (30).

nn’ nn’

corresponding Zernike coeflicients a ."( )y"and"( )," correspond to

1. The coupling between different terms varies, and not all coupling terms produce
significant contributions, which is quite understandable. For Z%"“Zz{'} , when
[2a + 1| — |28| = 3, the lowest-order term in the Bessel function expansion is J4(v).
Its contribution is very small and acts only as a correction term among other coupling
terms. Additionally, we can disregard low coupling terms that contribute minimally
to the WFE.

2. For Z%‘”lZz/,; with the same « and S, it is often observed that terms with smaller y
and y’ contribute more to the far-field WFE than those with larger y and y’. Therefore,
as the order of Zernike increases, the contribution of aberrations to the far-field WFE
generally shows a decreasing trend; however, this statement does not strictly apply to
the coupling terms. Therefore, the contributions of each coupling term still require
specific analysis.



3. Z5 +2 Z” and Z+4 are easily correctable on the ground, while axisymmetric terms are
not however they may also arise due to thermal stress during in-orbit operations [22].
Since Zlil usually serves as a correction for the optical axis, we can neglect it in
this context. Given that higher-order terms are generally more stable than lower-
order ones, we focus on the lower-order aberrations where n < 14. Among these
aberrations, Z52, Z33, and Z;* exhibit significant coupling primarily with themselves
and relatively weak coupling with other aberrations. If telescopes are manufactured
using materials with low thermal expansion coefficients, their impact on the far-field
WEE should remain at a relatively low level. Conversely, the presence of Z;—'l and
axisymmetric aberrations will be the primary contributors to the far-field WFE.

For Zz"‘“Zz“Z” we only consider ZF' Z#!, ZH ZH, 71 72! and ZF'Z§'. And we obtain:

Y2
171 L
TN (g, z) = e 22 (27)
z,'z}
(37)
_1 [alz.l,;/ilJl(V) +ﬁ1;1n+1f3(v)} 1 cos2y [a2;1n+1J1(V) +,32:,1’;?1J3(V)] ’
2 ’ v 2 —cos 2y ' v
where
(ai} + ri};ﬂ)l = a¥'a¥! (012290, —0.07948) , ( Lixl )2 = a*'a*! (0., 0.22409),
(a]ﬁ;i‘, rf;;i‘)l = a*'a2! (~0.04342, —0.24573) ( Lisl rf;i')z = a*'a2' (0., 0.05774),
(o=, Tﬁyﬂ)l =ai a51 (0., ~0.01867) ,

= at'a' (0.00479, 0.05169), ( sl Ti;,tl)
),=

= a3'a3' (007229, 0.03266)  (o54™", 75!

As what we do for Zz"+1 the difference between the "WFE" of ZM'HZ?;”Jrl and the WFE
of ZJ, as shown in Fig. 8. We can thus conclude that Zj' ZZ! can be discarded, while Z;' Z3!,

Z' 75", and Z5' Z5! should be retained.

4.3. Amplitude and Beam direction

It is reasonable to define the line connecting the beam spot center in the image plane and the
beam origin as the optical axis. The beam propagates along this optical axis. Since the distortion
of the transmitted Gaussian beam is minimal, the spot of the distorted Gaussian beam in the far
field can still be approximated as a Gaussian beam spot. Therefore, we consider the location of
maximum amplitude to be the center of the beam spot.

From the discussion in Subsection 4.2, we see that Z} introduces primary non-spherical
symmetric terms in the real part, causing the beam’s amplitude to deviate from the coordinate
center at the receiving side, as shown in Fig. 9.

We only consider Z:!, Z#1 !, zH 7£!, 71 Z%!, and neglect the terms containing cos 2.
By performing a Taylor expansion of J,,(v)/v and retaining terms up to v, we obtain:

Re{U(r,v,z)} = —av* + bvcosy + cvsiny +d, (38)

where v = %rur, and
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Fig. 8. The Difference between "WFE ZZa1+122a2+1 ZO” and WFE 70 calculated using
AE. a and all az‘“l are set to be 0.314159. The terms of Z+lZ+lonly display
zl 7!

Y14y

a=0.03072-0.00467(al)’ - 0.00467(a;")* - 0.00241alal — 0.00241a; a3,
b =0.06145a; — 0.01085a3 +0.001 20as,
¢ =0.061 45a;1 -0.01085a5" +0.00120a3 ",

d =0.29400 - 0.03072(a!)* = 0.03072(a; ") +0.021 71a' a} +0.021 71a; a3

Thus, corresponding to the location of maximum amplitude, the coordinates of the beam center
_cz
are. (Zakra > Dakrg

We can add a new pair of X-Tilt and Y-Tilt to alil in the transmitted WFE as compensation to

shift the beam back to the point(0, 0), since for the required compensation shift, the following
linear relationship between the pointing angle « and ay 1 holds:

a=—. (39)

Therefore, the new @’} and a’; " are:

(al,al )—(a1 —a, L) (40)
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Fig. 9. The real part of "Uy(r, ¢, z) + Z,ll(r, ¥, z)", where all aﬁl are set to 0.157079.
The upper half of each subfigure is calculated using A.E. while the lower half is derived
from N.L.. The terms of Z)i,1 only display Z;,.

We then validate this result through an example involving double aberrations of Zg“ and Zg,
while also addressing a question related to Z;tl. The coeficients corresponding to case A in Fig.
10 are listed in Table 4. By performing calculations using (40), the resulting deviation of the
optical axis is effectively compensated, as shown in case B of Fig. 10, where the coefficients of
case B have been rescaled to 4/10.

zn z! z! Z) z;!
ay 0.18818 0. 0. 0.15224 0.11061
zr VA z! VA z;!
al 10.18136 0.02592 0.01883 0.14672 0.106 60

Table 4. The coefficient list of cases A and B. The corresponding transmitted WFE,
deviation of the optical axis, and far-field WFE are shown in Fig. 10.

However, correcting the optical axis results in a larger far-field WFE. As shown in Fig. 10,
the pre-correction value is 90.6068 pm, whereas the post-correction value is 102.708 pm. This
result suggests that while correcting the optical axis on the ground may appear to address the
issue of beam tilt, the presence of Z;L] still critically affects the level of far-field WFE. Using
beam tilt to correct the optical axis, in fact, results in an even greater far-field WFE. Therefore, it
is essential to suppress Z;tl itself rather than merely compensating for it with beam tilt.
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Fig. 10. The transmitted WFE, deviation of the optical axis, and far-field WFE of
cases A and B. The transmitted WFE corresponds to /10 in both cases A and B. The
far-field WFE (P-V) of cases A and B are 90.6068 pm and 102.708 pm, respectively.

5. Result

In summary of Subsection 4.2, we derive a formula for the far-field amplitude and WFE that
incorporates the contributions of the first 21 Zernike polynomial aberrations:

E(r.¢,2)| = Re{E(r U, 2)} = raRe {U(r,y,2)} (41a)
A (Im{U(r,y,2)}  Im{U(0,¢,2)}
200D = 5 \Re (U2} ~ Re (U0} @i
Im{U(r,¢,2)} =Ag l( ) + (Ajcos ¢ + Apsin ¢) ( ) + (A3 + Agc082¢ + Assin 2¢) —— (v)
+ (Agcos ¢ + A7sin ¢ + Agcos 3¢ + Agsin 3¢) 4(v)
(41c)
Re{U(r,¥,2)} =By Jl( ) + (B1cos ¢ + B;sin ¢) —— ( ) + (B3 + B4cos 2¢p) —— 53()
v (41d)

JA(V)

+ (Bscos ¢ + Bgsin ¢ + B7cos 3¢ + Bgsin 3¢)

The coefficients A; and B; are provided in Appendix A.

We illustrate the coupling noise model discussion through the following example. In this
example, the randomly generated transmitted WFE is constrained to 4/10 (P V). The coefficients
for each Zernike aberration are listed in Table 5. The transmitted WFE, as well as its far-field
amplitude, far-field WFE, and the comparison of far-field WFEs calculated using A.E. and N.I.,



are all presented in Fig. 11.

1 -1 0 2 -2 1 -1
zr Zl z; Z z z; z! z;

a1 -0.02904 0.01355 0.14552 -0.10527 0.05663 0.01581 —0.04823

3 -3 0 2 -2 4 —4
z Z; Z z z; z z;

—-0.11237 -0.04478 —0.06775 0.01581 0.01250 0.09760 0.00260

1 -1 3 -3 5 -5 0
ZS ZS ZS ZS Z5 ZS Z6

0.06891 -0.07336 0.03185 -0.02997 -0.01093 0.00482 0.01581

Table 5. The coefficients for each Zernike aberration. The corresponding transmitted
WEFE is shown in Fig. 11.
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Fig. 11. The transmitted WFE, far-field amplitude, far-field WFE (A.E), far-field WFE
(N.I), and the far-field WFE residuals between A.E. and N.I.. The optical axis is not
compensated. The coefficients are listed in Table 5.

After correcting the optical axis direction using (40), we obtain the updated coefficients of
afl, with a} =0.00145 and a} 1 = —0.00709. The corrected far-field amplitude and WFE are
shown in Fig. 12.

Next, we examine two cases where both the static pointing angle and laser jitter are at levels
of 10 nrad/Hz and 30 30 nrad/\Hz. To facilitate the discussion, we approximate (41b)
by performing a Taylor expansion of J,,(v)/v and retaining terms up to v2. In the Cartesian
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Fig. 12. The updated transmitted WFE, far-field amplitude, far-field WFE (A.E),
far-field WFE (N.I), and the far-field WFE residuals between A.E. and N.I., whose
optical axis is compensated. The updated values of a{ and al’l are 0.00145 and
-0.00709, respectively.

coordinate system, we obtain:

60(x,y,2)

A Az - %) +(Ajcos ¢ + Apsin @) ¥ + (A3 + A4c08 2 + Assin 2¢)§ Ao

T2 Bo(%—%)+(Blcos¢+B2sin¢)§+(B3+B40052¢)% _B_O

(2440 +6A1vy +6A2vy + (A3 — 3A0 + Ag)vi® + (A3 — 3A0 — Ay, 2 + 24500, Ay
2n 24Bo + 6B1vy + 6Byvy + (B3 — 3Bg + B4)vy? + (B3 — 3By — B4)vy? By

(42)

where vy = %rax and v, = %ra y. By applying (19), we obtain the noise levels of the coupling
noise within a displacement range of 180 m (60 nrad) and 60 m (20 nrad). Fig. 13 illustrates
the maximum and minimum noise levels in these two cases.

Thus, the above process illustrates the establishment of a transfer function that relates the initial
parameters—transmitted WFE, static pointing angle, and laser jitter—to both the far-field WFE
and the coupling noise from laser pointing jitter. The model presented in this paper provides a
comprehensive framework for discussion.

6. Conclusions and Summary

In this paper, we analytically derive an approximate expression for the far-field diffraction integral
of distorted Gaussian beams based on the Nijboer-Zernike theory, accounting for the first 21 orders
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Fig. 13. The far-field WFE corresponds to the results in Fig. 12. The middle figure
show the noise levels of coupling noise within a pointing angle range of 60 nrad (up)
and 20 nrad (down), respectively. The pointing angles of 60 nrad and 20 nrad are
composed of a 30 nrad static pointing angle plus 30 nrad laser jitter, and a 10 nrad static
pointing angle plus 10 nrad laser jitter, respectively. The figures on the left and right
sides respectively correspond to the minimum and maximum noise levels within the
laser jitter ranges of 30 nrad (up) and 10 nrad (down).

of Zernike aberrations. Within a far-field WFE range of 100 nrad, this approximate expression
achieves an error level of approximately 0.1 pm compared to numerical integration, which is
sufficient to meet the requirements. Additionally, as an analytical formula, it demonstrates
rapid computational response capabilities, making it a useful tool for simulating entire laser link
systems, including TTL noise link analysis.

The approximate expression offers valuable physical insights into how different Zernike
aberrations influence far-field WFE. Through a term-by-term analysis, we find that a second-order
expansion of the distortion terms suffices to meet precision requirements. Building on this,
we calculate the coupling relationships between different orders of aberrations and determine
the contribution coefficients of each coupling term to the far-field WFE. First, we identify that
only certain couplings need to be considered based on the varying contribution coefficients and
we provide theoretical explanations for this finding. Second, we observe that the contribution
coefficients do not decrease with increasing order of the Zernike terms. Third, we propose that
among the lower-order aberrations (n < 14), Z3?, Z3*, and Z;* primarily couple with each
other while exhibiting weaker coupling with other aberrations. When telescopes are constructed
from materials with low thermal expansion coefficients, their impact on the far-field WFE can be
mitigated. In this scenario, Z;—'l and axisymmetric aberrations, along with their coupling, emerge
as primary contributors. Subsequently, in our analysis of optical axis correction, we find that
correcting the optical axis offset caused by Z;l through beam tilt results in an increase in the



far-field WFE. Therefore, we conclude that the presence of Z3il significantly influences the level
of far-field WFE and needs to be actively suppressed rather than simply compensated by beam
tilt. These conclusions provide valuable guidance for the design and assembly of telescope.

We have established a noise model for far-field WFE and laser pointing jitter coupling noise,
encompassing three main influencing factors: transmitted WFE, static pointing angle, and laser
jitter. The model utilizes the derived approximate expression to relate the Zernike coefficients of
the transmitted WFE to the far-field WFE, resulting in an approximate noise formula. This result
can be applied not only to the link model of TTL noise, but also facilitates the establishment of a
parameter space that connects the three factors, providing theoretical support for future system
optimization.
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A. A; and B; coefficients

Ao = —0.096 4043 +0.009 64(543)3 +0.009 5743, (43a)
Ay =

0.10598a;a3 +0.14939a,a3 +0.14939a; 'a5* + 0.163 82adaj + 0.019 25a3a3+

0.106 01a3a3 +0.01925a5%a;" +0.10601a,2a;> - 0.028 99a,al +0.081 77alal+

—0.024 13ajaj +0.07545a%aj + 0.009 06a3a; + 0.081 77azay — 0.024 13a; ' ay*+
0.07545a5 " a;? +0.009 06a5°a; > +0.08177a;a;* — 0.034 46aal — 0.006 22a3al+
0.095 54aal +0.02244a%al — 0.015 18a3a3 + 0.065 54aa? +0.005 00a;ai+

0.066 42a3a3 — 0.006 22a52as" +0.022 44a;%as" - 0.015 184,25 +0.065 54a; *as >+
0.00500a;*a5> +0.066 42a;*a3> +0.004 10ajal — 0.020 69a3a? +0.061 03alal,

(43b)

Ay =

0.10598a;'a) — 0.14939a; a3 +0.149 39a}a;* + 0.019 25a,2a} - 0.106 01a; a3+

0.16382a%a;" —0.01925a3a;" +0.106 01a3a;> — 0.028 994 'al +0.081 77a; ' al+

0.024 13a; ' aj - 0.07545a5 " a} +0.009 06a;a; — 0.08177a;>ay — 0.024 13aja; >+ @0
C

0.07545a3a;* - 0.009 06a3a;> +0.081 77a3a;* — 0.006 22a;%al +0.022 44a; *al+

0.015 18a5%a3 — 0.065 54a} a3 +0.005 00a; a2 — 0.066 42a;*a3 — 0.034 46a5a5 '+

0.006 22a3a5" +0.095 54a%as" - 0.02244a3a5" - 0.015 18a3a5°> +0.065 S4ajas -

0.005 00ajas> +0.066 42aza5” +0.004 10a; ' a — 0.020 69a3 ' al +0.061 03a5 'a?,

A; = —0.607 1443 +0.061 53(ag)3 +0.11568a40 - 0.01231ay, (43d)

Ay = —0.448 17a3 +0.072 4043, (43e)

As = —0.448 17a;% +0.07240a} %, (43f)



Ag =
—0.327 64a}a) - 0.03849a} a3 — 0.038 49a; ' a;? +0.087 10ada} — 0.122 80a3al-
0.066 59a3a3 — 0.12280a5%a;" - 0.066 59a5%a;> - 0.163 54aja) — 0.077 57a3a-
0.15090a;aj +0.044 11alaj — 0.085 89a3a; — 0.07142a3a; — 0.15090a; ' a; *+
0.044 11a3'a;? - 0.08589a; a;* — 0.07142a;a;* - 0.235 12a%al — 0.030 54ajas+
0.027 04aal — 0.059 18ajas — 0.090 72a3a3 +0.024 97a3a3 — 0.061 80a,a3—
0.06949aa3 — 0.030 54a5%a5" - 0.059 18a;%a5" - 0.090 72a;2as? +0.02497a; a5~
0.06180a;*as? - 0.06949a;*a5 +0.041 37a1af — 0.130 51aja — 0.03502a3ay,

(43g)
A=
—0.32764a;'a) +0.03849a; 'a; — 0.038 49a}a;* — 0.122 80a; *ay + 0.066 59a; *a3+
0.087 10aa; " +0.12280a5a;" - 0.066 59a5a;> — 0.163 54a; 'a) — 0.07757a5 " al+
0.15090a; 'a; — 0.044 11a3'a; — 0.08589a3°aj +0.07142a5>a} — 0.15090a}a; >+
0.044 11aja;” +0.08589a3a;* — 0.07142a3a;"* — 0.030 54a;%al — 0.059 18a;%ai+
0.090 72a;%a — 0.024 97a; a2 — 0.061 80a; *al + 0.069 49a} *a3 — 0.235 12aJa5 '+
0.03054a3a5" +0.027 04ajas' +0.059 18ajas "' — 0.090 72a3a5> +0.024 97ajas >+

0.061 80ajas” —0.06949a5a5> +0.04137a; ' ad - 0.13051a3 'al - 0.035 0245 'al,
(43h)

Ag =

—0.21202a;a3 +0.21202a; 'a;? - 0.066 59a3a} + 0.066 59a5%a;"' - 0.018 12aja;-

0.08589a%aj +0.018 12a; 'a;? +0.085 8945 'a;? — 0.001 89a3al — 0.049 64ajal+

0.001 89a5%a5" +0.049 64a;%as’,

Ag =

_ -1.2 1 -2 -2 1 _ 2 -1 _ -1.2
0.21202a;'a3 - 0.21202a}a;* - 0.066 59a;a} — 0.066 59a3a;' - 0.018 12a; ' a’

0.08589a3'a; — 0.018 12a;a;* — 0.08589a%a;* — 0.001 89a;%al — 0.049 64a; *al-

0.001 89a3a5" —0.049 64a;%as’.

(43i1)

(43))
By = 0.58799 — 0.06145(a)* = 0.06145(a7")” = 0.101 19(a2)* +0.021 714’ al+ )
0.02171a;'a;",
By = 0.49159a; — 0.086 83a} +0.009 5744, (44b)
B, =0.49159a;" - 0.08683a3" +0.009 57a5", (44c)
By =0.28921+0.03974(a!)’ +0.03974(a;")” - 0.086 76(a2)” +0.122 86a a !+ )
0.12286a;'a3",
By =0.11204(a})? +0.11204(a;")* +0.028 87a}al +0.028 87a; a3 !, (44e)
Bs =0.17366a; — 0.57829a} +0.112 954, (44f)

B =0.17366a;"' - 0.57829a;" +0.1129545 ", (449)



B7 = 0.42404a3, (44h)

Bg = 0.42404a3°, (44i)
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