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ABSTRACT

Understanding the emergence of cooperation in spatially structured populations has advanced significantly in the context of
pairwise games, but the fundamental theory of group-based public goods games (PGGs) remains less explored. Here, we
provide theoretical conditions under which cooperation thrive in spatial PGGs on any population structure, which are accurate
under weak selection. We find that PGGs can support cooperation across all kinds of model details and on almost all network
structures in contrast to pairwise games. For example, a class of networks that would otherwise fail to produce cooperation,
such as star graphs, are particularly conducive to cooperation in spatial PGGs. This fundamental advantage of spatial PGGs
derives from reciprocity through second-order interactions, allowing local structures such as the clustering coefficient to play
positive roles. We also verify the robustness of spatial PGGs on empirical networks where pairwise games cannot support
cooperation, which implies that PGGs could be a universal interaction mode in real-world systems.

Cooperation is essential for the emergence of complex systems to a higher level1–3. To answer the question of how individual
selfishness leads to selfless cooperation in evolution, many theories have been developed, such as evolutionary games on spatial
structures (also known as networks or graphs). When individuals interact with their neighbors and learn the strategy with high
payoffs, the prosocial cooperation strategy can emerge through spatial reciprocity4. Over the past three decades, agent-based
simulations of spatial evolutionary game theory have revealed numerous mechanisms that can promote cooperation5, 6. On
the other hand, the fundamental theory of pairwise games, initially on the regular graphs7–9, has developed to identify the
conditions for cooperation success on any spatial structure10–12—some network structures are more conducive to cooperation
than others13, 14.

However, pairwise games were limited in capturing diverse natural and social phenomena such as the nonlinear mech-
anism15, 16. Real-world interactions may involve more than two individuals. The evolution of cooperation in such group
interactions is better described by multiplayer games17. Applying the framework of spatial evolutionary dynamics, a natural
approach is that individuals organize groups with their neighbors and play multiplayer games within such groups. In this
way, individuals participate not only in the game organized by themselves but also in the games organized by their neighbors.
Individuals take averaged or accumulated payoffs obtained in these games for comparison in strategy updates18. This spatial
principle can be applied to any multiplayer game19, including the public goods game20 and others21, 22.

The public goods game (PGG) is among the most fundamental multiplayer games, originating from the tragedy of the
commons23. Players choose whether to contribute to the common pool. All contributions are multiplied by a synergy factor
and then evenly distributed among all players. From a group perspective, the amplification of contributions ensures they are
rewarded. However, from an individual perspective, one can still receive the equal share without contributing. This results
in higher payoffs for non-contributors and incentivizes individuals not to contribute. Apart from human experiments24–27,
previous research on PGGs primarily relies on agent-based simulations20, 28. Although the agent-based simulation allows for
great flexibility in studying new mechanisms, it also requires intensive computational resources and is difficult to identify the
underlying principles behind the phenomena. Therefore, people also attempted to analyze the numerous proposed mechanisms
at a theoretical level29–34. The feasibility of this large body of potential work depends on the support that the fundamental
mathematical theory can provide.

The most advanced fundamental theory for spatial PGGs still remains on regular graphs. There is no efficient algorithm for
general selection strength due to computational complexity35, but a feasible way is to study the case in the weak selection limit36.
On this basis, Li et al.37, 38 proposed the theory of PGGs in infinite structured populations through pair approximation, although
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Figure 1. The spatial public goods game (PGG) on a general network. a, Each agent organizes a PGG in the group of itself
and its neighbors. b, In each PGG, payoffs for cooperation and defection are calculated by Eq. (1). Obviously, πD > πC,
defectors always have higher payoffs than cooperators, seemingly driving cooperation towards defection. c, Since each agent
organizes a PGG, an agent plays not only the PGG organized by itself, but also the PGGs organized by its neighbors. We
average the payoffs from these PGGs as an agent’s actual payoff. d, The emergence of spatial reciprocity. For the presented
two agents, their actual payoffs fC > fD when r > 360/89, driving defection towards cooperation.

this approximation was unable to capture the effect of clustering coefficients and higher-order interactions. Su et al.39, 40

addressed this limitation and further identified the theory of PGGs in finite structured populations. Both of these theories were
confined to homogeneous network structures, where all individuals have the same number of neighbors. The most general
results on heterogeneous networks were still lacking.

Here, we develop the fundamental theory for the evolution of cooperation in spatial PGGs on any population structure.
We identify the critical synergy factor for cooperation success on different network structures, which is accurate under weak
selection. With the proposal theory, we examine a large number of networks, finding that a class of structures, especially the star
graph, significantly facilitates cooperation in spatial PGGs. We also explore spatial PGGs on a series of random networks, from
random regular, small-world, to scale-free, verifying the general effects of local structures, such as the clustering coefficient, on
cooperation. Finally, we analyze all small networks and four empirical networks from the Gahuku–Gama alliance structure to
body contact interactions among North American barn swallows, where cooperation consistently emerge on these structures
across various model details in spatial PGGs, while in pairwise games it cannot. The results imply that spatial PGGs are the
possible universal interaction modes in the real world compared to pairwise games.

Results
PGGs on any population structure
In a public goods game (PGG) of G players, one can choose either cooperation (C) or defection (D). A cooperator pays a
cost c and contributes to the common pool, while a defector does not pay or contribute. Suppose there are gC (0≤ gC ≤ G)
cooperators, then the total contributions to the common pool are gCc. These contributions are multiplied by a synergy factor r
(r > 1) to produce the public goods rgCc, which are evenly redistributed among all players, with each player sharing rgCc/G.
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Therefore, the payoffs for cooperation and defection, πC and πD, are

πC =
rgCc

G
− c, (1a)

πD =
rgCc

G
. (1b)

On the one hand, since the synergy factor r > 1, cooperation brings more benefits from the group perspective. On the other
hand, defection can also share the public goods produced by cooperators, so the payoff of defectors is higher than that of
cooperators. The social dilemma thus emerges in this scenario.

In this work, we study the PGG on general indirect and unweighted network structures. Suppose a population of size
N, with the node set denoted by N = {1,2, . . . ,N}. Each node represents an agent. The relation between agents i and j is
represented by ki j: if they are neighbors, ki j = 1; otherwise, ki j = 0. The number of agent i’s neighbors is thus ki = ∑ j∈N ki j.
For convenience, we denote the neighbor set of agent i as Ni: if j is i’s neighbor (ki j = 1), then j ∈Ni.

On such a network structure, each agent i organizes a group of Gi = ki +1 members, involving its neighbors and itself
(Fig. 1a). A PGG is played in this group, and the payoffs are calculated according to Eq. (1) (Fig. 1b). Also, agent i participates
in ki PGGs organized by its ki neighbors. In summary, the agent i plays 1+ ki = Gi PGGs organized by itself and its neighbors.
We take the averaged payoffs that agent i receives from these Gi PGGs as the actual payoff, fi = (1/Gi)∑ j∈Gi π

j
i (Fig. 1c),

where π
j

i denotes the payoff that agent i receives in the PGG organized by agent j and Gi = {i}∪Ni denotes the group
organized by agent i. The actual payoffs fi have an influence on strategy evolution (Fig. 1d).

In each elementary step, a random focal agent i is selected to update its strategy. The actual payoff fi is calculated and
transformed to fitness, Fi = exp(δ fi)

14, 19. Here, 0 < δ ≪ 1 is a weak selection strength since the explored game dynamics play
only marginal roles in the complex real world. The neighbors of agent i also have their actual payoffs and fitnesses calculated
for comparison. Commonly used update rules, such as pairwise comparison (PC)41, death-birth (DB)7, or birth-death (BD)42,
vary in details but follow the same principle that strategies with higher payoffs have an advantage to propagate. We present the
PC rule here as an example and have other update rules in Supplementary Note 1. The focal agent i selects a random neighbor
j ∈Ni and adopts the strategy of agent j with a probability

Wi← j =
1

1+ exp(−δ ( f j− fi))
. (2)

Otherwise, agent i keeps the current strategy unchanged. The probability in Eq. (2) can also be interpreted as Wi← j =Fj/(Fi+Fj),
with the probability of keeping the strategy understood as Fi/(Fi +Fj).

We move to the next elementary step, where another random focal agent i is selected to update the strategy, and this process
continues (Methods). We track the fraction of cooperators ρC in the population, which changes over time and may reach steady
states after sufficient steps.

Conditions for cooperation success
Although the cooperation fraction could fluctuate in non-equilibrium intermediate states for a very long time under a non-
marginal selection18, it often quickly reaches a fixation state under weak selection. There are only two fixation states, full
cooperation (ρC = 1) and full defection (ρC = 0).

To define when natural selection favors cooperation, we first consider the case where selection is absent, i.e., neutral drift
(δ = 0), where the two strategies are indistinguishable. In a full defection population, a random mutant cooperator has a certain
probability to propagate and flip the population to full cooperation, and vice versa. This probability is called the fixation
probability. On heterogeneous networks, the fixation probability may vary for different initial mutant nodes, despite equal
chances for each node to start as the mutant. The average fixation probability over all nodes is 1/N11. In this way, we can
define selection favoring cooperation (or evolution favoring cooperation): On the basis of neutral drift, if a marginal effect of
spatial PGGs through a weak selection strength (0 < δ ≪ 1) has a tendency to increase the average fixation probability of a
mutant cooperator (i.e., make it exceeds 1/N), then evolution favors cooperation.

We find that evolution favors cooperation in spatial PGGs once the synergy factor r exceeds a critical value r⋆. The critical
synergy factor r⋆ depends on the network structure and model details. Under the PC update rule, the condition for cooperation
success on any network structure is

r >
τ(1)

ϒ(1) . (3)

Here, τ(n) = ∑i, j∈N ki p
(n)
i j τi j and ϒ(n) = ∑i, j∈N ki p

(n)
i j ϒi j can be obtained on the given network structure. First, p(n)i j is the

probability of arriving at node j after n-step random walks starting from node i. Second, the values of τi j between nodes i and j
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can be determined by solving the following linear equations with τ ji ≡ τi j:
τi j = 1+

1
2ki

∑
l∈Ni

τ jl +
1

2k j
∑

l∈N j

τil , if j ̸= i,

τi j = 0, if j = i.
(4)

Third, the values of ϒi j between nodes i and j can be calculated by these τi j values:

ϒi j =
1
Gi

(
τi j +∑l∈Ni(τ jl− τil)

Gi
+ ∑

l∈Ni

(τ jl− τil)+∑ℓ∈Nl
(τ jℓ− τiℓ)

Gl

)
. (5)

Note that ϒii = 0 because τii = 0. However, usually ϒi j ̸= ϒ ji due to the various group sizes on heterogeneous networks.
We are thus able to determine the cooperation condition for spatial PGGs on all network structures. Similar to Eq. (3), we

also identify the condition under the DB rule, which is r > τ(2)/ϒ(2). See Supplementary Note 1 for the conditions under the
BD rule and all theoretical deductions for other model details.

Theoretical networks
We start the discussion from theoretical networks, which are uniquely determined by their network parameters. The conditions
for cooperation success in spatial PGGs can be expressed as a function of these network parameters.

A simple example is the star graph, composed of one hub and n leaves (Fig. 2a). We find that star graphs consistently
promote cooperation in spatial PGGs for r > 4 under all update rules (and in the infinite population limit n→ ∞). This differs
from the previous conclusion in pairwise donation games (DGs), where cooperation cannot emerge on star graphs10, and the
so-called graph surgery, such as connecting the hubs of two stars, was a way to rescue cooperation in pairwise games. Here, if
we further connect two hubs, we get a super structure to support cooperation in spatial PGGs: With a variation of model details
(accumulated instead of averaged payoffs), the condition for cooperation success is r > 1, that is, cooperation is maximally
favored.

The intuition of r⋆ = 4 for star graphs can be interpreted as 2×2, two groups for a leaf times two players in the group
organized by the leaf. We explain this under the DB update rule, which has r⋆ ≡ 4 regardless of population size. Since the focal
agent’s payoff does not influence strategy updates (only neighbors compete for the focal vacant position), a focal leaf always
takes the strategy of the hub neighbor. On the other hand, when the hub updates, the competition happens among all leaves and
is independent of the hub. Therefore, the hub’s payoff does not work, and we only need to discuss the competition among all
leaves. A leaf participates in 2 PGGs, organized by itself and the hub neighbor. In the PGG organized by itself, the payoff
is r(1+ xH)c/2− c if cooperating or rxHc/2 if defecting (xH = 1 if the hub cooperates and xH = 0 if it defects), where the
overlapping term rxHc/2 can be eliminated. In the PGG organized by the hub, the payoff is rgCc/(n+1)− c or rgCc/(n+1),
where the overlapping term rgCc/(n+1) can be eliminated. In this way, a cooperator leaf has a higher payoff than a defector
leaf if and only if (rc/2−2c)/2 > 0 or r/2−2 > 0. That is, r > r⋆ = 2×2 = 4.

On the L×L square lattices of different neighborhoods (G = 5 and G = 9) with periodic boundary conditions, our results
meet with the previous work on regular networks31, 40 (Fig. 2b). Observing these results, we notice that cooperation conditions
on star graphs could be even more advantageous than regular graphs, as the critical synergy factor rises with group size on
regular graphs but remains constant on star graphs. For example, the square lattice of G = 9 has r⋆ ≈ 5.79 under death-birth,
which is worse than the constant r⋆ = 4 of the star graph.

Fig. 2b also shows results on more heterogeneous networks. For m fully connected hubs with n leaves on each, we have
r⋆ = 4m/(2m−1) (PC update) and r⋆ = (12m−4)/(9m−7) (DB update) for large n, which are r⋆ = 2 and r⋆ = 4/3 for large
m. As another minor extension, for ceiling fans with n fans (each has 2 leaves), we have r⋆ = 21/4 for PC update and r⋆ = 27/8
for DB update. The DB update promotes cooperation on ceiling fans, while the PC rule inhibits it (compared to the original star
graph). This is because the DB rule can utilize the clustering coefficient to promote cooperation in spatial PGGs, which will
be explained in the next section. Our predictions for these theoretical networks are also validated by agent-based simulations
under different update rules (Fig. 2c).

General roles of local structures
Next, we investigate the general roles of local structures on classic random networks, from random regular (ER), small-world
(SW), and scale-free (BA) by Fig. 3a–c. These networks are randomly generated by given parameters, hence the need of
studying a lot of random structures under the same network parameters.

Random regular networks reflect the effect of average degree (Fig. 3a). We use the Erdős–Rényi (ER) algorithm43 to
generate random regular networks. Among N = 100 nodes, there can be at most N(N−1)/2 edges. Let the probability of an
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Figure 2. Cooperation conditions for spatial PGGs on homogeneous and heterogeneous networks. a, Star graphs support
cooperation in PGGs as simple as when r > 4, and the essence of which is 2×2: There are 2 groups for a leaf, with 2 players
in its own group. When using accumulated payoffs, connecting the hubs of two or more star graphs leads to r⋆accu = 1 under the
DB rule, which maximally supports cooperation. b, Comparison with other networks,including square lattices with von
Neumann (left) and Moore (right) neighborhoods, joint stars with any number of hubs, and ceiling fans. The r⋆ values reported
here are for infinite population size; see Supplementary Note 2 for finite size. c, Agent-based simulations confirm the
theoretical predictions on L = 5 square lattice with von Neumann neighborhood, n = 9 star, m = 3 & n = 9 joint stars, and
n = 9 ceiling fans. The dots represent the average cooperation fraction in the steady states (Methods), while the dashed lines
are theoretical r⋆ over which ρC > 1/N.

edge existing be p, then the average degree of the network is approximately ⟨k⟩ ≈ p(N−1), which increases with p. We find
that the critical synergy factor in spatial PGGs increases with p, which indicates that an average degree increase is detrimental
to cooperation. This is consistent with the conclusions in pairwise games7, 10.

Small-world networks (SW) reflect the role of network cohesion, measured by clustering coefficients (Fig. 3b). We use the
Watts–Strogatz algorithm44 to generate small-world networks. Starting from a ring network of N = 100 where each node has
2d neighbors within distance d = 2 on both sides. Then, each node rewires the other end of each edge with probability p (the
same edge cannot rewire twice; no self-loops or duplicate edges). The clustering coefficient, measuring network cohesion, is
approximately 3(d−1)

2(2d−1) (1− p)3 (accurate in large populations)47, which decreases as p increases. The critical synergy factor
r⋆ decreases with p, which indicates that network cohesion promotes cooperation. This result is consistent with the previous
conclusions on regular graphs40 (Supplementary Note 2), which can be understood as an impact of “higher-order interactions”48.
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Figure 3. Effects of local structures on cooperation in spatial PGGs. a, Critical synergy factor r⋆ as a function of
connecting probability p on random regular graphs (ER)43. The increasing average degree inhibits cooperation. b, r⋆ as a
function of rewiring probability p on small-world networks (SW)44 with d = 2. The increasing clustering coefficient promotes
cooperation. c, r⋆ as a function of generated degree distribution heterogeneity γ on scale-free networks (BA)45, 46 with m = 2.
The increasing degree heterogeneity initially promotes but ultimately inhibits cooperation. In a–c, each point on dashed lines is
the average result of 1,000 randomly generated networks (totaling 58,000 in a, 101,000 in b, 101,000 in c). All networks are of
size N = 100 and are connected. d, Agent-based simulations on selected sample networks confirm theoretical predictions. For
ER, p = 4/99; for SW, d = 2, p = 0.5; for BA, m = 2, γ = 2. e, Visualization of the sample network structures in agent-based
simulations.

Notably, network cohesion only significantly promotes cooperation under the DB rule. On the one hand, agents interact
with second-order neighbors in spatial PGGs (while pairwise games only involve first-order neighbors). On the other hand,
the essence of DB update is competition with second-order neighbors, while the PC rule is with first-order neighbors9. The
combination of second-order game interactions and strategy competitions provides enough reach to be influenced by triangle
motifs and network cohesion.

Scale-free networks reflect the impact of degree heterogeneity on cooperation (Fig. 3c). We use the algorithm proposed
by Krapivsky et al.46, which is an improvement of the Barabási–Albert (BA)45, to generate scale-free networks. We start
with m = 2 isolated initial nodes. The remaining N−m = 98 nodes then join the existing network one by one. Each new
node selects m existing nodes (hence the approximate average degree ⟨k⟩ = 2m(1−m/N)). The probability of selecting
node i is proportional to ki

γ , where γ is the strength of preferential attachment, determining the degree heterogeneity. When
γ = 1, we reduce to the standard BA scale-free network. We find that increasing degree heterogeneity γ initially slightly
promotes cooperation but ultimately hinders cooperation. In other words, a moderate network heterogeneity is most conducive
to cooperation49, which is more pronounced under the DB rule. This is different from some previous studies on pairwise
games50, 51

The conclusions are robust and could be more subtle across other model details (Fig. S2). The theoretical results on these
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random networks are also supported by agent-based simulations (Fig. 3d) on selected structures as shown in Fig. 3d. According
to these simulations with consistent average degrees, the small-world network (⟨k⟩= 4) is most conducive to cooperation, the
random regular (⟨k⟩ ≈ 4) is secondary, and the scale-free (⟨k⟩= 3.84) is least conducive.

0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 98.64% 1.31% *

DB 99.12% 0.83% *

BD 99.06% 0.89% *
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DG

PC

(All update rules)

DB

BD

Best networks for PGG Worst networks for PGG

…

…

…

Figure 4. Cooperation emerges consistently in spatial PGGs on almost all networks under different update rules,
outperforming pairwise DGs. a, Among all 12,111 networks of sizes 3≤ N ≤ 8, the fraction of networks classified by their
critical synergy factors. Almost all networks have 0 < r⋆ ≤ 30 in supporting cooperation. The symbol * means that the only
structure that does not support cooperation is the fully connected network. In contrast, for pairwise DGs, cooperation is only
possible under DB update, with more than half of networks not supporting cooperation. b, The ranks of all 11,117 networks of
size N = 8 in supporting cooperation for PGGs and DGs under PC and DB update rules. The star graph ranks the top 0.97%
(PC) and 7.11% (DB). The results in spatial PGGs are consistent under different update rules, while in pairwise DGs they are
quite different. c, The best and worst networks of size N = 8 for cooperation in spatial PGGs. The best networks differ with
update rules. The worst two networks are consistent under all update rules, which are the fully connected (right) and a similar
network (left).

Fundamental advantages of PGGs
We further investigate the cooperation conditions of spatial PGGs on all small networks. For population sizes 3≤ N ≤ 8, there
are 2 (N = 3), 6 (N = 4), 21 (N = 5), 112 (N = 6), 853 (N = 7), and 11,117 (N = 8) possible network structures, respectively.
The critical synergy factors on these 12,111 networks are summarized in Fig. 4a. There are 98.64% (PC), 99.12% (DB), and
99.06% (BD) networks where the critical synergy factors are 0 < r⋆ ≤ 30. The conditions for cooperation success are relaxed
on almost all network structures under various update rules. There are only a few networks (1.31% for PC, 0.83% for DB,
and 0.89% for BD) with strict cooperation conditions of r⋆ > 30. The last category is r⋆ < 0 or r⋆→ ∞ (we also numerically
categorize r > 103 as r→ ∞ here). When r⋆ < 0, the cooperation condition becomes r < r⋆ and cooperation is impossible for
meaningful r > 1. The symbol * means that the only network structure that does not support cooperation in spatial PGGs is the
fully connected network.

In comparison, cooperation cannot thrive well in pairwise interactions, with the donation game (DG)10 as an example.
A cooperator donates b to the other player by paying c, where b > c. The studied quantity here is the benefit-to-cost ratio,
b/c, which has a critical value b/c > (b/c)⋆ over which cooperation is favored. We find the critical values (b/c)⋆ fall within
unfavorable intervals. Under PC and BD updates, no network can support cooperation ((b/c)⋆ < 0 or (b/c)⋆→ ∞ for 100%).
Under the DB update, more than half networks (51.52%) cannot support cooperation, with only 31.65% of structures having
relaxed cooperation conditions. These conclusions on group PGGs and pairwise DGs remain valid if we use accumulated
payoffs (Figs. S3 and S4).

From these insights, we see a fundamental advantage of spatial PGGs, that cooperation can emerge on all network structures
(excepted fully connect) and under various update rules, which outperforms pairwise DGs. In the emergence of cooperation,
two-step random walks play a key role because the second step may loop back and generate personal benefits. The essence
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of PC and BD updates is the competition between first-order neighbors (r⋆ = τ(1)/ϒ(1)), while DB update is the competition
between second-order neighbors9 (r⋆ = τ(2)/ϒ(2)). This is the reason why only the DB rule can produce cooperation in pairwise
DGs. However, in spatial PGGs, agents have already interacted with second-order neighbors by playing the games organized by
neighbors. Being one order higher in payoff calculation, it compensates for the deficiency of the single order under the PC and
BD updates in strategy competition. This compensation effect by second-order group organizations explains the fundamental
advantage of spatial PGGs that cooperation can emerge under all update rules with even the minimal order of competition.

We show the ranks of all 11,117 networks of size N = 8 under PC and DB rules in Fig. 4b. Networks with smaller critical
synergy factors r⋆ are more advantageous for cooperation success and rank earlier. We see that PC and DB updates show
consistency in their rank trends, with the DB rule slightly more favorable for cooperation. In contrast, the ranks in pairwise DGs
are quite different under PC and DB rules. This is curious, since there is no qualitative difference between these update rules,
which consistently assume the advantages of high payoffs in strategy evolution. Here, spatial PGGs show another fundamental
advantage, that they perform consistently across various details in update rules.

Additionally, it is worth mentioning that the star graph ranks in the top 0.97% and 7.11% for the PC and DB updates, which
agrees with our previous conclusion that star graphs are among the most useful networks for cooperation in spatial PGGs. More
generally, we present the best and worst networks of size N = 8 as shown in Fig. 4c. The best networks vary in different update
rules, but they all have low degrees. From BD, PC, to DB rules, the best networks shift from linear to star-like in shape. The
worst networks are consistent across all update rules, which have high degrees, from fully connected to similar structures.

Robustness of PGGs in the real world
The fundamental advantages of spatial PGGs were presented on small networks of sizes N ≤ 8, but we are also interested in the
robustness of these advantages in large real-world systems. Here, we utilize four empirical network datasets and calculate the
critical synergy factors for cooperation success on these real network structures (Fig. 5). The results are presented across various
model details, including three update rules (PC, DB, and BD) and two payoff calculations (averaged (ave) and accumulated
(accu)).

The first two scenarios are human societies, including a pre-modern and a modern social structure. The pre-modern example
is 16 tribes of the Gahuku–Gama alliance structure of the Eastern Central Highlands of New Guinea52, 53 (Fig. 5a), with
normalized critical synergy factors r⋆/⟨k⟩= 1.83∼ 2.33 in PGGs and benefit-to-cost ratios (b/c)⋆/⟨k⟩< 0 & (b/c)⋆/⟨k⟩ ≥
23.26 in DGs. The modern social structure is 29 seventh-grade students in Australia, connected by whom they would prefer to
work with54 (Fig. 5b), with normalized critical synergy factors r⋆/⟨k⟩= 1.44∼ 2.13 and benefit-to-cost ratios (b/c)⋆/⟨k⟩< 0
& (b/c)⋆/⟨k⟩ ≥ 12.28. The third scenario is an ecological structure, the trophic interactions among 69 major taxonomic
groups of the various everglades habitats in South Florida ecosystems52, 55, 56 (Fig. 5c), which has r⋆/⟨k⟩ = 1.37 ∼ 2.03
and (b/c)⋆/⟨k⟩ < 0 & (b/c)⋆/⟨k⟩ ≥ 17.44. The last scenario is an animal social network, constructed with edges of body
contact interactions among 17 North American barn swallows52, 57 (Fig. 5d), with r⋆/⟨k⟩= 1.58∼ 2.24 and (b/c)⋆/⟨k⟩< 0
& (b/c)⋆/⟨k⟩ ≥ 8.94. Since the cooperation conditions increase with average degrees, we mentioned the corresponding
normalized conditions above for comparison.

According to these real data, we verify that spatial PGGs can support cooperation on these real-world population structures
with relaxed conditions and are robust across all model details. In contrast, pairwise DGs do not support cooperation on
these real structures. This contradicts the empirical fact that cooperation can evolve from various natural and social systems,
where the strategy evolution mechanisms could be diverse and not limited to death-birth. Yet, pairwise DGs only support
cooperation under special model details (death-birth) and the cooperation conditions are strict, which cannot explain the
consistent emergence of cooperation in these real-world systems. From this perspective, spatial PGGs could instead be one of
the universal interaction modes in the real world, across human society, ecological and animal social systems, where cooperation
emerge consistently.

We also see that accumulated payoffs are slightly more conducive to cooperation in spatial PGGs (the only exceptions are
the DB update in “classmates” and “swallows”). This is also consistent with our intuition that payoffs from different groups are
physically accumulated in the real world. In contrast, the averaged payoffs serve normalization and theoretical analysis, which
are less conducive to cooperation on the studied real-world networks.

Discussion
The instinct of selfish organisms seems to contradict the ubiquity of cooperation. Previous mathematical models have been
developed to explain this in the framework of pairwise games10, 42, which were unable to provide consistent support for
cooperation on diverse network structures and model details. As a complement, PGGs reflects the common pattern of group
interactions in both nature and human systems. Importantly, spatial PGGs capture the empirical fact that individuals not only
interact with their direct friends, but also with their second-order neighbors in the circle organized by the direct friends58–60.
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Tribes Classmates

Everglades Swallows
𝑘𝑘 = 25.51 𝑟𝑟⋆ ⁄𝑏𝑏 𝑐𝑐 ⋆

ave
PC 50.68 <0
DB 51.80 445.00
BD 42.62 <0

accu
PC 39.47 <0
DB 45.09 980.25
BD 34.97 <0

𝑘𝑘 = 7.25 𝑟𝑟⋆ ⁄𝑏𝑏 𝑐𝑐 ⋆

ave
PC 16.96 <0
DB 13.31 168.64
BD 15.63 <0

accu
PC 16.37 <0
DB 13.26 315.41
BD 14.81 <0

𝑘𝑘 = 10.48 𝑟𝑟⋆ ⁄𝑏𝑏 𝑐𝑐 ⋆

ave
PC 22.37 <0
DB 16.63 128.70
BD 17.42 <0

accu
PC 19.45 <0
DB 16.67 396.86
BD 15.09 <0

𝑘𝑘 = 6.24 𝑟𝑟⋆ ⁄𝑏𝑏 𝑐𝑐 ⋆

ave
PC 14.00 <0
DB 10.99 55.81
BD 12.24 <0

accu
PC 12.27 <0
DB 11.11 109.28
BD 9.89 <0

a b

c d

Figure 5. Spatial PGGs could be a universal interaction mode for cooperation in the real world. We analyze spatial
PGGs on four empirical network structures, where the cooperation conditions are consistently relaxed across various model
details in spatial PGGs. In contrast, the conditions for cooperation are strict and inconsistent across different model details in
pairwise DGs. The examined empirical systems include: a, 16 tribes of the Gahuku–Gama alliance structure of the Eastern
Central Highlands of New Guinea52, 53. b, 29 seventh-grade students in Victoria, Australia, connected by whom they would
prefer to work with54. c, The networks of trophic interactions that occur among the 69 major taxonomic groups of everglades
habitats in South Florida ecosystems52, 55, 56. d, The network of body contact interactions among 17 North American barn
swallows52, 57.

Here, we provide a fundamental theory for the evolution of cooperation in spatial PGGs on arbitrary network structures.
Cooperation emerge in the population as the synergy factor increases, with the efficiency varying depending on network
structures. We obtain the formulas of the critical synergy factor for the emergence of cooperation on any network structure and
across all model details. The formulas are accurate in the weak selection limit. Using the proposed fundamental theory, we find
that a class of networks, including the star graph, which were considered unfavorable for cooperation in pairwise games10, 13,
can significantly promote cooperation in spatial PGGs. On the star graph, cooperation only requires a simple condition r > 4,
which could be even more advantageous than regular graphs. When two or more stars are connected by their hubs, we obtain an
ultimate cooperation supporter: the condition for cooperation is r > 1 when using accumulated payoffs.

We examine the general roles of local structures by studying 260,000 classic random networks, from random-regular,
small-world, to scale-free. Similar to the pairwise game, increasing the average degree or its heterogeneity is detrimental to
cooperation in spatial PGGs. However, small-world networks reveal the positive effect of network cohesion (measured by
clustering coefficient) on cooperation in spatial PGGs. This can be explained by second-order interactions: individuals play
games organized by neighbors and therefore interact with second-order neighbors61. Similar phenomena about were also
observed in parallel studies on higher-order networks48, 62, 63. Our conclusions remain robust and could be more subtle under
other model details, from payoff calculations to strategy updates (Fig. S2).
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More generally, we test all 12,111 networks of sizes 3≤ N ≤ 8. We find that spatial PGGs consistently produce cooperation
on all network structures under the investigated update rules (the only exception is the fully connected network). In contrast,
pairwise games fail to produce cooperation on most networks10. The PC and BD rules, which follow the same assumptions of
individual selfishness, even fail to produce cooperation on any structured populations (Figs. 4, S3, and S4). This contrasts the
common sense that cooperation is ubiquitous in natural and social systems where the evolutionary details may vary. Instead, the
consistent results in spatial PGGs meet with our common sense.

To verify the robustness of spatial PGGs in the real world, we further examined four empirical networks, with scenarios
from primitive tribes, junior students, everglades, and barn swallows. It is found that cooperation cannot emerge effectively on
these real networks through pairwise games. Instead, the spatial PGG can produce consistent cooperation across all kinds of
evolutionary details on these real networks. Our results thus imply that spatial PGGs could be a universal interaction mode for
the emergence of cooperation in real-world systems.

Our ground-breaking theory lays the foundation for exploring a large number of extended mechanisms6 in spatial PGGs,
such as inertia31, 33, on general population structures. One can investigate the additional effects of different network structures
on these mechanisms. One can also study the evolutionary dynamics of spatial PGGs on multi-layer64 and dynamic networks65,
which were only studied in pairwise games previously. More fundamentally, one can generalize our results to weighted networks
and also study the outcomes with arbitrary initial conditions12. The algorithm for group interactions based on second-order
neighbors can also be used to study other multiplayer games, which bear unknown complexity66, 67.

Methods

Theoretical analysis of cooperation success
Here, we briefly summarize the mathematical derivations of the cooperation condition in spatial PGGs. The system state is
denoted by x = (x1,x2, . . . ,xN), where xi = 1 if agent i cooperates and xi = 0 if it defects. In this way, we can formalize the
payoff calculation on networks. The actual payoff of agent i at system state x, denoted by fi(x), is expressed as

fi(x) =
1
Gi

∑
l∈Gi

(
r ∑ℓ∈Gl

xℓc
Gl

− xic
)

=
1

1+ ki

[(
r(xi +∑l∈Ni xl)c

ki +1
− xic

)
+ ∑

l∈Ni

(
r(xl +∑ℓ∈Nl

xℓ)c
kl +1

− xic
)]

. (6)

Agent i plays Gi = 1+ ki games, organized by itself and its ki neighbors l ∈Ni, which form the group Gi = {i}∪Ni. In the
game organized by agent l, there are Gl players in the group.

In the weak selection limit (0 < δ ≪ 1), the dynamics of strategy evolution almost reduces to the Voter model68, where
the marginal role of games does not influence strategy distributions. Therefore, in previous literature10, 11 (or Supplementary
Note 1), the conditions for cooperation success were obtained under neutral drift (δ = 0) and remain unchanged for different
payoff calculations.

In other words, the key difference in analyzing spatial PGGs is the payoff calculation. We only need to substitute the
payoffs of spatial PGGs, i.e., Eq. (6), into the previously obtained cooperation conditions, which (under the PC rule) is

1
4N2⟨k⟩ ∑

i, j∈N
ki pi jE◦RMC[(xi− x j)( fi(x)− f j(x))]> 0. (7)

Applying fi(x) ( f j(x)) of Eq. (6) and considering

τi j =

1
2
−E◦RMC[xix j]

K/4
, (8)

we can calculate the condition of Eq. (7) as

∑
i, j∈N

ki pi j

{(
rc

(ki +1)2 − c
)

τi j +
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τil + τ jl

)
+

rc
ki +1 ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)
−
(

rc
(k j +1)2 − c

)
(−τi j)
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− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)(
−τil + τ jl

)
− rc

k j +1 ∑
l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)}
> 0

⇔ r >
2∑i, j∈N ki pi jτi j

∑i, j∈N ki pi j(ϒi j +ϒ ji)
, (9)

which is equivalent to Eq. (3) in the main text, with τi j and ϒi j obtained through Eqs. (4) and (5), respectively. See Supplementary
Note 1 for the meaning of mathematical symbols in Eqs. (7)–(9) and their detailed deductions.

The results under the DB and BD update rules, including those with accumulated payoffs, follow the same idea. We have
the cooperation conditions (Eq. (S41) for DB and Eq. (S53) for BD) which are independent of payoff calculations. Applying
fi(x) ( f j(x)) of Eq. (6) (or the ones for accumulated payoffs) and their respect τi j values leads to the resultant cooperation
conditions, as detailed in Supplementary Note 1.

Agent-based simulations
We conduct the agent-based simulations using the standard Monte Carlo method. The selection strength δ is between 0.0131, 40

and 0.02510, 69, which is considered numerically weak. The cost of cooperation c is set to 120. In the initial state, there is one
random cooperator and N−1 defectors. Each full Monte Carlo step (MCS) contains N elementary time steps where a random
focal agent is selected to update the strategy, so that every agent is updated once on average. We allow for up to 4×105 full
MCS, which is theoretically infinite10. If the fraction of cooperators hits a fixation state (ρC = 1 or ρC = 0), we end the current
run and record the result. If a fixation state is not reached within the maximally allowed MCS, we take the actual ρC at the
last step as the result. We repeat the simulations 106–109 times independently under the given game parameters and network
structure, averaging the final fraction of cooperators ρC in these runs as the actual result of ρC. If the average cooperation
fraction ρC > 1/N, then evolution favors cooperation.
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Supplementary Note 1: Conditions for cooperation success in spatial PGGs
1.1 Payoff calculation for PGGs on any network
According to the description in the main text, agents participate in the PGGs organized by themselves and their neighbors,
taking the averaged payoffs obtained in these games as the actual payoff. To formally express this algorithm, we denote the
system state (i.e., the strategies of all agents) by x = (x1,x2, . . . ,xN), in a population of size N. If agent i cooperates, xi = 1.
If agent i defects, xi = 0. The full cooperation state can be written by C = 1 = (1,1, . . . ,1) and the full defection state is
D = 0 = (0,0, . . . ,0). The set consisting of all possible system states is denoted by X.

We denote fi(x) as the averaged payoff that agent i obtains from the PGGs organized by itself and its neighbors at system
state x. Literally, fi(x) follows the calculation in Eq. (S1):

fi(x) =
1
Gi

∑
l∈Gi

(
r ∑ℓ∈Gl

xℓc
Gl

− xic
)

=
1

1+ ki

[(
r(xi +∑l∈Ni xl)c

ki +1
− xic

)
+ ∑

l∈Ni

(
r(xl +∑ℓ∈Nl

xℓ)c
kl +1

− xic
)]

=

(
rc

(ki +1)2 − c
)

xi +
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)
xl +

rc
ki +1 ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

xℓ. (S1)

In the first line, Gi = {i}∪Ni is the group containing oneself and its neighbors. In the second line, the former item is the PGG
organized by agent i, and the latter item is the PGGs organized by its neighbors l ∈Ni. The third line is a simplification of the
second line for later use.

1.2 General conditions for cooperation success
According to Ref.11, the general condition for cooperation success on arbitrary network structures is

E◦RMC[∆̂
′
sel(x)]> 0, (S2)

where, the upper-right corner label ◦ of a quantity is to take the value of this quantity at δ = 0 (neutral drift). The upper-right
corner label ′ of a quantity is to calculate the first-order derivative of this quantity with respect to δ at δ = 0.

∆̂sel(x) is the change in the cooperation fraction within an elementary Monte Carlo step (MCS) due to strategy learning (i.e.,
selection, abbreviated as “sel”), weighted by reproduction numbers, at system state x. The expression of ∆̂sel(x) is70

∆̂sel(x) =
1
N ∑

i∈N
xi(b̂i(x)− d̂i(x)), (S3)

where b̂i(x) and d̂i(x) represent the birth and death probabilities of agent i, weighted by reproduction numbers, respectively.
Before weighted by reproduction numbers, b̂i(x) and d̂i(x) are given by bi(x) = ∑ j∈N ei j(x) and di(x) = ∑ j∈N e ji(x). An

agent’s strategy reproduces if learned by other agents, or dies if the agent adopts the strategy of others. Here, ei j(x) is the
probability that agent i transmits its strategy to agent j, determined by specific strategy update rules.

The birth and death probabilities of agent i weighted by reproduction numbers, b̂i(x) and d̂i(x), take the following form:

b̂i(x) = ∑
j∈N

ei j(x)v j, (S4a)

d̂i(x) = ∑
j∈N

e ji(x)vi, (S4b)

where, vi and v j represent the reproduction numbers of agents i and j, respectively. The reproduction numbers {vi}i∈N of all
agents in the population are defined based on the fact that under neutral drift, natural selection does not influence the change in
strategy proportions (∆̂◦sel(x) = 0). Additionally, considering normalization, the average reproduction number for each agent is
set to 1. Therefore, the following equation holds11:

d̂◦i (x) = b̂◦i (x)⇔ ∑
j∈N

e◦ji(x)vi = ∑
j∈N

e◦i j(x)v j, (S5a)

∑
i∈N

vi = N. (S5b)
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The first line results from ∆̂◦sel(x) = 0, while the second line is for normalization. From Eqs. (S5), the reproduction numbers of
all agents can be solved given the network structure and update rules.

Since there is no expected change in ∆̂sel(x) caused by natural selection under neutral drift, we can study the first derivative
of ∆̂sel(x) with respect to δ at δ = 0 in order to quantitatively analyze ∆̂sel(x). Substituting Eqs. (S4) into Eq. (S3) and taking
the derivative, we obtain

∆̂
′
sel(x) =

1
N ∑

i, j∈N
xi(e′i j(x)v j− e′ji(x)vi)

=
1

2N ∑
i, j∈N

(xi− x j)(e′i j(x)v j− e′ji(x)vi). (S6)

Taking the equivalent form in the second line (based on the symmetry between i and j) can facilitate subsequent calculations.
At this point, by calculating the strategy reproduction probabilities {ei j(x)}i, j∈N ,x∈X and reproduction numbers {vi}i∈N under
the given update rule, we can obtain the corresponding value of ∆̂′sel(x).

Another concept that appears in Eq. (S2) is ERMC[·], where RMC stands for the rare-mutation conditional distribution.
Before defining RMC, it is necessary to define MSS: the mutation-selection stationary distribution. This distribution describes
the system’s state when a mutation mechanism is present. The introduction of the mutation mechanism is intended to construct
a mathematically tractable, complete Markov chain. Suppose that in each elementary Monte Carlo step, the focal agent mutates
with probability u (i.e., mutation): it switches to either cooperation or defection with probability 1/2 respectively. With the
remaining probability 1−u, the agent update the strategy (i.e., selection) according to the given update rule. The weak mutation
limit u→ 0 leads to the model we study in the main text, where strategy updates depend solely on the strategy update rule.

ΠMSS(x) represents the probability that the system stablizes at state x under the mutation-selection stationary distribution.
The sum of probabilities for all possible stationary states is 1, i.e., ∑x∈X ΠMSS(x) = 1. Obviously, in the weak mutation limit
u→ 0, the system has only two stable states: full cooperation (x = C) and full defection (x = D): ΠMSS(C)→ ρC/(ρC +ρD),
ΠMSS(D)→ ρD/(ρC +ρD)

71, 72. For x /∈ {C,D}, ΠMSS(x)→ 0.
On this basis, the rare-mutation conditional (RMC) distribution describes the distribution of system states among possible

states other than full cooperation and full defection as u→ 0. ΠRMC(x) represents the probability that the system is in state x
under the RMC distribution, satisfying the normalization condition ∑x∈X\{C,D}ΠRMC(x) = 1 (note that here x is restricted to
x ∈ X\{C,D}, i.e., x /∈ {C,D}). By this definition, ΠRMC(x) can be derived from ΠMSS(x),

ΠRMC(x) = lim
u→0

ΠMSS(x)
1−ΠMSS(C)−ΠMSS(D)

. (S7)

EMSS[·] and ERMC[·] represent the expected value under the corresponding distribution, i.e., the sum of the products of all
possible state variables in [·] and their respective probabilities. For example, given a function f (x) of the system state x, we
have

EMSS[ f (x)] = ∑
x∈X

ΠMSS(x) f (x), (S8)

ERMC[ f (x)] = ∑
x∈X\{C,D}

ΠRMC(x) f (x). (S9)

Later, we will need the following property: in the limit u→ 0, for any agent i∈N , we have E◦MSS[xi] = 1/2 and E◦RMC[xi] =
1/2. To prove, under neutral drift, strategies C and D are indistinguishable and thus interchangeable. From ρC = ρD and
ρC +ρD = 1, we can solve for ρC = ρD = 1/2. Therefore, based on ΠMSS(C)→ ρC/(ρC +ρD) and ΠMSS(D)→ ρD/(ρC +ρD),
we have ΠMSS(C),ΠMSS(D)→ 1/2. Consequently, E◦MSS[xi] = 1/2×1+1/2×0= 1/2. Similarly, due to the interchangeability
of C and D, we have ΠRMC(x) = ΠRMC(1− x), and we can calculate E◦RMC[xi] = (1/2)∑x/∈{C,D}(ΠRMC(x)xi +ΠRMC(1−
x)(1− xi)) = (1/2)∑x/∈{C,D}ΠRMC(x)(xi +1− xi) = 1/2.

We define a quantity K,

K = lim
u→0

u
1−ΠMSS(C)−ΠMSS(D)

. (S10)

Ref.11 has shown that K exists and is positive.
Later, we will need another property: let φ(x) be a function that satisfies φ(C) = φ(D) = 0, then we can calculate and find

that ERMC[φ(x)] and EMSS[φ(x)] are related by Eq. (S11):

ERMC[φ(x)] = ∑
x∈X\{C,D}

ΠRMC(x)φ(x)
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= ∑
x∈X\{C,D}

lim
u→0

ΠMSS(x)
1−ΠMSS(C)−ΠMSS(D)

φ(x)

= lim
u→0

∑x∈X\{C,D}ΠMSS(x)φ(x)
1−ΠMSS(C)−ΠMSS(D)

= lim
u→0

∑x∈X ΠMSS(x)φ(x)
1−ΠMSS(C)−ΠMSS(D)

= lim
u→0

EMSS[φ(x)]
1−ΠMSS(C)−ΠMSS(D)

=

(
lim
u→0

u
1−ΠMSS(C)−ΠMSS(D)

)(
lim
u→0

EMSS[φ(x)]
u

)
= K

(
lim
u→0

EMSS[φ(x)]
u

)
= K

dEMSS[φ(x)]
du

∣∣∣∣
u=0

. (S11)

The final step in Eq. (S11) employs L’Hôpital’s Rule, which allows for the calculation of the limit when both the numerator and
denominator approach zero by taking the derivative of the numerator and denominator separately.

By utilizing the relationship between EMSS[·] and ERMC[·], we can start from the MSS distribution and, using stability,
derive a recurrence relation by strategy updates within an elementary MCS under the given update rule. Then, by taking the
weak mutation limit, we can obtain the results needed for the evolutionary dynamics (RMC distribution) as discussed in the
main text (see details below).

1.3 Pairwise comparison (PC)
For the PC rule, the probability ei j(x) that agent i transmits its strategy to agent j can be calculated as follows. In each
elementary MCS, agent j is selected as the focal agent with probability 1/N to update the strategy. Agent i is chosen as the
reference by agent j with probability k ji/k j = p ji (i.e., k ji/k j = 1/k j if i neighbors j; otherwise this probability is zero), and
agent i’s strategy is learned by agent j with the learning probability Wj←i(x) (defined by Eq. (2) in the main text). That is,

ei j(x) =
p ji

N
×Wj←i(x) =

p ji

N
× 1

1+ exp(−δ ( fi(x)− f j(x)))
. (S12)

Taking δ = 0 in Eq. (S12), we have

e◦i j(x) =
p ji

2N
. (S13)

Taking the derivative of Eq. (S12) with respect to δ at δ = 0, we have

e′i j(x) =
p ji

4N
( fi(x)− f j(x)). (S14)

Substituting Eq. (S13) into Eqs. (S5), we obtain

∑
j∈N

e◦ji(x)vi = ∑
j∈N

e◦i j(x)v j⇔
vi

2N
= ∑

j∈N

p ji

2N
v j, (S15a)

∑
i∈N

vi = N. (S15b)

Given that p ji = k ji/k j, the solution to Eqs. (S15) is vi = ki/⟨k⟩ for i ∈N , where ⟨k⟩= (∑ j∈N k j)/N represents the average
degree of all nodes on the network.

Substituting vi = ki/⟨k⟩ and Eq. (S14) into Eq. (S6), we can calculate ∆̂′sel(x) under the PC rule:

∆̂
′
sel(x) =

1
2N ∑

i, j∈N
(xi− x j)(e′i j(x)v j− e′ji(x)vi)

=
1

2N ∑
i, j∈N

(xi− x j)

(
p ji

4N
( fi(x)− f j(x))

k j

⟨k⟩
−

pi j

4N
( f j(x)− fi(x))

ki

⟨k⟩

)
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=
1

2N ∑
i, j∈N

(xi− x j)
ki j

4N⟨k⟩
( fi(x)− f j(x)− f j(x)+ fi(x))

=
1

4N2⟨k⟩ ∑
i, j∈N

(xi− x j)ki pi j( fi(x)− f j(x)). (S16)

Substituting Eq. (S16) into Eq. (S2), we obtain the condition for cooperation success under the PC rule:

E◦RMC[∆̂
′
sel(x)]> 0⇔ 1

4N2⟨k⟩ ∑
i, j∈N

ki pi jE◦RMC[(xi− x j)( fi(x)− f j(x))]> 0. (S17)

Note that quantities such as N, ki, and pi j are input parameters with constant expected values. Therefore, they can be factored
out of E◦RMC[·].

We first calculate E◦RMC[(xi− x j)( fi(x)− f j(x))] in Eq. (S17). Inserting the payoffs in spatial PGGs, fi(x) and f j(x), by
using Eq. (S1) and notice that r and c are also input parameters that remain constant, we have

E◦RMC[(xi− x j)( fi(x)− f j(x))]

= E◦RMC

[(
rc

(ki +1)2 − c
)
(x2

i − xix j)+
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)
(xixl− x jxl)

+
rc

ki +1 ∑
l∈Ni

1
kl +1 ∑

ℓ∈Nl

(xixℓ− x jxℓ)−
(

rc
(k j +1)2 − c

)
(xix j− x2

j)

− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)
(xixl− x jxl)−

rc
k j +1 ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(xixℓ− x jxℓ)

]

=

(
rc

(ki +1)2 − c
)(

E◦RMC[x
2
i ]−E◦RMC[xix j]

)
+

rc
ki +1 ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)
(E◦RMC[xixl ]−E◦RMC[x jxl ])

+
rc

ki +1 ∑
l∈Ni

1
kl +1 ∑

ℓ∈Nl

(E◦RMC[xixℓ]−E◦RMC[x jxℓ])−
(

rc
(k j +1)2 − c

)(
E◦RMC[xix j]−E◦RMC[x

2
j ]
)

− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)
(E◦RMC[xixl ]−E◦RMC[x jxl ])

− rc
k j +1 ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(E◦RMC[xixℓ]−E◦RMC[x jxℓ]) . (S18)

Since xi ∈ {0,1}, we have x2
i = xi, and thus E◦RMC[x

2
i ] = E◦RMC[xi] = 1/2 for i ∈N . The remaining work is to calculate

E◦RMC[xix j] for all i, j ∈N .
We begin with the MSS distribution. Since the MSS distribution is stationary, the expected system’s state remains unchanged

after strategy updates. We aim to derive a recurrence relation by working through the strategy update within an elementary
MCS. For convenience of calculation, we study E◦MSS[(xi−1/2)(x j−1/2)], which has a useful property E◦MSS[xi−1/2] = 0
due to E◦MSS[xi] = 1/2.

Integrating the mutation mechanism described in Section 1.2, the possible events that happen within an elementary MCS
can be classified into the following categories based on their impact on xi or x j.

• Agent i is selected as the focal agent with probability 1/N to update its strategy:

(i) The focal agent i mutates with probability u, becoming cooperation (xi← 1) with probability 1/2, or defection
(xi← 0) with probability 1/2;

(ii) Agent i updates its strategy under the PC rule with probability 1− u. With probability pil , agent i chooses
reference agent l (l ∈N ), learning l’s strategy, xi← xl , with probability W ◦i←l(x) = 1/2 (note that we are discussing
neutral drift now), or keeping the current strategy xi unchanged with probability 1−W ◦i←l(x) = 1/2. The probabilities
summarized here are consistent with the strategy transmission probability e◦li = pil/(2N) in Eq. (S13), but the probability
1/N to select focal agent i is not repeatedly considered.

• Similarly, agent j is selected as the focal agent with probability 1/N to update its strategy:
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(i) The focal agent j mutates with probability u, becoming cooperation (x j← 1) with probability 1/2, or defection
(x j← 0) with probability 1/2;

(ii) Agent j updates its strategy under the PC rule with probability 1−u. With probability p jl , agent j chooses
reference agent l (l ∈N ), learning l’s strategy, x j← xl , with probability W ◦j←l(x) = 1/2, or keeping the current strategy
x j unchanged with probability 1−W ◦j←l(x) = 1/2.

• The focal agent is one of the remaining N−2 agents other than i and j, with probability 1/N. Since only the focal agent’s
strategy may update, both xi and x j remain unchanged.

Combining all the above possibilities of an elementary MCS, we can obtain the following recurrence relation under the
MSS distribution:

E◦MSS[(xi−1/2)(x j−1/2)]

=
1
N

{
u
(

1
2
E◦MSS[(1−1/2)(x j−1/2)]+

1
2
E◦MSS[(0−1/2)(x j−1/2)]

)

+(1−u) ∑
l∈N

pil

(
W ◦i←l(x)E◦MSS[(xl−1/2)(x j−1/2)]+(1−W ◦i←l(x))E◦MSS[(xi−1/2)(x j−1/2)]

)}

+
1
N

{
u
(

1
2
E◦MSS[(xi−1/2)(1−1/2)]+

1
2
E◦MSS[(xi−1/2)(0−1/2)]

)

+(1−u) ∑
l∈N

p jl

(
W ◦j←l(x)E◦MSS[(xi−1/2)(xl−1/2)]+(1−W ◦j←l(x))E◦MSS[(xi−1/2)(x j−1/2)]

)}

+(N−2)
1
N
E◦MSS[(xi−1/2)(x j−1/2)]

=
1
N

{
0+(1−u) ∑

l∈N

pil

2

(
E◦MSS[(xl−1/2)(x j−1/2)]+E◦MSS[(xi−1/2)(x j−1/2)]

)}

+
1
N

{
0+(1−u) ∑

l∈N

p jl

2

(
E◦MSS[(xi−1/2)(xl−1/2)]+E◦MSS[(xi−1/2)(x j−1/2)]

)}

+(N−2)
1
N
E◦MSS[(xi−1/2)(x j−1/2)]. (S19)

We integrate E◦MSS[(xi−1/2)(x j−1/2)] into the left-hand side and denote xi = xi−1/2 for convenience. Then, we have

E◦MSS[xix j] =
1−u

2

(
∑

l∈N
pilE◦MSS[xlx j]+ ∑

l∈N
p jlE◦MSS[xixl ]

)
. (S20)

We define variables φi j(x),

φi j(x) = xix j−
1
2

(
∑

l∈N
pilxlx j + ∑

l∈N
p jlxixl

)
, (S21)

which satisfy the properties φi j(C) = 1/4−1/2× (1/4+1/4) = 0 and similarly, φi j(D) = 0. Therefore, φi j(x) can be used to
relate the MSS and RMC distributions through Eq. (S11) as u→ 0.

We first calculate E◦MSS[φi j(x)]. Writing down the expected value of Eq. (S21) and using Eq. (S20), we have

E◦MSS[φi j(x)] = E◦MSS[xix j]−
1
2

(
∑

l∈N
pilE◦MSS[xlx j]+ ∑

l∈N
p jlE◦MSS[xixl ]

)

= E◦MSS[xix j]−
1

1−u
E◦MSS[xix j]

=− u
1−u

E◦MSS[xix j]. (S22)
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According to Eq. (S11), we can calculate E◦RMC[φi j(x)] from E◦MSS[φi j(x)],

E◦RMC[φi j(x)] = K
dE◦MSS[φi j(x)]

du

∣∣∣∣
u=0

= K
d

du

∣∣∣∣
u=0

(
− u

1−u
E◦MSS[xix j]

)
= K

(
− E◦MSS[xix j]

∣∣
u=0 +0

)
=−K

(
1
2
× (1− 1

2
)(1− 1

2
)+

1
2
× (0− 1

2
)(0− 1

2
)

)
=−K

4
. (S23)

In the second-to-last step, we recalled that as u→ 0, there are only two stationary states under MSS, x = 1 or x = 0, each with
probability 1/2 under neutral drift.

On the other hand, we write down the expected value of Eq. (S21) under the RMC distribution and obtain another expression
of E◦RMC[φi j(x)]:

E◦RMC[φi j(x)] = E◦RMC[xix j]−
1
2

(
∑

l∈N
pilE◦RMC[xlx j]+ ∑

l∈N
p jlE◦RMC[xixl ]

)
. (S24)

Substituting E◦RMC[φi j(x)] =−K/4 (Eq. (S23)) into Eq. (S24), we have

E◦RMC[xix j] =
1
2

(
∑

l∈N
pilE◦RMC[xlx j]+ ∑

l∈N
p jlE◦RMC[xixl ]

)
− K

4
. (S25)

We define variables τi j for i, j ∈N ,

τi j =

1
2
−E◦RMC[xix j]

K/4
. (S26)

Obviously, τii = 0 when i = j, because E◦RMC[x
2
i ] = 1/2. Also, τi j = τ ji, because E◦RMC[xix j] = E◦RMC[x jxi].

When i ̸= j, we can solve for the values of τi j by the recurrence relation. We know that E◦RMC[xix j] and E◦RMC[xix j] have
the following relation:

E◦RMC[xix j] = E◦RMC[(xi−1/2)(x j−1/2)]

= E◦RMC[xix j]−
1
2
E◦RMC[xi]−

1
2
E◦RMC[x j]+

1
4

= E◦RMC[xix j]−
1
4
, (S27)

and therefore, Eq. (S26) can be written as

τi j =

1
2
−
(
E◦RMC[xix j]+

1
4

)
K/4

=
1−4E◦RMC[xix j]

K
(S28)

or

E◦RMC[xix j] =
1−Kτi j

4
. (S29)

Substituting Eq. (S29) into Eq. (S25), we obtain the recurrence relation of τi j:

1−Kτi j

4
=

1
2

(
∑

l∈N
pil

1−Kτl j

4
+ ∑

l∈N
p jl

1−Kτil

4

)
− K

4
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⇔ τi j = 1+
1
2

(
∑

l∈N
pilτl j + ∑

l∈N
p jlτil

)
. (S30)

The recurrence relation Eq. (S30), together with τii = 0, form a system of linear equations, through which all τi j values
(i, j ∈N ) can be determined on a given network structure.

Back to the halfway calculation in Eq. (S18) of the cooperation success condition. Substituting all E◦RMC[xix j] into Eq. (S18)
with computable τi j using Eq. (S26), and then substituting the result into Eq. (S17), where the positive factors K/4 and
1/(4N2⟨k⟩) can be canceled out, we arrive at the following condition for cooperation success:

E◦RMC[∆̂
′
sel(x)]> 0

⇔ ∑
i, j∈N

ki pi j

{(
rc

(ki +1)2 − c
)

τi j +
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τil + τ jl

)
+

rc
ki +1 ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)
−
(

rc
(k j +1)2 − c

)
(−τi j)

− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)(
−τil + τ jl

)
− rc

k j +1 ∑
l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)}
> 0

⇔ r >
2∑i, j∈N ki pi jτi j

∑i, j∈N ki pi j(ϒi j +ϒ ji)
, (S31)

where ϒi j are defined by (equivalent to Eq. (5) in the main text)

ϒi j =
1

ki +1

(
τi j + ki ∑l∈N pil(τ jl− τil)

ki +1
+ ki ∑

l∈N
pil

(τ jl− τil)+ kl ∑ℓ∈N plℓ(τ jℓ− τiℓ)

kl +1

)
. (S32)

And according to the previous discussion, τi j can be solved by the following system of linear equations (equivalent to Eq. (4) in
the main text):

τi j = 1+
1
2 ∑

l∈N
(pilτ jl + p jlτil), if j ̸= i,

τi j = 0, if j = i.
(S33)

Finally, although usually ϒi j ̸=ϒ ji, we can still infer that ∑i, j∈N ki pi jϒ ji =∑i, j∈N ki jϒ ji =∑ j,i∈N k jiϒi j =∑ j,i∈N ki jϒi j =

∑ j,i∈N ki pi jϒi j, such that ∑i, j∈N ki pi j(ϒi j +ϒ ji) = 2∑i, j∈N ki pi jϒi j. Therefore, ∑i, j∈N ki pi j(ϒi j +ϒ ji) = 2∑i, j∈N ki pi jϒi j.
As a result, Eq. (S31) can be further simplified as

r >
∑i, j∈N ki pi jτi j

∑i, j∈N ki pi jϒi j
. (S34)

The right-hand side is the r⋆ value under the PC rule, as mentioned in the main text.

1.4 Death-birth (DB)
For the DB rule, the probability ei j(x) that agent i transmits its strategy to agent j can be calculated as follows. In each
elementary MCS, agent j is selected as the focal agent with probability 1/N to update the strategy. Agent j’s strategy “dies”,
and agent i’s strategy occupies the vacant position with probability Wj←i(x), which is proportional to its fitness among j’s
neighbors (see Eq. (S35)). That is,

ei j(x) =
1
N
×Wj←i(x) =

1
N
×

k jiFi(x)
∑l∈N k jlFl(x)

. (S35)

Taking δ = 0 in Eq. (S35), we have

e◦i j(x) =
k ji

Nk j
=

p ji

N
. (S36)
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Taking the derivative of Eq. (S35) with respect to δ at δ = 0, we have

e′i j(x) =
1
N

k ji fi(x)k j− k ji ∑l∈N k jl fl(x)
k2

j
=

p ji

N

(
fi(x)− ∑

l∈N
p jl fl(x)

)
. (S37)

Substituting Eq. (S36) into Eqs. (S5), we obtain

∑
j∈N

e◦ji(x)vi = ∑
j∈N

e◦i j(x)v j⇔
vi

N
= ∑

j∈N

p ji

N
v j, (S38a)

∑
i∈N

vi = N. (S38b)

Similar to the PC rule, the solution to Eqs. (S38) is also vi = ki/⟨k⟩ for i∈N , where ⟨k⟩= (∑ j∈N k j)/N represents the average
degree of all nodes.

Substituting vi = ki/⟨k⟩ and Eq. (S37) into Eq. (S6), we can calculate ∆̂′sel(x) under the DB rule. We start from the first line
in Eq. (S6),

1
N ∑

i, j∈N
xi(e′i j(x)v j− e′ji(x)vi) =

1
N ∑

i, j∈N
xi

(
p ji

N

(
fi(x)− ∑

l∈N
p jl fl(x)

)
k j

⟨k⟩
−

pi j

N

(
f j(x)− ∑

l∈N
pil fl(x)

)
ki

⟨k⟩

)

=
1
N ∑

i, j∈N
xi

ki pi j

N⟨k⟩

(
fi(x)− ∑

l∈N
p jl fl(x)− f j(x)+ ∑

l∈N
pil fl(x)

)

=
1
N ∑

i∈N
xi

ki

N⟨k⟩

(
fi(x)− ∑

j,l∈N
pi j p jl fl(x)− ∑

j∈N
pi j f j(x)+ ∑

l∈N
pil fl(x)

)

=
1
N ∑

i∈N
xi

ki

N⟨k⟩

(
fi(x)− ∑

l∈N
p(2)il fl(x)

)

=
1
N ∑

i, j∈N
xi

ki p
(2)
i j

N⟨k⟩
( fi(x)− f j(x)) , (S39)

where p(2)i j is defined as ∑l∈N pil pl j. Then, by comparing Eq. (S39) and Eq. (S6), we know that

∆̂
′
sel(x) =

1
N ∑

i, j∈N
xi(e′i j(x)v j− e′ji(x)vi)

=
1

2N ∑
i, j∈N

(xi− x j)(e′i j(x)v j− e′ji(x)vi)

=
1

2N2⟨k⟩ ∑
i, j∈N

(xi− x j)ki p
(2)
i j ( fi(x)− f j(x)). (S40)

Substituting Eq. (S40) into Eq. (S2), we obtain the condition for cooperation success under the DB rule:

E◦RMC[∆̂
′
sel(x)]> 0⇔ 1

2N2⟨k⟩ ∑
i, j∈N

ki p
(2)
i j E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0. (S41)

Similarly, we first calculate E◦RMC[(xi− x j)( fi(x)− f j(x))] in Eq. (S41), which is completely the same as the one under the
PC rule (see Eq. (S18) for the same result).

The remaining work is to calculate E◦RMC[xix j] for all i, j ∈N under the DB rule. Similarly, we begin with the MSS
distribution and aim to derive a recurrence relation by working through the strategy update within an elementary MCS. Under
the DB rule, the possible events that happen within an elementary MCS can be classified into the following categories based on
their impact on xi or x j.

• Agent i is selected as the focal agent with probability 1/N to update its strategy:

(i) The focal agent i mutates with probability u, becoming cooperation (xi← 1) with probability 1/2, or defection
(xi← 0) with probability 1/2;
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(ii) Agent i learns the strategy of a neighbor under the DB rule with probability 1−u. With probability W ◦i←l(x) = pil ,
agent i learns the strategy of agent l, xi← xl . Note that under the DB rule, ∑l∈N W ◦i←l(x) = 1; the focal agent cannot
keep its own strategy.

• Similarly, agent j is selected as the focal agent with probability 1/N to update its strategy:

(i) The focal agent j mutates with probability u, becoming cooperation (x j← 1) with probability 1/2, or defection
(x j← 0) with probability 1/2;

(ii) Agent j learns the strategy of a neighbor under the DB rule with probability 1−u. With probability W ◦j←l(x)= p jl ,
agent j learns the strategy of agent l, x j← xl .

• The focal agent is one of the remaining N−2 agents other than i and j, with probability 1/N. Since only the focal agent’s
strategy can update, both xi and x j remain unchanged.

Combining all the above possibilities of an elementary MCS, we can obtain the following recurrence relation under the
MSS distribution:

E◦MSS[(xi−1/2)(x j−1/2)]

=
1
N

{
u
(

1
2
E◦MSS[(1−1/2)(x j−1/2)]+

1
2
E◦MSS[(0−1/2)(x j−1/2)]

)

+(1−u) ∑
l∈N

W ◦i←l(x)E◦MSS[(xl−1/2)(x j−1/2)]

}

+
1
N

{
u
(

1
2
E◦MSS[(xi−1/2)(1−1/2)]+

1
2
E◦MSS[(xi−1/2)(0−1/2)]

)

+(1−u) ∑
l∈N

W ◦j←l(x)E◦MSS[(xi−1/2)(xl−1/2)]

}

+(N−2)
1
N
E◦MSS[(xi−1/2)(x j−1/2)]

=
1
N

{
0+(1−u) ∑

l∈N
pilE◦MSS[(xl−1/2)(x j−1/2)]

}

+
1
N

{
0+(1−u) ∑

l∈N
p jlE◦MSS[(xi−1/2)(xl−1/2)])

}

+(N−2)
1
N
E◦MSS[(xi−1/2)(x j−1/2)]. (S42)

Integrating E◦MSS[(xi−1/2)(x j−1/2)] into the left-hand side and denoting xi = xi−1/2, we have

E◦MSS[xix j] =
1−u

2

(
∑

l∈N
pilE◦MSS[xlx j]+ ∑

l∈N
p jlE◦MSS[xixl ]

)
, (S43)

which is completely the same as the one under the PC rule (see Eq. (S20) for the result). Therefore, the subsequent steps are
also the same and are not repeated here. We can ultimately use the defined variables τi j,

τi j =

1
2
−E◦RMC[xix j]

K/4
, (S44)

to replace all E◦RMC[xix j].
Substituting all E◦RMC[xix j] into E◦RMC[(xi−x j)( fi(x)− f j(x))] (presented in Eq. (S18)) with computable τi j using Eq. (S44),

and then substituting the result into Eq. (S17), where the positive factors K/4 and 1/(2N2⟨k⟩) can be canceled out, we can
organize and obtain the following condition for cooperation success:

E◦RMC[∆̂
′
sel(x)]> 0
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⇔ ∑
i, j∈N

ki p
(2)
i j

{(
rc

(ki +1)2 − c
)

τi j +
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τil + τ jl

)
+

rc
ki +1 ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)
−
(

rc
(k j +1)2 − c

)
(−τi j)

− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)(
−τil + τ jl

)
− rc

k j +1 ∑
l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)}
> 0

⇔ r >
2∑i, j∈N ki p

(2)
i j τi j

∑i, j∈N ki p
(2)
i j (ϒi j +ϒ ji)

, (S45)

where ϒi j are also defined by Eq. (S32) (equivalent to Eq. (5) in the main text) and τi j can also be obtained by solving the
system of Eqs. (S33) (or Eq. (4) in the main text).

According to Eq. (S82), we have ki p
(2)
i j = k j p

(2)
ji . Therefore, we can infer that ∑i, j∈N ki p

(2)
i j ϒ ji = ∑i, j∈N k j p

(2)
ji ϒ ji =

∑ j,i∈N ki p
(2)
i j ϒi j, such that ∑i, j∈N ki p

(2)
i j (ϒi j +ϒ ji) = 2∑i, j∈N ki p

(2)
i j ϒi j. Therefore, Eq. (S45) can be further simplified as

r >
∑i, j∈N ki p

(2)
i j τi j

∑i, j∈N ki p
(2)
i j ϒi j

, (S46)

which gives the r⋆ value under the DB rule.

1.5 Beath-dirth (BD)
For the BD rule, the probability ei j(x) that agent i transmits its strategy to agent j can be calculated as follows. In each
elementary MCS, agent i is selected as the focal agent with a probability Wi(x) proportional to its fitness in the population,

Wi(x) =
Fi(x)

∑l∈N Fl(x)
, (S47)

and transmits its strategy xi to a random neighbor. That is,

ei j(x) =Wi(x)× pi j =
Fi(x)

∑l∈N Fl(x)
× pi j. (S48)

Taking δ = 0 in Eq. (S48), we have

e◦i j(x) =
pi j

N
. (S49)

Taking the derivative of Eq. (S48) with respect to δ at δ = 0, we have

e′i j(x) =
pi j

N

(
fi(x)−

1
N ∑

l∈N
fl(x)

)
. (S50)

Substituting Eq. (S49) into Eqs. (S5), we obtain

∑
j∈N

e◦ji(x)vi = ∑
j∈N

e◦i j(x)v j⇔ ∑
j∈N

p ji

N
vi = ∑

j∈N

pi j

N
v j, (S51a)

∑
i∈N

vi = N. (S51b)

The solution to Eqs. (S51) is vi = k−1
i /⟨k−1⟩ for i ∈N , where k−1

i = 1/ki, and ⟨k−1⟩= (∑i∈N k−1
i )/N represents the average

of the reciprocals of the degree of all nodes.
Substituting vi = k−1

i /⟨k−1⟩ and Eq. (S50) into Eq. (S6), we can calculate ∆̂′sel(x) under the BD rule:

∆̂
′
sel(x) =

1
2N ∑

i, j∈N
(xi− x j)(e′i j(x)v j− e′ji(x)vi)
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=
1

2N ∑
i, j∈N

(xi− x j)

(
pi j

N

(
fi(x)−

1
N ∑

l∈N
fl(x)

) k−1
j

⟨k−1⟩
−

p ji

N

(
f j(x)−

1
N ∑

l∈N
fl(x)

) k−1
i
⟨k−1⟩

)

=
1

2N ∑
i, j∈N

(xi− x j)

(
ki j

N

(
fi(x)−

1
N ∑

l∈N
fl(x)

)k−1
i k−1

j

⟨k−1⟩
−

k ji

N

(
f j(x)−

1
N ∑

l∈N
fl(x)

)k−1
i k−1

j

⟨k−1⟩

)

=
1

2N2⟨k−1⟩ ∑
i, j∈N

(xi− x j)
ki j

kik j
( fi(x)− f j(x)). (S52)

Substituting Eq. (S52) into Eq. (S2), we obtain the condition for cooperation success under the BD rule:

E◦RMC[∆̂
′
sel(x)]> 0⇔ 1

2N2⟨k−1⟩ ∑
i, j∈N

ki j

kik j
E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0. (S53)

We first calculate E◦RMC[(xi− x j)( fi(x)− f j(x))] in Eq. (S53), which is the same as the one calculated under the PC rule
(see Eq. (S18) for the same result). The remaining work is to calculate E◦RMC[xix j] for all i, j ∈N under the BD rule.

Similarly, we begin with the MSS distribution and derive the recurrence relation by working through an elementary MCS.
For the mutation mechanism under the BD rule, we specify that the event of a mutation is assigned to the focal agent rather
than being transmitted to a random neighbor by the BD rule. This ensures the probability of the initial mutation on each node is
1/N in a fixation state, consistent with the PC and DB rules.

Therefore, under the BD rule, the possible events that happen within an elementary MCS can be classified into the following
categories.

• Agent i is selected as the focal agent with probability W ◦i (x) = 1/N to propagate its strategy:

(i) The focal agent i mutates with probability u, becoming cooperation (xi← 1) with probability 1/2, or defection
(xi← 0) with probability 1/2;

(ii) Agent i transmits the strategy to a random neighbor with probability 1−u. With probability piℓ, agent i transmits
its strategy to agent ℓ (ℓ ∈N ), xℓ← xi. If ℓ= j, this influences the quantity E◦MSS[(xi−1/2)(x j−1/2)]; otherwise the
quantity keeps unchanged.

• Similarly, agent j is selected as the focal agent with probability W ◦j (x) = 1/N to propagate its strategy:

(i) The focal agent j mutates with probability u, becoming cooperation (x j← 1) with probability 1/2, or defection
(x j← 0) with probability 1/2;

(ii) Agent j transmits the strategy to a random neighbor with probability 1−u. With probability p jℓ, agent j transmits
its strategy to agent ℓ (ℓ ∈N ), xℓ ← x j. Similarly, if ℓ = i, this influences the quantity E◦MSS[(xi− 1/2)(x j− 1/2)];
otherwise the quantity keeps unchanged.

• The focal agent, denoted by l ∈N \ {i, j}, is one of the remaining N− 2 agents other than i and j, with probability
W ◦l (x) = 1/N:

(i) The focal agent l mutates with probability u, which can only change xl and has nothing to do with xi or x j;

(ii) Agent l transmits the strategy to a random neighbor with probability 1−u. With probability plℓ, agent l transmits
its strategy to agent ℓ (ℓ ∈N ), xℓ ← xl . If ℓ = i or ℓ = j, this influences the quantity E◦MSS[(xi− 1/2)(x j − 1/2)];
otherwise the quantity keeps unchanged.

Combining all the above possibilities of an elementary MCS, we obtain the following recurrence relation under the MSS
distribution:

E◦MSS[(xi−1/2)(x j−1/2)]

= W ◦i (x)

{
u
(

1
2
E◦MSS[(1−1/2)(x j−1/2)]+

1
2
E◦MSS[(0−1/2)(x j−1/2)]

)

+(1−u)

(
∑

ℓ∈N \{ j}
piℓE◦MSS[(xi−1/2)(x j−1/2)]+ pi jE◦MSS[(xi−1/2)(xi−1/2)]

)}

+W ◦j (x)

{
u
(

1
2
E◦MSS[(xi−1/2)(1−1/2)]+

1
2
E◦MSS[(xi−1/2)(0−1/2)]

)
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+(1−u)

(
∑

ℓ∈N \{i}
p jℓE◦MSS[(xi−1/2)(x j−1/2)]+ p jiE◦MSS[(x j−1/2)(x j−1/2)]

)}

+ ∑
l∈N \{i, j}

W ◦l (x)

{
uE◦MSS[(xi−1/2)(x j−1/2)]+(1−u)

(
∑

ℓ∈N \{i, j}
plℓE◦MSS[(xi−1/2)(x j−1/2)]

+ pliE◦MSS[(xl−1/2)(x j−1/2)]+ pl jE◦MSS[(xi−1/2)(xl−1/2)]

)}

=
1
N

{
0+(1−u)

(
∑

ℓ∈N \{ j}
piℓE◦MSS[(xi−1/2)(x j−1/2)]+ pi jE◦MSS[(xi−1/2)(xi−1/2)]

)}

+
1
N

{
0+(1−u)

(
∑

ℓ∈N \{i}
p jℓE◦MSS[(xi−1/2)(x j−1/2)]+ p jiE◦MSS[(x j−1/2)(x j−1/2)]

)}

+
1
N ∑

l∈N \{i, j}

{
uE◦MSS[(xi−1/2)(x j−1/2)]+(1−u)

(
∑

ℓ∈N \{i, j}
plℓE◦MSS[(xi−1/2)(x j−1/2)]

+ pliE◦MSS[(xl−1/2)(x j−1/2)]+ pl jE◦MSS[(xi−1/2)(xl−1/2)]

)}

=
1−u

N ∑
l∈N

(
pliE◦MSS[(xl−1/2)(x j−1/2)]+ pl jE◦MSS[(xi−1/2)(xl−1/2)]

)
+

u
N ∑

l∈N \{i, j}
E◦MSS[(xi−1/2)(x j−1/2)]+

1−u
N ∑

l∈N
∑

ℓ∈N \{i, j}
plℓE◦MSS[(xi−1/2)(x j−1/2)]

=
1−u

N ∑
l∈N

(
pliE◦MSS[(xl−1/2)(x j−1/2)]+ pl jE◦MSS[(xi−1/2)(xl−1/2)]

)
+

u
N
(N−2)E◦MSS[(xi−1/2)(x j−1/2)]+

1−u
N ∑

l∈N
(1− pli− pl j)E◦MSS[(xi−1/2)(x j−1/2)]

=
1−u

N ∑
l∈N

(
pliE◦MSS[(xl−1/2)(x j−1/2)]+ pl jE◦MSS[(xi−1/2)(xl−1/2)]

)
+

(
1− 2u

N
− 1−u

N ∑
l∈N

(pli + pl j)

)
E◦MSS[(xi−1/2)(x j−1/2)]. (S54)

Integrating E◦MSS[(xi−1/2)(x j−1/2)] into the left-hand side and denoting xi = xi−1/2, we obtain

E◦MSS[xix j] =
1−u

2u+(1−u)∑l∈N (pli + pl j)

(
∑

l∈N
pliE◦MSS[xlx j]+ ∑

l∈N
pl jE◦MSS[xixl ]

)

⇔
(

2u
(1−u)∑l∈N (pli + pl j)

+1
)
E◦MSS[xix j] =

1
∑l∈N (pli + pl j)

(
∑

l∈N
pliE◦MSS[xlx j]+ ∑

l∈N
pl jE◦MSS[xixl ]

)
. (S55)

We define variables φ̃i j(x),

φ̃i j(x) = xix j−
1

∑l∈N (pli + pl j)

(
∑

l∈N
plixlx j + ∑

l∈N
pl jxixl

)
, (S56)

which satisfy the properties: φ̃i j(C) = φ̃i j(D) = 0. Therefore, φ̃i j(x) can be used to relate the MSS and RMC distributions
through Eq. (S11) as u→ 0.

We first calculate E◦MSS[φ̃i j(x)]. Writing down the expected value of Eq. (S56) and using Eq. (S55), we have

E◦MSS[φ̃i j(x)] = E◦MSS[xix j]−
1

∑l∈N (pli + pl j)

(
∑

l∈N
pliE◦MSS[xlx j]+ ∑

l∈N
pl jE◦MSS[xixl ]

)
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= E◦MSS[xix j]−
(

2u
(1−u)∑l∈N (pli + pl j)

+1
)
E◦MSS[xix j]

=− 2u
(1−u)∑l∈N (pli + pl j)

E◦MSS[xix j]. (S57)

According to Eq. (S11), we can calculate E◦RMC[φ̃i j(x)] from E◦MSS[φ̃i j(x)],

E◦RMC[φ̃i j(x)] = K
dE◦MSS[φ̃i j(x)]

du

∣∣∣∣
u=0

= K
d

du

∣∣∣∣
u=0

(
− 2u
(1−u)∑l∈N (pli + pl j)

E◦MSS[xix j]

)
= K

(
− 2

∑l∈N (pli + pl j)
E◦MSS[xix j]

∣∣
u=0 +0

)
=− K

2∑l∈N (pli + pl j)
. (S58)

On the other hand, writing down the expected value of Eq. (S56) under the RMC distribution leads to another expression of
E◦RMC[φ̃i j(x)]:

E◦RMC[φ̃i j(x)] = E◦RMC[xix j]−
1

∑l∈N (pli + pl j)

(
∑

l∈N
pliE◦RMC[xlx j]+ ∑

l∈N
pl jE◦RMC[xixl ]

)
. (S59)

Substituting the result of Eq. (S58) into Eq. (S59), we have

E◦RMC[xix j] =
1

∑l∈N (pli + pl j)

(
∑

l∈N
pliE◦RMC[xlx j]+ ∑

l∈N
pl jE◦RMC[xixl ]

)
− K

2∑l∈N (pli + pl j)
. (S60)

We define variables τ̃i j for i, j ∈N ,

τ̃i j =

1
2
−E◦RMC[xix j]

K/2
. (S61)

Obviously, τ̃ii = 0 when i = j, because E◦RMC[x
2
i ] = 1/2. Also, τ̃i j = τ̃ ji, because E◦RMC[xix j] = E◦RMC[x jxi].

When i ̸= j, we can solve for the values of τ̃i j by the recurrence relation. According to Eq. (S27), we know that Eq. (S61)
can be written as

τ̃i j =

1
2
−
(
E◦RMC[xix j]+

1
4

)
K/2

=

1
2
−2E◦RMC[xix j]

K
(S62)

or

E◦RMC[xix j] =

1
2
−Kτ̃i j

2
. (S63)

Substituting Eq. (S63) into Eq. (S60), we obtain the recurrence relation of τ̃i j:

1
2
−Kτ̃i j

2
=

1
∑l∈N (pli + pl j)

 ∑
l∈N

pli

1
2
−Kτ̃ jl

2
+ ∑

l∈N
pl j

1
2
−Kτ̃il

2

− K
2∑l∈N (pli + pl j)

⇔ τ̃i j =
1

∑l∈N (pli + pl j)

(
1+ ∑

l∈N
pliτ̃ jl + ∑

l∈N
pl j τ̃il

)
. (S64)

The recurrence relation Eq. (S64), together with τ̃ii = 0, form a system of linear equations, through which all τ̃i j values
(i, j ∈N ) can be determined on a given network structure.
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Substituting all E◦RMC[xix j] into Eq. (S18) with computable τ̃i j using Eq. (S61), and then substituting the result into the
cooperation success condition Eq. (S53), where the positive factors K/2 and 1/(2N2⟨k−1⟩) can be canceled out, we arrive at
the following condition for cooperation success:

E◦RMC[∆̂
′
sel(x)]> 0

⇔ ∑
i, j∈N

ki j

kik j

{(
rc

(ki +1)2 − c
)

τ̃i j +
rc

ki +1 ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τ̃il + τ̃ jl

)
+

rc
ki +1 ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τ̃iℓ+ τ̃ jℓ

)
−
(

rc
(k j +1)2 − c

)
(−τ̃i j)

− rc
k j +1 ∑

l∈N j

(
1

k j +1
+

1
kl +1

)(
−τ̃il + τ̃ jl

)
− rc

k j +1 ∑
l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τ̃iℓ+ τ̃ jℓ

)}
> 0

⇔ r >
2∑i, j∈N

ki j

kik j
τ̃i j

∑i, j∈N
ki j

kik j
(ϒ̃i j + ϒ̃ ji)

, (S65)

where ϒ̃i j are defined by

ϒ̃i j =
1

ki +1

(
τ̃i j + ki ∑l∈N pil(τ̃ jl− τ̃il)

ki +1
+ ki ∑

l∈N
pil

(τ̃ jl− τ̃il)+ kl ∑ℓ∈N plℓ(τ̃ jℓ− τ̃iℓ)

kl +1

)
. (S66)

And according to the previous discussion, τ̃i j can be solved by the following system of linear equations:τ̃i j =
1

∑l∈N (pli + pl j)

(
1+ ∑

l∈N
(pliτ̃ jl + pl j τ̃il)

)
, if j ̸= i,

τ̃i j = 0, if j = i.

(S67)

In applications, we can use the following equivalent form, which is more intuitive for calculation:τ̃i j =
1

∑l∈Ni k−1
l +∑l∈N j k−1

l

(
1+ ∑

l∈Ni

k−1
l τ̃ jl + ∑

l∈N j

k−1
l τ̃il

)
, if j ̸= i,

τ̃i j = 0, if j = i.

(S68)

Finally, ∑i, j∈N ki j/(kik j)ϒ̃ ji = ∑i, j∈N ki j/(kik j)ϒ̃i j. Therefore, ∑i, j∈N ki j/(kik j)(ϒ̃i j + ϒ̃ ji) = 2∑i, j∈N ki j/(kik j)ϒ̃i j. As
a result, Eq. (S65) can be further simplified as

r >
∑i, j∈N

ki j

kik j
τ̃i j

∑i, j∈N
ki j

kik j
ϒ̃i j

. (S69)

The right-hand side is the r⋆ value under the BD rule. Furthermore, let τ̃(1) = ∑i, j∈N ki j/(kik j)τ̃i j, ϒ̃(1) = ∑i, j∈N ki j/(kik j)ϒ̃i j,
then the r⋆ value under the BD rule can also be expressed in shorthand as

r⋆ =
τ̃(1)

ϒ̃(1)
. (S70)

1.6 Variation of the model: Accumulated payoff
In the previous deduction, we assume that an agent i’s actual payoff is averaged over the 1+ki games organized by itself and its
neighbors, ensuring the consistency of payoff scales across different numbers of neighbors. Another approach is to take the
accumulated payoff from these games. On homogeneous graphs, there is no difference between these two approaches in the
weak selection limit, but on heterogeneous graphs, agents with more neighbors tend to have higher & lower payoffs because
they participate in more games. From a physical perspective, the accumulated payoff is also a more intuitive model detail
in real-world systems. We are thus interested in examining the conditions for cooperation success when using accumulated
payoffs.
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1.6.1 Modified payoff calculation
We do not normalize agent i’s actual payoff by dividing 1+ ki but take the accumulated payoff directly. Similar to Eq. (S1), the
calculation of agent i’s actual payoff fi(x) follows Eq. (S71).

fi(x) = ∑
l∈Gi

(
r ∑ℓ∈Gl

xℓc
Gl

− xic
)

=

(
r(xi +∑l∈Ni xl)c

ki +1
− xic

)
+ ∑

l∈Ni

(
r(xl +∑ℓ∈Nl

xℓ)c
kl +1

− xic
)

=

(
rc

ki +1
− (ki +1)c

)
xi + rc ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)
xl + rc ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

xℓ. (S71)

The dynamics of strategy evolution remain the same under neutral drift. Only the quantity E◦RMC[(xi−x j)( fi(x)− f j(x))] is
influenced by the modified payoff calculation fi(x) ( f j(x)) and is recalculated as follows.

E◦RMC[(xi− x j)( fi(x)− f j(x))]

= E◦RMC

[(
rc

ki +1
− (ki +1)c

)
(x2

i − xix j)+ rc ∑
l∈Ni

(
1

ki +1
+

1
kl +1

)
(xixl− x jxl)

+ rc ∑
l∈Ni

1
kl +1 ∑

ℓ∈Nl

(xixℓ− x jxℓ)−
(

rc
k j +1

− (k j +1)c
)
(xix j− x2

j)

− rc ∑
l∈N j

(
1

k j +1
+

1
kl +1

)
(xixl− x jxl)− rc ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(xixℓ− x jxℓ)

]

=

(
rc

ki +1
− (ki +1)c

)(
E◦RMC[x

2
i ]−E◦RMC[xix j]

)
+ rc ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)
(E◦RMC[xixl ]−E◦RMC[x jxl ])

+ rc ∑
l∈Ni

1
kl +1 ∑

ℓ∈Nl

(E◦RMC[xixℓ]−E◦RMC[x jxℓ])−
(

rc
k j +1

− (k j +1)c
)(

E◦RMC[xix j]−E◦RMC[x
2
j ]
)

− rc ∑
l∈N j

(
1

k j +1
+

1
kl +1

)
(E◦RMC[xixl ]−E◦RMC[x jxl ])− rc ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(E◦RMC[xixℓ]−E◦RMC[x jxℓ]) . (S72)

1.6.2 Pairwise comparison
The cooperation condition under the PC rule is still Eq. (S17), because the condition was obtained under neutral drift
and thus remains independent of the later introduced marginal effect of games. Using the result of Eq. (S72) and τi j =
(1/2−E◦RMC[xix j])/(K/4) as defined by Eq. (S26), we calculate

1
4N2⟨k⟩ ∑

i, j∈N
ki pi jE◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki pi j

{(
rc

ki +1
− (ki +1)c

)
τi j + rc ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τil + τ jl

)
+ rc ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)
−
(

rc
k j +1

− (k j +1)c
)
(−τi j)

− rc ∑
l∈N j

(
1

k j +1
+

1
kl +1

)(
−τil + τ jl

)
− rc ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)}
> 0

⇔ r >
∑i, j∈N ki pi j(ki + k j +2)τi j

∑i, j∈N ki pi j[(ki +1)ϒi j +(k j +1)ϒ ji]
. (S73)

Further simplifying Eq. (S73) (using Eq. (S83)) leads to

r >
∑i, j∈N ki(ki +1)pi jτi j

∑i, j∈N ki(ki +1)pi jϒi j
. (S74)

The right-hand side is the r⋆ value for cooperation success when using accumulated payoffs under the PC rule. The τi j values
are still obtained by solving Eqs. (S33) on the given network structure, and the ϒi j values are still obtained by Eq. (S32).

27/56



1.6.3 Death-birth
The cooperation condition under the DB rule is Eq. (S41). Using the result of Eq. (S72) and τi j = (1/2−E◦RMC[xix j])/(K/4)
as defined by Eq. (S44), we calculate

1
2N2⟨k⟩ ∑

i, j∈N
ki p

(2)
i j E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki p
(2)
i j

{(
rc

ki +1
− (ki +1)c

)
τi j + rc ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τil + τ jl

)
+ rc ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)
−
(

rc
k j +1

− (k j +1)c
)
(−τi j)

− rc ∑
l∈N j

(
1

k j +1
+

1
kl +1

)(
−τil + τ jl

)
− rc ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τiℓ+ τ jℓ

)}
> 0

⇔ r >
∑i, j∈N ki p

(2)
i j (ki + k j +2)τi j

∑i, j∈N ki p
(2)
i j [(ki +1)ϒi j +(k j +1)ϒ ji]

. (S75)

Further simplifying Eq. (S75) leads to

r >
∑i, j∈N ki(ki +1)p(2)i j τi j

∑i, j∈N ki(ki +1)p(2)i j ϒi j

. (S76)

The right-hand side is the r⋆ value for cooperation success when using accumulated payoffs under the DB rule. The τi j values
are still obtained by solving Eqs. (S33) on the given network structure, and the ϒi j values are still obtained by Eq. (S32).

1.6.4 Birth-death
The cooperation condition under the BD rule is Eq. (S53). Using the result of Eq. (S72) and τi j = (1/2−E◦RMC[xix j])/(K/2)
as defined by Eq. (S61), we calculate

1
2N2⟨k−1⟩ ∑

i, j∈N

ki j

kik j
E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki j

kik j

{(
rc

ki +1
− (ki +1)c

)
τ̃i j + rc ∑

l∈Ni

(
1

ki +1
+

1
kl +1

)(
−τ̃il + τ̃ jl

)
+ rc ∑

l∈Ni

1
kl +1 ∑

ℓ∈Nl

(
−τ̃iℓ+ τ̃ jℓ

)
−
(

rc
k j +1

− (k j +1)c
)
(−τ̃i j)

− rc ∑
l∈N j

(
1

k j +1
+

1
kl +1

)(
−τ̃il + τ̃ jl

)
− rc ∑

l∈N j

1
kl +1 ∑

ℓ∈Nl

(
−τ̃iℓ+ τ̃ jℓ

)}
> 0

⇔ r >
∑i, j∈N

ki j

kik j
(ki + k j +2)τ̃i j

∑i, j∈N
ki j

kik j
[(ki +1)ϒ̃i j +(k j +1)ϒ̃ ji]

. (S77)

Further simplifying Eq. (S75) leads to

r >
∑i, j∈N

ki j

kik j
(ki +1)τ̃i j

∑i, j∈N
ki j

kik j
(ki +1)ϒ̃i j

. (S78)

The right-hand side is the r⋆ value for cooperation success when using accumulated payoffs under the BD rule. The τ̃i j values
are obtained by solving Eqs. (S67) on the given network structure, and the ϒ̃i j values are obtained by Eq. (S66).
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Supplementary Note 2: Applications to specific network structures
With the cooperation conditions obtained in Supplementary Note 1, we can calculate the critical synergy factor for cooperation
success in spatial PGGs on any given network structure. Here, we present the calculation process for five examples: regular
graphs, star graphs, hub-to-hub star graphs, m-hub star graphs, and fans.

2.1 Regular graphs
The theoretical results of spatial PGG on regular graphs have been previously obtained40, and our framework on any network
structure can reproduce these results when applied to regular networks. On a regular graph, all nodes have the same number of
neighbors, ki ≡ k for i ∈N , so pi j = p ji ≡ 1/k for i, j ∈N , i ̸= j.

The calculation for regular graphs is, in fact, the least intuitive compared to other heterogeneous networks when using this
framework. We cannot directly solve the system of linear equations for τi j but instead need to construct intermediate quantities
and special recurrence relations for regular graphs10.

We first define

τi = 1+ ∑
j∈N

pi jτi j, (S79)

with which we calculate the recurrence relation of τ(n) defined in the main text:

τ
(n) = ∑

i, j∈N
ki p

(n)
i j τi j

= ∑
i, j∈N

i ̸= j

ki p
(n)
i j

(
1+

1
2 ∑

l∈N
pilτ jl +

1
2 ∑

l∈N
p jlτil

)

= ∑
i, j∈N

ki p
(n)
i j

(
1+

1
2 ∑

l∈N
pilτ jl +

1
2 ∑

l∈N
p jlτil

)
− ∑

i∈N
ki p

(n)
ii

(
1+ ∑

l∈N
pilτil

)

= ∑
i, j∈N

ki p
(n)
i j +

1
2 ∑

i, j,l∈N
k j p

(n)
ji pilτ jl +

1
2 ∑

i, j,l∈N
ki p

(n)
i j p jlτil− ∑

i∈N
ki p

(n)
ii τi

= N⟨k⟩+ 1
2 ∑

j,l∈N
k j p

(n+1)
jl τ jl +

1
2 ∑

i,l∈N
ki p

(n+1)
il τil− ∑

i∈N
ki p

(n)
ii τi

= N⟨k⟩+ τ
(n+1)− ∑

i∈N
ki p

(n)
ii τi. (S80)

Therefore, we have the following recurrence relation:

τ
(n+1) = τ

(n)+ ∑
i∈N

ki p
(n)
ii τi−N⟨k⟩. (S81)

The fourth line in Eq. (S80) used the following fact:

ki p
(n)
i j = ∑

ℓ1∈N
kiℓ1 p(n−1)

ℓ1 j = ∑
ℓ1,ℓ2,...,ℓn−1∈N

kiℓ1

kℓ1ℓ2 · · ·kℓn−1 j

kℓ1 · · ·kℓn−1

= ∑
ℓ1,ℓ2,...,ℓn−1∈N

k jℓn−1

kℓn−1ℓn−2 · · ·kℓ1i

kℓn−1 · · ·kℓ1

= k j p
(n)
ji . (S82)

With the help of the recurrence relation Eq. (S81), we can start from τ(0) and obtain all τ(n) values step by step. For i = j,
we have τi j = 0. Moreover, one stays in the original position if not walking, so p(0)i j = 1 if i = j and p(0)i j = 0 if i ̸= j. Therefore,

τ(0) = ∑i, j∈N ki p
(0)
i j τi j = 0. Substituting these to Eq. (S81), we have the following results:

τ
(0) = 0, (S83a)

τ
(1) = ∑

i∈N
kiτi−N⟨k⟩, (S83b)

τ
(2) = ∑

i∈N
kiτi(1+ p(1)ii )−2N⟨k⟩, (S83c)

τ
(3) = ∑

i∈N
kiτi(1+ p(1)ii + p(2)ii )−3N⟨k⟩, (S83d)
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τ
(4) = ∑

i∈N
kiτi(1+ p(1)ii + p(2)ii + p(3)ii )−4N⟨k⟩. (S83e)

As declared by Ref.10, there is a relation: limn→∞ p(n)ii = ki/(N⟨k⟩). Then, taking n→∞ in the recurrence relation Eq. (S81),
we have

τ
(∞) = τ

(∞)+ ∑
i∈N

ki p
(∞)
ii τi−N⟨k⟩ ⇔ ∑

i∈N
k2

i τi = N2⟨k⟩2. (S84)

Supposing all nodes on the regular graph are transitive, we denote p(n)ii ≡ p(n) in shorthand. Obviously, p(1) = 0, because
we assumed no self-loops on the network, and one cannot leave and return to the same node within a single step; p(2) = 1/k,
since for each possible first step, the probability of returning to the original node in the second step is 1/k. The average degree
of the network is ⟨k⟩= k, so we have ∑i∈N kiτi ≡ N2k according to Eq. (S84). To summarize, Eqs. (S83) can be calculated as

τ
(0) = 0, (S85a)

τ
(1) = ∑

i∈N
kiτi−Nk = (N−1)Nk, (S85b)

τ
(2) = ∑

i∈N
kiτi−2Nk = (N−2)Nk, (S85c)

τ
(3) = ∑

i∈N
kiτi

(
1+

1
k

)
−3Nk =

[
N
(

1+
1
k

)
−3
]

Nk, (S85d)

τ
(4) = ∑

i∈N
kiτi

(
1+

1
k
+ p(3)ii

)
−4Nk =

[
N
(

1+
1
k
+ p(3)

)
−4
]

Nk. (S85e)

Since ki ≡ k on a regular graph, ϒi j in Eq. (S32) can be simplified as

ϒi j =
1

(k+1)2

(
τi j +2k ∑

l∈N
pil(τ jl− τil)+ k2

∑
ℓ∈N

p(2)iℓ (τ jℓ− τiℓ)

)
. (S86)

Now, we can calculate the critical synergy factor for cooperation success in spatial PGGs. The general approach is to
calculate the numerator ∑i, j∈N ki p

(n)
i j τi j and denominator ∑i, j∈N ki p

(n)
i j ϒi j separately, expressing them by τ(0), τ(1), τ(2), etc.,

and applying the results of Eqs. (S85).
For the PC rule, the numerator of r⋆ is

∑
i, j∈N

ki pi jτi j = τ
(1), (S87)

and by Eq. (S86), the denominator is

∑
i, j∈N

ki pi jϒi j =
1

(k+1)2

(
∑

i, j∈N
ki pi jτi j +2k ∑

i, j,l∈N
ki pi j pilτ jl−2k ∑

i, j,l∈N
ki pi j pilτil

+ k2
∑

i, j,ℓ∈N
ki pi j p

(2)
iℓ τ jℓ− k2

∑
i, j,ℓ∈N

ki pi j p
(2)
iℓ τiℓ

)

=
1

(k+1)2

(
∑

i, j∈N
ki pi jτi j +2k ∑

j,l∈N
k j p

(2)
jl τ jl−2k ∑

i,l∈N
ki pilτil

+ k2
∑

j,ℓ∈N
k j p

(3)
jℓ τ jℓ− k2

∑
i,ℓ∈N

ki p
(2)
iℓ τiℓ

)

=
τ(1)+2k(τ(2)− τ(1))+ k2(τ(3)− τ(2))

(k+1)2 . (S88)

Assembling Eq. (S87) and Eq. (S88) and inserting the results of Eqs. (S85), we have

r⋆ =
∑i, j∈N ki pi jτi j

∑i, j∈N ki pi jϒi j
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=
(k+1)2τ(1)

τ(1)+2k(τ(2)− τ(1))+ k2(τ(3)− τ(2))

=
(N−1)G

N−G
N→∞−−−→ G, (S89)

which is the critical synergy factor for cooperation success in spatial PGGs on regular graphs under the PC rule, consistent
with the previous research31, 40. Eq. (S89) has replaced the number of neighbors k by the group size G = k+1 for intuitive
understanding in PGGs.

For the DB rule, the calculation is similar. The numerator of r⋆ is

∑
i, j∈N

ki p
(2)
i j τi j = τ

(2), (S90)

and by Eq. (S86), the denominator is

∑
i, j∈N

ki p
(2)
i j ϒi j =

1
(k+1)2

(
∑

i, j∈N
ki p

(2)
i j τi j +2k ∑

i, j,l∈N
ki p

(2)
i j pilτ jl−2k ∑

i, j,l∈N
ki p

(2)
i j pilτil

+ k2
∑

i, j,ℓ∈N
ki p

(2)
i j p(2)iℓ τ jℓ− k2

∑
i, j,ℓ∈N

ki p
(2)
i j p(2)iℓ τiℓ

)

=
1

(k+1)2

(
∑

i, j∈N
ki p

(2)
i j τi j +2k ∑

j,l∈N
k j p

(3)
jl τ jl−2k ∑

i,l∈N
ki pilτil

+ k2
∑

j,ℓ∈N
k j p

(4)
jℓ τ jℓ− k2

∑
i,ℓ∈N

ki p
(2)
iℓ τiℓ

)

=
τ(2)+2k(τ(3)− τ(1))+ k2(τ(4)− τ(2))

(k+1)2 . (S91)

Assembling Eq. (S90) and Eq. (S91) and inserting the results of Eq. (S85), we have

r⋆ =
∑i, j∈N ki p

(2)
i j τi j

∑i, j∈N ki p
(2)
i j ϒi j

=
(k+1)2τ(2)

τ(2)+2k(τ(3)− τ(1))+ k2(τ(4)− τ(2))

=
(N−2)G2

N(G−1)2 p(3)+N(G+2)−2G2

=
(N−2)G2

N(G−2)C +N(G+2)−2G2
N→∞−−−→ G2

(G−2)C +G+2
. (S92)

This is the critical synergy factor for cooperation success in spatial PGGs on regular graphs under the DB rule, consistent
with the previous research31, 33, 40. Eq. (S92) has replaced the three-step random walk probability p(3) by clustering coefficient
C = k2 p(3)/(k−1), which is an intuitive and commonly used concept in network science.

For the BD rule, the recurrence relation Eq. (S68) reduces to the following form on a regular graph:τ̃i j =
1
2

(
1+ ∑

l∈Ni

τ̃ jl + ∑
l∈N j

τ̃il

)
, if j ̸= i,

τ̃i j = 0, if j = i.

(S93)

For the critical synergy factor, τ̃i j in the numerator and denominator are homogeneous (see Eq. (S69) and Eq. (S66)). Therefore,
the critical synergy factor is invariant by replacing τ̃i j← τ̃∗i j/2, which makes Eq. (S93) the same recurrence relation for τ̃∗i j as the
one for τi j under the PC and DB rules. The solution for τ̃∗i j is thus equal to τi j. On the other hand, we have ki j/(kik j) = ki pi j/k2

on regular graphs, where k2 can be canceled simultaneously in the numerator and denominator of the critical synergy factor,
making it (Eq. (S69)) the same as the one for the PC rule (Eq. (S34)).

Therefore, on regular graphs, the condition for cooperation success in spatial PGGs under the BD rule is equal to the one
under the PC rule (i.e., Eq. (S89)).
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• Accumulated payoff

On regular graphs, ki ≡ k for i ∈N . Therefore, ki +1 can be canceled simultaneously in the numerator and denominator in
Eq. (S74), Eq. (S76), and Eq. (S78). As a consequence, the critical synergy factors for accumulated payoff are equal to the ones
for averaged payoff under the three update rules (Eq. (S34), Eq. (S46), and Eq. (S69)). For the results under the PC and BD
rules, please refer to Eq. (S89), and for the result under the DB rule, please refer to Eq. (S92).

2.2 Star graph
For heterogeneous network structures, we can calculate the critical synergy factor by solving the recurrence relation and
assembling the resultant τi j values.

On a star graph, there is one hub (H) and n leaves (L). The hub node has kH = n neighbors, and each leaf node has kL = 1
neighbor. The values are equal among τi j of the same type, and for the star graph, there are only two non-zero τi j types: τHL,
the relation between the hub and a leaf, and τLL′ , the relation between a leaf and another leaf. According to Eq. (4) in the main
text, we have the system of linear equations:

τHL = 1+
n−1

2n
τLL′ ,

τLL′ = 1+
1
2

τHL +
1
2

τHL.

(S94)

The solution is
τHL =

3n−1
n+1

,

τLL′ =
4n

n+1
.

(S95)

Unlike τi j, the values of ϒi j are asymmetric with respect to i and j. Therefore, we need to calculate three ϒi j types: ϒHL, ϒLH ,
and ϒLL′ . Inserting the τi j values of Eq. (S95) into Eq. (5) in the main text, we obtain the required ϒi j values:

ϒHL =
1

kH +1

(
τHL +∑l∈NH (τLl− τHl)

kL +1
+ ∑

l∈NH

(τLl− τHl)+∑ℓ∈Nl
(τLℓ− τHℓ)

kl +1

)

=
1

kH +1

{
τHL +[(n−1)τLL′ −nτHL]

kH +1

+

[
(τLL− τHL)+(τHL− τHH)

kL +1
+(n−1)

(τLL′ − τHL)+(τHL− τHH)

kL +1

])

=
(n−1)[(n+3)τLL′ −2τHL]

2(n+1)2

=
2n2−n−1
(n+1)2 , (S96a)

ϒLH =
1

kL +1

(
τHL +(τHH − τHL)

kL +1
+

(τHH − τHL)+ [(τHL− τLL)+(n−1)(τHL− τLL′)]

kH +1

)
=

(n−1)(τHL− τLL′)

2(n+1)

=− n−1
2(n+1)

, (S96b)

ϒLL′ =
1

kL +1

(
τLL′ +∑l∈NL(τL′l− τLl)

kL +1
+ ∑

l∈NL

(τL′l− τLl)+∑ℓ∈Nl
(τL′ℓ− τLℓ)

kl +1

)

=
1

kL +1

(
τLL′ +(τL′H − τLH)

kL +1

+
(τL′H − τLH)+ [(τL′L− τLL)+(τL′L′ − τLL′)+(n−2)(τL′L′′ − τLL′)]

kH +1

)
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=
n

n+1
. (S96c)

Some informal variations of the symbols during the calculation are for intuitive understanding. For example, L′ refers to
“another leaf” and thus τL′L′ = τLL, τL′L′′ = τLL′ .

Then, we can apply these τi j and ϒi j values to calculate the critical synergy factor on the star graph. For the PC rule, the
numerator is

τ
(1) = ∑

i, j∈N
ki pi jτi j

= kH(pHHτHH +npHLτHL)+nkL(pLHτLH + pLLτLL +(n−1)pLL′τLL′)

= 2nτHL

=
2n(3n−1)

n+1
, (S97)

where the pi j values are obtained by the network structure directly. For example, pHH = pLL = 0 (no self-loops), pLL′ = 0 (no
edges between leaves), pHL = 1/kH = 1/n, pLH = 1/kL = 1. Similarly, the denominator is

ϒ
(1) = ∑

i, j∈N
ki pi jϒi j

= kH(pHHϒHH +npHLϒHL)+nkL(pLHϒLH + pLLϒLL +(n−1)pLL′ϒLL′)

= n(ϒHL +ϒLH)

=
n(3n2−2n−1)

2(n+1)2 . (S98)

Therefore, the critical synergy factor on star graphs under the PC rule is

r⋆ =
τ(1)

ϒ(1) =
4(3n−1)(n+1)

3n2−2n−1
n→∞−−−→ 4. (S99)

For the DB rule, the numerator is

τ
(2) = ∑

i, j∈N
ki p

(2)
i j τi j

= kH(p(2)HHτHH +np(2)HLτHL)+nkL(p(2)LHτLH + p(2)LL τLL +(n−1)p(2)LL′τLL′)

= (n−1)τLL′

=
4n(n−1)

n+1
, (S100)

where the p(2)i j values are also directly obtained by the network structure: p(2)HH = 1 (the first step must walk to one of the leaves

and second step must walk to the hub), p(2)LL = 1/n, p(2)LL′ = 1/n, p(2)HL = 0, p(2)LH = 0. Similarly, the denominator is

ϒ
(2) = ∑

i, j∈N
ki p

(2)
i j ϒi j

= kH(p(2)HHϒHH +np(2)HLϒHL)+nkL(p(2)LHϒLH + p(2)LL ϒLL +(n−1)p(2)LL′ϒLL′)

= (n−1)ϒLL′

=
n(n−1)

n+1
. (S101)

Therefore, the critical synergy factor on star graphs under the DB rule is

r⋆ =
τ(2)

ϒ(2) ≡ 4. (S102)

For the BD rule, we list the system of linear equations according to Eq. (S68):
τ̃HL =

n
n2 +1

+
n(n−1)
n2 +1

τ̃LL′ ,

τ̃LL′ =
n
2
+ τ̃HL.

(S103)
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The solution is
τ̃HL =

n(n2−n+2)
2(n+1)

,

τ̃LL′ =
n(n2 +3)
2(n+1)

.

(S104)

Inserting these τ̃i j values into Eq. (S66), we obtain the required ϒ̃i j values:

ϒ̃HL =
(n−1)[(n+3)τ̃LL′ −2τ̃HL]

2(n+1)2 =
n(n3−n2 +5n−5)

4(n+1)2 , (S105a)

ϒ̃LH =
(n−1)(τ̃HL− τ̃LL′)

2(n+1)
=

n(n−1)
4(n+1)

. (S105b)

Then, we apply these τ̃i j and ϒ̃i j values to calculate the critical synergy factor on the star graph under the BD rule. The
numerator is

τ̃
(1) = ∑

i, j∈N

ki j

kik j
τ̃i j = 2τ̃HL =

n(n2−n+2)
n+1

, (S106)

and the denominator is

ϒ̃
(1) = ∑

i, j∈N

ki j

kik j
ϒ̃i j = ϒ̃HL + ϒ̃LH =

n(n3−2n2 +5n−4)
4(n+1)2 . (S107)

Therefore, the critical synergy factor on star graphs under the BD rule is

r⋆ =
τ̃(1)

ϒ̃(1)
=

4n3 +4n+8
n3−2n2 +5n−4

n→∞−−−→ 4. (S108)

• Accumulated payoff

When using accumulated payoffs, the values of τi j, ϒi j, τ̃i j, and ϒ̃i j keep unchanged, but the formulas of the critical synergy
factors are different.

For the PC rule, we follow Eq. (S74). The numerator is

∑
i, j∈N

ki(ki +1)pi jτi j = (n+3)τHL =
(3n−1)(n+3)

n+1
, (S109)

and the denominator is

∑
i, j∈N

ki(ki +1)pi jϒi j = (n+1)ϒHL +2ϒLH =
2n(n−1)

n+1
. (S110)

The critical synergy factor on star graphs under the PC rule when using accumulated payoff is

r⋆accu =
(3n−1)(n+3)

2n(n−1)
n→∞−−−→ 3

2
. (S111)

For the DB rule, we follow Eq. (S76). The numerator is

∑
i, j∈N

ki(ki +1)p(2)i j τi j = 2(n−1)τLL′ =
8n(n−1)

n+1
, (S112)

and the denominator is

∑
i, j∈N

ki(ki +1)p(2)i j ϒi j = 2(n−1)ϒLL′ =
2n(n−1)

n+1
(S113)
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The critical synergy factor on star graphs under the DB rule when using accumulated payoff is

r⋆accu ≡ 4. (S114)

For the BD rule, we follow Eq. (S78). The numerator is

∑
i, j∈N

ki j

kik j
(ki +1)τ̃i j = (n+3)τ̃HL =

n(n+3)(n2−n+2)
2(n+1)

, (S115)

and the denominator is

∑
i, j∈N

ki j

kik j
(ki +1)ϒ̃i j = (n+1)ϒ̃HL +2ϒ̃LH =

n(n3−n2 +3n−3)
4(n+1)

. (S116)

The critical synergy factor on star graphs under the BD rule when using accumulated payoff is

r⋆accu =
2(n+3)(n2−n+2)

n3−n2 +3n−3
n→∞−−−→ 2. (S117)

2.3 Hub-to-hub star
On a hub-to-hub star graph, there are two hubs (H), each has n leaves (L). A hub node has kH = n+1 neighbors (n leaves and
the other hub), and each leaf node has kL = 1 neighbor. There are five non-zero τi j types: τHH ′ , the relation between the two
hubs; τLL′ , the relation between two leaves of the same hub; τLL′′ , the relation between a leaf of one hub and another leaf of the
other hub; τHL, the relation between a hub and one of its leaves; τHL′ , the relation between a hub and a leaf of the other hub.
According to Eq. (4) in the main text, we have the system of linear equations:

τHH ′ = 1+
n

n+1
τHL′ ,

τHL = 1+
1

2(n+1)
τHL′ +

n−1
2(n+1)

τLL′ ,

τHL′ = 1+
1

2(n+1)
τHL +

n
2(n+1)

τLL′′ +
1
2

τHH ′ ,

τLL′ = 1+ τHL,

τLL′′ = 1+ τHL′ .

(S118)

The solution is

τHH ′ =
4n3 +20n2 +17n+5

(2n+5)(n+1)
,

τHL =
5(2n+1)

2n+5
,

τHL′ =
2(2n2 +9n+5)

2n+5
,

τLL′ =
2(6n+5)

2n+5
,

τLL′′ =
4n2 +20n+15

2n+5
.

(S119)

Inserting these τi j values into Eq. (5) in the main text, we obtain the required ϒi j values:

ϒHH ′ =
n

2(n+2)
(τHH ′ − τHL + τHL′)

=
n(4n3 +16n2 +15n+5)
2n3 +11n2 +19n+10

, (S120a)
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ϒHL =− 2
(n+2)2 τHH ′ −

n−2
(n+2)2 τHL−

n−2
(n+2)2 τHL′ +

n2 +3n−4
2(n+2)2 τLL′ +

2
(n+2)2 τLL′′

=
n(6n3 +21n2 +30n+23)
(n+2)2(2n2 +7n+5)

, (S120b)

ϒLH =
1

2(n+2)
τHH ′ +

n−1
2(n+2)

τHL−
1

2(n+2)
τHL′ −

n−1
2(n+2)

τLL′

=− n(2n2 +7n+9)
4n3 +22n2 +38n+20

, (S120c)

ϒHL′ =−
2

(n+2)2 τHH ′ −
n2 +4n−4
2(n+2)2 τHL +

n2 +4
2(n+2)2 τHL′ +

n−1
(n+2)2 τLL′ +

n2 +4n
2(n+2)2 τLL′′

=
4n5 +26n4 +64n3 +84n2 +60n+10

(n+2)2(2n2 +7n+5)
, (S120d)

ϒLH ′ =
n+4

4(n+2)
τHH ′ −

n+4
4(n+2)

τHL +
3n

4(n+2)
τHL′ −

n−1
2(n+2)

τLL′

=
8n4 +34n3 +53n2 +31n+10

2(2n3 +11n2 +19n+10)
, (S120e)

ϒLL′ =
τLL′

4

=
6n+5

2(2n+5)
. (S120f)

Then, we apply these τi j and ϒi j values to calculate the critical synergy factor on the hub-to-hub star graph. For the PC rule,
the numerator is

τ
(1) = 2τHH ′ +4nτHL

=
2(24n3 +50n2 +27n+5)

2n2 +7n+5
, (S121)

and the denominator is

ϒ
(1) = 2ϒHH ′ +2nϒHL +2nϒLH

=
n(18n4 +79n3 +131n2 +98n+20)

(n+2)2(2n2 +7n+5)
. (S122)

Therefore, the critical synergy factor on hub-to-hub star graphs under the PC rule is

r⋆ =
τ(1)

ϒ(1) =
2(n+2)2(24n3 +50n2 +27n+5)

n(18n4 +79n3 +131n2 +98n+20)
n→∞−−−→ 8

3
. (S123)

For the DB rule, the numerator is

τ
(2) = ∑

i, j∈N
ki p

(2)
i j τi j

=
2n

n+1
τHL′ +

2n(n−1)
n+1

τLL′ +
2n

n+1
τHL′

=
4n(10n2 +17n+5)

2n2 +7n+5
, (S124)

and the denominator is

ϒ
(2) = ∑

i, j∈N
ki p

(2)
i j ϒi j

=
2n

n+1
ϒHL′ +

2n(n−1)
n+1

ϒLL′ +
2n

n+1
ϒL′H

36/56



=
n(22n5 +131n4 +287n3 +296n2 +148n+20)

(2n+5)(n2 +3n+2)2 . (S125)

Therefore, the critical synergy factor on hub-to-hub star graphs under the DB rule is

r⋆ =
4(n+2)2(10n3 +27n2 +22n+5)

22n5 +131n4 +287n3 +296n2 +148n+20
n→∞−−−→ 20

11
. (S126)

For the BD rule, we list the system of linear equations according to Eq. (S68):

τ̃HH ′ =
n+1

2(n2 +n+1)
(1+2nτ̃HL′),

τ̃HL =
n+1

n2 +n+2

(
1+

1
n+1

τ̃HL′ +(n−1)τ̃LL′

)
,

τ̃HL′ =
n+1

n2 +n+2

(
1+

1
n+1

τ̃HH ′ +
1

n+1
τ̃HL +nτ̃LL′′

)
,

τ̃LL′ =
n+1

2
+ τ̃HL,

τ̃LL′′ =
n+1

2
+ τ̃HL′ .

(S127)

The solution is

τ̃HH ′ =
(n+1)(n5 +6n4 +10n3 +12n2 +9n+5)

2(n3 +3n2 +4n+5)
,

τ̃HL =
2n5 +5n4 +10n3 +11n2 +9n+5

2(n3 +3n2 +4n+5)
,

τ̃HL′ =
n6 +7n5 +17n4 +28n3 +30n2 +23n+10

2(n3 +3n2 +4n+5)
,

τ̃LL′ =
n5 +3n4 +7n3 +9n2 +9n+5

n3 +3n2 +4n+5
,

τ̃LL′′ =
n6 +7n5 +18n4 +32n3 +37n2 +32n+15

2(n3 +3n2 +4n+5)
.

(S128)

Inserting these τ̃i j values into Eq. (S66), we obtain the required ϒ̃i j values:

ϒ̃HH ′ =
n

2(n+2)
(τ̃HH ′ − τ̃HL + τ̃HL′)

=
n(n6 +6n5 +14n4 +20n3 +20n2 +14n+5)

2(n4 +5n3 +10n2 +13n+10)
, (S129a)

ϒ̃HL =− 2
(n+2)2 τ̃HH ′ −

n−2
(n+2)2 τ̃HL−

n−2
(n+2)2 τ̃HL′ +

n2 +3n−4
2(n+2)2 τ̃LL′ +

2
(n+2)2 τ̃LL′′

=
n(n6 +4n5 +12n4 +24n3 +36n2 +36n+15)

2(n+2)2(n3 +3n2 +4n+5)
, (S129b)

ϒ̃LH =
1

2(n+2)
τ̃HH ′ +

n−1
2(n+2)

τ̃HL−
1

2(n+2)
τ̃HL′ −

n−1
2(n+2)

τ̃LL′

=− n(n4 +4n3 +9n2 +11n+5)
4(n4 +5n3 +10n2 +13n+10)

. (S129c)

Then, we apply these τ̃i j and ϒ̃i j values to calculate the critical synergy factor on the hub-to-hub star graph under the BD rule.
The numerator is

τ̃
(1) =

2
(n+1)2 τ̃HH ′ +

4n
n+1

τ̃HL =
4n6 +11n5 +26n4 +32n3 +30n2 +19n+5

n4 +4n3 +7n2 +9n+5
, (S130)
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and the denominator is

ϒ̃
(1) =

2
(n+1)2 ϒ̃HH ′ +

2n
n+1

ϒ̃HL +
2n

n+1
ϒ̃LH =

n(2n7 +9n6 +32n5 +69n4 +101n3 +107n2 +66n+20)
2(n+2)2(n4 +4n3 +7n2 +9n+5)

. (S131)

Therefore, the critical synergy factor on hub-to-hub star graphs under the BD rule is

r⋆ =
τ̃(1)

ϒ̃(1)
=

2(n+2)2(4n6 +11n5 +26n4 +32n3 +30n2 +19n+5)
n(2n7 +9n6 +32n5 +69n4 +101n3 +107n2 +66n+20)

n→∞−−−→ 4. (S132)

• Accumulated payoff

When using accumulated payoffs, we follow Eq. (S74) for the PC rule. The numerator is

∑
i, j∈N

ki(ki +1)pi jτi j = 2(n+2)τHH ′ +2n(n+4)τHL

=
2(14n4 +83n3 +122n2 +59n+10)

2n2 +7n+5
, (S133)

and the denominator is

∑
i, j∈N

ki(ki +1)pi jϒi j = 2(n+2)ϒHH ′ +2n(n+2)ϒHL +4nϒLH

=
2n(10n4 +43n3 +70n2 +49n+10)

2n3 +11n2 +19n+10
. (S134)

The critical synergy factor on hub-to-hub star graphs under the PC rule when using accumulated payoff is

r⋆accu =
14n5 +111n4 +288n3 +303n2 +128n+20

n(10n4 +43n3 +70n2 +49n+10)
n→∞−−−→ 7

5
. (S135)

For the DB rule, we follow Eq. (S76). The numerator is

∑
i, j∈N

ki(ki +1)p(2)i j τi j =
2n(n+4)

n+1
τHL′ +

4n(n−1)
n+1

τLL′

=
4n(2n3 +29n2 +39n+10)

2n2 +7n+5
, (S136)

and the denominator is

∑
i, j∈N

ki(ki +1)p(2)i j ϒi j =
2n(n+2)

n+1
ϒHL′ +

4n
n+1

ϒLH ′ +
4n(n−1)

n+1
ϒLL′

=
2n(4n5 +40n4 +115n3 +141n2 +74n+10)

(n+1)2(2n2 +9n+10)
. (S137)

The critical synergy factor on hub-to-hub star graphs under the DB rule when using accumulated payoff is

r⋆accu =
4n5 +70n4 +260n3 +370n2 +216n+40
4n5 +40n4 +115n3 +141n2 +74n+10

n→∞−−−→ 1. (S138)

Eq. (S138) is the result of the super structure for cooperation presented in the main text.
For the BD rule, we follow Eq. (S78). The numerator is

∑
i, j∈N

ki j

kik j
(ki +1)τ̃i j =

2(n+2)
(n+1)2 τ̃HH ′ +

2n(n+4)
n+1

τ̃HL

=
2n7 +14n6 +38n5 +73n4 +85n3 +74n2 +43n+10

n4 +4n3 +7n2 +9n+5
, (S139)
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and the denominator is

∑
i, j∈N

ki j

kik j
(ki +1)ϒ̃i j =

2(n+2)
(n+1)2 ϒ̃HH ′ +

2n(n+2)
n+1

ϒ̃HL +
4n

n+1
ϒ̃LH

=
n(n7 +5n6 +18n5 +39n4 +56n3 +56n2 +33n+10)

n5 +6n4 +15n3 +23n2 +23n+10
. (S140)

The critical synergy factor on hub-to-hub star graphs under the BD rule when using accumulated payoff is

r⋆accu =
2n8 +18n7 +66n6 +149n5 +231n4 +244n3 +191n2 +96n+20

n(n7 +5n6 +18n5 +39n4 +56n3 +56n2 +33n+10)
n→∞−−−→ 2. (S141)

2.4 m-hub star
On an m-hub star graph, there are m hubs (H), each has n leaves (L). A hub node has kH = n+m− 1 neighbors (n leaves
and the remaining m−1 hubs), and each leaf node has kL = 1 neighbor. There are five non-zero τi j types: τHH ′ , the relation
between one hub and another hub; τLL′ , the relation between two leaves of the same hub; τLL′′ , the relation between two leaves
of different hubs; τHL, the relation between a hub and one of its leaves; τHL′ , the relation between a hub and a leaf of another
hub. The m-hub star reduces to a hub-to-hub star when m = 2. According to Eq. (4) in the main text, we have the system of
linear equations:

τHH ′ = 1+
m−2

n+m−1
τHH ′ +

n
n+m−1

τHL′ ,

τHL = 1+
m−1

2(n+m−1)
τHL′ +

n−1
2(n+m−1)

τLL′ ,

τHL′ = 1+
1

2(n+m−1)
τHL +

m−2
2(n+m−1)

τHL′ +
n

2(n+m−1)
τLL′′ +

1
2

τHH ′ ,

τLL′ = 1+ τHL,

τLL′′ = 1+ τHL′ .

(S142)

The solution is

τHH ′ =
2m3 +9m2n−4m2 +12mn2−10mn+3m+4n3−4n2 +n−1

2m2 +4mn−2m+2n2−n+1
,

τHL =
m3 +4m2n+m2 +4mn2 +2mn−4m+2n2−5n+1

2m2 +4mn−2m+2n2−n+1
,

τHL′ =
2m3 +9m2n−m2 +12mn2−4mn+4n3−2n2−2

2m2 +4mn−2m+2n2−n+1
,

τLL′ =
m3 +4m2n+3m2 +4mn2 +6mn−6m+4n2−6n+2

2m2 +4mn−2m+2n2−n+1
,

τLL′′ =
2m3 +9m2n+m2 +12mn2−2m+4n3−n−1

2m2 +4mn−2m+2n2−n+1
.

(S143)

Inserting these τi j values into Eq. (5) in the main text, we obtain the required ϒi j values:

ϒHH ′ =
n

2(n+m)
(τHL′ − τHL + τHH ′)

=
n(3m3 +14m2n−6m2 +20mn2−16mn+7m+8n3−8n2 +6n−4

2(2m3 +6m2n−2m2 +6mn2−3mn+m+2n3−n2 +n)
, (S144a)

ϒHL =− m(m−1)
(m+n)2 τHH ′ +

m−n
(m+n)2 τHL +

(m−n)(m−1)
(m+n)2 τHL′

+
(n−1)(m+n+2)

2(m+n)2 τLL′ +
n(m−1)
(m+n)2 τLL′′
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=
{

m4n+7m4 +5m3n2 +22m3n−15m3 +8m2n3 +21m2n2−37m2n−4m2

+4mn4 +10mn3−32mn2−4mn+14m+4n4−10n3 +10n−4
}
/
{

2(m+n)2

× (2m2 +4mn−2m+2n2−n+1)
}
, (S144b)

ϒLH =
m−1

2(m+n)
τHH ′ +

n−1
2(m+n)

τHL−
m−1

2(m+n)
τHL′ −

n−1
2(m+n)

τLL′

=
−3m3−8m2n+8m2−6mn2 +13mn−4m−2n3 +5n2−3n

2(2m3 +6m2n−2m2 +6mn2−3mn+m+2n3−n2 +n
, (S144c)

ϒHL′ =−
m(m−1)
(m+n)2 τHH ′ +

2m−2n−mn−n2

2(m+n)2 τHL +
2m2−mn−2m+n2 +2n

2(m+n)2 τHL′

+
n−1

(m+n)2 τLL′ +
3mn−2n+n2

2(m+n)2 τLL′′

=
{

3m4n+8m4 +17m3n2 +23m3n−12m3 +34m2n3 +13m2n2−20m2n−10m2

+28mn4−6mn3−4mn2−22mn+16m+8n5−4n4 +4n3−12n2 +12n−4
}

/
{

2(m+n)2(2m2 +4mn−2m+2n2−n+1)
}
, (S144d)

ϒLH ′ =
3m+n−2
4(m+n)

τHH ′ −
m+n+2
4(m+n)

τHL +
3n−m+2
4(m+n)

τHL′ −
n−1

2(m+n)
τLL′

=
{

3m4 +19m3n−12m3 +44m2n2−42m2n+23m2 +44mn3−48mn2 +47mn

−12m+16n4−20n3 +26n2−16n
}
/
{

4(2m3 +6m2n−2m2 +6mn2−3mn

+m+2n3−n2 +n)
}
, (S144e)

ϒLL′ =
τLL′

4

=
m3 +4m2n+3m2 +4mn2 +6mn−6m+4n2−6n+2

4(2m2 +4mn−2m+2n2−n+1)
. (S144f)

Then, we apply these τi j and ϒi j values to calculate the critical synergy factor on the m-hub star graph. For the PC rule, the
numerator is

τ
(1) = m(m−1)τHH ′ +2mnτHL

=
{

m(2m4 +11m3n−6m3 +20m2n2−17m2n+7m2 +12mn3−12mn2 +3mn

−4m−6n2 +n+1)
}
/
{

2m2 +4mn−2m+2n2−n+1
}

(S145)

and the denominator is

ϒ
(1) = m(m−1)ϒHH ′ +mnϒHL +mnϒLH

=
{

mn(3m5 +18m4n−5m4 +39m3n2−28m3n+6m3 +36m2n3−51m2n2

+19m2n−19m2 +12mn4−34mn3 +16mn2−28mn+18m−6n4 +3n3−9n2

+14n−4)
}
/
{

2(m+n)2(2m2 +4mn−2m+2n2−n+1)
}

(S146)

Therefore, the critical synergy factor on m-hub star graphs under the PC rule is

r⋆ =
nume
deno

n→∞−−−→ 4m
2m−1

m=2−−→ 8
3

m→∞−−−→ 2, (S147)

where

nume = 2(m+n)2(2m4 +11m3n−6m3 +20m2n2−17m2n+7m2 +12mn3
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−12mn2 +3mn−4m−6n2 +n+1),

deno = n(3m5 +18m4n−5m4 +39m3n2−28m3n+6m3 +36m2n3−51m2n2 +19m2n

−19m2 +12mn4−34mn3 +16mn2−28mn+18m−6n4 +3n3−9n2 +14n−4). (S148)

For the DB rule, the numerator is

τ
(2) =

m(m−1)(m−2)
n+m−1

τHH ′ +
2mn(m−1)
n+m−1

τHL′ +
mn(n−1)
n+m−1

τLL′

=
{

m(2m4 +11m3n−8m3 +20m2n2−25m2n+11m2 +12mn3−22mn2 +12mn

−7m−4n3−2n2−2n+2)
}
/
{

2m2 +4mn−2m+2n2−n+1
}

(S149)

and the denominator is

ϒ
(2) =

m(m−1)(m−2)
n+m−1

ϒHH ′ +
mn(m−1)
n+m−1

ϒHL′ +
mn(m−1)
n+m−1

ϒLH ′ +
mn(n−1)
n+m−1

ϒLL′

=
{

mn(9m6 +63m5n−30m5 +171m4n2−185m4n+54m4 +225m3n3−414m3n2

+246m3n−99m3 +144m2n4−413m2n3 +384m2n2−256m2n+114m2 +36mn5

−182mn4 +242mn3−215mn2 +168mn−56m−28n5 +50n4−58n3 +62n2

−40n+8)
}
/
{

4(m+n)2(2m3 +6m2n−4m2 +6mn2−7mn+3m+2n3−3n2

+2n−1)
}

(S150)

Therefore, the critical synergy factor on m-hub star graphs under the DB rule is

r⋆ =
nume
deno

n→∞−−−→ 12m−4
9m−7

m=2−−→ 20
11

m→∞−−−→ 4
3
, (S151)

where

nume = 4(m+n)2(2m3 +6m2n−4m2 +6mn2−7mn+3m+2n3−3n2 +2n−1)

× (2m4 +11m3n−8m3 +20m2n2−25m2n+11m2 +12mn3−22mn2 +12mn

−7m−4n3−2n2−2n+2),

deno = n(2m2 +4mn−2m+2n2−n+1)(9m6 +63m5n−30m5 +171m4n2−185m4n

+54m4 +225m3n3−414m3n2 +246m3n−99m3 +144m2n4−413m2n3 +384m2n2

−256m2n+114m2 +36mn5−182mn4 +242mn3−215mn2 +168mn−56m−28n5

+50n4−58n3 +62n2−40n+8). (S152)

For the BD rule, we list the system of linear equations according to Eq. (S68):

τ̃HH ′ =
n+m−1

2(n2−n+mn+m−1)

(
1+

2(m−2)
n+m−1

τ̃HH ′ +2nτ̃HL′

)
,

τ̃HL =
n+m−1

n2−n+mn+m

(
1+

m−1
n+m−1

)τ̃HL′ +(n−1)τ̃LL′

)
,

τ̃HL′ =
n+m−1

n2−n+mn+m

(
1+

1
n+m−1

τ̃HL +
m−2

n+m−1
τ̃HL′ +nτ̃LL′′ +

1
n+m−1

τ̃HH ′

)
,

τ̃LL′ =
n+m−1

2
+ τ̃HL,

τ̃LL′′ =
n+m−1

2
+ τ̃HL,

(S153)
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which can be solved, but the solution for τ̃i j is too long and thus not presented here. Inserting these τ̃i j values into Eq. (S66),
we can obtain the required ϒ̃i j values. Finally, we can apply these τ̃i j and ϒ̃i j values to calculate the critical synergy factor on
the m-hub star graph under the BD rule. The numerator is

τ̃
(1) =

m(m−1)
(n+m−1)2 τ̃HH ′ +

2mn
n+m−1

τ̃HL, (S154)

and the denominator is

ϒ̃
(1) =

m(m−1)
(n+m−1)2 ϒ̃HH ′ +

mn
n+m−1

ϒ̃HL +
mn

n+m−1
ϒ̃LH . (S155)

Therefore, the critical synergy factor on m-hub star graphs under the BD rule is

r⋆ =
τ̃(1)

ϒ̃(1)
=

nume
deno

n→∞−−−→ 4, (S156)

where

nume = 2(m+n)2(2m4n3 +2m4n2 +6m3n4−m3n3−2m3n2 +3m3n+6m2n5−8m2n4 +m2n3

+6m2n2−3m2n+3m2 +2mn6−5mn5 +10mn3−12mn2 +7mn−4m−3n5 +10n4

−16n3 +14n2−7n+1),

deno = n(m5n3 +4m5n2 +2m5n+4m4n4 +10m4n3−7m4n2 +2m4n+2m4 +6m3n5 +6m3n4

−23m3n3 +24m3n2−7m3n+5m3 +4m2n6−2m2n5−20m2n4 +40m2n3−35m2n2

+17m2n−17m2 +mn7−2mn6−9mn5 +28mn4−41mn3 +23mn2−20mn+6m

−3n6 +10n5−19n4 +15n3−7n2−2n+4). (S157)

• Accumulated payoff

When using accumulated payoffs, we follow Eq. (S74) for the PC rule. The numerator is

∑
i, j∈N

ki(ki +1)pi jτi j = m(m+n)(m−1)τHH ′ +mn(m+n+2)τHL, (S158)

and the denominator is

∑
i, j∈N

ki(ki +1)pi jϒi j = m(m+n)(m−1)ϒHH ′ +mn(m+n)ϒHL +2mnϒLH . (S159)

The critical synergy factor on m-hub star graphs under the PC rule when using accumulated payoff is

r⋆accu =
nume
deno

n→∞−−−→ 4m−1
3m−1

m→∞−−−→ 4
3
, (S160)

where

nume = 2(2m3 +6m2n−2m2 +6mn2−3mn+m+2n3−n2 +n)(2m5 +12m4n−6m4

+26m3n2−22m3n+7m3 +24m2n3−24m2n2 +16m2n−4m2 +8mn4−8mn3

+10mn2−12mn+m−2n4 +3n3−10n2 +3n),

deno = n(2m2 +4mn−2m+2n2−n+1)(3m5 +18m4n−2m4 +39m3n2−17m3n−8m3

+36m2n3−37m2n2−18m2n+m2 +12mn4−26mn3−14mn2 +5mn+10m

−4n4−6n3 +4n2 +8n−4). (S161)

For the DB rule, we follow Eq. (S76). The numerator is

∑
i, j∈N

ki(ki +1)p(2)i j τi j =
m(m+n)(m−1)(m−2)

m+n−1
τHH ′ +

mn(m−1)(m+n+2)
m+n−1

τHL′ +
2mn(n−1)
m+n−1

τLL′ , (S162)
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and the denominator is

∑
i, j∈N

ki(ki +1)p(2)i j ϒi j =
m(m+n)(m−1)(m−2)

m+n−1
ϒHH ′ +

mn(m+n)(m−1)
m+n−1

ϒHL′ +
2mn(n−1)
m+n−1

ϒLH ′

+
2mn(n−1)
m+n−1

ϒLL′ . (S163)

The critical synergy factor on m-hub star graphs under the DB rule when using accumulated payoff is

r⋆accu =
nume
deno

n→∞−−−→ 1, (S164)

where

nume = 2(2m4 +8m3n−4m3 +12m2n2−11m2n+3m2 +8mn3−10mn2 +5mn−m+2n4

−3n3 +2n2−n)(2m5 +11m4n−8m4 +21m3n2−27m3n+11m3 +16m2n3−25m2n2

+23m2n−7m2 +4mn4−6mn3 +14mn2−17mn+2m−4n4 +6n3−18n2 +2n),

deno = n(2m2 +4mn−2m+2n2−n+1)(3m6 +20m5n−4m5 +51m4n2−33m4n−5m4

+62m3n3−81m3n2 +7m3n−3m3 +36m2n4−80m2n3 +38m2n2−15m2n+23m2

+8mn5−36mn4 +32mn3−22mn2 +23mn−18m−8n5 +8n4−10n3 +6n2−6n+4). (S165)

For the BD rule, we follow Eq. (S78). The numerator is

∑
i, j∈N

ki j

kik j
(ki +1)τ̃i j =

m(m+n)(m−1)
(n+m−1)2 τ̃HH ′ +

mn(m+n+2)
n+m−1

τ̃HL, (S166)

and the denominator is

∑
i, j∈N

ki j

kik j
(ki +1)ϒ̃i j =

m(m+n)(m−1)
(n+m−1)2 ϒ̃HH ′ +

mn(m+n)
n+m−1

ϒ̃HL +
2mn

n+m−1
ϒ̃LH . (S167)

The critical synergy factor on m-hub star graphs under the BD rule when using accumulated payoff is

r⋆accu =
nume
deno

n→∞−−−→ 2, (S168)

where

nume = 2(m4n+4m3n2−2m3n+3m3 +6m2n3−6m2n2 +9m2n−4m2 +4mn4−6mn3 +9mn2

−7mn+m+n5−2n4 +3n3−3n2 +n)(m5n3 +2m5n2 +4m4n4 +6m4n3−4m4n2

+3m4n+6m3n5 +6m3n4−15m3n3 +15m3n2−4m3n+3m3 +4m2n6 +2m2n5−20m2n4

+29m2n3−17m2n2 +10m2n−4m2 +mn7−11mn5 +21mn4−16mn3 +6mn2−4mn

+m−2n6 +4n5−n4−7n3 +10n2−5n),

deno = n(m3n+3m2n2−2m2n+3m2 +3mn3−4mn2 +6mn−4m+n4−2n3 +3n2−3n+1)

× (m5n3 +4m5n2 +4m5n+4m4n4 +10m4n3 +m4n2−9m4n+4m4 +6m3n5 +6m3n4

−10m3n3−11m3n2 +22m3n−5m3 +4m2n6−2m2n5−9m2n4−3m2n3 +27m2n2

−28m2n−m2 +mn7−2mn6−4mn5 +3mn4 +9mn3−31mn2 +13mn−2m−2n6

+4n5−4n4−6n3 +10n2−8n+4). (S169)

2.5 Ceiling fan
On a ceiling fan graph, there is one hub (H) and n leaves (L), each leaf consists of two connected nodes. The hub node has
kH = 2n neighbors, and each leaf node has kL = 2 neighbors (the hub and the other leaf node). There are three non-zero τi j
types: τHL, the relation between the hub and a leaf node; τLL′ , the relation between the two leaf nodes of the same leaf; τLL′′ ,
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the relation between two leaf nodes of two different leaves. According to Eq. (4) in the main text, we have the system of linear
equations:

τHL = 1+
1

4n
(τLL′ +(2n−2)τLL′′)+

1
4

τHL,

τLL′ = 1+
1
4

τHL +
1
4

τHL,

τLL′′ = 1+
1
4
(τHL + τLL′′)+

1
4
(τHL + τLL′′).

(S170)

The solution is

τHL =
2(8n−3)

2n+3
,

τLL′ =
10n

2n+3
,

τLL′′ =
20n

2n+3
.

(S171)

Inserting these τi j values into Eq. (5) in the main text, we calculate the required ϒi j values:

ϒHL =−4n2 +8n−3
3(2n+1)2 τHL +

4n+5
3(2n+1)2 τLL′ +

8n2 +2n−10
3(2n+1)2 τLL′′

=
2(16n3−4n2−9n−3)

(2n+1)2(2n+3)
, (S172a)

ϒLH =
10n−1

9(2n+1)
τHL−

4n+5
9(2n+1)

τLL′ −
2n−2

3(2n+1)
τLL′′

=− 2(n−1)
3(4n2 +8n+3)

, (S172b)

ϒLL′ = 0, (S172c)

ϒLL′′ =−
2
9

τLL′ +
4
9

τLL′′ =
20n

6n+9
. (S172d)

Then, we apply these τi j and ϒi j values to calculate the critical synergy factor on the ceiling fan graph. For the PC rule, the
numerator is

τ
(1) = 4nτHL +2nτLL′ =

12n(7n−2)
2n+3

, (S173)

and the denominator is

ϒ
(1) = 2nϒHL +2nϒLH +2nϒLL′ =

8n(24n3−7n2−13n−4)
3(2n+1)2(2n+3)

. (S174)

Therefore, the critical synergy factor on ceiling fan graphs under the PC rule is

r⋆ =
9(2n+1)2(7n−2)

2(24n3−7n2−13n−4)
n→∞−−−→ 21

4
. (S175)

For the DB rule, the numerator is

τ
(2) = 2nτHL + τLL′ +(2n−2)τLL′′ =

6n(12n−7)
2n+3

, (S176)

and the denominator is

ϒ
(2) = nϒHL +nϒLH +ϒLL′ +(2n−2)ϒLL′′ =

4n(64n3−7n2−43n−14)
3(2n+1)2(2n+3)

. (S177)
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Therefore, the critical synergy factor on ceiling fan graphs under the DB rule is

r⋆ =
9(2n+1)2(12n−7)

2(64n3−7n2−43n−14)
n→∞−−−→ 27

8
. (S178)

For the BD rule, we list the system of linear equations according to Eq. (S68):

τ̃HL =
2n

2n2 +n+1

(
1+

1
2

τ̃LL′ +(n−1)τ̃LL′′ +
1
2

τ̃HL

)
,

τ̃LL′ =
n

n+1

(
1+

1
n

τ̃HL

)
,

τ̃LL′′ =
n

n+1

(
1+

1
n

τ̃HL + τ̃LL′′

)
.

(S179)

The solution is

τ̃HL =
2n4 +n2 +2n
2n2 +2n+1

,

τ̃LL′ =
n(2n2 +3)

2n2 +2n+1
,

τ̃LL′′ =
n(2n2 +3)(n+1)

2n2 +2n+1
.

(S180)

Inserting these τ̃i j values into Eq. (S66), we obtain the required ϒ̃i j values:

ϒ̃HL =−4n2 +8n−3
3(2n+1)2 τ̃HL +

4n+5
3(2n+1)2 τ̃LL′ +

8n2 +2n−10
3(2n+1)2 τ̃LL′′

=
n(8n5 +4n4 +18n3 +4n2−25n−9)

3(2n+1)2(2n2 +2n+1)
, (S181a)

ϒ̃LH =
10n−1

9(2n+1)
τ̃HL−

4n+5
9(2n+1)

τ̃LL′ −
2n−2

3(2n+1)
τ̃LL′′

=
n(8n4−10n3−6n2 +7n+1)

9(4n3 +6n2 +4n+1)
, (S181b)

ϒ̃LL′ = 0. (S181c)

Then, we apply these τ̃i j and ϒ̃i j values to calculate the critical synergy factor on the ceiling fan graph under the BD rule. The
numerator is

τ̃
(1) = τ̃HL +

n
2

τ̃LL′ =
n(6n3 +5n+4)
2(2n2 +2n+1)

, (S182)

and the denominator is

ϒ̃
(1) =

1
2

ϒ̃HL +
1
2

ϒ̃LH +
n
2

ϒ̃LL′ =
n(20n5 +16n3 +10n2−33n−13)

9(2n+1)2(2n2 +2n+1)
. (S183)

Therefore, the critical synergy factor on ceiling fan graphs under the BD rule is

r⋆ =
τ̃(1)

ϒ̃(1)
=

9(2n+1)2(6n3 +5n+4)
2(20n5 +16n3 +10n2−33n−13)

n→∞−−−→ 27
5
. (S184)

• Accumulated payoff

When using accumulated payoffs, we follow Eq. (S74) for the PC rule. The numerator is

∑
i, j∈N

ki(ki +1)pi jτi j = 4n(n+2)τHL +6nτLL′ =
4n(16n2 +41n−12)

2n+3
, (S185)
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and the denominator is

∑
i, j∈N

ki(ki +1)pi jϒi j = 2n(2n+1)ϒHL +6nϒLH +6nϒLL′ =
8n(4n2−3n−1)

2n+3
. (S186)

The critical synergy factor on ceiling fan graphs under the PC rule when using accumulated payoff is

r⋆accu =
16n2 +41n−12
2(4n2−3n−1)

n→∞−−−→ 2. (S187)

For the DB rule, we follow Eq. (S76). The numerator is

∑
i, j∈N

ki(ki +1)p(2)i j τi j = 2n(n+2)τHL +3τLL′ +6(n−1)τLL′′

=
2n(16n2 +86n−57)

2n+3
, (S188)

and the denominator is

∑
i, j∈N

ki(ki +1)p(2)i j ϒi j = n(2n+1)ϒHL +3nϒLH +3ϒLL′ +6(n−1)ϒLL′′

=
4n(4n2 +7n−11)

2n+3
. (S189)

The critical synergy factor on ceiling fan graphs under the DB rule when using accumulated payoff is

r⋆accu =
16n2 +86n−57
2(4n2 +7n−11)

n→∞−−−→ 2. (S190)

For the BD rule, we follow Eq. (S78). The numerator is

∑
i, j∈N

ki j

kik j
(ki +1)τ̃i j = (n+2)τ̃HL +

3n
2

τ̃LL′

=
n(4n4 +14n3 +2n2 +17n+8)

2(2n2 +2n+1)
, (S191)

and the denominator is

∑
i, j∈N

ki j

kik j
(ki +1)ϒ̃i j =

2n+1
2

ϒ̃HL +
3
2

ϒ̃LH +
3n
2

ϒ̃LL′

=
n(2n4 +2n3 +n2−n−4)

3(2n2 +2n+1)
. (S192)

The critical synergy factor on ceiling fan graphs under the BD rule when using accumulated payoff is

r⋆accu =
3(4n4 +14n3 +2n2 +17n+8)

2(2n4 +2n3 +n2−n−4)
n→∞−−−→ 3. (S193)

By analogy, the critical synergy factor for spatial PGGs on any other network structures can be calculated using the same
method in the future.

Supplementary Note 3: Some extensions to the donation game (DG)
Here, we give the details of deducing cooperation conditions in pairwise donation games (DGs). These results can be derived
through the techniques in previous literature10. Unfortunately, while the previous literature indicated the methods to obtain
these results, they did not publish them. In particular, only the results under the DB and BD updates using averaged payoff can
be found in previous literature10. To compare our spatial PGGs with pairwise DGs across different model details, we have to
deduce the unpublished results of pairwise DGs and present them in our work.
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The actual payoff of agent i is averaged over ki DGs played with all neighbors l ∈Ni. In each DG, a cooperator pays c and
the other player receives b (b > c), while a defector pays nothing and the other player receives nothing. Namely, the actual
payoff fi(x) of agent i is expressed as follows.

fi(x) =
1
ki

∑
l∈Ni

(−xic+ xlb) =−xic+
1
ki

∑
l∈Ni

xlb. (S194)

The dynamics of strategy evolution under neutral drift remain the same. Only the quantity E◦RMC[(xi−x j)( fi(x)− f j(x))] is
influenced by the payoff calculation in pairwise DGs. Applying the payoff in Eq. (S194), we have

E◦RMC[(xi− x j)( fi(x)− f j(x))]

= E◦RMC

[
− (x2

i − xix j)c+
1
ki

∑
l∈Ni

(xixl− x jxl)b+(xix j− x2
j)c−

1
k j

∑
l∈N j

(xixl− x jxl)b

]

=− c
(
E◦RMC[x

2
i ]−2E◦RMC[xix j]+E◦RMC[x

2
j ]
)
+

b
ki

∑
l∈Ni

(E◦RMC[xixl ]−E◦RMC[x jxl ])

− b
k j

∑
l∈N j

(E◦RMC[xixl ]−E◦RMC[x jxl ]) . (S195)

3.1 Pairwise comparison
The cooperation condition under the PC rule is Eq. (S17). Using the result of Eq. (S195) and applying τi j = (1/2−
E◦RMC[xix j])/(K/4) defined by Eq. (S26), we calculate the cooperation condition under the PC rule as

1
4N2⟨k⟩ ∑

i, j∈N
ki pi jE◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki pi j

{
−2cτi j +

b
ki

∑
l∈Ni

(−τil + τ jl)−
b
k j

∑
l∈N j

(−τil + τ jl)

}
> 0

⇔ b
c
>

2∑i, j∈N ki pi jτi j

∑i, j,l∈N ki pi j(pil− p jl)(τ jl− τil)
. (S196)

Further simplifying Eq. (S196) (using Eq. (S83)) leads to

b
c
>

∑i, j∈N ki pi jτi j

∑i, j,l∈N ki pi j pil(τ jl− τil)
=

τ(1)

τ(2)− τ(1)
. (S197)

The right-hand side is the (b/c)⋆ value for cooperation success in pairwise DGs under the PC rule. The τi j values should be
obtained by solving Eqs. (S33) on a given network structure.

3.2 Death-birth
The critical (b/c)⋆ value under the DB update has been first obtained in Ref.10. Trivially, in our calculation, the cooperation
condition under the DB rule is Eq. (S41). Using the result of Eq. (S195) and applying τi j = (1/2−E◦RMC[xix j])/(K/4) defined
by Eq. (S44), we calculate Eq. (S41) as

1
2N2⟨k⟩ ∑

i, j∈N
ki p

(2)
i j E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki p
(2)
i j

{
−2cτi j +

b
ki

∑
l∈Ni

(−τil + τ jl)−
b
k j

∑
l∈N j

(−τil + τ jl)

}
> 0

⇔ b
c
>

2∑i, j∈N ki p
(2)
i j τi j

∑i, j,l∈N ki p
(2)
i j (pil− p jl)(τ jl− τil)

. (S198)

Further simplifying Eq. (S196) leads to

b
c
>

∑i, j∈N ki p
(2)
i j τi j

∑i, j,l∈N ki p
(2)
i j pil(τ jl− τil)

=
τ(2)

τ(3)− τ(1)
. (S199)
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The right-hand side is the (b/c)⋆ value for cooperation success in pairwise DGs under the DB rule, which is consistent with
“t2/(t3− t1)” in the main text of Ref.10. The τi j values should be obtained by solving Eqs. (S33) on a given network structure.

3.3 Birth-death
The critical (b/c)⋆ value under the BD update has also been mentioned in Ref.10. We examine their results here. The cooperation
condition under the BD rule is Eq. (S53). Using the result of Eq. (S195) and applying τi j = (1/2−E◦RMC[xix j])/(K/2) as
defined by Eq. (S61), we calculate Eq. (S53) follows.

1
2N2⟨k−1⟩ ∑

i, j∈N

ki j

kik j
E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki j

kik j

{
−2cτ̃i j +

b
ki

∑
l∈Ni

(−τ̃il + τ̃ jl)−
b
k j

∑
l∈N j

(−τ̃il + τ̃ jl)

}
> 0

⇔ b
c
>

2∑i, j∈N
ki j

kik j
τ̃i j

∑i, j,l∈N
ki j

kik j
(pil− p jl)(τ̃ jl− τ̃il)

=

∑i, j∈N
ki j

kik j
τ̃i j

∑i, j,l∈N
ki jkil

k2
i k j

(τ̃ jl− τ̃il)

. (S200)

The right-hand side is the (b/c)⋆ value for cooperation success in pairwise DGs under the BD rule. The τ̃i j values should be
obtained by solving Eqs. (S67) on a given network structure.

3.4 Variation of the model: Accumulated payoff
When using accumulated payoffs, the actual payoff of agent i is accumulated through the ki DGs played with neighbors. The
actual payoff fi(x) of agent i is

fi(x) = ∑
l∈Ni

(−xic+ xlb) =−kixic+ ∑
l∈Ni

xlb. (S201)

The dynamics of strategy evolution under neutral drift remain the same, no matter the payoff calculation is averaged,
accumulated or other. Only the quantity E◦RMC[(xi− x j)( fi(x)− f j(x))] is influenced. Applying the accumulated payoff
calculation in Eq. (S201), we have

E◦RMC[(xi− x j)( fi(x)− f j(x))]

= E◦RMC

[
− ki(x2

i − xix j)c+ ∑
l∈Ni

(xixl− x jxl)b+ k j(xix j− x2
j)c− ∑

l∈N j

(xixl− x jxl)b

]
=− c

(
kiE◦RMC[x

2
i ]− (ki + k j)E◦RMC[xix j]+ k jE◦RMC[x

2
j ]
)
+b ∑

l∈Ni

(E◦RMC[xixl ]−E◦RMC[x jxl ])

−b ∑
l∈N j

(E◦RMC[xixl ]−E◦RMC[x jxl ]) . (S202)

3.4.1 Pairwise comparison
The cooperation condition under the PC rule is still Eq. (S17). Using the result of Eq. (S195) and Eq. (S26), we calculate

1
4N2⟨k⟩ ∑

i, j∈N
ki pi jE◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki pi j

{
− (ki + k j)cτi j +b ∑

l∈Ni

(−τil + τ jl)−b ∑
l∈N j

(−τil + τ jl)

}
> 0

⇔ b
c
>

∑i, j∈N ki(ki + k j)pi jτi j

∑i, j,l∈N ki pi j(kil− k jl)(τ jl− τil)
=

∑i, j∈N k2
i pi jτi j

∑i, j,l∈N k2
i pi j pil(τ jl− τil)

. (S203)

The right-hand side is the (b/c)⋆accu value in pairwise DGs using accumulated payoffs under the PC rule. The τi j values should
be obtained by solving Eqs. (S33) on a given network structure.
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3.4.2 Death-birth
The cooperation condition under the DB rule is still Eq. (S41). Using the result of Eq. (S195) and Eq. (S44), we calculate

1
2N2⟨k⟩ ∑

i, j∈N
ki p

(2)
i j E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki p
(2)
i j

{
− (ki + k j)cτi j +b ∑

l∈Ni

(−τil + τ jl)−b ∑
l∈N j

(−τil + τ jl)

}
> 0

⇔ b
c
>

2∑i, j∈N ki(ki + k j)p(2)i j τi j

∑i, j,l∈N ki p
(2)
i j (kil− k jl)(τ jl− τil)

=
∑i, j∈N k2

i p(2)i j τi j

∑i, j,l∈N k2
i p(2)i j pil(τ jl− τil)

. (S204)

The right-hand side is the (b/c)⋆accu value in pairwise DGs using accumulated payoffs under the DB rule. The τi j values should
be obtained by solving Eqs. (S33) on a given network structure.

3.4.3 Birth-death
The cooperation condition under the BD rule is still Eq. (S53). Using the result of Eq. (S195) and Eq. (S61), we calculate

1
2N2⟨k−1⟩ ∑

i, j∈N

ki j

kik j
E◦RMC[(xi− x j)( fi(x)− f j(x))]> 0

⇔ ∑
i, j∈N

ki j

kik j

{
− (ki + k j)cτ̃i j +b ∑

l∈Ni

(−τ̃il + τ̃ jl)−b ∑
l∈N j

(−τ̃il + τ̃ jl)

}
> 0

⇔ b
c
>

∑i, j∈N
ki j

kik j
(ki + k j)τ̃i j

∑i, j,l∈N
ki j

kik j
(kil− k jl)(τ̃ jl− τ̃il)

=
∑i, j∈N pi j τ̃i j

∑i, j,l∈N p ji pil(τ̃ jl− τ̃il)
. (S205)

The right-hand side is the (b/c)⋆accu value in pairwise DGs using accumulated payoffs under the BD rule. The τ̃i j values should
be obtained by solving Eqs. (S67) on a given network structure.

The steps to calculate the cooperation conditions of both PGGs and DGs across all model details (PC, DB, and BD updates
& averaged and accumulated payoffs) are summarized in Fig. S1.
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PGG DG

𝜏𝑖𝑗 = 1 +
1

2𝑘𝑖


𝑙∈𝒩𝑖

𝜏𝑗𝑙 +
1

2𝑘𝑗


𝑙∈𝒩𝑗

𝜏𝑖𝑙 , 𝑗 ≠ 𝑖

𝜏𝑖𝑗 = 0, 𝑗 = 𝑖

PC
𝑟⋆ = 𝑟accu

⋆ =

DB

𝜏𝑖𝑗 =
1

σ𝑙∈𝒩𝑖
𝑘𝑙
−1 + σ𝑙∈𝒩𝑗

𝑘𝑙
−1 1 + 

𝑙∈𝒩𝑖

𝑘𝑙
−1𝜏𝑗𝑙 + 

𝑙∈𝒩𝑗

𝜏𝑖𝑗 = 0,

BD

PC DB BD

STEP 1
Input network structure: 𝑘𝑖𝑗 ∈ 0,1 (𝑘𝑗𝑖 = 𝑘𝑖𝑗) for all nodes 𝑖, 𝑗 ∈ 𝒩. If 𝑘𝑖𝑗 = 1, then 𝑗 ∈ 𝒩𝑖. If 𝑘𝑖𝑗 = 0, then 𝑗 ∉ 𝒩𝑖.

Calculate necessary quantities: 𝑘𝑖 = σ𝑗∈𝒩 𝑘𝑖𝑗, 𝐺𝑖 = 𝑘𝑖 + 1, 𝑝𝑖𝑗 =
𝑘𝑖𝑗

𝑘𝑖
, 𝑝𝑖𝑗

2
= σ𝑙∈𝒩 𝑝𝑖𝑙𝑝𝑙𝑗.

STEP 2
𝜏𝑖𝑗 = 1 +

1

2𝑘𝑖


𝑙∈𝒩𝑖

𝜏𝑗𝑙 +
1

2𝑘𝑗


𝑙∈𝒩𝑗

𝜏𝑖𝑙 , 𝑗 ≠ 𝑖

𝜏𝑖𝑗 = 0, 𝑗 = 𝑖

ǁ𝜏𝑖𝑗 =
1

σ𝑙∈𝒩𝑖
𝑘𝑙
−1 + σ𝑙∈𝒩𝑗

𝑘𝑙
−1 1 + 

𝑙∈𝒩𝑖

𝑘𝑙
−1 ǁ𝜏𝑗𝑙 + 

𝑙∈𝒩𝑗

𝑘𝑙
−1 ǁ𝜏𝑖𝑙 , 𝑗 ≠ 𝑖

ǁ𝜏𝑖𝑗 = 0, 𝑗 = 𝑖

STEP 3

PGG

Υ𝑖𝑗 =
1

𝐺𝑖

𝜏𝑖𝑗 + σ𝑙∈𝒩𝑖
𝜏𝑗𝑙 − 𝜏𝑖𝑙

𝐺𝑖
+ 

𝑙∈𝒩𝑖

𝜏𝑗𝑙 − 𝜏𝑖𝑙 + σℓ∈𝒩𝑙
𝜏𝑗ℓ − 𝜏𝑖ℓ

𝐺𝑙
෩Υ𝑖𝑗: the same as Υ𝑖𝑗, but just use ǁ𝜏𝑖𝑗 instead of 𝜏𝑖𝑗

𝑟⋆ =
σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗Υ𝑖𝑗
𝑟⋆ =

σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗
2
𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗
2
Υ𝑖𝑗

𝑟⋆ =

σ𝑖,𝑗∈𝒩

𝑘𝑖𝑗
𝑘𝑖𝑘𝑗

ǁ𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩

𝑘𝑖𝑗
𝑘𝑖𝑘𝑗

෩Υ𝑖𝑗

𝑟accu
⋆ =

σ𝑖,𝑗∈𝒩 𝑘𝑖 𝑘𝑖 + 1 𝑝𝑖𝑗𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩 𝑘𝑖 𝑘𝑖 + 1 𝑝𝑖𝑗Υ𝑖𝑗
𝑟accu
⋆ =

σ𝑖,𝑗∈𝒩 𝑘𝑖 𝑘𝑖 + 1 𝑝𝑖𝑗
2
𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩 𝑘𝑖 𝑘𝑖 + 1 𝑝𝑖𝑗
2
Υ𝑖𝑗

𝑟accu
⋆ =

σ𝑖,𝑗∈𝒩

𝑘𝑖𝑗
𝑘𝑖𝑘𝑗

𝑘𝑖 + 1 ǁ𝜏𝑖𝑗

σ𝑖,𝑗∈𝒩

𝑘𝑖𝑗
𝑘𝑖𝑘𝑗

𝑘𝑖 + 1 ෩Υ𝑖𝑗

DG

𝑏

𝑐

⋆

=
σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩 𝑘𝑖𝑝𝑖𝑗𝑝𝑖𝑙 𝜏𝑗𝑙 − 𝜏𝑖𝑙

𝑏

𝑐

⋆

=
σ𝑖,𝑗∈𝒩 𝑘𝑖𝑝𝑖𝑗

2
𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩 𝑘𝑖𝑝𝑖𝑗
2
𝑝𝑖𝑙 𝜏𝑗𝑙 − 𝜏𝑖𝑙

𝑏

𝑐

⋆

=

σ𝑖,𝑗∈𝒩

𝑘𝑖𝑗
𝑘𝑖𝑘𝑗

ǁ𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩

𝑘𝑖𝑗𝑘𝑖𝑙
𝑘𝑖
2𝑘𝑗

ǁ𝜏𝑗𝑙 − ǁ𝜏𝑖𝑙

𝑏

𝑐
accu

⋆

=
σ𝑖,𝑗∈𝒩 𝑘𝑖

2𝑝𝑖𝑗𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩 𝑘𝑖
2𝑝𝑖𝑗𝑝𝑖𝑙 𝜏𝑗𝑙 − 𝜏𝑖𝑙

𝑏

𝑐
accu

⋆

=
σ𝑖,𝑗∈𝒩 𝑘𝑖

2𝑝𝑖𝑗
2
𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩 𝑘𝑖
2𝑝𝑖𝑗

2
𝑝𝑖𝑙 𝜏𝑗𝑙 − 𝜏𝑖𝑙

𝑏

𝑐
accu

⋆

=
σ𝑖,𝑗∈𝒩 𝑝𝑖𝑗 ǁ𝜏𝑖𝑗

σ𝑖,𝑗,𝑙∈𝒩 𝑝𝑗𝑖𝑝𝑖𝑙 ǁ𝜏𝑗𝑙 − ǁ𝜏𝑖𝑙

Figure S1. Steps to calculate the theoretical conditions for cooperation success in both PGGs and DGs, including PC,
DB, and BD update rules and averaged & accumulated payoff calculations. Step 1: Input network structure ki j ∈ {0,1}
between all nodes and calculate necessary quantities. Step 2: Solve for the linear equations to obtain τi j (for PC and DB
updates) or τ̃i j (for BD update). Note that τi j = τ ji, τ̃i j = τ̃ ji. Step 3: Insert the obtained values into the formulas for
cooperation conditions. Note that usually ϒi j ̸= ϒ ji, ϒ̃i j ̸= ϒ̃ ji. r⋆ is the critical synergy factor using averaged payoff and r⋆accu
is using accumulated payoff, and similar to (b/c)⋆ and (b/c)⋆accu.
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Figure S2. Supplementary results across more model details (BD update and accumulated payoff) for effects of local
structures on cooperation in spatial PGGs. a, ER networks. The increasing average degree consistently inhibits cooperation.
b, SW networks. The increasing clustering coefficient promotes cooperation, but the PC rule using accumulated payoffs
presents the opposite effect. c, BA networks. The increasing degree heterogeneity initially promotes but ultimately inhibits
cooperation under the PC and DB rules. However, this does not hold under the BD rule. The parameters are the same as the
ones in Fig. 3 in the main text.
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𝑁 = 5 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 90.48% 4.76% *

DB 90.48% 4.76% *

BD 90.48% 4.76% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 23.81% 4.76% 71.43%

BD 0 0 100%

𝑁 = 6 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 94.64% 4.46% *

DB 95.54% 3.57% *

BD 96.43% 2.68% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 31.25% 6.25% 62.50%

BD 0 0 100%

𝑁 = 7 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 97.30% 2.58% *

DB 98.12% 1.76% *

BD 97.89% 1.99% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 32.94% 13.13% 53.93%

BD 0 0 100%

𝑁 = 8 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 98.81% 1.18% *

DB 99.27% 0.72% *

BD 99.21% 0.78% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 31.58% 17.25% 51.17%

BD 0 0 100%

𝑁 = 3 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 1/2 0 *

DB 1/2 0 *

BD 1/2 0 *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 0 0 100%

BD 0 0 100%

𝑁 = 4 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 5/6 0 *

DB 5/6 0 *

BD 5/6 0 *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 1/6 0 5/6

BD 0 0 100%

Figure S3. Supplementary results for spatial PGGs on all networks of different sizes 3≤ N ≤ 8. The categories of
networks classified by their critical synergy factors are presented. The symbol * means that the only structure that does not
support cooperation is the fully connected network. The results are obtained using averaged payoffs.
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Accumulated payoff

𝑁 = 5 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 90.48% 4.76% *

DB 90.48% 4.76% *

BD 90.48% 4.76% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 23.81% 4.76% 71.43%

BD 0 0 100%

𝑁 = 6 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 96.43% 2.68% *

DB 95.54% 3.57% *

BD 96.43% 2.68% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 29.46% 7.14% 63.40%

BD 0 0 100%

𝑁 = 7 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 97.77% 2.11% *

DB 98.36% 1.52% *

BD 98.94% 0.94% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0.12% 99.88%

DB 29.66% 11.96% 58.38%

BD 0 0 100%

𝑁 = 8 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 99.25% 0.74% *

DB 99.40% 0.59% *

BD 99.66% 0.33% *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0.01% 0.03% 99.96%

DB 27.57% 17.04% 55.39%

BD 0 0 100%

𝑁 = 3 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 1/2 0 *

DB 1/2 0 *

BD 1/2 0 *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 0 0 100%

BD 0 0 100%

𝑁 = 4 0 < 𝑟⋆ ≤ 30 𝑟⋆ > 30 𝑟⋆ < 0 or 𝑟⋆ → ∞

PGG

PC 5/6 0 *

DB 5/6 0 *

BD 5/6 0 *

0 < Τ𝑏 𝑐 ⋆ ≤ 30 Τ𝑏 𝑐 ⋆ > 30 Τ𝑏 𝑐 ⋆ < 0 or Τ𝑏 𝑐 ⋆ → ∞

DG

PC 0 0 100%

DB 1/6 0 5/6

BD 0 0 100%

Figure S4. Supplementary results to Fig. S3 for spatial PGGs on all networks of different sizes 3≤ N ≤ 8. The results
are obtained using accumulated payoffs.
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